1
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
2
|
Yang D, Wang J, Wang X, Deng F, Diao Q, Wang M, Hu Z, Hou C. Genomics and Proteomics of Apis mellifera Filamentous Virus Isolated from Honeybees in China. Virol Sin 2022; 37:483-490. [PMID: 35527222 PMCID: PMC9437511 DOI: 10.1016/j.virs.2022.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Apis mellifera filamentous virus (AmFV) is a large DNA virus that is endemic in honeybee colonies. The genome sequence of the AmFV Swiss isolate (AmFV CH–C05) has been reported, but so far very few molecular studies have been conducted on this virus. In this study, we isolated and purified AmFV (AmFV CN) from Chinese honeybee (Apis mellifera) colonies and elucidated its genomics and proteomics. Electron microscopy showed ovoid purified virions with dimensions of 300–500 × 210–285 nm, wrapping a 3165 × 40 nm filamentous nucleocapsid in three figure-eight loops. Unlike AmFV CH–C05, which was reported to have a circular genome, our data suggest that AmFV CN has a linear genome of approximately 493 kb. A total of 197 ORFs were identified, among which 36 putative genes including 18 baculoviral homologs were annotated. The overall nucleotide similarity between the CN and CH–C05 isolates was 96.9%. Several ORFs were newly annotated in AmFV CN, including homologs of per os infectivity factor 4 (PIF4) and a putative integrase. Phylogenomic analysis placed AmFVs on a separate branch within the newly proposed virus class Naldaviricetes. Proteomic analysis revealed 47 AmFV virion-associated proteins, of which 14 had over 50% sequence coverage, suggesting that they are likely to be main structural proteins. In addition, all six of the annotated PIFs (PIF-0–5) were identified by proteomics, suggesting that they may function as entry factors in AmFV infection. This study provides fundamental information regarding the molecular biology of AmFV. The AmFV CN contains a 493 kb linear genome encoding 197 ORFs. Proteomics revealed 14 putative major structural proteins. AmFV belongs to the class Naldaviricetes but not the order Lefavirales.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Manli Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
3
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
4
|
Rachimi S, Burand JP, Geden C, Stoffolano JG. The Effect of the Musca domestica Salivary Gland Hypertrophy Virus on Food Consumption in Its Adult Host, the Common House Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1398-1404. [PMID: 33470402 DOI: 10.1093/jme/tjaa281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 06/12/2023]
Abstract
The Musca domestica salivary gland hypertrophy virus (MdSGHV) substantially enlarges the house fly's salivary glands and prevents or delays ovarian development in its adult host, but the effect that MdSGHV has on the house fly's food consumption is currently unknown. Using house flies from a laboratory-reared colony, we evaluated the effect of MdSGHV infection on food consumption over a 7-d period. Both treatment (virus-infected) and control (saline-injected) flies were provided with a choice of 8% sucrose solution and 4% powdered milk solution to determine food preferences. Quantities of each solution consumed were measured every 24 h for each fly to measure food consumptions. Infected house flies were shown to consume less overall of both solutions than house flies injected with saline. The largest consumption discrepancy was seen between female house flies. Healthy female flies with developing ovaries continued to consume a sugar and protein diet, whereas infected female flies fed predominantly on a sugar diet. Additionally, infected male and female flies consumed significantly lower quantities of protein and sucrose than control flies. This suggests that MdSGHV has a negative consumption effect (e.g., hunger, starvation) on its host. Thus, differences in food consumption of infected and control flies probably represent differences in the nutritional requirements of flies resulting from viral infection.
Collapse
Affiliation(s)
- Suzanna Rachimi
- Biochemistry and Molecular Biology Department, University of Massachusetts, Amherst, MA
| | - John P Burand
- Microbiology Department, University of Massachusetts, Amherst, MA
| | - Chris Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA ARS, Gainesville, FL
| | - John G Stoffolano
- Department of Entomology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA
| |
Collapse
|
5
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
6
|
Molina Palacios D, Stoffolano JG, Fausto AM, Gambellini G, Burand J. The Effect of the Hypertrophy Virus (MdSGHV) on the Ultrastructure of the Salivary Glands of Musca domestica (Diptera: Muscidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6209919. [PMID: 33822129 PMCID: PMC8023384 DOI: 10.1093/jisesa/ieab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The salivary glands of insects play a key role in the replication cycle and vectoring of viral pathogens. Consequently, Musca domestica (L.) (Diptera: Muscidae) and the Salivary Gland Hypertrophy Virus (MdSGHV) serve as a model to study insect vectoring of viruses. A better understanding of the structural changes of the salivary glands by the virus will help obtain a better picture of the pathological impact the virus has on adult flies. The salivary glands are a primary route for viruses to enter a new host. As such, studying the viral effect on the salivary glands is particularly important and can provide insights for the development of strategies to control the transmission of vector-borne diseases, such as dengue, malaria, Zika, and chikungunya virus. Using scanning and transmission electron microscopic techniques, researchers have shown the effects of infection by MdSGHV on the salivary glands; however, the exact location where the infection was found is unclear. For this reason, this study did a close examination of the effects of the hypertrophy virus on the salivary glands to locate the specific sites of infection. Here, we report that hypertrophy is present mainly in the secretory region, while other regions appeared unaffected. Moreover, there is a disruption of the cuticular, chitinous lining that separates the secretory cells from the lumen of the internal duct, and the disturbance of this lining makes it possible for the virus to enter the lumen. Thus, we report that the chitinous lining acts as an exit barrier of the salivary gland.
