1
|
Novotna S, Maia LA, Radaszkiewicz KA, Roudnicky P, Harnos J. Linking planar polarity signalling to actomyosin contractility during vertebrate neurulation. Open Biol 2024; 14:240251. [PMID: 39561813 PMCID: PMC11576107 DOI: 10.1098/rsob.240251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024] Open
Abstract
Actomyosin contractility represents an ancient feature of eukaryotic cells participating in many developmental and homeostasis events, including tissue morphogenesis, muscle contraction and cell migration, with dysregulation implicated in various pathological conditions, such as cancer. At the molecular level, actomyosin comprises actin bundles and myosin motor proteins that are sensitive to posttranslational modifications like phosphorylation. While the molecular components of actomyosin are well understood, the coordination of contractility by extracellular and intracellular signals, particularly from cellular signalling pathways, remains incompletely elucidated. This study focuses on WNT/planar cell polarity (PCP) signalling, previously associated with actomyosin contractility during vertebrate neurulation. Our investigation reveals that the main cytoplasmic PCP proteins, Prickle and Dishevelled, interact with key actomyosin components such as myosin light chain 9 (MLC9), leading to its phosphorylation and localized activation. Using proteomics and microscopy approaches, we demonstrate that both PCP proteins actively control actomyosin contractility through Rap1 small GTPases in relevant in vitro and in vivo models. These findings unveil a novel mechanism of how PCP signalling regulates actomyosin contractility through MLC9 and Rap1 that is relevant to vertebrate neurulation.
Collapse
Affiliation(s)
- Sarka Novotna
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Lorena Agostini Maia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | | | - Pavel Roudnicky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno62500, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| |
Collapse
|
2
|
Strutt H, Meshram D, Manning E, Madathil ACK, Strutt D. Fat-Dachsous planar polarity function requires two distinct heterophilic cadherin-cadherin binding interactions. Cell Rep 2024; 43:114722. [PMID: 39302834 PMCID: PMC11497213 DOI: 10.1016/j.celrep.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Fat and Dachsous are evolutionarily conserved atypical cadherins that regulate polarized cell behaviors. In the Drosophila wing, they interact heterophilically between neighboring cells, localize asymmetrically to opposite cell ends, and control wing shape by regulating oriented cell rearrangements and divisions. Fat and Dachsous have 34 and 27 cadherin repeats, respectively, and previous work has identified trans interactions between their first four cadherin repeats. Here, we identify a second heterophilic binding site in their C-terminal cadherin repeats and show the conservation of this binding site in human Fat4 and Dachsous1. We provide evidence that both N- and C-terminal binding sites regulate the stability of Fat-Dachsous binding interactions and show that the N-terminal binding sites are partly dispensable for Fat-Dachsous function in vivo. Finally, we provide in vivo confirmation that the N-terminal repeats interact in an anti-parallel manner. We propose that multiple binding sites promote the clustering of Fat and Dachsous into a lattice-like array.
Collapse
Affiliation(s)
- Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Dipak Meshram
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
4
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP auto count: a novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. Front Cell Dev Biol 2024; 12:1394031. [PMID: 38827526 PMCID: PMC11140036 DOI: 10.3389/fcell.2024.1394031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Introdution: During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity, investigators must often manually measure cell orientations, which is a time-consuming endeavor. To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). Methods: PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. For validation, inner ear sensory epithelia including cochleae and utricles from mice were immunostained for βII-spectrin and imaged with a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear hair cell angle measurements for accuracy using a one to five agreement scale. For utricle samples, PCPA derived measurements were directly compared against manually derived angle measurements and the concordance correlation coefficient (CCC) and Bland-Altman limits of agreement were calculated. PCPA was also tested against previously published images examining PCP in various tissues and across various species suggesting fairly broad utility. Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and was able to obtain ideally accurate planar cell polarity measurements for at least 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to 98%-100% for all users and across all samples. When PCPA's measurements were compared with manual angle measurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley J. Walters
- University of Mississippi Medical Center, Department of Otolaryngology—Head and Neck Surgery, Jackson, MS, United States
| |
Collapse
|
5
|
Bu T, Wang L, Wu X, Gao S, Li X, Yun D, Yang X, Li L, Cheng CY, Sun F. The Planar Cell Polarity Protein Fat1 in Sertoli Cell Function. Endocrinology 2024; 165:bqae041. [PMID: 38553880 DOI: 10.1210/endocr/bqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/30/2024]
Abstract
