1
|
Wu H, Cui Z, Huang X, Kong F, Wang Z, Cui H, Liu Y. Seasonal host shifts based on midgut residues of Protaetia brevitarsis (Coleoptera: Scarabaeidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae214. [PMID: 39340278 DOI: 10.1093/jee/toae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
White-spotted flower chafer adult (Protaetia brevitarsis, Coleoptera: Scarabaeidae), a serious omnivorous pest in regions with multiple fruits and crops, was studied to gain a deeper understanding of its damage patterns. DNA molecular tracking technology was used to identify host plant residues in adult P. brevitarsis midgut, and plant species with the most availability were determined during their growing season. Combining the 2019 and 2021 results, it was found that adults in the multi-cropped area fed on 32 plant species from 23 families, with grape (Vitis vinifera, 40%), peach (Prunus perisica, 23%) and mulberry (Morus alba, 14%) making up the majority of their diet. Some adults fed on multiple plant hosts, with four species detected in one adult and two to three species detected in one-third of adults. Adults shifted among host species during the season, moving from mulberry or grape to peach and then back to grape. These results provide a scientific basis for in-depth research to develop green integrated control technologies against P. brevitarsis adults.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuangzhi Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanfang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haizhen Cui
- Agriculture and Rural Bureau of Boxing, Agricultural Technology Extension Center, Shandong, China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Gray HL, Ivers NA, Lopez E, Peter BG, Longing SD, López-Uribe MM, Jha S. Diet specialization mediates drivers of Cucurbita herbivory in a semi-arid agroecosystem. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100087. [PMID: 38988880 PMCID: PMC11233904 DOI: 10.1016/j.cris.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024]
Abstract
Herbivory is a major fitness pressure for plants and a key driver of crop losses in agroecosystems. Dense monocultures are expected to favor specialist herbivorous insects, particularly those who primarily consume crop species; yet, levels and types of herbivory are not uniform within regional cropping systems. It is essential to determine which local and regional ecological factors drive variation in herbivory in order to support functional agroecosystems that rely less on chemical inputs. Crops in the genus Cucurbita host a suite of both generalist and specialist herbivores that inflict significant damage, yet little is known about the relative contribution of these herbivores to variation in herbivory and how local- and landscape-scale Cucurbita resource concentrations, management practices, and natural enemies mediate this relationship. In this study, we tested whether three foundational ecological hypotheses influenced Cucurbita herbivory across 20 pumpkin fields in the semi-arid Southern High Plains Region of Texas. We used generalized linear mixed models and confirmatory path analysis to assess whether the Density-dependent Herbivory Hypothesis, Resource Concentration Hypothesis, or the Natural Enemies Hypothesis, could explain variation in Cucurbita herbivory and insect dynamics in the context of conventional agronomic practices. We found that herbivory increased over time, indicating that herbivores were causing sustained damage throughout the growing season. We also found that fields with higher local Cucurbita resources had lower herbivory, suggesting a resource dilution effect. Natural enemy communities were more abundant and taxonomically rich in sites with greater generalist herbivore abundance, though predator abundance declined over time, indicating that late-season crop fields are most at risk given high herbivory and low natural enemy-based control. Our findings also suggest that while local resource availability may drive the abundance and richness of arthropod communities, additional agronomic and phenological information is needed to anticipate herbivory risk in an agriculturally dominated landscape.