Collapse
Affiliation(s)
- D Molina Palacios
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - J G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - A M Fausto
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - G Gambellini
- Centro Grandi Attrezzature (CGA), Sezione di Microscopia Elettronica Università degli Studi della Tuscia, Viterbo, Italy
| | - J Burand
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
8
|
Demirbas-Uzel G, Parker AG, Vreysen MJB, Mach RL, Bouyer J, Takac P, Abd-Alla AMM. Impact of Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) on a heterologous tsetse fly host, Glossina fuscipes fuscipes. BMC Microbiol 2018; 18:161. [PMID: 30470172 PMCID: PMC6251146 DOI: 10.1186/s12866-018-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies' productivity, mortality, survival, flight propensity and mating ability and insemination rates. RESULTS Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate. CONCLUSION These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia.,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
9
|
Kariithi HM, Boucias DG, Murungi EK, Meki IK, Demirbaş-Uzel G, van Oers MM, Vreysen MJB, Abd-Alla AMM, Vlak JM. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol 2018; 18:183. [PMID: 30470186 PMCID: PMC6251100 DOI: 10.1186/s12866-018-1296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV's specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV's asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. RESULTS Whereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host's immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly's RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. CONCLUSIONS The ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive 'explorers' to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Kaptagat Rd, Loresho, Nairobi, 00200, Kenya. .,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria. .,Present Address: US National Poultry Research Centre, Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA, 30605, USA.
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL, 32611, USA
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria.,Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Güler Demirbaş-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
10
|
Ouedraogo GMS, Demirbas-Uzel G, Rayaisse JB, Gimonneau G, Traore AC, Avgoustinos A, Parker AG, Sidibe I, Ouedraogo AG, Traore A, Bayala B, Vreysen MJB, Bourtzis K, Abd-Alla AMM. Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa. BMC Microbiol 2018; 18:153. [PMID: 30470187 PMCID: PMC6251090 DOI: 10.1186/s12866-018-1287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.
Collapse
Affiliation(s)
- Gisele M S Ouedraogo
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso.,Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Geoffrey Gimonneau
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.,CIRAD, UMR INTERTRYP, F-34398, Montpellier, France
| | - Astan C Traore
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Bamako, Mali
| | - Antonios Avgoustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Issa Sidibe
- Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Projet de Création de Zones Libérées Durablement de Tsé-tsé et de Trypanosomoses (PCZLD), Bobo-Dioulasso, Burkina Faso
| | - Anicet G Ouedraogo
- Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Amadou Traore
- Institut de l'Environnement et des Recherches Agricoles (INERA), BP 8635, Ouagadougou 04, Burkina Faso
| | - Bale Bayala
- Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.
| |
Collapse
|
11
|
Geiger A, Malele I, Abd-Alla AM, Njiokou F. Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions. BMC Microbiol 2018; 18:162. [PMID: 30470183 PMCID: PMC6251083 DOI: 10.1186/s12866-018-1281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research on the zoo-anthropophilic blood feeding tsetse flies' biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies' bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.
Collapse
Affiliation(s)
- Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Imna Malele
- Vector and Vector Borne Diseases Institute, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
| | - Adly M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
12
|
Weeks EN, Machtinger ET, Leemon D, Geden CJ. 12. Biological control of livestock pests: entomopathogens. ECOLOGY AND CONTROL OF VECTOR-BORNE DISEASES 2018. [DOI: 10.3920/978-90-8686-863-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma N.I. Weeks
- University of Florida, Entomology and Nematology Dept., 970 Natural Area Drive, Gainesville, FL 32653, USA
| | - Erika T. Machtinger
- Penn State University, Department of Entomology, 501 ASI Building, University Park, State College, PA 16082, USA
| | - Diana Leemon
- Department of Agriculture and Fisheries (Queensland), Agri-Science Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - Christopher J. Geden
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
13
|
Kariithi HM, İnce İA, Boeren S, Murungi EK, Meki IK, Otieno EA, Nyanjom SRG, van Oers MM, Vlak JM, Abd-Alla AMM. Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies. Front Microbiol 2016; 7:89. [PMID: 26903969 PMCID: PMC4746320 DOI: 10.3389/fmicb.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The 190 kb GpSGHV genome contains 160 open reading frames and encodes more than 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH). Flies with SGH show reduced general fitness and reproductive dysfunction. Although the occurrence of SGH is an exception rather than the rule, G. pallidipes is thought to be the most susceptible to expression of overt SGH symptoms compared to other Glossina species that are largely asymptomatic. Although Glossina salivary glands (SGs) play an essential role in GpSGHV transmission, the functions of the salivary components during the virus infection are poorly understood. In this study, we used mass spectrometry to study SG proteomes of G. pallidipes and G. m. morsitans, two Glossina model species that exhibit differential GpSGHV pathologies (high and low incidence of SGH, respectively). A total of 540 host proteins were identified, of which 23 and 9 proteins were significantly up- and down-regulated, respectively, in G. pallidipes compared to G. m. morsitans. Whereas 58 GpSGHV proteins were detected in G. pallidipes F1 progenies, only 5 viral proteins were detected in G. m. morsitans. Unlike in G. pallidipes, qPCR assay did not show any significant increase in virus titers in G. m. morsitans F1 progenies, confirming that G. m. morsitans is less susceptible to GpSGHV infection and replication compared to G. pallidipes. Based on our results, we speculate that in the case of G. pallidipes, GpSGHV employs a repertoire of host intracellular signaling pathways for successful infection. In the case of G. m. morsitans, antiviral responses appeared to be dominant. These results are useful for designing additional tools to investigate the Glossina-GpSGHV interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University İstanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Edwin K Murungi