Fat (FAT atypical cadherin) and Dchs (Dachsous cadherin-related protein) in adjacent Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interfaces create an important intercellular bridge whose adhesive function is in turn supported by Fjx1, a nonreceptor Ser/Thr protein kinase. This concept is derived from earlier studies of Drosophila, which has been confirmed in this and earlier reports as well. Herein, we use the approach of knockdown of Fat1 by RNAi using primary cultures of Sertoli cells that mimicked the blood-testis barrier (BTB) in vivo, and a series of coherent experiments including functional assays to monitor the Sertoli cell tight junction (TJ) permeability barrier and a functional in vitro TJ integrity assay to assess the role of Fat1 in the testis. It was shown that planar cell polarity (PCP) protein Fat1 affected Sertoli cell function through its modulation of actin and microtubule cytoskeletal function, altering their polymerization activity through the Fat1/Fjx1 complex. Furthermore, Fat1 is intimately associated with β-catenin and α-N-catenin, as well as with Prickle 1 of the Vangl1/Prickle 1 complex, another PCP core protein to support intercellular interactions to confer PCP. In summary, these findings support the notion that the Fat:Dchs and the Vangl2:Fzd PCP intercellular bridges are tightly associated with basal ES/TJ structural proteins to stabilize PCP function at the Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interface to sustain spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Linxi Li
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuen Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
6
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP Auto Count: A Novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578047. [PMID: 38352473 PMCID: PMC10862842 DOI: 10.1101/2024.01.30.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity investigators must often manually measure cell orientations, which is a time-consuming endeavor. Methodology To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. Inner ear sensory epithelia including cochleae (P4) and utricles (E17.5) from mice were immunostained for βII-spectrin and imaged on a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear angle measurements for accuracy using a 1-5 agreement scale. For utricle samples, we directly compared PCPA derived measurements against manually derived angle measurements using concordance correlation coefficients (CCC) and Bland-Altman limits of agreement. Finally, PCPA was tested against a variety of images copied from publications examining PCP in various tissues and across various species. Results PCPA was able to recognize and count 99.81% of cochlear hair cells (n = 1,1541 hair cells) in a sample set, and was able to obtain ideally accurate planar cell polarity measurements for over 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to >98%. When manual angle measurements for E17.5 utricles were compared, PCPA's measurements fell within -9 to +10 degrees of manually obtained mean angle measures with a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
- Kendra L. Stansak
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Luke D. Baum
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sumana Ghosh
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Punam Thapa
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Vineel Vanga
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Bradley J. Walters
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
7
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
8
|
Weiner AT, Cho B, Suyama K, Axelrod JD. Cell autonomous polarization by the planar cell polarity signaling pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559449. [PMID: 37808631 PMCID: PMC10557733 DOI: 10.1101/2023.09.26.559449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Planar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module both generates molecular asymmetry within cells and coordinates the direction of polarization between neighboring cells. Two subcomplexes of core proteins segregate to opposite sides of the cell, defining a polarity axis. Homodimers of the atypical cadherin Flamingo are thought to be the scaffold upon which these subcomplexes assemble and are required for intercellular polarity signaling. The central role for Flamingo homodimers in scaffolding and intercellular communication suggests that cells in which intercellular signaling via Flamingo is disabled should fail to polarize. We show that cells lacking Flamingo, or bearing a truncated Flamingo that cannot homodimerize do in fact polarize. Cell polarization requires both positive and negative feedback, and in a multicellular tissue, feedback might involve both intracellular and intercellular pathways. We identify positive and negative feedback pathways that operate cell autonomously to drive polarization.
Collapse
Affiliation(s)
- Alexis T Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaye Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
10
|
Coordination of Cilia Movements in Multi-Ciliated Cells. J Dev Biol 2022; 10:jdb10040047. [PMID: 36412641 PMCID: PMC9680496 DOI: 10.3390/jdb10040047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple motile cilia are formed at the apical surface of multi-ciliated cells in the epithelium of the oviduct or the fallopian tube, the trachea, and the ventricle of the brain. Those cilia beat unidirectionally along the tissue axis, and this provides a driving force for directed movements of ovulated oocytes, mucus, and cerebrospinal fluid in each of these organs. Furthermore, cilia movements show temporal coordination between neighboring cilia. To establish such coordination of cilia movements, cilia need to sense and respond to various cues, including the organ's orientation and movements of neighboring cilia. In this review, we discuss the mechanisms by which cilia movements of multi-ciliated cells are coordinated, focusing on planar cell polarity and the cytoskeleton, and highlight open questions for future research.
