1
|
Yadav R, Gerrard SD, Lima MRM, Southard TL, Sunny NE, El-Kadi SW. The Onset of Steatosis Occurs as Early as Seven Days and Progresses to Nonalcoholic Steatohepatitis in a Pediatric Pig Model of Nonalcoholic Fatty Liver Disease. J Nutr 2025; 155:211-223. [PMID: 39536967 DOI: 10.1016/j.tjnut.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic and progressive condition that afflicts patients of all ages, including neonates. Previously, we reported that neonatal pigs fed formulas rich in medium-chain (MCFA), compared with those fed formulas rich in long-chain fatty acid (LCFA) for 21 d, developed panacinar steatosis with no changes in whole-body adiposity. OBJECTIVES The objective of this study was to examine the temporal onset and development of NAFLD in neonatal pigs in response to MCFA feeding. METHODS Neonatal pigs (n = 18) were fed isocaloric MCFA or LCFA formulas. Six pigs from each group were killed following 7, 14 or 21 d of feeding. Body composition was assessed before initiation and at the end of the feeding period using dual-energy X-ray absorptiometry. Liver fat content and liver morphologic features were determined from photomicrographs and evaluated for NAFLD by a pathologist. RESULTS Lean mass and fat mass as a percentage of body weight were not different between formulas. However, liver weight (P = 0.001) and liver fat mass (P < 0.001) were greater for pigs in the MCFA than those for pigs in the LCFA group. Steatosis developed as early as 7 d in the MCFA compared with the LCFA fed pigs (P < 0.001). In addition, steatosis progressed in a portal-to-venous direction as MCFA feeding duration increased (P = 0.02). Pigs diagnosed with NASH (P < 0.001) and greater nonalcoholic fatty liver disease scores were those in the MCFA group (P < 0.001). CONCLUSIONS These results suggest that the onset and progression of NAFLD from steatosis to nonalcoholic steatohepatitis occurs rapidly in response to MCFA feeding. Moreover, periportal steatosis is the initial feature in the development of NAFLD before its progression to nonalcoholic steatohepatitis. The development of NAFLD in neonates seems to occur independently of whole-body adiposity.
Collapse
Affiliation(s)
- Ravi Yadav
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Samuel D Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Marta R M Lima
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Teresa L Southard
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, MD, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
2
|
Canbolat AA, Lombardo M, Mondragon ADC, López JMM, Bechelany M, Karav S. Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2024; 16:4305. [PMID: 39770926 PMCID: PMC11677144 DOI: 10.3390/nu16244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine colostrum (BC), the first milk secreted by mammals after birth, is a trending alternative source for supplementing infants and children, offering benefits for gut and immune health. Its rich components, such as proteins, immunoglobulins, lactoferrin, and glycans, are used to fortify diets and support development. Preterm development is crucial, especially in the maturation of essential systems, and from 2010 to 2020, approximately 15% of all premature births occurred at less than 32 weeks of gestation worldwide. This review explores the composition, benefits, and effects of BC on general infants and children, along with preterm infants who require special care, and highlights its role in growth and development. BC is also associated with specific pediatric diseases, including necrotizing enterocolitis (NEC), infectious diarrhea, inflammatory bowel disease (IBD), short-bowel syndrome (SBS), neonatal sepsis, gastrointestinal and respiratory infections, and some minor conditions. This review also discusses the clinical trials regarding these specific conditions which are occasionally encountered in preterm infants. The anti-inflammatory, antimicrobial, immunomodulatory, and antiviral properties of BC are discussed, emphasizing its mechanisms of action. Clinical trials, particularly in humans, provide evidence supporting the inclusion of BC in formulas and diets, although precise standards for age, feeding time, and amounts are needed to ensure safety and efficacy. However, potential adverse effects, such as allergic reactions to caseins and immunoglobulin E, must be considered. More comprehensive clinical trials are necessary to expand the evidence on BC in infant feeding, and glycans, important components of BC, should be further studied for their synergistic effects on pediatric diseases. Ultimately, BC shows promise for pediatric health and should be incorporated into nutritional supplements with caution.
Collapse
Affiliation(s)
- Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Alicia del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.d.C.M.); (J.M.M.L.)
| | - Jose Manuel Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.d.C.M.); (J.M.M.L.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France;
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| |
Collapse
|
3
|
Kesavelu D, Dhanasekhar S, Akram W, Rachel A, Balakrishnan Sugumaran L. Optimization of Infant Nutrition: Exploring Feeding Practices Among Indian Mothers. Cureus 2024; 16:e73142. [PMID: 39650893 PMCID: PMC11624033 DOI: 10.7759/cureus.73142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
OBJECTIVE This study aims to investigate infant and young child feeding practices in an outpatient setting in India. MATERIAL AND METHODS About 103 parents of healthy children aged ≤6 years seeking outpatient pediatric care at an urban tertiary care hospital over one month were included in this observational study. Data regarding feeding practices was collected using a pre-designed and pretested questionnaire. Statistical analyses were performed using IBM SPSS Statistics for Windows, Version 26 (Released 2019; IBM Corp., Armonk, New York, USA) and Microsoft Excel (Microsoft Corporation, Redmond, USA). RESULT The average age of the study population was 21.26 ±16.561 months. About 45.6% of children were <12 months old. Around 42.7% of children were exclusively breastfed, 21.4% were formula-fed, and 35.9% were mixed-fed. About 49.15% of parents chose formula feeding voluntarily, and 50.85% due to inadequate milk supply. Around 71.2% were recommended by the clinician, 16.9% chose formula based on online information, and 11.9% chose autonomously. Nestle NanPro was the most used formula, followed by Similac Advance, Pediasure Advance, Danone, and NeoSure. Also, 54.4% of parents monitored their child's growth. Nearly 15.5% and 6.8% of parents were concerned regarding insufficient weight and height gain, respectively. About 38.8% of parents introduced salt, sugar, or cow's milk before their child reached one year. Around 62.1% of children were given vitamin supplements. CONCLUSION Our study revealed that most parents adhered to recommended guidelines by exclusively breastfeeding their children, which holds crucial significance in a developing country like India. Parents resorted to formula feeding only when necessary for optimal nutrition. Nestle NanPro was the preferred choice. While most parents demonstrated commendable awareness through growth monitoring and supplementation, there's a crucial need for campaigns to dispel misconceptions and promote proper feeding practices.