- South African National Bioinformatics Institute, University of the Western Cape Cape Town, South Africa
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - Everlyne A Otieno
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | - Steven R G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | | | - Just M Vlak
- Laboratory of Virology, Wageningen University Wageningen, Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency Vienna, Austria
| |
Collapse
|
14
|
Guerra L, Stoffolano JG, Belardinelli MC, Fausto AM. Serotonergic Innervation of the Salivary Glands and Central Nervous System of Adult Glossina pallidipes Austen (Diptera: Glossinidae), and the Impact of the Salivary Gland Hypertrophy Virus (GpSGHV) on the Host. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev162. [PMID: 26798144 PMCID: PMC4725261 DOI: 10.1093/jisesa/iev162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Using a serotonin antibody and confocal microscopy, this study reports for the first time direct serotonergic innervation of the muscle sheath covering the secretory region of the salivary glands of adult tsetse fly, Glossina pallidipes Austen. Reports to date, however, note that up until this finding, dipteran species previously studied lack a muscle sheath covering of the secretory region of the salivary glands. Direct innervation of the salivary gland muscle sheath of tsetse would facilitate rapid deployment of saliva into the host, thus delaying a host response. Our results also suggest that the neuronal and abnormal pattern seen in viral infected glands by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is due to a compensatory increased branching of the neurons of the salivary glands, which is associated with the increased size of the salivary glands in viral infected flies. This study shows for the first time serotonin in the cell bodies of the brain and thoracico-abdominal ganglion in adult tsetse, G. pallidipes Austen (Diptera: Glossinidae). A hypothesis is proposed as to whether innervation of the muscle sheath covering of the secretory region of the salivary glands is present in brachyceran compared with nematoceran dipterans; and, a plea is made that more research is needed to develop a blood feeding model, similar to that in the blow flies, for elucidating the various mechanisms involved in production and deployment of saliva.
Collapse
Affiliation(s)
- Laura Guerra
- Dipartimento per la Innovazioni nei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy (; ; ),
| | - John G Stoffolano
- Stockbridge School of Agriculture, 270 Stockbridge Rd., Fernald Hall, Room 204A, University of Massachusetts, Amherst, MA 01003, USA
| | - Maria Cristina Belardinelli
- Dipartimento per la Innovazioni nei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy (; ; )
| | - Anna Maria Fausto
- Dipartimento per la Innovazioni nei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy (; ; ),
| |
Collapse
|
15
|
Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, de Miranda JR, Neumann P. The Apis mellifera Filamentous Virus Genome. Viruses 2015; 7:3798-815. [PMID: 26184284 PMCID: PMC4517127 DOI: 10.3390/v7072798] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.
Collapse
Affiliation(s)
- Laurent Gauthier
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | | | - Ulrike Hartmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - François Cousserans
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - Jay D Evans
- Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
16
|
Yimer MM, Bula DG, Tesama TK, Tadesse KA, Abera BH. Prevalence of salivary gland hypertrophy syndrome in laboratory colonies and wild flies of Glossina pallidipes in Ethiopia. Onderstepoort J Vet Res 2015; 82:e1-e6. [PMID: 26244680 PMCID: PMC6238694 DOI: 10.4102/ojvr.v82i1.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
Glossina pallidipes salivary gland hyperplasia (GpSGH) syndrome caused by the salivary gland hyperplasia virus reduces the reproduction potential of tsetse flies, posing a serious threat for rearing of sufficient colonies for use of tsetse and trypanosome control using the sterile insect technique. This research was conducted in the Kaliti Tsetse Mass Rearing and Irradiation Centre in Ethiopia with the objective of studying the prevalence of GpSGH syndrome in laboratory colonies of G. pallidipes (Tororo and Arbaminch) reared for release in the implementation of the sterile insect technique and a field strain of G. pallidipes Arbaminch. Presence or absence of GpSGH was determined when pathological features of the salivary gland were revealed after dissection. The overall prevalence of GpSGH syndrome in laboratory colonies was 48.3% (747/1548) with a statistically significant (z = 17.30, p = 0.001) prevalence of 70.2% (544/775) in Arbaminch colonies and 26.26% (203/773) in Tororo colonies. The prevalence of GpSGH in laboratory flies fed according to the clean blood feeding protocol was 68.9% and 22.4% in Arbaminch and Tororo strains respectively. It was 70.5% and 27.2% respectively in laboratory colonies of Arbaminch and Tororo strains fed according to the standard membrane feeding protocol. The difference in prevalence of the disease between the two feeding protocols was not statistically significant in either Arbaminch (z = 0.361, p = 0.359) or Tororo (z = 1.22, p = 0.111) strains. The prevalence of SGH in wild G. pallidipes Arbaminch strain was 3% (15/500) and was significantly (z = 23.61, p < 0.001) lower than in the laboratory strain. The effect of age and density-related stress on the development of GpSGH was not statistically significant. The prevalence of GpSGH in the newly emerging (teneral) flies in the laboratory colonies was 66.7% and 20% in the Arbaminch and Tororo strains respectively. For all considered risk factors, the prevalence was much higher in G. pallidipes Arbaminch laboratory colonies.