Collapse
|
11
|
Brittle A, Warrington SJ, Strutt H, Manning E, Tan SE, Strutt D. Distinct mechanisms of planar polarization by the core and Fat-Dachsous planar polarity pathways in the Drosophila wing. Cell Rep 2022; 40:111419. [PMID: 36170824 PMCID: PMC9631118 DOI: 10.1016/j.celrep.2022.111419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within a tissue plane, and in animals can be determined by the “core” or Fat-Dachsous pathways. Current models for planar polarity establishment involve two components: tissue-level “global” cues that determine the overall axis of polarity and cell-level feedback-mediated cellular polarity amplification. Here, we investigate the contributions of global cues versus cellular feedback amplification in the core and Fat-Dachsous pathways during Drosophila pupal wing development. We present evidence that these pathways generate planar polarity via distinct mechanisms. Core pathway function is consistent with strong feedback capable of self-organizing cell polarity, which can then be aligned with the tissue axis via weak or transient global cues. Conversely, generation of cell polarity by the Ft-Ds pathway depends on strong global cues in the form of graded patterns of gene expression, which can then be amplified by weak feedback mechanisms. The core and Fat-Dachsous planar polarity pathways function via distinct mechanisms The core can self-organize planar polarity and be oriented by weak upstream cues Fat-Dachsous are oriented by strong gradient cues but show poor self-organization
Collapse
Affiliation(s)
- Amy Brittle
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Helen Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Su Ee Tan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
12
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
13
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
15
|
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med (Lausanne) 2022; 9:865131. [PMID: 35677821 PMCID: PMC9170180 DOI: 10.3389/fmed.2022.865131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI) tract consisting Crohn's disease (CD) and ulcerative colitis (UC). The etiology of this disease is not yet clear and, hence, there are numerous medications and treatments for patients with IBD, although a definite and permanent treatment is still missing. Therefore, finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract, there are various lineages of cells with different roles that their existence is necessary for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways, which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally, these signaling pathways function as a governor of cell growth, tissue homeostasis, and organ size. In patients with IBD, recent studies have revealed that these signaling pathways are dysregulated that it could result in depletion or excess of a cell lineage in the intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of the immune system could lead to dysregulation of the immune system's responses in IBD. In this article, we summarized the components and signaling of Wnt, Notch, and Hippo pathways and their role in the intestine and immune system. Furthermore, we reviewed latest scientific literature on the crosstalk among these three signaling pathways in IBD. An overview of these three signaling pathways and their interactions in IBD could provide a novel insight for prospective study directions into finding efficient medications or treatments.
Collapse
Affiliation(s)
- Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shaghayegh Baradaran Ghavami
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sai X, Ikawa Y, Nishimura H, Mizuno K, Kajikawa E, Katoh TA, Kimura T, Shiratori H, Takaoka K, Hamada H, Minegishi K. Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development 2022; 149:275058. [PMID: 35420656 DOI: 10.1242/dev.200315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Toshiya Kimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| |
Collapse
|
17
|
Creighton JH, Jessen JR. Core pathway proteins and the molecular basis of planar polarity in the zebrafish gastrula. Semin Cell Dev Biol 2021; 125:17-25. [PMID: 34635444 DOI: 10.1016/j.semcdb.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
The planar polarization of cells and subcellular structures is critical for embryonic development. Coordination of this polarity can provide cells a sense of direction in relation to the anterior-posterior and dorsal-ventral body axes. Fly epithelia use a core pathway comprised of transmembrane (Van Gogh/Strabismus, Frizzled, and Flamingo/Starry night) and cytoplasmic (Prickle or Spiny-legs, Dishevelled, and Diego) proteins to communicate directional information between cells and thereby promote the uniform orientation of structures such as hairs. In the zebrafish gastrula, planar polarity underlies complex cellular processes, including directed migration and intercalation, that are required to shape the embryo body. Like other vertebrates, the zebrafish genome encodes homologs of each core protein, and it is well-established that polarized gastrula cell behaviors are regulated by some of them. However, it is unknown whether a conserved six-member core protein pathway regulates planar polarity during zebrafish gastrulation. Here, we review our current understanding of core protein function as it relates to two specific examples of planar polarity, the dorsal convergence of lateral gastrula cells and the mediolateral intercalation of midline cells. We consider the hallmarks of fly planar polarity and discuss data regarding asymmetric protein localization and function, and the intercellular communication of polarity information.
Collapse
Affiliation(s)
- Joy H Creighton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
18
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
19
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
20
|
Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, Ylitalo GM, Scholz NL. Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105810. [PMID: 33823483 DOI: 10.1016/j.aquatox.2021.105810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling. Here we exposed Pacific herring (Clupea pallasi) embryos to oiled gravel effluent yielding ΣPAC concentrations as low as ~ 1 μg/L (64 ng/g in tissues). Upon hatching in clean seawater, and following the depuration of tissue PACs (as evidenced by basal levels of cyp1a gene expression), the ventricles of larval herring hearts showed a concentration-dependent reduction in posterior growth (ballooning). This was followed weeks later in feeding larvae by abnormal trabeculation, or formation of the finger-like projections of interior spongy myocardium, and months later with hypertrophy (overgrowth) of the spongy myocardium in early juveniles. Given that heart muscle cell differentiation and migration are driven by Ca2+-dependent intracellular signaling, the observed disruption of ventricular morphogenesis was likely a secondary (downstream) consequence of reduced calcium cycling and contractility in embryonic cardiomyocytes. We propose defective trabeculation as a promising phenotypic anchor for novel morphometric indicators of latent cardiac injury in oil-exposed herring, including an abnormal persistence of cardiac jelly in the ventricle wall and cardiomyocyte hyperproliferation. At a corresponding molecular level, quantitative expression assays in the present study also support biomarker roles for genes known to be involved in muscle contractility (atp2a2, myl7, myh7), cardiomyocyte precursor fate (nkx2.5) and ventricular trabeculation (nrg2, and hbegfa). Overall, our findings reinforce both proximal and indirect roles for dysregulated intracellular calcium cycling in the canonical fish early life stage crude oil toxicity syndrome. More work on Ca2+-mediated cellular dynamics and transcription in developing cardiomyocytes is needed. Nevertheless, the highly specific actions of ΣPAC mixtures on the heart at low, parts-per-billion tissue concentrations directly contravene classical assumptions of baseline (i.e., non-specific) crude oil toxicity.