Collapse
|
4
|
Wang X, Yang S, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li X, Xie Q, Wang H. Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations. Nutrients 2024; 16:2951. [PMID: 39275267 PMCID: PMC11397455 DOI: 10.3390/nu16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zimo Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yilun Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Zhenyang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Zhang CY, Zhao W, Pan XP, Huang AQ. Effects of feeding patterns during the first 6 months on weight development of infants ages 0-12 months: a longitudinal study. Sci Rep 2024; 14:17451. [PMID: 39075043 PMCID: PMC11286799 DOI: 10.1038/s41598-024-58164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/26/2024] [Indexed: 07/31/2024] Open
Abstract
The purpose of this study was to investigate the effect of feeding patterns during the first 6 months on weight development of infants ages 0-12 months. Using monitoring data from the Maternal and Child Health Project conducted by the National Center for Women and Children's Health of the Chinese Center for Disease Control and Prevention from September 2015 to June 2019, we categorized feeding patterns during the first 6 months as exclusive breastfeeding, formula feeding, or mixed feeding. We calculated weight-for-age Z scores (WAZ) according to the World Health Organization's (WHO) 2006 Child Growth Standard using WHO Anthro version 3.2.2. A multilevel model was used to analyze the effect of feeding patterns during the first 6 months on the WAZ of infants ages 0-12 months in monitoring regions. Length of follow-up (age of infants) was assigned to level 1, and infants was assigned to level 2. Characteristics of infants, mothers, and families and region of the country were adjusted for in the model. The average weight of infants ages 0-12 months in our study (except the birth weights of boys who were formula fed or mixed fed) was greater than the WHO growth standard. After we adjusted for confounding factors, the multilevel model showed that the WAZ of exclusively breastfed and mixed-fed infants were statistically significantly higher than those of formula-fed infants (coefficients = 0.329 and 0.159, respectively; P < 0.05), and there was a negative interaction between feeding patterns and age (both coefficients = - 0.020; P < 0.05). Infants who were exclusively breastfed were heavier than formula-fed infants from birth until 12 months of age. Mixed-fed infants were heavier than formula-fed infants before 8 months, after which the latter overtook the former. Infants' weight development may be influenced by feeding patterns during the first 6 months. Exclusive breastfeeding during the first 6 months may be beneficial for weight development of infants in infancy.
Collapse
Affiliation(s)
- Chun-Ying Zhang
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, 100081, China
- Hebei Provincial National Center for Women and Children's Health, Hebei, 050031, China
| | - Wei Zhao
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, 100081, China
| | - Xiao-Ping Pan
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, 100081, China
| | - Ai-Qun Huang
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, 100081, China.
| |
Collapse
|
6
|
Boerkamp VJP, Boras SD, Vincken JP, van Duynhoven JPM, Hennebelle M. Influence of emulsifier on lipid oxidation in spray-dried microencapsulated O/W emulsions. Food Res Int 2024; 187:114412. [PMID: 38763662 DOI: 10.1016/j.foodres.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Lipid oxidation limits the shelf-life of dried microencapsulated oils (DMOs), such as infant formula. However, it is poorly understood how lipid oxidation is affected by different types of emulsifiers. To improve our understanding, we prepared DMOs with different emulsifiers (whey protein isolate (WPI), pea protein isolate (PPI), and non-proteinaceous CITREM) and studied lipid oxidation in both the free and encapsulated fat. Only a small difference in oxidation rate was observed between these fat fractions for all formulations. We ascribed this to a non-discrete distribution of the fractions and the subsequent low fractionation selectivity as shown by Raman microscopy. The DMO with PPI showed hardly any oxidation during a 7-week incubation at 40 °C, whereas the DMOs with WPI and CITREM both reached significantly higher contents of oxidation products (lipid hydroperoxides, aldehydes, and epoxides). The enhanced stability of DMO-PPI could not be ascribed to the presence of phytic acid. In conclusion, we demonstrate the potential of using PPI to produce oxidatively stable DMOs.
Collapse
Affiliation(s)
- Vincent J P Boerkamp
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| | - Scarlett D Boras
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| |
Collapse
|
7
|
Sangild PT. Science and Faith to Understand Milk Bioactivity for Infants. Nutrients 2024; 16:1676. [PMID: 38892610 PMCID: PMC11174769 DOI: 10.3390/nu16111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Milk bioactivity refers to the specific health effects of milk components beyond nutrition. The science of milk bioactivity involves the systematic study of these components and their health effects, as verified by empirical data, controlled experiments, and logical arguments. Conversely, 'faith in milk bioactivity' can be defined as personal opinion, meaning, value, trust, and hope for health effects that are beyond investigation by natural, social, or human sciences. Faith can be strictly secular, but also influenced by spirituality or religion. The aim of this paper is to show that scientific knowledge is frequently supplemented with faith convictions to establish personal and public understanding of milk bioactivity. Mammalian milk is an immensely complex fluid containing myriad proteins, carbohydrates, lipids, and micronutrients with multiple functions across species, genetics, ages, environments, and cultures. Human health includes not only physical health, but also social, mental, and spiritual health, requiring widely different fields of science to prove the relevance, safety, and efficacy of milk interventions. These complex relationships between milk feeding and health outcomes prevent firm conclusions based on science and logic alone. Current beliefs in and understanding of the value of breast milk, colostrum, infant formula, or isolated milk proteins (e.g., immunoglobulins, α-lactalbumin, lactoferrin, and growth factors) show that both science and faith contribute to understand, stimulate, or restrict the use of milk bioactivity. The benefits of breastfeeding for infants are beyond doubt, but the strong beliefs in its health effects rely not only on science, and mechanisms are unclear. Likewise, fear of, or trust in, infant formula may rely on both science and faith. Knowledge from science safeguards individuals and society against 'milk bioactivity superstition'. Conversely, wisdom from faith-based convictions may protect science from unrealistic 'milk bioactivity scientism'. Honesty and transparency about the potentials and limitations of both scientific knowledge and faith convictions are important when informing individuals and society about the nutritious and bioactive qualities of milk.
Collapse
Affiliation(s)
- Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, 2100 Copenhagen, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
- Cross-Faculty Center for Science and Faith, Faculty of Theology, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
8
|
Song X, Wang X, Yang M, Acevedo-Fani A, Singh H, Ye A. Dynamic In Vitro Gastric Digestion Behaviour of Commercial Infant Formulae Made with Cow, Goat and Sheep Milk. Foods 2024; 13:1286. [PMID: 38731657 PMCID: PMC11083146 DOI: 10.3390/foods13091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
There are a wide range of commercial infant formulae available on the market. These are made using milk from different species, such as goat, sheep, and cow. The different protein compositions of these milks and the process used during infant-formulae manufacture, such as heat treatment, may impact the digestion of nutrients. This study compared the effect of protein composition and heat treatment on the in vitro gastric digestion behaviour of commercial infant formulae made with cow, goat, and sheep milk using a dynamic infant human gastric simulator (IHGS). During the simulated dynamic gastric digestion, the goat milk infant formula (GIF) showed earlier signs of aggregate formation compared to cow milk infant formula (CIF) and sheep milk infant formula (SIF). In addition, the microstructures of GIF chyme showed fragmented and porous structures. On the contrary, CIF formed dense protein networks that trapped oil droplets, whereas SIF exhibited a microstructure of smooth oil droplets surrounded by fewer protein networks. The different aggregation behaviours and aggregate structures of the three infant-formulae chyme were related to their different protein compositions, especially the different casein compositions. Furthermore, the open fragile structure of GIF aggregates provided easier access to pepsin, allowing it to hydrolyse protein. The results from the present study provided some information to assist in understanding the coagulation and digestion behaviours of commercial infant formulae made from different species of milk.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (X.S.); (M.Y.); (A.A.-F.); (H.S.)
