1
|
Chillón-Pino D, Badonyi M, Semple CA, Marsh JA. Protein structural context of cancer mutations reveals molecular mechanisms and candidate driver genes. Cell Rep 2024; 43:114905. [PMID: 39441719 DOI: 10.1016/j.celrep.2024.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Advances in protein structure determination and modeling allow us to study the structural context of human genetic variants on an unprecedented scale. Here, we analyze millions of cancer-associated missense mutations based on their structural locations and predicted perturbative effects. By considering the collective properties of mutations at the level of individual proteins, we identify distinct patterns associated with tumor suppressors and oncogenes. Tumor suppressors are enriched in structurally damaging mutations, consistent with loss-of-function mechanisms, while oncogene mutations tend to be structurally mild, reflecting selection for gain-of-function driver mutations and against loss-of-function mutations. Although oncogenes are difficult to distinguish from genes with no role in cancer using only structural damage, we find that the three-dimensional clustering of mutations is highly predictive. These observations allow us to identify candidate driver genes and speculate about their molecular roles, which we expect will have general utility in the analysis of cancer sequencing data.
Collapse
Affiliation(s)
- Diego Chillón-Pino
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
3
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
Bai S, Wang G, Song R, Liu Y, Hua L, Yang J, Zhang L, Ur Rehman S, Hao X, Hou L, Zhang C, Li H, Liang Y, Zhao L, Xue Y, Wang Z, Chen S. Mutations in wheat TaAPA2 gene result in pleiotropic effects on plant architecture. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2039-2042. [PMID: 38842650 DOI: 10.1007/s11427-024-2620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Shengsheng Bai
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Rui Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Yanna Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Jinwei Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Lijun Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Shams Ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Xiaohua Hao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Lifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Yanyan Liang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Lihua Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Yan Xue
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China
| | - Zheng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, China.
| |
Collapse
|
5
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Sheng W, Wang P, Cai Y, Zhai C, Wang H, Zhou F, Liu X, Wang L, Li D, Shu J, Cai C. Epilepsy due to potential loss of ATP6V1B2 function with mechanistic insight by a Drosophila Vha55 model. Clin Genet 2024. [PMID: 39075926 DOI: 10.1111/cge.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
ATP6V1B2 encodes the subunit of the vacuolar H+-ATPase, which is an enzyme responsible for the acidification of intracellular organelles and essential for cell signaling and neurotransmitter release. The aim of the study is to identify the correlation between ATP6V1B2 and epilepsy. Trio-exome sequencing was performed. Reverse Transcription-PCR and Quantitative real-time PCR analyses were carried out to determine whether this variant leads to nonsense-mediated mRNA decay (NMD). Drosophila models with knocked-down homologous genes of ATP6V1B2 were generated to study the causal relationship between the ATP6V1B2 and the phenotype of epilepsy. We described a 5-year-old male with a novel variant c.1163delT(p.Tyr389IlefsTer13) in ATP6V1B2, who presented with epilepsy. The expression level of the premature termination codon (PTC) transcript was normal in the patient, which indicated that NMD evasion existed in the PTC transcript. We generated an animal model using Drosophila to study the knock down effects of Vha55, which is the ATP6V1B2 ortholog in fly. The Vha55 knockdown flies show seizure-like behaviors and climbing defects. This study expands the variation spectrum of the ATP6V1B2 gene. Cross-species animal model demonstrates the causal relationship between ATP6V1B2 defect and epilepsy, and shed new insights into the disease mechanism caused by ATP6V1B2 LOF variants.
Collapse
Affiliation(s)
- Wenchao Sheng
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yingzi Cai
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Wang
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Feiyu Zhou
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Liu
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Leyi Wang
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
7
|
Ozkan S, Padilla N, de la Cruz X. QAFI: a novel method for quantitative estimation of missense variant impact using protein-specific predictors and ensemble learning. Hum Genet 2024:10.1007/s00439-024-02692-z. [PMID: 39048855 DOI: 10.1007/s00439-024-02692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized genetic diagnostics, yet its application in precision medicine remains incomplete, despite significant advances in computational tools for variant annotation. Many variants remain unannotated, and existing tools often fail to accurately predict the range of impacts that variants have on protein function. This limitation restricts their utility in relevant applications such as predicting disease severity and onset age. In response to these challenges, a new generation of computational models is emerging, aimed at producing quantitative predictions of genetic variant impacts. However, the field is still in its early stages, and several issues need to be addressed, including improved performance and better interpretability. This study introduces QAFI, a novel methodology that integrates protein-specific regression models within an ensemble learning framework, utilizing conservation-based and structure-related features derived from AlphaFold models. Our findings indicate that QAFI significantly enhances the accuracy of quantitative predictions across various proteins. The approach has been rigorously validated through its application in the CAGI6 contest, focusing on ARSA protein variants, and further tested on a comprehensive set of clinically labeled variants, demonstrating its generalizability and robust predictive power. The straightforward nature of our models may also contribute to better interpretability of the results.
Collapse
Affiliation(s)
- Selen Ozkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Frenkel M, Raman S. Discovering mechanisms of human genetic variation and controlling cell states at scale. Trends Genet 2024; 40:587-600. [PMID: 38658256 DOI: 10.1016/j.tig.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Population-scale sequencing efforts have catalogued substantial genetic variation in humans such that variant discovery dramatically outpaces interpretation. We discuss how single-cell sequencing is poised to reveal genetic mechanisms at a rate that may soon approach that of variant discovery. The functional genomics toolkit is sufficiently modular to systematically profile almost any type of variation within increasingly diverse contexts and with molecularly comprehensive and unbiased readouts. As a result, we can construct deep phenotypic atlases of variant effects that span the entire regulatory cascade. The same conceptual approach to interpreting genetic variation should be applied to engineering therapeutic cell states. In this way, variant mechanism discovery and cell state engineering will become reciprocating and iterative processes towards genomic medicine.
Collapse
Affiliation(s)
- Max Frenkel
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
10
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
11
|
Xie X, Zhang O, Yeo MJR, Lee C, Harry SA, Paul L, Li Y, Payne NC, Nam E, Kwok HS, Jiang H, Mao H, Hadley JL, Lin H, Batts M, Gosavi PM, D'Angiolella V, Cole PA, Mazitschek R, Northcott PA, Zheng N, Liau BB. KBTBD4 Cancer Hotspot Mutations Drive Neomorphic Degradation of HDAC1/2 Corepressor Complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593970. [PMID: 38798357 PMCID: PMC11118371 DOI: 10.1101/2024.05.14.593970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.