Collapse
Affiliation(s)
- John P Incardona
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Barbara L French
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James Cameron
- Earth Resources Technology, under contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Karen A Peck
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Cathy A Laetz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Mary Beth Hicks
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Greg Hutchinson
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Sarah E Allan
- National Oceanic and Atmospheric Administration, Office of Response and Restoration, Anchorage, AK, USA
| | - Daryle T Boyd
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
21
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
22
|
Usami FM, Arata M, Shi D, Oka S, Higuchi Y, Tissir F, Takeichi M, Fujimori T. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J Cell Sci 2021; 134:jcs.257006. [PMID: 33468623 DOI: 10.1242/jcs.257006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.
Collapse
Affiliation(s)
- Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Graduate School of Science, Nagoya University, Nagoya, 464-8601 Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology Unit, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan .,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| |
Collapse
|
23
|
Hao Q, Zheng M, Weng K, Hao Y, Zhou Y, Lin Y, Gao F, Kou Z, Kawamura S, Yao K, Xu P, Chen J, Zou J. Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish. J Genet Genomics 2021; 48:52-62. [PMID: 33771456 DOI: 10.1016/j.jgg.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Although the unique organization of vertebrate cone mosaics was first described long ago, both their underlying molecular basis and physiological significance are largely unknown. Here, we demonstrate that Crumbs proteins, the key regulators of epithelial apical polarity, establish the planar cellular polarity of photoreceptors in zebrafish. Via heterophilic Crb2a-Crb2b interactions, the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors. The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors, thereby stabilizing the geometric organization of cone mosaics. Notably, loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation. These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.
Collapse
Affiliation(s)
- Qinlong Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kechao Weng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yumei Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Lin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Feng Gao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ziqi Kou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinghai Chen
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China.
| |
Collapse
|
24
|
Strutt H, Strutt D. DAnkrd49 and Bdbt act via Casein kinase Iε to regulate planar polarity in Drosophila. PLoS Genet 2020; 16:e1008820. [PMID: 32750048 PMCID: PMC7402468 DOI: 10.1371/journal.pgen.1008820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022] Open
Abstract
The core planar polarity proteins are essential mediators of tissue morphogenesis, controlling both the polarised production of cellular structures and polarised tissue movements. During development the core proteins promote planar polarisation by becoming asymmetrically localised to opposite cell edges within epithelial tissues, forming intercellular protein complexes that coordinate polarity between adjacent cells. Here we describe a novel protein complex that regulates the asymmetric localisation of the core proteins in the Drosophila pupal wing. DAnkrd49 (an ankyrin repeat protein) and Bride of Doubletime (Bdbt, a non-canonical FK506 binding protein family member) physically interact, and regulate each other’s levels in vivo. Loss of either protein results in a reduction in core protein asymmetry and disruption of the placement of trichomes at the distal edge of pupal wing cells. Post-translational modifications are thought to be important for the regulation of core protein behaviour and their sorting to opposite cell edges. Consistent with this, we find that loss of DAnkrd49 or Bdbt leads to reduced phosphorylation of the core protein Dishevelled and to decreased Dishevelled levels both at cell junctions and in the cytoplasm. Bdbt has previously been shown to regulate activity of the kinase Discs Overgrown (Dco, also known as Doubletime or Casein Kinase Iε), and Dco itself has been implicated in regulating planar polarity by phosphorylating Dsh as well as the core protein Strabismus. We demonstrate that DAnkrd49 and Bdbt act as dominant suppressors of Dco activity. These findings support a model whereby Bdbt and DAnkrd49 act together to modulate the activity of Dco during planar polarity establishment. In many animal tissues, sheets of cells are polarised in the plane of the tissue, which is evident by the production of polarised structures, such as hairs on the fly wing that point in the same direction or cilia that beat in the same direction. One group of proteins controlling this coordinated polarity are the core planar polarity proteins, which localise asymmetrically within cells such that some core proteins localise to one cell end and others to the opposite cell end. It is thought that modifications such as phosphorylation may locally regulate core protein stability, and this promotes sorting of proteins to different cell ends. We identify two proteins, DAnkrd49 and Bdbt, that form a complex and regulate core protein asymmetry. Loss of either protein causes a reduction in overall levels of the core protein Dishevelled (Dsh), and a reduction in its phosphorylation. We provide evidence that the effect on core protein asymmetry is mediated via regulation of the kinase activity of Discs overgrown (Dco, also known as Doubletime/Casein Kinase Iε) by DAnkrd49 and Bdbt. We propose that modulation of Dco activity by DAnkrd49 and Bdbt is a key step in the sorting of core proteins to opposite cell ends.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (HS); (DS)
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (HS); (DS)
| |
Collapse
|
25
|
Vu HTK, Mansour S, Kücken M, Blasse C, Basquin C, Azimzadeh J, Myers EW, Brusch L, Rink JC. Dynamic Polarization of the Multiciliated Planarian Epidermis between Body Plan Landmarks. Dev Cell 2020; 51:526-542.e6. [PMID: 31743666 DOI: 10.1016/j.devcel.2019.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022]
Abstract
Polarity is a universal design principle of biological systems that manifests at all organizational scales, yet its coordination across scales remains poorly understood. Here, we make use of the extreme anatomical plasticity of planarian flatworms to probe the interplay between global body plan polarity and local cell polarity. Our quantitative analysis of ciliary rootlet orientation in the epidermis reveals a dynamic polarity field with head and tail as independent determinants of anteroposterior (A/P) polarization and the body margin as determinant of mediolateral (M/L) polarization. Mathematical modeling rationalizes the global polarity field and its response to experimental manipulations as superposition of separate A/P and M/L fields, and we identify the core PCP and Ft/Ds pathways as their molecular mediators. Overall, our study establishes a framework for the alignment of cellular polarity vectors relative to planarian body plan landmarks and establishes the core PCP and Ft/Ds pathways as evolutionarily conserved 2D-polarization module.