| |
Collapse
|
9
|
Gerrard SD, Yonke JA, McMillan RP, Sunny NE, El-Kadi SW. Medium-Chain Fatty Acid Feeding Reduces Oxidation and Causes Panacinar Steatosis in Livers of Neonatal Pigs. J Nutr 2024; 154:908-920. [PMID: 38253226 DOI: 10.1016/j.tjnut.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Medium-chain fatty acids (MCFAs) are commonly used to enhance the caloric content of infant formulas. We previously reported that pigs fed MCFA developed hepatic steatosis when compared to those fed isocaloric long-chain fatty acid (LCFA) rich formula. OBJECTIVES The objectives of this study were to investigate: 1) whether MCFA and LCFA feeding affect hepatic fatty acid oxidation, and 2) how fat type alters the expression of hepatic fatty acid metabolic genes. METHODS Twenty-six, 7-d-old pigs were fed a low-energy control (CONT) formula, or 2 isocaloric high-energy formulas rich in LCFA or MCFA for 22 days. Livers were collected for examining ex vivo fatty acid oxidation, fatty acid content, and mRNA expression of fatty acid metabolic genes. RESULTS Liver fat was 20% for pigs in the MCFA compared with 2.9% and 4.6% for those in the CONT and LCFA groups (P < 0.05). MCFA-fed pigs had greater amounts of hepatic laurate, myristate, palmitate, and palmitoleate (14, 34, 49, and 9.3 mg · g-1) than those fed LCFA and CONT (1.8, 1.9, 19, 1.5 mg · g-1) formulas (P ≤ 0.05). Hepatic laurate and palmitate oxidation was reduced for pigs fed MCFA (29 mmol · mg-1 · h-1) compared with those fed CONT (54 mmol · mg-1 · h-1) and LCFA (51 mmol · mg-1 · h-1) formulas (P < 0.05). Expression of fatty acid synthase 3 (FASN-3), fatty acid binding protein 1 (FABP-1), and acetyl-CoA carboxylase 1 (ACACA-1) were 8-, 6-, and 2-fold greater for pigs in the MCFA than those in the LCFA and CONT groups (P < 0.05). CONCLUSIONS Feeding MCFA resulted in hepatic steatosis compared with an isocaloric formula rich in LCFA. Steatosis occurred concomitantly with reduced fatty acid oxidation but greater mRNA expression of fatty acid synthetic and catabolic genes.
Collapse
Affiliation(s)
- Samuel D Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Joseph A Yonke
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ryan P McMillan
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
10
|
Wang S, Zheng C, Guo D, Chen W, Xie Q, Zhai Q. Dose-related effects of early-life intake of sn-2 palmitate, a specific positionally distributed human milk fatty acid, on the composition and metabolism of the intestinal microbiota. J Dairy Sci 2023; 106:8272-8286. [PMID: 37678794 DOI: 10.3168/jds.2023-23361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023]
Abstract
sn2 Palmitate in human milk plays an important role in the physiological health of infants by reducing mineral loss, improving stool hardness, and relieving constipation. Also, sn-2 palmitate modulates intestinal microbiota. However, it remains unclear whether the effects of sn-2 palmitate on infant gut microbiota are dose-dependent. In this study, we investigated the effects of low, medium, and high doses (600, 1,800, and 5,400 mg/kg body weight, respectively) of sn-2 palmitate on the structure, composition, and metabolic function of intestinal microbes in mice. Our results showed that high doses of sn-2 palmitate significantly modulated α- and β-diversity of the intestinal microbiota. The relative abundance of Lachnospiraceae_NK4A136_group decreased with increasing doses of sn-2 palmitate. In contrast, the abundances of Bacteroidetes phylum, Bacteroides, uncultured_Lachnospiraceae, and uncultured_Muribaculaceae were positively correlated with sn-2 palmitate doses. The number of genes predicted encoding autophagy-yeast, phospholipase D signaling pathway, and pentose and glucuronate interconversion metabolic functions of intestinal microbiota increased with increasing doses of sn-2 palmitate. In addition, low and medium doses of sn-2 palmitate significantly upregulated the arginine and proline metabolic pathways, and high doses of sn-2 palmitate significantly increased purine metabolism. Our results revealed that the effects of sn-2 palmitate intake early in life on the composition and metabolism of the intestinal microbiota of mice showed dose-related differences. The study is expected to provide a scientific basis for the development of infant formulas.
Collapse
Affiliation(s)
- S Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - C Zheng
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China
| | - D Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - W Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Q Xie
- Heilongjiang Feihe Dairy Co. Ltd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Haidian, Beijing 100083, China.
| | - Q Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Wang Y, Guo M, Ren F, Wang P, Li H, Li H, Li Y, Luo J, Yu J. A novel strategy to construct stable fat globules with all major milk fat globule membrane proteins to mimic breast milk fat emulsions at the protein level. Food Res Int 2023; 173:113351. [PMID: 37803655 DOI: 10.1016/j.foodres.2023.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Milk fat globule membrane (MFGM) proteins have several biological functions and maintain the fat globule structure. However, the major MFGM protein compositions in simulated human milk emulsions are different from those in human milk due to the composition loss in the isolation process of MFGM materials. To overcome this limitation, we developed a novel strategy, namely, the solution enriched with MFGM was homogenized with cream separated from the milk rich in large-sized fat globules. The results of physicochemical properties and the interfacial protein coverage of the emulsions showed that the emulsions prepared by the new method had a smaller particle size, higher stability, and more interfacial protein coverage when the ratio of fat to protein was 1:3. In addition, proteome differences in interfacial proteins between the new emulsions and simulated infant formula emulsions were investigated, and the results revealed that the interface of the emulsions prepared by the new method contained all major MFGM proteins and unique GO annotations and KEGG pathways. However, only four MFGM proteins (XO, ADPH, PAS 6/7) were quantified at the interface of the emulsions prepared by the common method. Furthermore, the protein number and the total relative abundance of major MFGM proteins were approximately 2-fold and 475-fold higher at the interface of the emulsions prepared by the new method compared to the common method. Overall, the study modulated the interfacial protein composition of fat globules by screening the sources of lipid and homogenization methods and revealed its potential effect on processing stability and biological properties.