Collapse
|
17
|
Boucias D, Baniszewski J, Prompiboon P, Lietze V, Geden C. Enhancement of the Musca domestica hytrosavirus infection with orally delivered reducing agents. J Invertebr Pathol 2014; 124:35-43. [PMID: 25450739 DOI: 10.1016/j.jip.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022]
Abstract
House flies (Musca domestica L.) throughout the world are infected with the salivary gland hypertrophy virus MdSGHV (Hytrosaviridae). Although the primary route of infection is thought to be via ingestion, flies that are old enough to feed normally are resistant to infection per os, suggesting that the peritrophic matrix (PM) is a barrier to virus transmission. Histological examination of the peritrophic matrix of healthy flies revealed a multilaminate structure produced by midgut cells located near the proventriculus. SEM revealed the PM to form a confluent sheet surrounding the food bolus with pores/openings less than 10nm in diameter. TEM revealed the PM to be multilayered, varying in width from 350 to 900 nm, and generally thinner in male than in female flies. When flies were fed on the reducing agents dithiothetriol (DTT) or tris (2-caboxyethyl)phosphine hydrochloride (TCEP) for 48 h before per os exposure to the virus, infection rates increased 10- to 20-fold compared with flies that did not receive the reducing agent treatments. PM's from flies treated with DTT and TCEP displayed varying degrees of disruption, particularly in the outer layer, and lacked the electron-dense inner layer facing the ectoperitrophic space. Both drugs were somewhat toxic to the flies, resulting in>40% mortality at doses greater than 10mM (DTT) or 5 mM (TCEP). DTT increased male fly susceptibility (55.1% infected) more than that of females (7.8%), whereas TCEP increased susceptibility of females (42.9%) more than that of males (26.2%). The cause for the sex differences in response to oral exposure the reducing agents is unclear. Exposing flies to food treated with virus and the reducing agents at the same time, rather than pretreating flies with the drugs, had no effect on susceptibility to the virus. Presumably, the reducing agent disrupted the enveloped virus and acted as a viricidal agent. In summary, it is proposed that the reducing agents influence integrity of the PM barrier and increase the susceptibility of flies to infection by MdSGHV.
Collapse
Affiliation(s)
- D Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA
| | - J Baniszewski
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA
| | - P Prompiboon
- BioNet-Asia Co., Ltd., Hi-Tech Industrial Estate, 81 Moo 1, Baan-Lane, Bang Pa-In, Ayutthaya 13160, Thailand
| | - V Lietze
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA
| | - C Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA, ARS, 1600 SW 23[rd] Drive, Gainesville, FL 32608, USA
| |
Collapse
|
18
|
Ruiu L, Satta A, Floris I. Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces: a new eco-sustainable concept. Poult Sci 2014; 93:519-26. [PMID: 24604843 DOI: 10.3382/ps.2013-03418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of a microbial pesticide application against house flies developing in manure should accomplish the uniform mixing of active ingredients with this breeding medium, thus enhancing residual effects. The oral administration of the entomopathogenic bacterium Brevibacillus laterosporus to caged poultry species allows the homogeneous incorporation of its active ingredients with fly breeding media. Feces from treated broilers or hens show toxicity against exposed fly adults and larvae. Insecticidal effects are concentration-dependent with a lethal median concentration (LC50) value of 1.34 × 10(8) and 0.61 × 10(8) spores/g of feces for adults and larvae, respectively. Manure toxicity against flies was maintained as long as chickens were fed a diet containing adequate concentrations of B. laterosporus spores. Toxicity significantly decreased after spore administration to birds was interrupted. When poultry diet contained 10(10) spores/g, mortality of flies reared on feces exceeded 80%. The use of B. lateroporus spores as a feed additive in poultry production systems fostering a more integrated approach to farming is discussed.