Collapse
Affiliation(s)
- Hanh Thi-Kim Vu
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Mansour
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michael Kücken
- Technische Universität Dresden, Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cyril Basquin
- Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris CEDEX 13, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris CEDEX 13, France
| | - Eugene Wimberly Myers
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Lutz Brusch
- Technische Universität Dresden, Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Helmholtzstrasse 10, 01069 Dresden, Germany.
| | - Jochen Christian Rink
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
26
|
Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE. Anisotropy links cell shapes to tissue flow during convergent extension. Proc Natl Acad Sci U S A 2020; 117:13541-13551. [PMID: 32467168 PMCID: PMC7306759 DOI: 10.1073/pnas.1916418117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Leo B Sutter
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
27
|
Cerqueira Campos F, Dennis C, Alégot H, Fritsch C, Isabella A, Pouchin P, Bardot O, Horne-Badovinac S, Mirouse V. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Development 2020; 147:dev.186957. [PMID: 32156755 DOI: 10.1242/dev.186957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.
Collapse
Affiliation(s)
- Fabiana Cerqueira Campos
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cynthia Dennis
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hervé Alégot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cornelia Fritsch
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Adam Isabella
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Pierre Pouchin
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
28
|
Shami Shah A, Batrouni AG, Kim D, Punyala A, Cao W, Han C, Goldberg ML, Smolka MB, Baskin JM. PLEKHA4/kramer Attenuates Dishevelled Ubiquitination to Modulate Wnt and Planar Cell Polarity Signaling. Cell Rep 2019; 27:2157-2170.e8. [PMID: 31091453 PMCID: PMC6594551 DOI: 10.1016/j.celrep.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling pathways direct key physiological decisions in development. Here, we establish a role for a pleckstrin homology domain-containing protein, PLEKHA4, as a modulator of signaling strength in Wnt-receiving cells. PLEKHA4 oligomerizes into clusters at PI(4,5)P2-rich regions of the plasma membrane and recruits the Cullin-3 (CUL3) E3 ubiquitin ligase substrate adaptor Kelch-like protein 12 (KLHL12) to these assemblies. This recruitment decreases CUL3-KLHL12-mediated polyubiquitination of Dishevelled, a central intermediate in canonical and non-canonical Wnt signaling. Knockdown of PLEKHA4 in mammalian cells demonstrates that PLEKHA4 positively regulates canonical and non-canonical Wnt signaling via these effects on the Dishevelled polyubiquitination machinery. In vivo knockout of the Drosophila melanogaster PLEKHA4 homolog, kramer, selectively affects the non-canonical, planar cell polarity (PCP) signaling pathway. We propose that PLEKHA4 tunes the sensitivities of cells toward the stimulation of Wnt or PCP signaling by sequestering a key E3 ligase adaptor controlling Dishevelled polyubiquitination within PI(4,5)P2-rich plasma membrane clusters.