Collapse
Affiliation(s)
- Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Mengyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Jie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Liu Q, Qiao W, Liu Y, Liu Y, Zhao J, Fan X, Li Z, Hou J, Liu Y, Chen J, Yang K, Yu X, Lin L, Jin Y, Chen L. Effects of lipids from multiple sources on glyceride composition, concentration, and structure of infant formulas benchmarked to human milk. Heliyon 2023; 9:e21611. [PMID: 38027638 PMCID: PMC10654232 DOI: 10.1016/j.heliyon.2023.e21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Jingyao Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Li Lin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yue Jin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
13
|
Harrison L, Padhani Z, Salam R, Oh C, Rahim K, Maqsood M, Ali A, Charbonneau K, Keats EC, Lassi ZS, Imdad A, Owais A, Das J, Bhutta ZA. Dietary Strategies for Complementary Feeding between 6 and 24 Months of Age: The Evidence. Nutrients 2023; 15:3041. [PMID: 37447369 PMCID: PMC10346638 DOI: 10.3390/nu15133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Suboptimal complementary feeding practices remain highly prevent. This review aims to comprehensively synthesize new emerging evidence on a set of topics related to the selection and consumption of complementary foods. We synthesized evidence related to five key topics focused on nutritional interventions that target the complementary feeding period, based on four systematic reviews that include updated evidence to February 2022. While there have been many studies examining interventions during the complementary feeding period, there is an overall lack of relevant information through which to draw conclusions on the ideal feeding schedule by food type. Similarly, few studies have examined the effects of animal milk versus infant formula for non-breastfed infants (6-11 months), though those that did found a greater risk of anemia among infants who were provided cow's milk. This review highlights a number of interventions that are successful at improving micronutrient status and anthropometry during the complementary feeding period, including fortified blended foods, locally and commercially produced supplementary foods, and small-quantity lipid-based nutrient supplements. Complementary feeding education for caregivers can also be used to improve nutrition outcomes among infants in both food secure and insecure populations.
Collapse
Affiliation(s)
- Leila Harrison
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zahra Padhani
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rehana Salam
- The Daffodil Centre—A Joint Venture of Cancer Council and The University of Sydney, Sydney, NSW 2006, Australia
| | - Christina Oh
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Komal Rahim
- Internal Medicine, Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Maria Maqsood
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Ali
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kimberly Charbonneau
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Emily C. Keats
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zohra S. Lassi
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Aamer Imdad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Aatekah Owais
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jai Das
- Division of Women & Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Zulfiqar A. Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Women & Child Health, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
14
|
Liu D, Cui J, Zhou R, He C, Cao J, Li C. Comparison and enrichment of sn-2 palmitoyl triacylglycerols (OPO/OPL) in fish oil for its potential application as human milk fat substitutes. Food Res Int 2023; 169:112836. [PMID: 37254410 DOI: 10.1016/j.foodres.2023.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Triacylglycerols (TAG) are differences in fatty acid distributions between infant formula and human milk. In this study, fish oil (Tilapia, Golden pompano, Tiger grouper, and Basa) showed the potential as the source of human milk fat substitutes by comparing TAG profiles with infant formula and human milk. The total lipids and TAG of fish were concentrated in the by-products of fish (head and viscera) and contained high levels of palmitic acid, oleic acid, and linoleic acid. Compared with infant formula, fish oil was closer to human milk in sn-2 fatty acid distribution, and sn-2 palmitic acid level in fish oil exceeded 52 % of total palmitic acid, Golden pompano head was the highest (64.46 %). Further research showed that the content of sn-2 palmitoyl TAG (OPO and OPL dominated) increased from 157.16 mg/g TAG to 305.18 mg/g TAG by isopropanol enrichment (solid-liquid ratio: 1:4, temperature: -12 °C, time: 4 h).
Collapse
Affiliation(s)
- Dongyin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jingtao Cui
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruibing Zhou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chen He
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
15
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Luo G, Zhu Y, Ni D, Chen J, Zhang W, Mu W. Infant formulae - Key components, nutritional value, and new perspectives. Food Chem 2023; 424:136393. [PMID: 37210844 DOI: 10.1016/j.foodchem.2023.136393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Breastfeeding is the most effective strategy for meeting the nutritional demands of infants, whilst infant formulae are manufactured foods that mimic human milk and can be safely used to replace breastfeeding. In this paper, the compositional differences between human milk and other mammalian milk are reviewed, and thus nutritional profiles and compositions of standard bovine milk-based formulae as well as special formulae are discussed. Differences between breast milk and other mammalian milk in composition and content affect their digestion and absorption in infants. Characteristics and mimicking of breast milk have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. The functions of the key nutritional components in infant formulae are examined. This review detailed recent developments in the formulation of different types of special infant formulae and efforts for their humanization, and summarized safety and quality control of infant formulae.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Wang S, De Souza C, Ramachandran M, Luo Y, Zhang Y, Yi H, Ma Z, Zhang L, Lin K. Lipidomics insight on differences between human MFGM and dietary-derived lipids. Food Chem 2023; 422:136236. [PMID: 37130453 DOI: 10.1016/j.foodchem.2023.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Milk fat globule membrane (MFGM) contains lipids, which are essential for promoting infant brain development and improving cognition. In this study, the lipid differences between human MFGM and four dietary lipid sources (cow MFGM, soybean, krill, and yolk) were compared using the UHPLC-Q-Exactive MS-based lipidomics techniques. A total of 45 lipid classes and 5048 lipid species were detected. The analysis of phospholipid classes revealed that the lipid composition of human MFGM and cow MFGM was more similar than the other dietary-derived lipids. Additionally, the human MFGM lipid species were compared with cow MFGM, soybean, krill, and yolk, and 401, 416, 494, and 444 significantly different lipids were identified, respectively. Through lipid metabolic pathway analysis, differential lipids were mainly involved in the glycerophospholipid metabolic pathway. Overall, these results will provide a rationale for the future addition of lipids to infant formula to more closely approximate human MFGM lipid profiles.
Collapse
Affiliation(s)
- Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Ya Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yixin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China.
| |
Collapse
|
18
|
Han B, Zhang L, Ma Y, Hou Y, Xie K, Zhong J, Zhou P. Quantitative Phosphoproteome of Infant Formula: New Insights into the Difference of Phosphorylation in Milk Proteins between Bovine and Goat Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3531-3540. [PMID: 36719709 DOI: 10.1021/acs.jafc.2c07326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phosphorylation is a broad post-translational protein modification, and the level of phosphorylation of milk proteins is associated with lactation, coagulation properties, and digestibility. However, phosphoproteins in bovine milk-based and goat milk-based infant formula have not been systematically explored. Here, we have analyzed six bovine and six goat milk-based infant formula using a quantitative phosphoproteomics approach, from which we identified 200 phosphoproteins with 276 phosphorylation sites and 156 phosphorylation sites from 75 phosphoproteins, respectively. Of these, 99 phosphorylation sites from 26 shared phosphoproteins were differentially expressed between bovine and goat milk-based infant formula. Especially, CSN1S1 was the most phosphoprotein with 25 quantified phosphorylation sites. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the identified phosphoproteins not only provide nutrition to the infant but also have anti-inflammatory, antipathogenic, and other biological functions. Our results shed light on the composition, phosphorylation sites, and biological functions of phosphoproteins in bovine milk and goat milk-based infant formula, which provide new insights into the key role of protein modifications during infant development. It also helps us to better understand the differences in digestibility of infant formula from different animal milk sources and thus guides the choice of milk source for infant formula.