Collapse
Affiliation(s)
- L Ruiu
- Dipartimento di Agraria, University of Sassari, via E. De Nicola, 07100 Sassari, Italy
| | | | | |
Collapse
|
19
|
Kariithi HM, van Oers MM, Vlak JM, Vreysen MJB, Parker AG, Abd-Alla AMM. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae). INSECTS 2013; 4:287-319. [PMID: 26462422 PMCID: PMC4553466 DOI: 10.3390/insects4030287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023]
Abstract
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
- Biotechnology Centre, Kenya Agricultural Research Institute, Waiyaki Way, P.O. Box 14733-00100, Nairobi, Kenya.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| |
Collapse
|
20
|
Abd-Alla AMM, Kariithi HM, Mohamed AH, Lapiz E, Parker AG, Vreysen MJB. Managing hytrosavirus infections in Glossina pallidipes colonies: feeding regime affects the prevalence of salivary gland hypertrophy syndrome. PLoS One 2013; 8:e61875. [PMID: 23667448 PMCID: PMC3646844 DOI: 10.1371/journal.pone.0061875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/17/2013] [Indexed: 12/03/2022] Open
Abstract
Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) syndrome and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. Due to the deleterious impact of SGHV on G. pallidipes colonies, several approaches were investigated to develop a virus management strategy. Horizontal virus transmission is the major cause of the high prevalence of the GpSGHV in tsetse colonies. Implementation of a “clean feeding” regime (fresh blood offered to each set of flies so that there is only one feed per membrane), instead of the regular feeding regime (several successive feeds per membrane), was among the proposed approaches to reduce GpSGHV infections. However, due to the absence of disposable feeding equipment (feeding trays and silicone membranes), the implementation of a clean feeding approach remains economically difficult. We developed a new clean feeding approach applicable to large-scale tsetse production facilities using existing resources. The results indicate that implementing this approach is feasible and leads to a significant reduction in virus load from 109 virus copies in regular colonies to an average of 102.5 and eliminates the SGH syndrome from clean feeding colonies by28 months post implementation of this approach. The clean feeding approach also reduced the virus load from an average of 108 virus copy numbers to an average of 103 virus copies and SGH prevalence of 10% to 4% in flies fed after the clean fed colony. Taken together, these data indicate that the clean feeding approach is applicable in large-scale G. pallidipes production facilities and eliminates the deleterious effects of the virus and the SGH syndrome in these colonies.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
21
|
Abd-Alla AMM, Bergoin M, Parker AG, Maniania NK, Vlak JM, Bourtzis K, Boucias DG, Aksoy S. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J Invertebr Pathol 2013; 112 Suppl:S2-10. [PMID: 22841636 PMCID: PMC4242710 DOI: 10.1016/j.jip.2012.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 11/23/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled "Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens". The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kariithi HM, van Lent JWM, Boeren S, Abd-Alla AMM, İnce İA, van Oers MM, Vlak JM. Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus. J Gen Virol 2012; 94:193-208. [PMID: 23052395 DOI: 10.1099/vir.0.047423-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.,Insect Pest Control Laboratory, International Atomic Energy Agency, A-1400 Vienna, Austria
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, International Atomic Energy Agency, A-1400 Vienna, Austria
| | - İkbal Agah İnce
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey.,Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
23
|
Longdon B, Jiggins FM. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone? Proc Biol Sci 2012; 279:3889-98. [PMID: 22859592 PMCID: PMC3427579 DOI: 10.1098/rspb.2012.1208] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 01/10/2023] Open
Abstract
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.
Collapse
Affiliation(s)
- Ben Longdon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
24
|
Mutika GN, Marin C, Parker AG, Boucias DG, Vreysen MJB, Abd-Alla AMM. Impact of salivary gland hypertrophy virus infection on the mating success of male Glossina pallidipes: consequences for the sterile insect technique. PLoS One 2012; 7:e42188. [PMID: 22912687 PMCID: PMC3418267 DOI: 10.1371/journal.pone.0042188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies are infected by a virus (GpSGHV) that causes salivary gland hypertrophy (SGH). Female Glossina pallidipes (Austen) with SGH symptoms (SGH+) have reduced fecundity and SGH+ male G. pallidipes are unable to inseminate female flies. Consequently, G. pallidipes laboratory colonies with a high prevalence of SGH have been difficult to maintain and have collapsed on several occasions. To assess the potential impact of the release of SGH+ sterile male G. pallidipes on the efficacy of an integrated control programme with a sterile insect technique (SIT) component, we examined the mating efficiency and behaviour of male G. pallidipes in field cages in relation to SGH prevalence. The results showed in a field cage setting a significantly reduced mating frequency of 19% for a male G. pallidipes population with a high prevalence of SGH (83%) compared to 38% for a male population with a low prevalence of SGH (7%). Premating period and mating duration did not vary significantly with SGH status. A high percentage (>80%) of females that had mated with SGH+ males had empty spermathecae. The remating frequency of female G. pallidipes was very low irrespective of the SGH status of the males in the first mating. These results indicate that a high prevalence of SGH+ in G. pallidipes not only affects colony stability and performance but, in view of their reduced mating propensity and competitiveness, releasing SGH+ sterile male G. pallidipes will reduce the efficiency of a sterile male release programme.