Collapse
Affiliation(s)
- Adnan Shami Shah
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alex G Batrouni
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amith Punyala
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wendy Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Vangl2 interaction plays a role in the proteasomal degradation of Prickle2. Sci Rep 2019; 9:2912. [PMID: 30814664 PMCID: PMC6393536 DOI: 10.1038/s41598-019-39642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
The PET and LIM domain-containing protein, Prickle, plays a key role in planar cell polarity (PCP) in Drosophila. It has been reported that mutations in the PRICKLE2 gene, which encodes one of the human orthologues of Prickle, are associated with human diseases such as epilepsy and autism spectrum disorder. To develop preventive and therapeutic strategies for these intractable diseases, we studied the regulation of Prickle2 protein levels in transfected HEK293T cells. Prickle2 levels were negatively regulated by a physical interaction with another PCP protein, Van Gogh-like 2 (Vangl2). The Vangl2-mediated reduction in Prickle2 levels was, at least in part, relieved by proteasome inhibitors or by functional inhibition of the Cullin-1 E3 ubiquitin ligase. Furthermore, the expression of Vangl2 enhanced the polyubiquitination of Prickle2. This ubiquitination was partially blocked by co-expression of a ubiquitin mutant, which cannot be polymerised through their Lys48 residue to induce target proteins toward proteasomal degradation. Together, these results suggest that Prickle2 is polyubiquitinated by the Vangl2 interaction in a Cullin-1-dependent manner to limit its expression levels. This regulation may play a role in the local and temporal fine-tuning of Prickle protein levels during PCP signal-dependent cellular behaviours.
Collapse
|
30
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
31
|
Bosveld F, Wang Z, Bellaïche Y. Tricellular junctions: a hot corner of epithelial biology. Curr Opin Cell Biol 2018; 54:80-88. [DOI: 10.1016/j.ceb.2018.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
32
|
AIP1 and cofilin ensure a resistance to tissue tension and promote directional cell rearrangement. Nat Commun 2018; 9:3295. [PMID: 30202062 PMCID: PMC6131156 DOI: 10.1038/s41467-018-05605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/14/2018] [Indexed: 01/30/2023] Open
Abstract
In order to understand how tissue mechanics shapes animal body, it is critical to clarify how cells respond to and resist tissue stress when undergoing morphogenetic processes, such as cell rearrangement. Here, we address the question in the Drosophila wing epithelium, where anisotropic tissue tension orients cell rearrangements. We found that anisotropic tissue tension localizes actin interacting protein 1 (AIP1), a cofactor of cofilin, on the remodeling junction via cooperative binding of cofilin to F-actin. AIP1 and cofilin promote actin turnover and locally regulate the Canoe-mediated linkage between actomyosin and the junction. This mechanism is essential for cells to resist the mechanical load imposed on the remodeling junction perpendicular to the direction of tissue stretching. Thus, the present study delineates how AIP1 and cofilin achieve an optimal balance between resistance to tissue tension and morphogenesis.
Collapse
|
33
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Upadhyay M, Kuna M, Tudor S, Martino Cortez Y, Rangan P. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genet 2018; 14:e1007154. [PMID: 29370168 PMCID: PMC5811049 DOI: 10.1371/journal.pgen.1007154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. Germ line association with the somatic cells is critical for various aspects of germ cell biology, including migration, self-renewal and differentiation. In Drosophila females, soma–germ line association begins during embryogenesis and continues until the mature egg is formed. In the adult, the somatic escort cells promote differentiation of the germline stem cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in these escort cells, using the canonical pathway to regulate survival, division and encapsulation of the stem cell daughter, a function critical for differentiation. Here, we show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell precursors between the germ cells. Thus, dWnt4 uses different modules of signaling at different points in development to promote cell movement and control cytoplasmic protrusions. As Wnts have been associated with cancers, understanding how Wnts modulate cell movement by switching on and off different modules may lead to insights into the etiology and progression of cancers.
Collapse
Affiliation(s)
- Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
| | - Michael Kuna
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Sara Tudor
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Yesenia Martino Cortez
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bailly E, Walton A, Borg JP. The planar cell polarity Vangl2 protein: From genetics to cellular and molecular functions. Semin Cell Dev Biol 2017; 81:62-70. [PMID: 29111415 DOI: 10.1016/j.semcdb.2017.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Planar cell polarity (PCP) refers to the capacity of a tissue, typically, but not exclusively, an epithelium, to transmit directional information across the tissue plane such that its cellular constituents can differentiate, divide or move in a coordinated manner and along a common axis, generally orthogonal to the apical-basal axis. PCP relies on a core module of highly conserved proteins originally identified in Drosophila which can act intra- and extracellularly. In this review, we focus on the vertebrate ortholog of one of these core PCP components, namely the Vangl2 protein. After a brief historical perspective, we discuss novel cellular settings for which a cellular Vangl2 requirement has been recently documented, with a particular emphasis on adult tissues that rely on Vangl2 for the maintenance of their regenerative capacity or their physiological functions. Finally we compile the most recent data about Vangl2 interacting proteins.
Collapse
Affiliation(s)
- Eric Bailly
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| | - Alexandra Walton
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| |
Collapse
|
36
|
Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Guirao B, Bellaïche Y. Biomechanics of cell rearrangements in Drosophila. Curr Opin Cell Biol 2017; 48:113-124. [DOI: 10.1016/j.ceb.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
38
|
Abstract
The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors.