Collapse
|
12
|
Zhang XM, Xu KL, Kong JH, Dong G, Dong SJ, Yang ZX, Xu SJ, Wang L, Luo SY, Zhang YD, Zhou CC, Gu WY, Mei SY. Heterozygous CAPZA2 mutations cause global developmental delay, hypotonia with epilepsy: a case report and the literature review. J Hum Genet 2024; 69:197-203. [PMID: 38374166 DOI: 10.1038/s10038-024-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.
Collapse
Affiliation(s)
- Xiao-Man Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kai-Li Xu
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jing-Hui Kong
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Geng Dong
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shi-Jie Dong
- Department of Radiology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhi-Xiao Yang
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shu-Jing Xu
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Li Wang
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shu-Ying Luo
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yao-Dong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Chong-Chen Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei-Yue Gu
- Chigene Translational Medical Research Center Co. Ltd, Beijing, China
| | - Shi-Yue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
13
|
Cantara S, Simoncelli G, Ricci C. Antisense Oligonucleotides (ASOs) in Motor Neuron Diseases: A Road to Cure in Light and Shade. Int J Mol Sci 2024; 25:4809. [PMID: 38732027 PMCID: PMC11083842 DOI: 10.3390/ijms25094809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments.
Collapse
Affiliation(s)
- Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Giorgia Simoncelli
- Unit of Neurology and Clinical Neurophysiology, Department of Neurological and Motor Sciences, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
14
|
Dodd DO, Mechaussier S, Yeyati PL, McPhie F, Anderson JR, Khoo CJ, Shoemark A, Gupta DK, Attard T, Zariwala MA, Legendre M, Bracht D, Wallmeier J, Gui M, Fassad MR, Parry DA, Tennant PA, Meynert A, Wheway G, Fares-Taie L, Black HA, Mitri-Frangieh R, Faucon C, Kaplan J, Patel M, McKie L, Megaw R, Gatsogiannis C, Mohamed MA, Aitken S, Gautier P, Reinholt FR, Hirst RA, O’Callaghan C, Heimdal K, Bottier M, Escudier E, Crowley S, Descartes M, Jabs EW, Kenia P, Amiel J, Bacci GM, Calogero C, Palazzo V, Tiberi L, Blümlein U, Rogers A, Wambach JA, Wegner DJ, Fulton AB, Kenna M, Rosenfeld M, Holm IA, Quigley A, Hall EA, Murphy LC, Cassidy DM, von Kriegsheim A, Papon JF, Pasquier L, Murris MS, Chalmers JD, Hogg C, Macleod KA, Urquhart DS, Unger S, Aitman TJ, Amselem S, Leigh MW, Knowles MR, Omran H, Mitchison HM, Brown A, Marsh JA, Welburn JPI, Ti SC, Horani A, Rozet JM, Perrault I, Mill P. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024; 384:eadf5489. [PMID: 38662826 PMCID: PMC7616230 DOI: 10.1126/science.adf5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.
Collapse
Affiliation(s)
- Daniel O Dodd
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Fraser McPhie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
- Royal Brompton Hospital, LondonSW3 6NP, UK
| | - Deepesh K Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Thomas Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Marie Legendre
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Diana Bracht
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria21561, Egypt
| | - David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Peter A Tennant
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Holly A Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- South East of Scotland Genetics Service, Western General Hospital, EdinburghEH4 2XU, UK
| | - Rana Mitri-Frangieh
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
- Biomechanics and Respiratory Apparatus, IMRB, U955 INSERM – Université Paris Est Créteil, CNRS ERL 7000, Créteil 94000, France
| | - Catherine Faucon
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Mitali Patel
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, LondonW1W 7FF, UK
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Roly Megaw
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- Princess Alexandra Eye Pavilion, EdinburghEH3 9HA, UK
| | - Christos Gatsogiannis
- Center for Soft Nanoscience and Institute of Medical Physics and Biophysics, Münster 48149, Germany
| | - Mai A Mohamed
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Ash Sharqiyah44519, Egypt
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Finn R Reinholt
- Core Facility for Electron Microscopy, Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo0372, Norway
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, LeicesterLE1 9HN, UK
| | - Chris O’Callaghan
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Mathieu Bottier
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Estelle Escudier
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo0407, Norway
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, 35294-0024, USA
| | - Ethylin W Jabs
- Icahn School of Medicine at Mount Sinai, New York10029-6504, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester55905, USA
| | - Priti Kenia
- Department of Paediatric Respiratory Medicine, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, BirminghamB15 2TG, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris75015, France
- Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris75015, France
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Claudia Calogero
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Viviana Palazzo
- Pediatric Pulmonary Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | | | | | - Jennifer A Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Kenna
- Department of Otolaryngology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle 98015, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children’s Hospital, Boston02115, USA
- Department of Pediatrics, Harvard Medical School, Boston 02115, USA
| | - Alan Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Diane M Cassidy
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Scottish Genomes Partnership
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | | | | | - Jean-François Papon
- ENT Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Le Kremlin-Bicêtre94270, France
| | - Laurent Pasquier
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
| | - Marlène S Murris
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | | | | | - Don S Urquhart
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
- Department of Child Life and Health, University of Edinburgh, EdinburghEH16 4TJ, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Serge Amselem
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis 63110, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| |
Collapse
|
15
|
Rrustemi T, Meyer K, Roske Y, Uyar B, Akalin A, Imami K, Ishihama Y, Daumke O, Selbach M. Pathogenic mutations of human phosphorylation sites affect protein-protein interactions. Nat Commun 2024; 15:3146. [PMID: 38605029 PMCID: PMC11009412 DOI: 10.1038/s41467-024-46794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.
Collapse
Affiliation(s)
| | - Katrina Meyer
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Bora Uyar
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Altuna Akalin
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Oliver Daumke
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
16
|
Waldo JJ, Halmai JANM, Fink KD. Epigenetic editing for autosomal dominant neurological disorders. Front Genome Ed 2024; 6:1304110. [PMID: 38510848 PMCID: PMC10950933 DOI: 10.3389/fgeed.2024.1304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Epigenetics refers to the molecules and mechanisms that modify gene expression states without changing the nucleotide context. These modifications are what encode the cell state during differentiation or epigenetic memory in mitosis. Epigenetic modifications can alter gene expression by changing the chromatin architecture by altering the affinity for DNA to wrap around histone octamers, forming nucleosomes. The higher affinity the DNA has for the histones, the tighter it will wrap and therefore induce a heterochromatin state, silencing gene expression. Several groups have shown the ability to harness the cell's natural epigenetic modification pathways to engineer proteins that can induce changes in epigenetics and consequently regulate gene expression. Therefore, epigenetic modification can be used to target and treat disorders through the modification of endogenous gene expression. The use of epigenetic modifications may prove an effective path towards regulating gene expression to potentially correct or cure genetic disorders.