Collapse
Affiliation(s)
- Gratian N. Mutika
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Carmen Marin
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- * E-mail:
| |
Collapse
|
25
|
Malele II, Manangwa O, Nyingilili HH, Kitwika WA, Lyaruu EA, Msangi AR, Ouma JO, Nkwangulila G, Abd-Alla AMM. Prevalence of SGHV among tsetse species of economic importance in Tanzania and their implication for SIT application. J Invertebr Pathol 2012; 112 Suppl:S133-7. [PMID: 22841949 DOI: 10.1016/j.jip.2012.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
Sterile Insect technique is an important component in area-wide integrated tsetse control. The presence of the salivary glands hypertrophy virus (SGHV) in the wild tsetse, which are the seeds for colony adaptations in the laboratory has become a stumbling block in establishing and maintaining colonies in the laboratory. The virus is transmitted both vertically (in the wild) and horizontally (in the laboratory). However, its prevalence is magnified in the laboratory as a result of the use of in vitro membrane feeding regimen. Fly species of Glossina fuscipes fuscipes, G. pallidipes, G. morsitans and G. swynnertoni were collected from the coastal and inland areas of Tanzania and virus infection rates were assessed microscopically and by PCR. The data showed that in a period of 4years, the virus was present in all species tested irrespective of their ages, sex, and season of the year. However, infection levels differed among species and from one location to another. Symptomatic infection determined by dissection was 1.2% (25/2164) from the coast as compared to 0.4% (6/1725) for inland collected flies. PCR analysis indicated a higher infection rate of 19.81% (104/525) of asymptomatic flies. From these observations, we conclude that care should be taken when planning to initiate tsetse laboratory colonies for use in SIT eradication program. All efforts should be made to select non-infected flies when initiating laboratory colonies and to try to minimize the infection with SGHV. Also management of SGHV infection in the established colony should be applied.
Collapse
Affiliation(s)
- Imna I Malele
- Tsetse & Trypanosomiasis Research Institute, Box 1026, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maniania NK, Ekesi S. The use of entomopathogenic fungi in the control of tsetse flies. J Invertebr Pathol 2012; 112 Suppl:S83-8. [PMID: 22841947 DOI: 10.1016/j.jip.2012.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Tsetse flies harbor a number of pathogens in nature; but their potential as biological control agents has not been fully exploited, especially due to the difficulty of their application in the field. Since entomopathogenic fungi infect their target organisms through the cuticle, it has been possible to develop a device that deliver and autodisseminate inoculum among tsetse in the field, resulting in population reduction, comparable to mass-trapping technology. However, the success of this technology depends on the effective horizontal transmission of the inoculum between insects. We present an overview of the prospects of entomopathogenic fungi for the control of tsetse flies and highlight the challenges.
Collapse
Affiliation(s)
- Nguya K Maniania
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772,00100 Nairobi, Kenya.
| | | |
Collapse
|
27
|
Lietze VU, Keesling JE, Lee JA, Vallejo CR, Geden CJ, Boucias DG. Muscavirus (MdSGHV) disease dynamics in house fly populations--how is this virus transmitted and has it potential as a biological control agent? J Invertebr Pathol 2012; 112 Suppl:S40-3. [PMID: 22841946 DOI: 10.1016/j.jip.2012.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
The newly classified family Hytrosaviridae comprises several double-stranded DNA viruses that have been isolated from various dipteran species. These viruses cause characteristic salivary gland hypertrophy and suppress gonad development in their hosts. One member, Muscavirus or MdSGHV, exclusively infects adult house flies (Musca domestica) and, owing to its massive reproduction in and release from the salivary glands, is believed to be transmitted orally among feeding flies. However, results from recent experiments suggest that additional transmission routes likely are involved in the maintenance of MdSGHV in field populations of its host. Firstly, several hours before newly emerged feral flies begin feeding activities, the fully formed peritrophic matrix (PM) constitutes an effective barrier against oral infection. Secondly, flies are highly susceptible to topical virus treatments and intrahemocoelic injections. Thirdly, disease transmission is higher when flies are maintained in groups with infected conspecifics than when flies have access to virus-contaminated food. We hypothesize that interactions between flies may lead to cuticular damage, thereby providing an avenue to viral particles for direct access to the hemocoel. Based on our current knowledge, two options seem plausible for developing Muscavirus as a sterilizing agent to control house fly populations: The virus may either be formulated with PM-disrupting materials to facilitate oral infection from a feeding bait system, or amended with abrasive materials to enhance infection through a damaged cuticle after topical aerosol applications.
Collapse
Affiliation(s)
- Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Van Den Abbeele J, Bourtzis K, Weiss B, Cordón-Rosales C, Miller W, Abd-Alla AMM, Parker A. Enhancing tsetse fly refractoriness to trypanosome infection--a new IAEA coordinated research project. J Invertebr Pathol 2012; 112 Suppl:S142-7. [PMID: 22841950 DOI: 10.1016/j.jip.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/15/2022]
Abstract
To date, IAEA-supported Sterile Insect Technique (SIT) projects for tsetse and trypanosomiasis control have been in areas without human sleeping sickness, but future projects could include areas of actual or potential human disease transmission. In this context it would be imperative that released sterile tsetse flies are incompetent to transmit the disease-causing trypanosome parasite. Therefore, development of tsetse fly strains refractory to trypanosome infection is highly desirable as a simple and effective method of ensuring vector incompetence of the released flies. This new IAEA Coordinated Research Project (CRP) focuses on gaining a deeper knowledge of the tripartite interactions between the tsetse fly vectors, their symbionts and trypanosome parasites. The objective of this CRP is to acquire a better understanding of mechanisms that limit the development of trypanosome infections in tsetse and how these may be enhanced.