Collapse
Affiliation(s)
- Crystal F Davey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
39
|
Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 2017; 144:552-566. [PMID: 28196803 DOI: 10.1242/dev.145904] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana Rolo
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
40
|
Warrington SJ, Strutt H, Fisher KH, Strutt D. A Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity. Curr Biol 2017; 27:2784-2797.e3. [PMID: 28918952 PMCID: PMC5628951 DOI: 10.1016/j.cub.2017.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
Abstract
The core planar polarity pathway coordinates epithelial cell polarity during animal development, and loss of its activity gives rise to a range of defects, from aberrant morphogenetic cell movements to failure to correctly orient structures, such as hairs and cilia. The core pathway functions via a mechanism involving segregation of its protein components to opposite cells ends, where they form asymmetric intracellular complexes that couple cell-cell polarity. This segregation is a self-organizing process driven by feedback interactions between the core proteins themselves. Despite intense efforts, the molecular pathways underlying feedback have proven difficult to elucidate using conventional genetic approaches. Here we investigate core protein function during planar polarization of the Drosophila wing by combining quantitative measurements of protein dynamics with loss-of-function genetics, mosaic analysis, and temporal control of gene expression. Focusing on the key core protein Frizzled, we show that its stable junctional localization is promoted by the core proteins Strabismus, Dishevelled, Prickle, and Diego. In particular, we show that the stabilizing function of Prickle on Frizzled requires Prickle activity in neighboring cells. Conversely, Prickle in the same cell has a destabilizing effect on Frizzled. This destabilizing activity is dependent on the presence of Dishevelled and blocked in the absence of Dynamin and Rab5 activity, suggesting an endocytic mechanism. Overall, our approach reveals for the first time essential in vivo stabilizing and destabilizing interactions of the core proteins required for self-organization of planar polarity.
Collapse
Affiliation(s)
- Samantha J Warrington
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Helen Strutt
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Katherine H Fisher
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - David Strutt
- Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
41
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
42
|
Farrell DL, Weitz O, Magnasco MO, Zallen JA. SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 2017; 144:1725-1734. [PMID: 28465336 PMCID: PMC5450846 DOI: 10.1242/dev.146837] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Epithelial remodeling determines the structure of many organs in the body through changes in cell shape, polarity and behavior and is a major area of study in developmental biology. Accurate and high-throughput methods are necessary to systematically analyze epithelial organization and dynamics at single-cell resolution. We developed SEGGA, an easy-to-use software for automated image segmentation, cell tracking and quantitative analysis of cell shape, polarity and behavior in epithelial tissues. SEGGA is free, open source, and provides a full suite of tools that allow users with no prior computational expertise to independently perform all steps of automated image segmentation, semi-automated user-guided error correction, and data analysis. Here we use SEGGA to analyze changes in cell shape, cell interactions and planar polarity during convergent extension in the Drosophila embryo. These studies demonstrate that planar polarity is rapidly established in a spatiotemporally regulated pattern that is dynamically remodeled in response to changes in cell orientation. These findings reveal an unexpected plasticity that maintains coordinated planar polarity in actively moving populations through the continual realignment of cell polarity with the tissue axes.
Collapse
Affiliation(s)
- Dene L Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Ori Weitz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Marcelo O Magnasco
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
43
|
Teuliere J, Garriga G. Size Matters: How C. elegans Asymmetric Divisions Regulate Apoptosis. Results Probl Cell Differ 2017; 61:141-163. [PMID: 28409303 DOI: 10.1007/978-3-319-53150-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Apoptosis is a form of programmed cell death used by metazoans to eliminate abnormal cells, control cell number, and shape the development of organs. The use of the nematode Caenorhabditis elegans as a model for the study of apoptosis has led to important insights into how cells die and how their corpses are removed. Eighty percent of these apoptotic cell deaths occur during nervous system development and in daughters of neuroblasts that divide asymmetrically. Pioneering work defined a conserved apoptosis pathway that is initiated in C. elegans by the BH3-only protein EGL-1 and that leads to the activation of the caspase CED-3. While the execution of the apoptotic fate is well understood, much less is known about the mechanisms that specify the apoptotic fate of particular cells. In some cells fated to die, this regulation occurs at the level of the egl-1 gene transcription, and investigators have identified several lineage-specific transcription factors that both positively and negatively regulate egl-1. In this review, we focus on a second set of molecules that appear to influence apoptosis by controlling the position of the cleavage plane in divisions that produce apoptotic cells.
Collapse
Affiliation(s)
- Jerome Teuliere
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gian Garriga
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
44
|
Ohata S, Alvarez-Buylla A. Planar Organization of Multiciliated Ependymal (E1) Cells in the Brain Ventricular Epithelium. Trends Neurosci 2016; 39:543-551. [PMID: 27311928 DOI: 10.1016/j.tins.2016.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023]
Abstract
Cerebrospinal fluid (CSF) continuously flows through the cerebral ventricles, a process essential for brain homeostasis. Multiciliated ependymal (E1) cells line the walls of the ventricles and contribute importantly to CSF flow through ciliary beating. Key to this function is the rotational and translational planar cell polarity (PCP) of E1 cells. Defects in the PCP of E1 cells can result in abnormal CSF accumulation and hydrocephalus. Here, we integrate recent data on the roles of early CSF flow in the embryonic ventricles, PCP regulators (e.g., Vangl2 and Dishevelled), and cytoskeletal networks in the establishment, refinement, and maintenance of E1 cells' PCP. The planar organization mechanisms of E1 cells could explain how CSF flow contributes to brain function and may help in the diagnosis and prevention of hydrocephalus.