Collapse
Affiliation(s)
| | | | - Kyle D. Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, MIND Institute, UC Davis Health System, Sacramento, CA, United States
| |
Collapse
|
17
|
Jain S, Bakolitsa C, Brenner SE, Radivojac P, Moult J, Repo S, Hoskins RA, Andreoletti G, Barsky D, Chellapan A, Chu H, Dabbiru N, Kollipara NK, Ly M, Neumann AJ, Pal LR, Odell E, Pandey G, Peters-Petrulewicz RC, Srinivasan R, Yee SF, Yeleswarapu SJ, Zuhl M, Adebali O, Patra A, Beer MA, Hosur R, Peng J, Bernard BM, Berry M, Dong S, Boyle AP, Adhikari A, Chen J, Hu Z, Wang R, Wang Y, Miller M, Wang Y, Bromberg Y, Turina P, Capriotti E, Han JJ, Ozturk K, Carter H, Babbi G, Bovo S, Di Lena P, Martelli PL, Savojardo C, Casadio R, Cline MS, De Baets G, Bonache S, Díez O, Gutiérrez-Enríquez S, Fernández A, Montalban G, Ootes L, Özkan S, Padilla N, Riera C, De la Cruz X, Diekhans M, Huwe PJ, Wei Q, Xu Q, Dunbrack RL, Gotea V, Elnitski L, Margolin G, Fariselli P, Kulakovskiy IV, Makeev VJ, Penzar DD, Vorontsov IE, Favorov AV, Forman JR, Hasenahuer M, Fornasari MS, Parisi G, Avsec Z, Çelik MH, Nguyen TYD, Gagneur J, Shi FY, Edwards MD, Guo Y, Tian K, Zeng H, Gifford DK, Göke J, Zaucha J, Gough J, Ritchie GRS, Frankish A, Mudge JM, Harrow J, Young EL, Yu Y, Huff CD, Murakami K, Nagai Y, Imanishi T, Mungall CJ, Jacobsen JOB, Kim D, Jeong CS, Jones DT, Li MJ, Guthrie VB, Bhattacharya R, Chen YC, Douville C, Fan J, Kim D, Masica D, Niknafs N, Sengupta S, Tokheim C, Turner TN, Yeo HTG, Karchin R, Shin S, Welch R, Keles S, Li Y, Kellis M, Corbi-Verge C, Strokach AV, Kim PM, Klein TE, Mohan R, Sinnott-Armstrong NA, Wainberg M, Kundaje A, Gonzaludo N, Mak ACY, Chhibber A, Lam HYK, Dahary D, Fishilevich S, Lancet D, Lee I, Bachman B, Katsonis P, Lua RC, Wilson SJ, Lichtarge O, Bhat RR, Sundaram L, Viswanath V, Bellazzi R, Nicora G, Rizzo E, Limongelli I, Mezlini AM, Chang R, Kim S, Lai C, O’Connor R, Topper S, van den Akker J, Zhou AY, Zimmer AD, Mishne G, Bergquist TR, Breese MR, Guerrero RF, Jiang Y, Kiga N, Li B, Mort M, Pagel KA, Pejaver V, Stamboulian MH, Thusberg J, Mooney SD, Teerakulkittipong N, Cao C, Kundu K, Yin Y, Yu CH, Kleyman M, Lin CF, Stackpole M, Mount SM, Eraslan G, Mueller NS, Naito T, Rao AR, Azaria JR, Brodie A, Ofran Y, Garg A, Pal D, Hawkins-Hooker A, Kenlay H, Reid J, Mucaki EJ, Rogan PK, Schwarz JM, Searls DB, Lee GR, Seok C, Krämer A, Shah S, Huang CV, Kirsch JF, Shatsky M, Cao Y, Chen H, Karimi M, Moronfoye O, Sun Y, Shen Y, Shigeta R, Ford CT, Nodzak C, Uppal A, Shi X, Joseph T, Kotte S, Rana S, Rao A, Saipradeep VG, Sivadasan N, Sunderam U, Stanke M, Su A, Adzhubey I, Jordan DM, Sunyaev S, Rousseau F, Schymkowitz J, Van Durme J, Tavtigian SV, Carraro M, Giollo M, Tosatto SCE, Adato O, Carmel L, Cohen NE, Fenesh T, Holtzer T, Juven-Gershon T, Unger R, Niroula A, Olatubosun A, Väliaho J, Yang Y, Vihinen M, Wahl ME, Chang B, Chong KC, Hu I, Sun R, Wu WKK, Xia X, Zee BC, Wang MH, Wang M, Wu C, Lu Y, Chen K, Yang Y, Yates CM, Kreimer A, Yan Z, Yosef N, Zhao H, Wei Z, Yao Z, Zhou F, Folkman L, Zhou Y, Daneshjou R, Altman RB, Inoue F, Ahituv N, Arkin AP, Lovisa F, Bonvini P, Bowdin S, Gianni S, Mantuano E, Minicozzi V, Novak L, Pasquo A, Pastore A, Petrosino M, Puglisi R, Toto A, Veneziano L, Chiaraluce R, Ball MP, Bobe JR, Church GM, Consalvi V, Cooper DN, Buckley BA, Sheridan MB, Cutting GR, Scaini MC, Cygan KJ, Fredericks AM, Glidden DT, Neil C, Rhine CL, Fairbrother WG, Alontaga AY, Fenton AW, Matreyek KA, Starita LM, Fowler DM, Löscher BS, Franke A, Adamson SI, Graveley BR, Gray JW, Malloy MJ, Kane JP, Kousi M, Katsanis N, Schubach M, Kircher M, Mak ACY, Tang PLF, Kwok PY, Lathrop RH, Clark WT, Yu GK, LeBowitz JH, Benedicenti F, Bettella E, Bigoni S, Cesca F, Mammi I, Marino-Buslje C, Milani D, Peron A, Polli R, Sartori S, Stanzial F, Toldo I, Turolla L, Aspromonte MC, Bellini M, Leonardi E, Liu X, Marshall C, McCombie WR, Elefanti L, Menin C, Meyn MS, Murgia A, Nadeau KCY, Neuhausen SL, Nussbaum RL, Pirooznia M, Potash JB, Dimster-Denk DF, Rine JD, Sanford JR, Snyder M, Cote AG, Sun S, Verby MW, Weile J, Roth FP, Tewhey R, Sabeti PC, Campagna J, Refaat MM, Wojciak J, Grubb S, Schmitt N, Shendure J, Spurdle AB, Stavropoulos DJ, Walton NA, Zandi PP, Ziv E, Burke W, Chen F, Carr LR, Martinez S, Paik J, Harris-Wai J, Yarborough M, Fullerton SM, Koenig BA, McInnes G, Shigaki D, Chandonia JM, Furutsuki M, Kasak L, Yu C, Chen R, Friedberg I, Getz GA, Cong Q, Kinch LN, Zhang J, Grishin NV, Voskanian A, Kann MG, Tran E, Ioannidis NM, Hunter JM, Udani R, Cai B, Morgan AA, Sokolov A, Stuart JM, Minervini G, Monzon AM, Batzoglou S, Butte AJ, Greenblatt MS, Hart RK, Hernandez R, Hubbard TJP, Kahn S, O’Donnell-Luria A, Ng PC, Shon J, Veltman J, Zook JM. CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol 2024; 25:53. [PMID: 38389099 PMCID: PMC10882881 DOI: 10.1186/s13059-023-03113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The five complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. RESULTS Performance was particularly strong for clinical pathogenic variants, including some difficult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical effects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less definitive and indicates performance potentially suitable for auxiliary use in the clinic. CONCLUSIONS Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly large, robust datasets for training and assessment promise further progress ahead.