Collapse
Affiliation(s)
- Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
29
|
Caljon G, De Vooght L, Van Den Abbeele J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J Invertebr Pathol 2012; 112 Suppl:S75-82. [PMID: 22841635 DOI: 10.1016/j.jip.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| | | | | |
Collapse
|
30
|
Abd-Alla AMM, Adun H, Parker AG, Vreysen MJB, Bergoin M. The antiviral drug valacyclovir successfully suppresses salivary gland hypertrophy virus (SGHV) in laboratory colonies of Glossina pallidipes. PLoS One 2012; 7:e38417. [PMID: 22679503 PMCID: PMC3367962 DOI: 10.1371/journal.pone.0038417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/09/2012] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies are infected with a virus that causes salivary gland hypertrophy (SGH) symptoms associated with a reduced fecundity and fertility. A high prevalence of SGH has been correlated with the collapse of two laboratory colonies of Glossina pallidipes and colony maintenance problems in a mass rearing facility in Ethiopia. Mass-production of G. pallidipes is crucial for programs of tsetse control including the sterile insect technique (SIT), and therefore requires a management strategy for this virus. Based on the homology of DNA polymerase between salivary gland hypertrophy virus and herpes viruses at the amino acid level, two antiviral drugs, valacyclovir and acyclovir, classically used against herpes viruses were selected and tested for their toxicity on tsetse flies and their impact on virus replication. While long term per os administration of acyclovir resulted in a significant reduction of productivity of the colonies, no negative effect was observed in colonies fed with valacyclovir-treated blood. Furthermore, treatment of a tsetse colony with valacyclovir for 83 weeks resulted in a significant reduction of viral loads and consequently suppression of SGH symptoms. The combination of initial selection of SGHV-negative flies by non-destructive PCR, a clean feeding system, and valacyclovir treatment resulted in a colony that was free of SGH syndromes in 33 weeks. This is the first report of the use of a drug to control a viral infection in an insect and of the demonstration that valacyclovir can be used to suppress SGH in colonies of G. pallidipes.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | |
Collapse
|
31
|
Guerra L, Stoffolano JG, Gambellini G, Masci VL, Belardinelli MC, Fausto AM. Ultrastructure of the salivary glands of non-infected and infected glands in Glossina pallidipes by the salivary glands hypertrophy virus. J Invertebr Pathol 2012; 112 Suppl:S53-61. [PMID: 22537832 DOI: 10.1016/j.jip.2012.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
Abstract
Light, scanning electron, and transmission electron microscopy analyses were conducted to examine the morphology and ultrastructure of the salivary glands of Glossina pallidipes. Three distinct regions, each with a characteristic composition and organization of tissues and cells, were identified: secretory, reabsorptive and proximal. When infected with the salivary gland hypertrophy (SGH) virus, glands showed a severe hypertrophy, accompanied by profound changes in their morphology and ultrastructure. In addition, the muscular fibers surrounding the secretory region of the glands were disrupted. The morphological alterations in the muscular tissue, caused by viral infection, could be an important aspect of the pathology and may shed light on the mode of action of the SGH virus. Results were discussed with regard to the potential effect of viral infection on normal salivation and on the ability of infected tsetse flies to transmit a trypanosome parasite.
Collapse
Affiliation(s)
- Laura Guerra
- Dipartimento per le Innovazioni dei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Wang J, Brelsfoard C, Wu Y, Aksoy S. Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies. J Invertebr Pathol 2012; 112 Suppl:S32-9. [PMID: 22874746 DOI: 10.1016/j.jip.2012.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 02/05/2023]
Abstract
Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.
Collapse
Affiliation(s)
- Jingwen Wang
- Division of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | | | | |
Collapse
|
33
|
Boucias DG, Deng F, Hu Z, Garcia-Maruniak A, Lietze VU. Analysis of the structural proteins from the Musca domestica hytrosavirus with an emphasis on the major envelope protein. J Invertebr Pathol 2012; 112 Suppl:S44-52. [PMID: 22465629 DOI: 10.1016/j.jip.2012.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 01/19/2023]
Abstract
The Musca domestica hytrosavirus (MdHV), a member of the family Hyrosaviridae, is a large, dsDNA, enveloped virus that infects adult house flies and causes a diagnostic hypertrophy of the salivary gland. Herein, studies were directed at identifying key structural components of the viral envelope and nucleocapsid. SDS-PAGE of detergent-treated virus fractions identified protein bands unique to the envelope and nucleocapsid components. Using prior LC-MSMS data we identified the viral ORF associated with the major envelope band, cloned and expressed recombinant viral antigens, and prepared a series of polyclonal sera. Western blots confirmed that antibodies recognized the target viral antigen and provided evidence that the viral protein MdHV96 underwent post-translational processing; antibodies bound to the target high molecular weight parent molecule as well as distinct sets of smaller bands. Immuno gold electron microscopy demonstrated that the anti-MdHV96 sera recognized target antigens associated with the envelope. The nucleocapsids migrated from the virogenic stroma in the nucleus through the nuclear membrane into the cytoplasm, where they acquired an initial envelope that contained MdHV96. This major envelope protein, appeared to incorporate into intracellular membranes of both the caniculi and rough endoplasmic reticulum membranes and mediate binding to the nucleocapsids. Oral infection bioassays demonstrated that the anti-HV96 polyclonal sera acted as neutralizing agents in suppressing the levels of orally acquired infections.