Collapse
Affiliation(s)
- Shinya Ohata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
46
|
Sepich DS, Solnica-Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn 2016; 245:678-91. [PMID: 27043944 DOI: 10.1002/dvdy.24409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell polarity is essential for directed migration of mesenchymal cells and morphogenesis of epithelial tissues. Studies in cultured cells indicate that a condensed Golgi Complex (GC) is essential for directed protein trafficking to establish cell polarity underlying directed cell migration. Dynamic changes of the GC intracellular organization during early vertebrate development remain to be investigated. RESULTS We used antibody labeling and fusion proteins in vivo to study the organization and intracellular placement of the GC during early zebrafish embryogenesis. We found that the GC was dispersed into several puncta containing cis- and trans-Golgi Complex proteins, presumably ministacks, until the end of the gastrula period. By early segmentation stages, the GC condensed in cells of the notochord, adaxial mesoderm, and neural plate, and its intracellular position became markedly polarized away from borders between these tissues. CONCLUSIONS We find that GC is dispersed in early zebrafish cells, even when cells are engaged in massive gastrulation movements. The GC accumulates into patches in a stage and cell-type specific manner, and becomes polarized away from borders between the embryonic tissues. With respect to tissue borders, intracellular GC polarity in notochord is independent of mature apical/basal polarity, Wnt/PCP, or signals from adaxial mesoderm. Developmental Dynamics 245:678-691, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
47
|
Schenkelaars Q, Fierro-Constain L, Renard E, Borchiellini C. Retracing the path of planar cell polarity. BMC Evol Biol 2016; 16:69. [PMID: 27039172 PMCID: PMC4818920 DOI: 10.1186/s12862-016-0641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Planar Cell Polarity pathway (PCP) has been described as the main feature involved in patterning cell orientation in bilaterian tissues. Recently, a similar phenomenon was revealed in cnidarians, in which the inhibition of this pathway results in the absence of cilia orientation in larvae, consequently proving the functional conservation of PCP signaling between Cnidaria and Bilateria. Nevertheless, despite the growing accumulation of databases concerning basal lineages of metazoans, very few information concerning the existence of PCP components have been gathered outside of Bilateria and Cnidaria. Thus, the origin of this module or its prevalence in early emerging metazoans has yet to be elucidated. RESULTS The present study addresses this question by investigating the genomes and transcriptomes from all poriferan lineages in addition to Trichoplax (Placozoa) and Mnemiopsis (Ctenophora) genomes for the presence of the core components of this pathway. Our results confirm that several PCP components are metazoan innovations. In addition, we show that all members of the PCP pathway, including a bona fide Strabismus ortholog (Van gogh), are retrieved only in one sponge lineage (Homoscleromorpha) out of four. This highly suggests that the full PCP pathway dates back at least to the emergence of homoscleromorph sponges. Consequently, several secondary gene losses would have occurred in the three other poriferan lineages including Amphimedon queenslandica (Demospongiae). Several proteins were not retrieved either in placozoans or ctenophores leading us to discuss the difficulties to predict orthologous proteins in basally branching animals. Finally, we reveal how the study of multigene families may be helpful to unravel the relationships at the base of the metazoan tree. CONCLUSION The PCP pathway antedates the radiation of Porifera and may have arisen in the last common ancestor of animals. Oscarella species now appear as key organisms to understand the ancestral function of PCP signaling and its potential links with Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Laura Fierro-Constain
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Emmanuelle Renard
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Carole Borchiellini
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Strutt D, Schnabel R, Fiedler F, Prömel S. Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handb Exp Pharmacol 2016; 234:249-274. [PMID: 27832491 DOI: 10.1007/978-3-319-41523-9_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In multicellular organisms cells spatially arrange in a highly coordinated manner to form tissues and organs, which is essential for the function of an organism. The component cells and resulting structures are often polarised in one or more axes, and how such polarity is established and maintained correctly has been one of the major biological questions for many decades. Research progress has shown that many adhesion GPCRs (aGPCRs) are involved in several types of polarity. Members of the two evolutionarily oldest groups, Flamingo/Celsr and Latrophilins, are key molecules in planar cell polarity of epithelia or the propagation of cellular polarity in the early embryo, respectively. Other adhesion GPCRs play essential roles in cell migration, indicating that this receptor class includes essential molecules for the control of various levels of cellular organisation.
Collapse
Affiliation(s)
- David Strutt
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany.
| | - Franziska Fiedler
- Medical Faculty, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Institute of Biochemistry, Leipzig University, Leipzig, Germany.
| |
Collapse
|