Collapse
|
18
|
Argiro A, Bui Q, Hong KN, Ammirati E, Olivotto I, Adler E. Applications of Gene Therapy in Cardiomyopathies. JACC. HEART FAILURE 2024; 12:248-260. [PMID: 37966402 DOI: 10.1016/j.jchf.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/16/2023]
Abstract
Gene therapy is defined by the introduction of new genes or the genetic modification of existing genes and/or their regulatory portions via gene replacement and gene editing strategies, respectively. The genetic material is usually delivered though cardiotropic vectors such as adeno-associated virus 9 or engineered capsids. The enthusiasm for gene therapy has been hampered somewhat by adverse events observed in clinical trials, including dose-dependent immunologic reactions such as hepatotoxicity, acquired hemolytic uremic syndrome and myocarditis. Notably, gene therapy for Duchenne muscular dystrophy has recently been approved and pivotal clinical trials are testing gene therapy approaches in rare myocardial conditions such as Danon disease and Fabry disease. Furthermore, promising results have been shown in animal models of gene therapy in hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. This review summarizes the gene therapy techniques, the toxicity risk associated with adeno-associated virus delivery, the ongoing clinical trials, and future targets.
Collapse
Affiliation(s)
- Alessia Argiro
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.
| | - Quan Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Kimberly N Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Enrico Ammirati
- De Gasperis Cardio Center, Transplant Center, Niguarda Hospital, Milan, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Meyer University Children Hospital, Florence, Italy
| | - Eric Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
19
|
Lauffer MC, van Roon-Mom W, Aartsma-Rus A. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. COMMUNICATIONS MEDICINE 2024; 4:6. [PMID: 38182878 PMCID: PMC10770028 DOI: 10.1038/s43856-023-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are incredibly versatile molecules that can be designed to specifically target and modify RNA transcripts to slow down or halt rare genetic disease progression. They offer the potential to target groups of patients or can be tailored for individual cases. Nonetheless, not all genetic variants and disorders are amenable to ASO-based treatments, and hence, it is important to consider several factors before embarking on the drug development journey. Here, we discuss which genetic disorders have the potential to benefit from a specific type of ASO approach, based on the pathophysiology of the disease and pathogenic variant type, as well as those disorders that might not be suitable for ASO therapies. We further explore additional aspects, such as the target tissues, intervention time points, and potential clinical benefits, which need to be considered before developing a compound. Overall, we provide an overview of the current potentials and limitations of ASO-based therapeutics for the treatment of monogenic disorders.
Collapse
Affiliation(s)
- Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Harazi A, Yakovlev L, Ilouz N, Selke P, Horstkorte R, Fellig Y, Lahat O, Lifschytz T, Abudi N, Abramovitch R, Argov Z, Mitrani-Rosenbaum S. Induced Muscle and Liver Absence of Gne in Postnatal Mice Does Not Result in Structural or Functional Muscle Impairment. J Neuromuscul Dis 2024; 11:905-917. [PMID: 38875046 PMCID: PMC11380236 DOI: 10.3233/jnd-240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Background GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.
Collapse
Affiliation(s)
- Avi Harazi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lena Yakovlev
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nili Ilouz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rudiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olga Lahat
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Nathalie Abudi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Rinat Abramovitch
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Rioux B, Chong M, Walker R, McGlasson S, Rannikmäe K, McCartney D, McCabe J, Brown R, Crow YJ, Hunt D, Whiteley W. Phenotypes associated with genetic determinants of type I interferon regulation in the UK Biobank: a protocol. Wellcome Open Res 2023; 8:550. [PMID: 38855722 PMCID: PMC11162527 DOI: 10.12688/wellcomeopenres.20385.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 06/11/2024] Open
Abstract
Background Type I interferons are cytokines involved in innate immunity against viruses. Genetic disorders of type I interferon regulation are associated with a range of autoimmune and cerebrovascular phenotypes. Carriers of pathogenic variants involved in genetic disorders of type I interferons are generally considered asymptomatic. Preliminary data suggests, however, that genetically determined dysregulation of type I interferon responses is associated with autoimmunity, and may also be relevant to sporadic cerebrovascular disease and dementia. We aim to determine whether functional variants in genes involved in type I interferon regulation and signalling are associated with the risk of autoimmunity, stroke, and dementia in a population cohort. Methods We will perform a hypothesis-driven candidate pathway association study of type I interferon-related genes using rare variants in the UK Biobank (UKB). We will manually curate type I interferon regulation and signalling genes from a literature review and Gene Ontology, followed by clinical and functional filtering. Variants of interest will be included based on pre-defined clinical relevance and functional annotations (using LOFTEE, M-CAP and a minor allele frequency <0.1%). The association of variants with 15 clinical and three neuroradiological phenotypes will be assessed with a rare variant genetic risk score and gene-level tests, using a Bonferroni-corrected p-value threshold from the number of genetic units and phenotypes tested. We will explore the association of significant genetic units with 196 additional health-related outcomes to help interpret their relevance and explore the clinical spectrum of genetic perturbations of type I interferon. Ethics and dissemination The UKB has received ethical approval from the North West Multicentre Research Ethics Committee, and all participants provided written informed consent at recruitment. This research will be conducted using the UKB Resource under application number 93160. We expect to disseminate our results in a peer-reviewed journal and at an international cardiovascular conference.