Collapse
Affiliation(s)
- Hannah L. Gray
- Dept. of Integrative Biology, University of Texas at Austin, 205W. 24th St., Austin 78712, TX, USA
| | - Nicholas A. Ivers
- Dept. of Entomology, Pennsylvania State University, 547 ASI Bldg., University Park, PA, 16802, USA
| | - Elizabeth Lopez
- Dept. of Integrative Biology, University of Texas at Austin, 205W. 24th St., Austin 78712, TX, USA
| | - Brad G. Peter
- Dept. of Geosciences, University of Arkansas, 340N. Campus Walk, Fayetteville 72701, AK, USA
| | - Scott D. Longing
- Dept. of Plant and Soil Science, Texas Tech University, 2911 15th St., Lubbock 79409, TX, USA
| | - Margarita M. López-Uribe
- Dept. of Entomology, Pennsylvania State University, 547 ASI Bldg., University Park, PA, 16802, USA
| | - Shalene Jha
- Dept. of Integrative Biology, University of Texas at Austin, 205W. 24th St., Austin 78712, TX, USA
- Lady Bird Johnson Wildflower Center, 4801 La Crosse Ave., University of Texas, Austin 78739, TX, USA
| |
Collapse
|
4
|
Dang YQ, Duan JJ, Li AY. Parasitoid-induced changes in metabolic rate and feeding activity of the emerald ash borer (Coleoptera: Buprestidae): implications for biological control. Sci Rep 2023; 13:22663. [PMID: 38114572 PMCID: PMC10730522 DOI: 10.1038/s41598-023-50147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Parasitoid-host interactions form the foundation of biological control strategies against many agriculture and forest insect pests. The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is a serious invasive pest of ash (Fraxinus spp.) trees in North America. Tetrastichus planipennisi (Hymenoptera: Eulophidae) is a gregarious, koinobiont endoparasitoid, attacking late (3rd to 4th) instars of EAB larvae, which feed in the live phloem of ash trunks or branches, making serpentine-like galleries filled with larval frass. In the present study, we tested the hypothesis that T. planipennisi regulates the host metabolism and feeding activity to optimize its offspring development and fitness. We first compared the respiration rate of parasitized and unparasitized host larvae at different times after parasitism, and then measured feeding activity of both parasitized and unparasitized host larvae inside their feeding galleries. Although parasitized host larvae increased metabolic rate and feeding activity in the first few days of parasitism, T. planipennisi parasitism induced an overall reduction of the metabolic rate and decrease in feeding activity of parasitized host larvae over their development period. In addition, there was a negative relationship between feeding activity of parasitized hosts and brood sizes of the parasitoid progeny-i.e., the more parasitoid progeny a host larva received, the less feeding activity the host had. These findings suggest that T. planipennisi has limited ability to optimize its offspring development and fitness through regulations of the host metabolism and feeding activity and its parasitism reduces feeding damage of parasitized EAB larvae to infested ash trees.
Collapse
Affiliation(s)
- Ying-Qiao Dang
- Agriculture Research Service, Beneficial Insects Introduction Research Unit, U.S. Department of Agriculture, Newark, DE, 19713, USA
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian J Duan
- Agriculture Research Service, Beneficial Insects Introduction Research Unit, U.S. Department of Agriculture, Newark, DE, 19713, USA.
| | - Andrew Y Li
- Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| |
Collapse
|
5
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Kolasa M, Kajtoch Ł, Michalik A, Maryańska-Nadachowska A, Łukasik P. Till evolution do us part: The diversity of symbiotic associations across populations of Philaenus spittlebugs. Environ Microbiol 2023; 25:2431-2446. [PMID: 37525959 DOI: 10.1111/1462-2920.16473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.
Collapse
Affiliation(s)
- Michał Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Hertaeg C, Vorburger C, De Moraes CM, Mescher MC. Effects of genotype and host environment on the cuticular hydrocarbon profiles of Lysiphlebus parasitoids and aggression by aphid-tending ants. Proc Biol Sci 2023; 290:20231642. [PMID: 37848063 PMCID: PMC10581773 DOI: 10.1098/rspb.2023.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Parasitoids in the genus Lysiphlebus specialize on ant-tended aphids and have previously been reported to mimic the cuticular hydrocarbon (CHC) profiles of their aphid hosts to avoid detection by ants. However, the precise mechanisms that mediate reduced ant aggression toward Lysiphlebus spp. are not known, nor is it clear whether such mechanisms are broadly effective or specialized on particular aphid hosts. Here we explore the effects of wasp genotype and host environment on Lysiphlebus CHC profiles and ant aggression. Rearing asexual Lysiphlebus lines in different host aphid environments revealed effects of both wasp line and aphid host on wasp CHCs. However, variation in genotype and host affected different features of the CHC profile, with wasp genotype explaining most variation in linear and long-chain methyl alkanes, while aphid host environment primarily influenced short-chain methyl alkanes. Subsequent behavioural experiments revealed no effects of host environment on ant aggression, but strong evidence for genotypic effects. The influence of genotypic variation on experienced ant aggression and relevant chemical traits is particularly relevant in light of recent evidence for genetic divergence among Lysiphlebus parasitoids collected from different aphid hosts.