Collapse
Affiliation(s)
- Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
20
|
Zeng S, Wang S, Ross RP, Stanton C. The road not taken: host genetics in shaping intergenerational microbiomes. Trends Genet 2022; 38:1180-1192. [PMID: 35773025 DOI: 10.1016/j.tig.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/09/2023]
Abstract
The early-life gut microbiome is linked to human phenotypes as an imbalanced microbiome of this period is implicated in diseases throughout life. Several determinants of early-life gut microbiome are explored, however, mechanisms of acquisition, colonization, and stability of early-life gut microbiome and their interindividual variability remain elusive. Host genetics play a vital role to shape the gut microbiome and interact with it to modulate individual phenotypes in human studies and animal models. Given the microbial linkage between host generations, we discuss the current state of roles of host genetics in forming intergenerational microbiomes associated with mothers, offspring, and those vertically transmitted, providing a basis for taking into account host genetics in future early-life microbiome research. We further expand our discussion to the bidirectional interactions between host gene expression and microbiome in human health.
Collapse
Affiliation(s)
- Shuqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Shaopu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
21
|
Urine Metabolomic Profile of Breast- versus Formula-Fed Neonates Using a Synbiotic-Enriched Formula. Int J Mol Sci 2022; 23:ijms231810476. [PMID: 36142388 PMCID: PMC9499619 DOI: 10.3390/ijms231810476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to compare the urine metabolic fingerprint of healthy neonates exclusively breastfed with that of neonates fed with a synbiotic-enriched formula (Rontamil® Complete 1) at four time points (the 3rd and 15th days of life and the 2nd and 3rd months). The determination of urine metabolic fingerprint was performed using NMR metabolomics. Multivariate data analyses were performed with SIMCA-P 15.0 software and R language. Non-distinct profiles for both groups (breastfeeding and synbiotic formula) for the two first time points (3rd and 15th days of life) were detected, whereas after the 2nd month of life, a discrimination trend was observed between the two groups, which was further confirmed at the 3rd month of life. A clear discrimination of the synbiotic formula samples was evident when comparing the metabolites taken in the first days of life (3rd day) with those taken in the 2nd and 3rd months of life. In both cases, OPLS-DA models explained more than 75% of the metabolic variance. Non-distinct metabolomic profiles were obtained between breastfed and synbiotic-formula-fed neonates up to the 15th day of life. Discrimination trends were observed only after the 2nd month of the study, which could be attributed to breastfeeding variations and the consequent dynamic profile of urine metabolites compared to the stable ingredients of the synbiotic formula.
Collapse
|
22
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
23
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
24
|
Zeng S, Ying J, Li S, Qu Y, Mu D, Wang S. First 1000 Days and Beyond After Birth: Gut Microbiota and Necrotizing Enterocolitis in Preterm Infants. Front Microbiol 2022; 13:905380. [PMID: 35801107 PMCID: PMC9253634 DOI: 10.3389/fmicb.2022.905380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Preterm birth remains a major maternal and infant health issue worldwide particularly with an increase in the global preterm birth rate, which requires more interventions to manage the consequences of preterm birth. In addition to traditional complications, recent studies have shown that the succession of gut microbiota of preterm infants is disordered due to the systemic physiological immaturity, which confers negative influences on the growth, development, and health of infants. In the present study, we briefly discussed the prevalence of preterm birth worldwide and then highlighted the signatures of gut microbiota in preterm infants within the first 1000 days of life after the birth categorized into birth, infancy, and childhood. Afterward, we focused on the potential association of clinical phenotypes typically associated with preterm birth (i.e., necrotizing enterocolitis) with gut microbiota, and the potential directions for future studies in this field are finally discussed.
Collapse
|
25
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
26
|
Mezian L, Chincha AI, Vecchione A, Ghelardi E, Bonatto JMC, Marsaioli AJ, Campelo PH, Benamar I, Allah MA, Sant'Ana AS, Boumediene MB. Aerobic spore-forming bacteria in powdered infant formula: Enumeration, identification by MALDI-TOF mass spectrometry (MS), presence of toxin genes and rpoB gene typing. Int J Food Microbiol 2022; 368:109613. [DOI: 10.1016/j.ijfoodmicro.2022.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
|
27
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
28
|
Ehrlich JM, Catania J, Zaman M, Smith ET, Smith A, Tsistinas O, Bhutta ZA, Imdad A. The Effect of Consumption of Animal Milk Compared to Infant Formula for Non-Breastfed/Mixed-Fed Infants 6–11 Months of Age: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14030488. [PMID: 35276848 PMCID: PMC8838240 DOI: 10.3390/nu14030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Many infants do not receive breastmilk for the recommended 2-year duration. Instead, alternative milk beverages are often used, including infant formula and raw animal milk products. The purpose of this systematic review was to summarize the effect of animal milk consumption, compared to infant formula, on health outcomes in non-breastfed or mixed-fed infants aged 6–11 months. We searched multiple databases and followed Cochrane guidelines for conducting the review. The primary outcomes were anemia, gastrointestinal blood loss, weight-for-age, length-for-age, and weight-for-length. Nine studies were included: four randomized controlled trials (RCT) and five cohort studies. All studies, except one, were conducted in high income countries. There was a low certainty of evidence that cow’s milk increased the risk of anemia compared to formula milk (Cohort studies RR: 2.26, 95% CI: 1.15, 4.43, RCTs: RR: 4.03, 95% CI: 1.68, 9.65) and gastrointestinal blood loss (Cohort study RR: 1.52, 95% CI: 0.73, 3.16, RCTs: RR: 3.14, 95% CI: 0.98, 10.04). Additionally, there was low certainty evidence that animal milk consumption may not have a differential effect on weight and length-for-age compared to formula milk. Overall, the evidence was of low certainty and no solid conclusions can be drawn from this data. Further studies are needed from low- and middle-income countries to assess optimal milk type in non-breastfed infants aged 6–11 months.
Collapse
Affiliation(s)
- Julie M. Ehrlich
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (J.M.E.); (J.C.); (M.Z.)
| | - Joseph Catania
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (J.M.E.); (J.C.); (M.Z.)
| | - Muizz Zaman
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (J.M.E.); (J.C.); (M.Z.)
| | | | - Abigail Smith
- Health Science Library, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.S.); (O.T.)
| | - Olivia Tsistinas
- Health Science Library, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.S.); (O.T.)
| | - Zulfiqar Ahmed Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Aamer Imdad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
29
|
Jiang H, Gallier S, Feng L, Han J, Liu W. Development of the digestive system in early infancy and nutritional management of digestive problems in breastfed and formula-fed infants. Food Funct 2022; 13:1062-1077. [DOI: 10.1039/d1fo03223b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food digestion and absorption in infants are closely related to early growth and long-term health. Human milk and infant formula are the main food sources for 0-6 month-old infants. Due...