Collapse
Affiliation(s)
- Bastien Rioux
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Michael Chong
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rosie Walker
- Department of Psychology, University of Exeter, Exeter, England, UK
| | - Sarah McGlasson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Daniel McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - John McCabe
- School of Medicine, University College Dublin, Dublin, Leinster, Ireland
- Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Robin Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, UK
| | - Yanick J. Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - David Hunt
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - William Whiteley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
- MRC Population Health Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England, UK
| |
Collapse
|
22
|
Roointan A, Ghaeidamini M, Shafieizadegan S, Hudkins KL, Gholaminejad A. Metabolome panels as potential noninvasive biomarkers for primary glomerulonephritis sub-types: meta-analysis of profiling metabolomics studies. Sci Rep 2023; 13:20325. [PMID: 37990116 PMCID: PMC10663527 DOI: 10.1038/s41598-023-47800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Primary glomerulonephritis diseases (PGDs) are known as the top causes of chronic kidney disease worldwide. Renal biopsy, an invasive method, is the main approach to diagnose PGDs. Studying the metabolome profiles of kidney diseases is an inclusive approach to identify the disease's underlying pathways and discover novel non-invasive biomarkers. So far, different experiments have explored the metabolome profiles in different PGDs, but the inconsistencies might hinder their clinical translations. The main goal of this meta-analysis study was to achieve consensus panels of dysregulated metabolites in PGD sub-types. The PGDs-related metabolome profiles from urine samples in humans were selected in a comprehensive search. Amanida package in R software was utilized for performing the meta-analysis. Through sub-type analyses, the consensus list of metabolites in each category was obtained. To identify the most affected pathways, functional enrichment analysis was performed. Also, a gene-metabolite network was constructed to identify the key metabolites and their connected proteins. After a vigorous search, among the 11 selected studies (15 metabolite profiles), 270 dysregulated metabolites were recognized in urine of 1154 PGDs and control samples. Through sub-type analyses by Amanida package, the consensus list of metabolites in each category was obtained. Top dysregulated metabolites (vote score of ≥ 4 or ≤ - 4) in PGDs urines were selected as main panel of meta-metabolites including glucose, leucine, choline, betaine, dimethylamine, fumaric acid, citric acid, 3-hydroxyisovaleric acid, pyruvic acid, isobutyric acid, and hippuric acid. The enrichment analyses results revealed the involvement of different biological pathways such as the TCA cycle and amino acid metabolisms in the pathogenesis of PGDs. The constructed metabolite-gene interaction network revealed the high centralities of several metabolites, including pyruvic acid, leucine, and choline. The identified metabolite panels could shed a light on the underlying pathological pathways and be considered as non-invasive biomarkers for the diagnosis of PGD sub-types.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Maryam Ghaeidamini
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Saba Shafieizadegan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Kelly L Hudkins
- Department of Laboratory Medicine and Pathology, University of Washington, School of Medicine, Seattle, USA
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran.
| |
Collapse
|
23
|
Huang Y, Lin A, Gu T, Hou S, Yao J, Luo P, Zhang J. CACNA1C mutation as a prognosis predictor of immune checkpoint inhibitor in skin cutaneous melanoma. Immunotherapy 2023; 15:1275-1291. [PMID: 37584225 DOI: 10.2217/imt-2022-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aims: There is an urgent need for appropriate biomarkers that can precisely and reliably predict immunotherapy efficacy, as immunotherapy responses can differ in skin cutaneous melanoma (SKCM) patients. Methods: In this study, univariate regression models and survival analysis were used to examine the link between calcium voltage-gated channel subunit alpha 1C (CACNA1C) mutation status and immunotherapy outcome in SKCM patients receiving immunotherapy. Mutational landscape, immunogenicity, tumor microenvironment and pathway-enrichment analyses were also performed. Results: The CACNA1C mutation group had a better prognosis, higher immunogenicity, lower endothelial cell infiltration, significant enrichment of antitumor immune response pathways and significant downregulation of protumor pathways. Conclusion: CACNA1C mutation status is anticipated to be a biomarker for predicting melanoma immunotherapy effectiveness.
Collapse
Affiliation(s)
- Yushan Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Tianqi Gu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Hou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jiarong Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
24
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. Bioinformatics 2023; 39:btad556. [PMID: 37688563 PMCID: PMC10534055 DOI: 10.1093/bioinformatics/btad556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
SUMMARY DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, United States
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260,United States
| |
Collapse
|
25
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
26
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
27
|
Gerasimavicius L, Livesey BJ, Marsh JA. Correspondence between functional scores from deep mutational scans and predicted effects on protein stability. Protein Sci 2023; 32:e4688. [PMID: 37243972 PMCID: PMC10273344 DOI: 10.1002/pro.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Many methodologically diverse computational methods have been applied to the growing challenge of predicting and interpreting the effects of protein variants. As many pathogenic mutations have a perturbing effect on protein stability or intermolecular interactions, one highly interpretable approach is to use protein structural information to model the physical impacts of variants and predict their likely effects on protein stability and interactions. Previous efforts have assessed the accuracy of stability predictors in reproducing thermodynamically accurate values and evaluated their ability to distinguish between known pathogenic and benign mutations. Here, we take an alternate approach, and explore how well stability predictor scores correlate with functional impacts derived from deep mutational scanning (DMS) experiments. In this work, we compare the predictions of 9 protein stability-based tools against mutant protein fitness values from 49 independent DMS datasets, covering 170,940 unique single amino acid variants. We find that FoldX and Rosetta show the strongest correlations with DMS-based functional scores, similar to their previous top performance in distinguishing between pathogenic and benign variants. For both methods, performance is considerably improved when considering intermolecular interactions from protein complex structures, when available. Furthermore, using these two predictors, we derive a "Foldetta" consensus score, which improves upon the performance of both, and manages to match dedicated variant effect predictors in reflecting variant functional impacts. Finally, we also highlight that predicted stability effects show consistently higher correlations with certain DMS experimental phenotypes, particularly those based upon protein abundance, and, in certain cases, can significantly outcompete sequence-based variant effect prediction methodologies for predicting functional scores from DMS experiments.