Collapse
Affiliation(s)
- Corinne Hertaeg
- D-USYS, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Christoph Vorburger
- D-USYS, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Consuelo M. De Moraes
- D-USYS, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Mark C. Mescher
- D-USYS, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Berasategui A, Breitenbach N, García-Lozano M, Pons I, Sailer B, Lanz C, Rodríguez V, Hipp K, Ziemert N, Windsor D, Salem H. The leaf beetle Chelymorpha alternans propagates a plant pathogen in exchange for pupal protection. Curr Biol 2022; 32:4114-4127.e6. [PMID: 35987210 DOI: 10.1016/j.cub.2022.07.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Many insects rely on microbial protection in the early stages of their development. However, in contrast to symbiont-mediated defense of eggs and young instars, the role of microbes in safeguarding pupae remains relatively unexplored, despite the susceptibility of the immobile stage to antagonistic challenges. Here, we outline the importance of symbiosis in ensuring pupal protection by describing a mutualistic partnership between the ascomycete Fusarium oxysporum and Chelymorpha alternans, a leaf beetle. The symbiont rapidly proliferates at the onset of pupation, extensively and conspicuously coating C. alternans during metamorphosis. The fungus confers defense against predation as symbiont elimination results in reduced pupal survivorship. In exchange, eclosing beetles vector F. oxysporum to their host plants, resulting in a systemic infection. By causing wilt disease, the fungus retained its phytopathogenic capacity in light of its symbiosis with C. alternans. Despite possessing a relatively reduced genome, F. oxysporum encodes metabolic pathways that reflect its dual lifestyle as a plant pathogen and a defensive insect symbiont. These include virulence factors underlying plant colonization, along with mycotoxins that may contribute to the defensive biochemistry of the insect host. Collectively, our findings shed light on a mutualism predicated on pupal protection of an herbivorous beetle in exchange for symbiont dissemination and propagation.
Collapse
Affiliation(s)
- Aileen Berasategui
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany; University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany.
| | - Noa Breitenbach
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Marleny García-Lozano
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Inès Pons
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Brigitte Sailer
- Max Planck Institute for Biology, Electron Microscopy Facility, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Christa Lanz
- Max Planck Institute for Biology, Genome Center, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Viterbo Rodríguez
- Centro Regional Universitario de Veraguas, Centro de Capacitación, Investigación y Monitoreo de la Biodiversidad en Coiba, Calle Décima, vía San Francisco, Santiago 08001, Republic of Panama
| | - Katharina Hipp
- Max Planck Institute for Biology, Electron Microscopy Facility, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Nadine Ziemert
- University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Panama City 0843-03092, Republic of Panama
| | - Hassan Salem
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
9
|
Henry Y, Brechbühler E, Vorburger C. Gated Communities: Inter- and Intraspecific Diversity of Endosymbionts Across Four Sympatric Aphid Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.816184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aphids have evolved tight relationships with heritable endosymbionts, i.e., bacteria hosted within their tissues. Besides the primary endosymbiont Buchnera aphidicola, aphids host many facultative secondary endosymbionts with functions they may or may not benefit from. The different phenologies, lifestyles, and natural enemies of aphid species are predicted to favor the selection for distinct endosymbiont assemblages, as well as the emergence of intra-specific genetic diversity in the symbiotic bacteria. In this study, we (1) investigated the diversity of endosymbionts associated with four species from the genus Aphis in the field, and (2) we characterized the genetic diversity of Hamiltonella defensa, an endosymbiont that protects aphids against parasitoid wasps. We observed strong differences in the composition of endosymbiont communities among the four aphid species. H. defensa was clearly the dominant symbiont, although its abundance in each species varied from 25 to 96%. Using a multilocus sequence-typing approach, we found limited strain diversity in H. defensa. Each aphid species harbored two major strains, and none appeared shared between species. Symbiont phylogenies can thus help to understand the (seemingly limited) mobility of endosymbionts in aphid communities and the selection forces driving strain diversification.
Collapse
|
10
|
Improving Natural Enemy Selection in Biological Control through Greater Attention to Chemical Ecology and Host-Associated Differentiation of Target Arthropod Pests. INSECTS 2022; 13:insects13020160. [PMID: 35206733 PMCID: PMC8877252 DOI: 10.3390/insects13020160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022]
Abstract
Host-associated differentiation (HAD) refers to cases in which genetically distinct populations of a species (e.g., herbivores or natural enemies) preferentially reproduce or feed on different host species. In agroecosystems, HAD often results in unique strains or biotypes of pest species, each attacking different species of crops. However, HAD is not restricted to pest populations, and may cascade to the third trophic level, affecting host selection by natural enemies, and ultimately leading to HAD within natural enemy species. Natural enemy HAD may affect the outcomes of biological control efforts, whether classical, conservation, or augmentative. Here, we explore the potential effects of pest and natural enemy HAD on biological control in agroecosystems, with emphases on current knowledge gaps and implications of HAD for selection of biological control agents. Additionally, given the importance of semiochemicals in mediating interactions between trophic levels, we emphasize the role of chemical ecology in interactions between pests and natural enemies, and suggest areas of consideration for biological control. Overall, we aim to jump-start a conversation concerning the relevance of HAD in biological control by reviewing currently available information on natural enemy HAD, identifying challenges to incorporating HAD considerations into biological control efforts, and proposing future research directions on natural enemy selection and HAD.
Collapse
|