Collapse
Affiliation(s)
- D G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
34
|
Lietze VU, Geden CJ, Doyle MA, Boucias DG. Disease dynamics and persistence of Musca domestica salivary gland hypertrophy virus infections in laboratory house fly (Musca domestica) populations. Appl Environ Microbiol 2012; 78:311-7. [PMID: 22057863 PMCID: PMC3255755 DOI: 10.1128/aem.06500-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/25/2011] [Indexed: 11/20/2022] Open
Abstract
Past surveys of feral house fly populations have shown that Musca domestica salivary gland hypertrophy virus (MdSGHV) has a worldwide distribution, with an average prevalence varying between 0.5% and 10%. How this adult-specific virus persists in nature is unknown. In the present study, experiments were conducted to examine short-term transmission efficiency and long-term persistence of symptomatic MdSGHV infections in confined house fly populations. Average rates of disease transmission from virus-infected to healthy flies in small populations of 50 or 100 flies ranged from 3% to 24% and did not vary between three tested geographical strains that originated from different continents. Introduction of an initial proportion of 40% infected flies into fly populations did not result in epizootics. Instead, long-term observations demonstrated that MdSGHV infection levels declined over time, resulting in a 10% infection rate after passing through 10 filial generations. In all experiments, induced disease rates were significantly higher in male flies than in female flies and might be explained by male-specific behaviors that increased contact with viremic flies and/or virus-contaminated surfaces.
Collapse
Affiliation(s)
- Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
To understand how extant viruses interact with their hosts, we need a historical framework of their evolutionary association. Akin to retrovirus or hepadnavirus viral fossils present in eukaryotic genomes, bracoviruses are integrated in braconid wasp genomes and are transmitted by Mendelian inheritance. However, unlike viral genomic fossils, they have retained functional machineries homologous to those of large dsDNA viruses pathogenic to arthropods. Using a phylogenomic approach, we resolved the relationships between bracoviruses and their closest free relatives: baculoviruses and nudiviruses. The phylogeny showed that bracoviruses are nested within the nudivirus clade. Bracoviruses establish a bridge between the virus and animal worlds. Their inclusion in a virus phylogeny allowed us to relate free viruses to fossils. The ages of the wasps were used to calibrate the virus phylogeny. Bayesian analyses revealed that insect dsDNA viruses first evolved at ∼310 Mya in the Paleozoic Era during the Carboniferous Period with the first insects. Furthermore the virus diversification time frame during the Mesozoic Era appears linked to the diversification of insect orders; baculoviruses that infect larvae evolved at the same period as holometabolous insects. These results imply ancient coevolution by resource tracking between several insect dsDNA virus families and their hosts, dating back to 310 Mya.
Collapse
|
36
|
Abd-Alla AMM, Parker AG, Vreysen MJB, Bergoin M. Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control? PLoS Negl Trop Dis 2011; 5:e1220. [PMID: 21912708 PMCID: PMC3166039 DOI: 10.1371/journal.pntd.0001220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | |
Collapse
|
37
|
Abd-Alla AMM, Salem TZ, Parker AG, Wang Y, Jehle JA, Vreysen MJB, Boucias D. Universal primers for rapid detection of hytrosaviruses. J Virol Methods 2010; 171:280-3. [PMID: 20923688 DOI: 10.1016/j.jviromet.2010.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Hytrosaviridae is a proposed virus family encompassing viruses that cause salivary gland hypertrophy (SGH) syndrome in infected insects and reduce the fertility in their dipteran insect hosts. They contain a large, double stranded DNA genome of 120-190 kbp. To date, these viruses have been detected only in adult Diptera. These include hytrosaviruses detected in various tsetse fly species (Glossina spp.), the narcissus bulb fly Merodon equestris and the house fly Musca domestica. The limited number of hytrosaviruses reported to date may be a reflection of the frequent absence of external symptoms in infected adult flies and the fact that the virus does not cause rapid mortality. Based on the complete genome sequence of Glossinia pallidipes (GpSGHV) and Musca domestica (MdSGHV) salivary gland hypertrophy viruses, a PCR based methodology was developed to detect the viruses in these species. To be able to detect hytrosaviruses in other Diptera, five degenerate primer pairs were designed and tested on GpSGHV and MdSGHV DNA using gradient PCR with annealing temperatures from 37 to 61°C. Two pairs of primers were selected from p74, two pairs from PIF-1 and one pair from ODV-e66 homologous proteins. Four primer pairs generated a virus specific PCR product on both MdSGHV and GpSGHV at all tested annealing temperatures, while the ODV-e66 based primers did not generate a virus specific product with annealing temperatures higher that 47°C. No non-specific PCR product was found when using genomic DNA of infected flies as template DNA. These results offer new sets of primers that could be used to detect hytrosaviruses in other insects.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|