Collapse
Affiliation(s)
- Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| | - Benjamin J. Livesey
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
28
|
Badonyi M, Marsh JA. Buffering of genetic dominance by allele-specific protein complex assembly. SCIENCE ADVANCES 2023; 9:eadf9845. [PMID: 37256959 PMCID: PMC10413657 DOI: 10.1126/sciadv.adf9845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose subunits were translated from the same mRNA in an allele-specific manner. It has thus been hypothesized that such cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly of mutant and wild-type subunits "poisons" complex activity. Here, we show that cotranslationally assembling subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly compared to those associated with loss-of-function mutations. We also find that complexes with known dominant-negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslational assembly. Finally, by combining complex properties with other features, we trained a computational model for predicting proteins likely to be associated with non-loss-of-function disease mechanisms, which we believe will be of considerable utility for protein variant interpretation.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Jan RM, Al-Numan HH, Al-Twaty NH, Alrayes N, Alsufyani HA, Alaifan MA, Alhussaini BH, Shaik NA, Awan Z, Qari Y, Saadah OI, Banaganapalli B, Mosli MH, Elango R. Rare variant burden analysis from exomes of three consanguineous families reveals LILRB1 and PRSS3 as potential key proteins in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2023; 10:1164305. [PMID: 37215724 PMCID: PMC10196255 DOI: 10.3389/fmed.2023.1164305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/14/2023] [Indexed: 05/24/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic autoimmune disorder characterized by severe inflammation and mucosal destruction of the intestine. The specific, complex molecular processes underlying IBD pathogenesis are not well understood. Therefore, this study is aimed at identifying and uncovering the role of key genetic factors in IBD. Method The whole exome sequences (WESs) of three consanguineous Saudi families having many siblings with IBD were analyzed to discover the causal genetic defect. Then, we used a combination of artificial intelligence approaches, such as functional enrichment analysis using immune pathways and a set of computational functional validation tools for gene expression, immune cell expression analyses, phenotype aggregation, and the system biology of innate immunity, to highlight potential IBD genes that play an important role in its pathobiology. Results Our findings have shown a causal group of extremely rare variants in the LILRB1 (Q53L, Y99N, W351G, D365A, and Q376H) and PRSS3 (F4L and V25I) genes in IBD-affected siblings. Findings from amino acids in conserved domains, tertiary-level structural deviations, and stability analysis have confirmed that these variants have a negative impact on structural features in the corresponding proteins. Intensive computational structural analysis shows that both genes have very high expression in the gastrointestinal tract and immune organs and are involved in a variety of innate immune system pathways. Since the innate immune system detects microbial infections, any defect in this system could lead to immune functional impairment contributing to IBD. Conclusion The present study proposes a novel strategy for unraveling the complex genetic architecture of IBD by integrating WES data of familial cases, with computational analysis.
Collapse
Affiliation(s)
- Rana Mohammed Jan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Husain Al-Numan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Hassan Al-Twaty
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Alrayes
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeel A. Alsufyani
- Department of Medical Physiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Meshari A. Alaifan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakr H. Alhussaini
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yousef Qari
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I. Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Hisham Mosli
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Geng Y, Li P, Butler A, Wang B, Salkoff L, Magleby KL. BK channels of five different subunit combinations underlie the de novo KCNMA1 G375R channelopathy. J Gen Physiol 2023; 155:e202213302. [PMID: 36995317 PMCID: PMC10067970 DOI: 10.1085/jgp.202213302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The molecular basis of a severe developmental and neurological disorder associated with a de novo G375R variant of the tetrameric BK channel is unknown. Here, we address this question by recording from single BK channels expressed to mimic a G375R mutation heterozygous with a WT allele. Five different types of functional BK channels were expressed: 3% were consistent with WT, 12% with homotetrameric mutant, and 85% with three different types of hybrid (heterotetrameric) channels assembled from both mutant and WT subunits. All channel types except WT showed a marked gain-of-function in voltage activation and a smaller decrease-of-function in single-channel conductance, with both changes in function becoming more pronounced as the number of mutant subunits per tetrameric channel increased. The net cellular response from the five different types of channels comprising the molecular phenotype was a shift of -120 mV in the voltage required to activate half of the maximal current through BK channels, giving a net gain-of-function. The WT and homotetrameric mutant channels in the molecular phenotype were consistent with genetic codominance as each displayed properties of a channel arising from only one of the two alleles. The three types of hybrid channels in the molecular phenotype were consistent with partial dominance as their properties were intermediate between those of mutant and WT channels. A model in which BK channels randomly assemble from mutant and WT subunits, with each subunit contributing increments of activation and conductance, approximated the molecular phenotype of the heterozygous G375R mutation.
Collapse
Affiliation(s)
- Yanyan Geng
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ping Li
- Department of Neuroscience, Washington University St. Louis, St. Louis, MO, USA
| | - Alice Butler
- Department of Neuroscience, Washington University St. Louis, St. Louis, MO, USA
| | - Bill Wang
- Department of Neuroscience, Washington University St. Louis, St. Louis, MO, USA
| | - Lawrence Salkoff
- Department of Neuroscience, Washington University St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University St. Louis, St. Louis, MO, USA
| | - Karl L. Magleby
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
31
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Sánchez-Calvin MT, de Aragón AM, de Las Heras RS, Dinman JD, de Vries BBA, Nabais Sá MJ, Quijada-Fraile P, Martínez-Azorín F. A novel de novo variant in CASK causes a severe neurodevelopmental disorder that masks the phenotype of a novel de novo variant in EEF2. J Hum Genet 2023:10.1038/s10038-023-01150-4. [PMID: 37072624 DOI: 10.1038/s10038-023-01150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 04/20/2023]
Abstract
We report a 9-year-old Spanish boy with severe psychomotor developmental delay, short stature, microcephaly and abnormalities of the brain morphology, including cerebellar atrophy. Whole-exome sequencing (WES) uncovered two novel de novo variants, a hemizygous variant in CASK (Calcium/Calmodulin Dependent Serine Protein Kinase) and a heterozygous variant in EEF2 (Eukaryotic Translation Elongation Factor 2). CASK gene encodes the peripheral plasma membrane protein CASK that is a scaffold protein located at the synapses in the brain. The c.2506-6 A > G CASK variant induced two alternative splicing events that account for the 80% of the total transcripts, which are likely to be degraded by NMD. Pathogenic variants in CASK have been associated with severe neurological disorders such as mental retardation with or without nystagmus also called FG syndrome 4 (FGS4), and intellectual developmental disorder with microcephaly and pontine and cerebellar hypoplasia (MICPCH). Heterozygous variants in EEF2, which encodes the elongation factor 2 (eEF2), have been associated to Spinocerebellar ataxia 26 (SCA26) and more recently to a childhood-onset neurodevelopmental disorder with benign external hydrocephalus. The yeast model system used to investigate the functional consequences of the c.34 A > G EEF2 variant supported its pathogenicity by demonstrating it affects translational fidelity. In conclusion, the phenotype associated with the CASK variant is more severe and masks the milder phenotype of EEF2 variant.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041, Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain
| | | | | | | | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA, Nijmegen, The Netherlands
| | - Maria João Nabais Sá
- Centre for Predictive and Preventive Genetics (CGPP) and UnIGENe, Institute for Molecular and Cell Biology (IBMC), i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pilar Quijada-Fraile
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041, Madrid, Spain.