Collapse
|
30
|
Hamed NF, Alamri SA, Hamdi NH. Overview of the Updates in Nutrient Profiles, Types, Indications and Side Effects of Infant Formula. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/confqadrfw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Wang Y, Ye A, Hou Y, Jin Y, Xu X, Han J, Liu W. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Ambrogi V, Bottacini F, Mac Sharry J, van Breen J, O'Keeffe E, Walsh D, Schoemaker B, Cao L, Kuipers B, Lindner C, Jimeno ML, Doyagüez EG, Hernandez-Hernandez O, Moreno FJ, Schoterman M, van Sinderen D. Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments. Front Microbiol 2021; 12:750635. [PMID: 34777303 PMCID: PMC8581567 DOI: 10.3389/fmicb.2021.750635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In the current study the ability of four previously characterized bifidobacterial β-galactosidases (designated here as BgaA, BgaC, BgaD, and BgaE) to produce galacto-oligosaccharides (GOS) was optimized. Of these enzymes, BgaA and BgaE were found to be promising candidates for GOS production (and the corresponding GOS mixtures were called GOS-A and GOS-E, respectively) with a GOS concentration of 19.0 and 40.3% (of the initial lactose), respectively. GOS-A and GOS-E were partially purified and structurally characterized. NMR analysis revealed that the predominant (non-lactose) disaccharide was allo-lactose in both purified GOS preparations. The predominant trisaccharide in GOS-A and GOS-E was shown to be 3′-galactosyllactose, with lower levels of 6′-galactosyllactose and 4′-galactosyllactose. These three oligosaccharides have also been reported to occur in human milk. Purified GOS-A and GOS-E were shown to be able to support bifidobacterial growth similar to a commercially available GOS. In addition, GOS-E and the commercially available GOS were shown to be capable of reducing Escherichia coli adhesion to a C2BBe1 cell line. Both in vitro bifidogenic activity and reduced E. coli adhesion support the prebiotic potential of GOS-E and GOS-A.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - John Mac Sharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,School of Medicine, University College Cork, Cork, Ireland
| | | | - Ellen O'Keeffe
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Walsh
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | | | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Analysis of the Endogenous Peptidomes of Different Infant Formula Types and Human Milk. Foods 2021; 10:foods10112579. [PMID: 34828867 PMCID: PMC8623676 DOI: 10.3390/foods10112579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Infant formula (IF) is a commonly used replacement whenever mother’s own milk is not available. Most IFs are based on cow milk (powders, liquids). Alternatives, based on other sources such as goat milk or plants, exist. Independent of the source, IF production and composition are strictly regulated. Besides proteins, minerals, and lipids, milk contains a variety of endogenous peptides. Whereas the human milk peptidome has been studied intensively, the peptidomes of IFs have been mostly neglected. This study investigated the peptidomes of different types of first stage IF, including cow milk-based powders and liquids, and powdered goat milk-based IF, highlighting major similarities and differences to human milk. Extracted native peptidomes were analyzed by nanoRPC-ESI-MS/MS using two different fragmentation techniques allowing the confident identification of 1587 peptides. β-Casein peptides dominated in all samples. Interestingly, powdered and liquid cow milk-based IFs differed in the numbers of β- and αS1-casein peptides, indicating processing-derived variations. However, the peptidomes of cow and goat milk-based IF appeared to be more comparable to each other than to human milk. Despite an overlap in the major source proteins, many peptide sequences were different, i.e., species-specific. Remarkably, the data indicate that the human milk peptidome might be donor-specific as well.
Collapse
|
34
|
Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr 2021; 63:753-766. [PMID: 34477457 DOI: 10.1080/10408398.2021.1953437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Galacto-oligosaccharides (GOS) are non-digestible oligosaccharides characterized by a mix of structures that vary in their degree of polymerization (DP) and glycosidic linkage between the galactose moieties or between galactose and glucose. They have enjoyed extensive scientific scrutiny, and their health-promoting effects are supported by a large number of scientific and clinical studies. A variety of GOS-associated health-promoting effects have been reported, such as growth promotion of beneficial bacteria, in particular bifidobacteria and lactobacilli, inhibition of pathogen adhesion and improvement of gut barrier function. GOS have attracted significant interest from food industries for their versatility as a bioactive ingredient and in particular as a functional component of infant formulations. These oligosaccharides are produced in a kinetically-controlled reaction involving lactose transgalactosylation, being catalyzed by particular β-galactosidases of bacterial or fungal origin. Despite the well-established technology applied for GOS production, this process may still meet with technological challenges when employed at an industrial scale. The current review will cover relevant scientific literature on the beneficial physiological properties of GOS as a prebiotic for the infant gut microbiota, details of GOS structures, the associated reaction mechanism of β-galactosidase, and its (large-scale) production.
Collapse
Affiliation(s)
- Valentina Ambrogi
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Linqiu Cao
- FrieslandCampina, Amersfoort, The Netherlands
| | - Bas Kuipers
- FrieslandCampina, Amersfoort, The Netherlands
| | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
36
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
37
|
Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model. Microorganisms 2021; 9:microorganisms9050884. [PMID: 33919138 PMCID: PMC8143120 DOI: 10.3390/microorganisms9050884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Milk oligosaccharides (OS) shape microbiome structure and function, but their relative abundances differ between species. Herein, the impact of the human milk oligosaccharides (HMO) (2′-fucosyllactose [2′FL] and lacto-N-neotetraose [LNnT]) and OS isolated from bovine milk (BMOS) on microbiota composition and volatile fatty acid (VFA) concentrations in ascending colon (AC) contents and feces was assessed. Intact male piglets received diets either containing 6.5 g/L BMOS (n = 12), 1.0 g/L 2′FL + 0.5 g/L LNnT (HMO; n = 12), both (HMO + BMOS; n = 10), or neither (CON; n = 10) from postnatal day (PND) 2 to 34. Microbiota were assessed by 16S rRNA gene sequencing and real-time PCR, and VFA were measured by gas chromatography. The microbiota was affected by OS in an intestine region-specific manner. BMOS reduced (p < 0.05) microbial richness in the AC, microbiota composition in the AC and feces, and acetate concentrations in AC, regardless of HMO presence. HMO alone did not affect overall microbial composition, but increased (p < 0.05) the relative proportion of specific taxa, including Blautia, compared to other groups. Bacteroides abundance was increased (p < 0.05) in the AC by BMOS and synergistically by BMOS + HMO in the feces. Distinct effects of HMO and BMOS suggest complementary and sometimes synergistic benefits of supplementing a complex mixture of OS to formula.