| |
Collapse
|
32
|
Hasan F, Lant JT, O'Donoghue P. Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220029. [PMID: 36633285 PMCID: PMC9835607 DOI: 10.1098/rstb.2022.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 01/13/2023] Open
Abstract
By linking amino acids to their codon assignments, transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants cause amino acid mis-incorporation at a codon or set of codons. We recently found that a naturally occurring tRNASer variant decodes phenylalanine codons with serine and inhibits protein synthesis. Here, we hypothesized that human tRNA variants that misread glycine (Gly) codons with alanine (Ala) will also disrupt protein homeostasis. The A3G mutation occurs naturally in tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) and creates an alanyl-tRNA synthetase (AlaRS) identity element (G3 : U70). Because AlaRS does not recognize the anticodon, the human tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons. The tRNAGly and tRNAAla variants had no effect on protein synthesis in mammalian cells under normal growth conditions; however, tRNAGlyGCC A3G depressed protein synthesis in the context of proteasome inhibition. Mass spectrometry confirmed Ala mistranslation at multiple Gly codons caused by the tRNAGlyGCC A3G and tRNAAlaAGC G35C mutants, and in some cases, we observed multiple mistranslation events in the same peptide. The data reveal mistranslation of Ala at Gly codons and defects in protein homeostasis generated by natural human tRNA variants that are tolerated under normal conditions. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
MESH Headings
- Humans
- Alanine/genetics
- Alanine/chemistry
- Alanine/metabolism
- Alanine-tRNA Ligase/chemistry
- Alanine-tRNA Ligase/genetics
- Alanine-tRNA Ligase/metabolism
- Codon/genetics
- Glycine/genetics
- Glycine/metabolism
- Protein Biosynthesis
- Proteostasis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Gly/metabolism
Collapse
Affiliation(s)
- Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
33
|
Stary D, Bajda M. Taurine and Creatine Transporters as Potential Drug Targets in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24043788. [PMID: 36835201 PMCID: PMC9964810 DOI: 10.3390/ijms24043788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer cells are characterized by uncontrolled growth, proliferation, and impaired apoptosis. Tumour progression could be related to poor prognosis and due to this fact, researchers have been working on novel therapeutic strategies and antineoplastic agents. It is known that altered expression and function of solute carrier proteins from the SLC6 family could be associated with severe diseases, including cancers. These proteins were noticed to play important physiological roles through transferring nutrient amino acids, osmolytes, neurotransmitters, and ions, and many of them are necessary for survival of the cells. Herein, we present the potential role of taurine (SLC6A6) and creatine (SLC6A8) transporters in cancer development as well as therapeutic potential of their inhibitors. Experimental data indicate that overexpression of analyzed proteins could be connected with colon or breast cancers, which are the most common types of cancers. The pool of known inhibitors of these transporters is limited; however, one ligand of SLC6A8 protein is currently tested in the first phase of clinical trials. Therefore, we also highlight structural aspects useful for ligand development. In this review, we discuss SLC6A6 and SLC6A8 transporters as potential biological targets for anticancer agents.
Collapse
Affiliation(s)
- Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Cracow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 St., 31-530 Cracow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Cracow, Poland
- Correspondence:
| |
Collapse
|
34
|
Zhu G, Badonyi M, Franklin L, Seabra L, Rice GI, Anne-Boland-Auge, Deleuze JF, El-Chehadeh S, Anheim M, de Saint-Martin A, Pellegrini S, Marsh JA, Crow YJ, El-Daher MT. Type I Interferonopathy due to a Homozygous Loss-of-Inhibitory Function Mutation in STAT2. J Clin Immunol 2023; 43:808-818. [PMID: 36753016 PMCID: PMC10110676 DOI: 10.1007/s10875-023-01445-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. METHODS Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. RESULTS WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. CONCLUSION Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling.
Collapse
Affiliation(s)
- Gaofeng Zhu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Lina Franklin
- Cytokine Signalling Unit, Institut Pasteur, Paris, France
| | | | - Gillian I Rice
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Anne-Boland-Auge
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | | | - Mathieu Anheim
- Service de Neurologie, Centre de Référence Des Maladies Neurogénétiques Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Médecine de Strasbourg, Strasbourg, France.,Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, UMR7104, INSERM-U964/CNRS, Université de Strasbourg, Illkirch, France
| | - Anne de Saint-Martin
- Unité de Neurologie Pédiatrique, Centre de Référence Des Epilepsies Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMR 7104 INSERM U1258, IGBMC-CNRS, Strasbourg, France
| | | | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK. .,Institut Imagine, Paris, France.
| | - Marie-Therese El-Daher
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Ali S, Ali U, Qamar A, Zafar I, Yaqoob M, Ain QU, Rashid S, Sharma R, Nafidi HA, Bin Jardan YA, Bourhia M. Predicting the effects of rare genetic variants on oncogenic signaling pathways: A computational analysis of HRAS protein function. Front Chem 2023; 11:1173624. [PMID: 37153521 PMCID: PMC10160440 DOI: 10.3389/fchem.2023.1173624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The HRAS gene plays a crucial role in regulating essential cellular processes for life, and this gene's misregulation is linked to the development of various types of cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of HRAS can cause detrimental mutations that disrupt wild-type protein function. In the current investigation, we have employed in-silico methodologies to anticipate the consequences of infrequent genetic variations on the functional properties of the HRAS protein. We have discovered a total of 50 nsSNPs, of which 23 were located in the exon region of the HRAS gene and denoting that they were expected to cause harm or be deleterious. Out of these 23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL], [A59L], and [G13R]) were identified as having the most delterious effect based on results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG values -3.21 kcal/mol to 0.87 kcal/mol represent the free energy change associated with protein stability upon mutation. Interestingly, we identified that the three mutations (Y4C, T58I, and Y12E) were found to improve the structural stability of the protein. We performed molecular dynamics (MD) simulations to investigate the structural and dynamic effects of HRAS mutations. Our results showed that the stable model of HRAS had a significantly lower energy value of -18756 kj/mol compared to the initial model of -108915 kj/mol. The RMSD value for the wild-type complex was 4.40 Å, and the binding energies for the G60V, G60D, and D38H mutants were -107.09 kcal/mol, -109.42 kcal/mol, and -107.18 kcal/mol, respectively as compared to wild-type HRAS protein had -105.85 kcal/mol. The result of our investigation presents convincing corroboration for the potential functional significance of nsSNPs in augmenting HRAS expression and adding to the activation of malignant oncogenic signalling pathways.