Collapse
|
38
|
Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev 2021; 44:763-781. [PMID: 32821932 PMCID: PMC7685781 DOI: 10.1093/femsre/fuaa030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal health status is vital for the development of the offspring of humans, including physiological health and psychological functions. The complex and diverse microbial ecosystem residing within humans contributes critically to these intergenerational impacts. Perinatal factors, including maternal nutrition, antibiotic use and maternal stress, alter the maternal gut microbiota during pregnancy, which can be transmitted to the offspring. In addition, gestational age at birth and mode of delivery are indicated frequently to modulate the acquisition and development of gut microbiota in early life. The early-life gut microbiota engages in a range of host biological processes, particularly immunity, cognitive neurodevelopment and metabolism. The perturbed early-life gut microbiota increases the risk for disease in early and later life, highlighting the importance of understanding relationships of perinatal factors with early-life microbial composition and functions. In this review, we present an overview of the crucial perinatal factors and summarise updated knowledge of early-life microbiota, as well as how the perinatal factors shape gut microbiota in short and long terms. We further discuss the clinical consequences of perturbations of early-life gut microbiota and potential therapeutic interventions with probiotics/live biotherapeutics.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - Muireann Egan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - Patrick Boyaval
- DuPont Nutrition & Biosciences, Danisco France SAS - DuPont, 22, rue Brunel, F- 75017 Paris, France
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland, P12 YT20
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| |
Collapse
|
39
|
Hostetler GL, Barber CM, Miklus MB, Prieto PA. Determination of Casein Allergens in Extensively Hydrolyzed Casein Infant Formula by Liquid Chromatography-Tandem Mass Spectrometry. J AOAC Int 2021; 104:172-179. [PMID: 33064804 PMCID: PMC8372038 DOI: 10.1093/jaoacint/qsaa142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of hypoallergenic infant formulas and the need for reliable tests to determine the presence of residual antigens have increased in parallel. OBJECTIVE An LC-MS method for quantitation of casein was validated using incurred samples and a matrix-matched external standard curve. METHOD Powdered infant formula samples were extracted in a buffer of sodium deoxycholate and ammonium bicarbonate at 60°C and filtered through 7 kDa desalting columns. Samples were digested overnight with trypsin and precipitated with acid prior to analysis of marker peptides by tandem mass spectrometry. RESULTS Based on three marker peptides, the linear range for casein was 1.8-42 μg/g of powdered infant formula with an LOQ of 1.8 μg/g. The determination coefficients (R2) for each curve were ≥0.99 for casein peptides. Method repeatability was ≤22% RSD and intermediate precision was ≤23% RSD; recovery of casein from incurred material (2-20 µg/g) ranged from 78% to 118%. CONCLUSIONS An LC-MS/MS method was developed and validated for confirmation of casein allergens in hypoallergenic infant formula. HIGHLIGHTS A method was developed to accurately and reliably quantify casein allergens in extensively hydrolyzed casein infant formula by LC-MS without the need for custom peptide standards.
Collapse
Affiliation(s)
- Gregory L Hostetler
- Perrigo Nutritionals, Research and Development, 147 Industrial Park Road, Georgia, VT 05468, USA
| | - Cynthia M Barber
- Perrigo Nutritionals, Scientific Affairs, 652 Peter Jefferson Parkway, Charlottesville, VA 22911, USA
| | - Michael B Miklus
- Perrigo Nutritionals, Research and Development, 147 Industrial Park Road, Georgia, VT 05468, USA
| | - Pedro A Prieto
- Perrigo Nutritionals, Scientific Affairs, 652 Peter Jefferson Parkway, Charlottesville, VA 22911, USA
| |
Collapse
|
40
|
Imdad A, Ehrlich JM, Catania J, Tanner-Smith E, Smith A, Tsistinas O, Bhutta ZA. Effect of consumption of animal milk compared to infant formula for non-breastfed/mixed-fed infants 6-11 months of age: a systematic review (protocol). BMJ Open 2021; 11:e046370. [PMID: 33579775 PMCID: PMC7883848 DOI: 10.1136/bmjopen-2020-046370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Prevalence rates of breastfeeding remain low even though the World Health Organization (WHO) and the American Academy of Pediatrics recommend exclusive breast feeding for the first 6 months of life in combination with appropriate complementary feeding beyond six 6 months of age. There have been several studies that address the implication of drinking animal milk and/or infant formula on children's health and development when breast feeding is not offered during the first year of life. Vast improvements have been made in infant formula design, which may increase its benefits compared with animal's milk. The objective of this review is therefore to synthesise the most recent evidence on the effects of the consumption of animal milk compared with infant formula in non-breastfed or mixed breastfed infants aged 6-11 months. METHODS AND ANALYSIS We will conduct a systematic review and meta-analysis of studies that assessed the effect of animal milk compared with formula or mixed-fed (breastmilk and formula) on infants aged 6-11 months. The primary outcomes of interest include anaemia, gastrointestinal blood loss, weight for age, height for age and weight for height. We will include randomised and non-randomised studies with a control group. We will use the Cochrane risk of bias tools to assess the risk of bias. We will use meta-analysis to pool findings if the identified studies are conceptually homogenous and data are available from more than one study. We will assess the overall quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. ETHICS AND DISSEMINATION This is a systematic review, so no patients will be directly involved in the design or development of this study. The findings from this systematic review will be disseminated to relevant patient populations and caregivers and will guide the WHO's recommendations on formula consumption versus animal milk in infants aged 6-11 months. TRIAL REGISTRATION NUMBER CRD42020210925.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics; Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Joseph Catania
- School of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Abigail Smith
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Olivia Tsistinas
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zulfiqar Ahmed Bhutta
- Institute for Global Health and Development, The Aga Khan University, Karachi, Sindh, Pakistan
| |
Collapse
|
41
|
Polat Yemiş G, Delaquis P. Natural Compounds With Antibacterial Activity Against Cronobacter spp. in Powdered Infant Formula: A Review. Front Nutr 2020; 7:595964. [PMID: 33330595 PMCID: PMC7731913 DOI: 10.3389/fnut.2020.595964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q0) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Sakarya University, Serdivan, Turkey
| | - Pascal Delaquis
- Summerland Research and Development Research Centre, Agriculture and AgriFood Canada, Summerland, BC, Canada
| |
Collapse
|
42
|
An early-life diet containing large phospholipid-coated lipid globules programmes later-life postabsorptive lipid trafficking in high-fat diet- but not in low-fat diet-fed mice. Br J Nutr 2020; 125:961-971. [PMID: 32616081 DOI: 10.1017/s0007114520002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Feeding mice in early life a diet containing an experimental infant milk formula (Nuturis®; eIMF), with a lipid structure similar to human milk, transiently lowered body weight (BW) and fat mass gain upon Western-style diet later in life, when compared with mice fed diets based on control IMF (cIMF). We tested the hypothesis that early-life eIMF feeding alters the absorption or the postabsorptive trafficking of dietary lipids in later life. Male C57BL/6JOlaHsd mice were fed eIMF/cIMF from postnatal day 16-42, followed by low- (LFD, American Institute of Nutrition (AIN)-93 G, 7 wt% fat) or high-fat diet (HFD, D12451, 24 wt% fat) until day 63-70. Lipid absorption rate and tissue concentrations were determined after intragastric administration of stable isotope (2H or 13C) labelled lipids in separate groups. Lipid enrichments in plasma and tissues were analysed using GC-MS. The rate of triolein absorption was similar between eIMF and cIMF fed LFD: 3·2 (sd 1·8) and 3·9 (sd 2·1) and HFD: 2·6 (sd 1·7) and 3·8 (sd 3·0) % dose/ml per h. Postabsorptive lipid trafficking, that is, concentrations of absorbed lipids in tissues, was similar in the eIMF and cIMF groups after LFD. Tissue levels of absorbed TAG after HFD feeding were lower in heart (-42 %) and liver (-46 %), and higher in muscle (+81 %, all P < 0·05) in eIMF-fed mice. In conclusion, early-life IMF diet affected postabsorptive trafficking of absorbed lipids after HFD, but not LFD. Changes in postabsorptive lipid trafficking could underlie the observed lower BW and body fat accumulation in later life upon a persistent long-term obesogenic challenge.
Collapse
|
43
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020; 12:E1039. [PMID: 32283875 PMCID: PMC7231147 DOI: 10.3390/nu12041039] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Human breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development.
Collapse
Affiliation(s)
- Katríona E. Lyons
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
- INFANT Research Centre, University College Cork, Cork T12 DFK4, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
45
|
Cerdó T, Diéguez E, Campoy C. Infant growth, neurodevelopment and gut microbiota during infancy: which nutrients are crucial? Curr Opin Clin Nutr Metab Care 2019; 22:434-441. [PMID: 31567222 DOI: 10.1097/mco.0000000000000606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To update the role of specific nutrients during infant development. RECENT FINDINGS Several bioactive nutrients such as long-chain polyunsaturated fatty acids (LC-PUFAs), iron, vitamins, proteins, or carbohydrates have been identified to exert an important role during the first 1000 days of life on infant growth, neurodevelopment, and gut microbiota establishment and maturation. LC-PUFAs are structural constituents of the central nervous system (CNS), being essential in retinal development or hippocampal plasticity. Recently, components of the milk fat globule membrane (MFG) are being added to infant formulas because of their key role in infant's development. A high intake of proteins induces a faster weight gain during infancy which correlates with later obesity. Digestible carbohydrates provide glucose, crucial for an adequate functioning of CNS; nondigestible carbohydrates [e.g. human milk oligosaccharides (HMOs)] are the main carbon source for gut bacteria. Iron-deficiency anemia during infancy has been associated with alterations of mental and psychomotor development. Folate metabolism, closely related to vitamins B6 and B12, controls epigenetic changes, whereas inadequate status of vitamin D affects bone development, but may also increase intestinal permeability and alter gut microbiota composition. SUMMARY LC-PUFAs, proteins, carbohydrates, iron, and vitamins during early life are critical for infant's growth, neurodevelopment, and the establishment and functioning of gut microbiota.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada
- BioHealth Research Institute (Ibs), Granada, Health Sciences Technological Park
- Neurosciences Institute, Biomedical Research Centre, University of Granada, Granada
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada
- BioHealth Research Institute (Ibs), Granada, Health Sciences Technological Park
- Neurosciences Institute, Biomedical Research Centre, University of Granada, Granada
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, Madrid
- Brain, Behavior and Health Excellence Research Unit, (SC2). University of Granada, Granada, Spain
| |
Collapse
|
46
|
Nieto-Ruiz A, García-Santos JA, Bermúdez MG, Herrmann F, Diéguez E, Sepúlveda-Valbuena N, García S, Miranda MT, De-Castellar R, Rodríguez-Palmero M, Catena A, Campoy C. Cortical Visual Evoked Potentials and Growth in Infants Fed with Bioactive Compounds-Enriched Infant Formula: Results from COGNIS Randomized Clinical Trial. Nutrients 2019; 11:nu11102456. [PMID: 31615134 PMCID: PMC6835488 DOI: 10.3390/nu11102456] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022] Open
Abstract
Postnatal nutrition is essential for growth and neurodevelopment. We analyzed the influence of a new enriched-infant formula with bioactive compounds on growth, neurodevelopment, and visual function (VF) in healthy infants during their first 18 months of life. A total of 170 infants were randomized in the COGNIS randomized clinical trial (RCT) to receive a standard infant formula (SF = 85) or a new experimental infant formula supplemented with functional nutrients (EF = 85). As a control, 50 breastfed infants (BF) were enrolled. Growth patterns were evaluated up to 18 months of life; neurodevelopment was assessed by general movements at 2, 3, and 4 months; VF was measured by cortical visual evoked potentials at 3 and 12 months. No differences in growth and neurodevelopment were found between groups. Regarding VF, SF and EF infants presented prolonged latencies and lower amplitudes in the P100 wave than BF infants. In the EF group, a higher percentage of infants presented response at 7½′ of arc at 12 months compared to 3 months of age; a similar proportion of BF and EF infants presented responses at 7½′ of arc at 12 months of age. Early nutritional intervention with bioactive compounds could narrow the gap in growth and neurodevelopment between breastfed and formula-fed infants.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- Mind, Brain and Behaviour Research Centre-CIMCYC, University of Granada, 18011 Granada, Spain.
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
| | - Mercedes G Bermúdez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
| | - Florian Herrmann
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
| | - Estefanía Diéguez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
| | - Natalia Sepúlveda-Valbuena
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
| | - Salomé García
- Clinical Service of Neurophysiology, Clinical University Hospital San Cecilio, 18016 Granada, Spain.
| | - M Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada,18016 Granada, Spain.
| | | | | | - Andrés Catena
- Mind, Brain and Behaviour Research Centre-CIMCYC, University of Granada, 18011 Granada, Spain.
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada´s Node, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
47
|
Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. Maternal Vertical Transmission Affecting Early-life Microbiota Development. Trends Microbiol 2019; 28:28-45. [PMID: 31492538 DOI: 10.1016/j.tim.2019.07.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The association of the human microbiome with health outcomes has attracted much interest toward its therapeutic manipulation. The likelihood of modulating the human microbiome in early life is high and offers great potential to exert profound effects on human development since the early microbiota shows more flexibility compared to that of adults. The human microbiota, being similar to human genetics, can be transmitted from mother to infant, providing insights into early microbiota acquisition, subsequent development, and potential opportunities for intervention. Here, we review adaptations of the maternal microbiota during pregnancy, birth, and infancy, the acquisition and succession of early-life microbiota, and highlight recent efforts to elucidate mother-to-infant microbiota transmission. We further discuss how the mother-to-infant microbial transmission is shaped; and finally we address potential directions for future studies to promote our understanding within this field.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | | | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland; INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland; College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
48
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|