Collapse
Affiliation(s)
- Sadaqat Ali
- Medical Department, DHQ Hospital Bhawalnagr, Punjab, Pakistan
| | | | - Adeem Qamar
- Department of Pathology, Sahiwal Medical College Sahiwal, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Muhammad Yaqoob
- Department of Life Sciences, ARID University-Barani Institute of Sciences Burewala Campus, Punjab, Pakistan
| | - Qurat ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Summya Rashid
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| |
Collapse
|
36
|
Scott A, Hernandez F, Chamberlin A, Smith C, Karam R, Kitzman JO. Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. Genome Biol 2022; 23:266. [PMID: 36550560 PMCID: PMC9773515 DOI: 10.1186/s13059-022-02839-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lynch syndrome (LS) is a cancer predisposition syndrome affecting more than 1 in every 300 individuals worldwide. Clinical genetic testing for LS can be life-saving but is complicated by the heavy burden of variants of uncertain significance (VUS), especially missense changes. RESULT To address this challenge, we leverage a multiplexed analysis of variant effect (MAVE) map covering >94% of the 17,746 possible missense variants in the key LS gene MSH2. To establish this map's utility in large-scale variant reclassification, we overlay it on clinical databases of >15,000 individuals with LS gene variants uncovered during clinical genetic testing. We validate these functional measurements in a cohort of individuals with paired tumor-normal test results and find that MAVE-based function scores agree with the clinical interpretation for every one of the MSH2 missense variants with an available classification. We use these scores to attempt reclassification for 682 unique missense VUS, among which 34 scored as deleterious by our function map, in line with previously published rates for other cancer predisposition genes. Combining functional data and other evidence, ten missense VUS are reclassified as pathogenic/likely pathogenic, and another 497 could be moved to benign/likely benign. Finally, we apply these functional scores to paired tumor-normal genetic tests and identify a subset of patients with biallelic somatic loss of function, reflecting a sporadic Lynch-like Syndrome with distinct implications for treatment and relatives' risk. CONCLUSION This study demonstrates how high-throughput functional assays can empower scalable VUS resolution and prospectively generate strong evidence for variant classification.
Collapse
Affiliation(s)
- Anthony Scott
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Felicia Hernandez
- grid.465138.d0000 0004 0455 211XAmbry Genetics, Aliso Viejo, CA 92656 USA
| | - Adam Chamberlin
- grid.465138.d0000 0004 0455 211XAmbry Genetics, Aliso Viejo, CA 92656 USA
| | - Cathy Smith
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Rachid Karam
- grid.465138.d0000 0004 0455 211XAmbry Genetics, Aliso Viejo, CA 92656 USA ,grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jacob O. Kitzman
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| |
Collapse
|
37
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Attard TJ, Welburn JPI, Marsh JA. Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin mutations. PLoS Comput Biol 2022; 18:e1010611. [PMID: 36206299 PMCID: PMC9581425 DOI: 10.1371/journal.pcbi.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cells rely heavily on microtubules for several processes, including cell division and molecular trafficking. Mutations in the different tubulin-α and -β proteins that comprise microtubules have been associated with various diseases and are often dominant, sporadic and congenital. While the earliest reported tubulin mutations affect neurodevelopment, mutations are also associated with other disorders such as bleeding disorders and infertility. We performed a systematic survey of tubulin mutations across all isotypes in order to improve our understanding of how they cause disease, and increase our ability to predict their phenotypic effects. Both protein structural analyses and computational variant effect predictors were very limited in their utility for differentiating between pathogenic and benign mutations. This was even worse for those genes associated with non-neurodevelopmental disorders. We selected tubulin-α and -β disease mutations that were most poorly predicted for experimental characterisation. These mutants co-localise to the mitotic spindle in HeLa cells, suggesting they may exert dominant-negative effects by altering microtubule properties. Our results show that tubulin mutations represent a blind spot for current computational approaches, being much more poorly predicted than mutations in most human disease genes. We suggest that this is likely due to their strong association with dominant-negative and gain-of-function mechanisms.
Collapse
Affiliation(s)
- Thomas J. Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun 2022; 13:3895. [PMID: 35794153 PMCID: PMC9259657 DOI: 10.1038/s41467-022-31686-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Taking protein structure into account has therefore provided great insight into the molecular mechanisms underlying human genetic disease. While there has been much focus on how mutations can disrupt protein structure and thus cause a loss of function (LOF), alternative mechanisms, specifically dominant-negative (DN) and gain-of-function (GOF) effects, are less understood. Here, we investigate the protein-level effects of pathogenic missense mutations associated with different molecular mechanisms. We observe striking differences between recessive vs dominant, and LOF vs non-LOF mutations, with dominant, non-LOF disease mutations having much milder effects on protein structure, and DN mutations being highly enriched at protein interfaces. We also find that nearly all computational variant effect predictors, even those based solely on sequence conservation, underperform on non-LOF mutations. However, we do show that non-LOF mutations could potentially be identified by their tendency to cluster in three-dimensional space. Overall, our work suggests that many pathogenic mutations that act via DN and GOF mechanisms are likely being missed by current variant prioritisation strategies, but that there is considerable scope to improve computational predictions through consideration of molecular disease mechanisms. Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Here the authors analyse the locations of thousands of human disease mutations and their predicted effects on protein structure and show that,while loss-of-function mutations tend to be highly disruptive, non-loss-of-function mutations are in general much milder at a protein structural level.
Collapse
|
40
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
41
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Bellusci M, Hernández-Sánchez L, de Aragón AM, López-Laso E, Martín-Hernández E, Martínez-Azorín F. First splicing variant in HECW2 with an autosomal recessive pattern of inheritance and associated with NDHSAL. Hum Mutat 2022; 43:1361-1367. [PMID: 35753050 DOI: 10.1002/humu.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
We report the clinical and genetic features of a Caucasian girl who presented a severe neurodevelopmental disorder with drug-resistant epilepsy, hypotonia, severe gastro-esophageal reflux and brain MRI anomalies. WES uncovered a novel variant in homozygosis (g.197092814_197092824delinsC) in HECW2 gene that encodes the E3 ubiquitin-protein ligase HECW2. This protein induces ubiquitination and is implicated in the regulation of several important pathways involved in neurodevelopment and neurogenesis. Furthermore, de novo heterozygous missense variants in this gene have been associated with NDHSAL. The homozygous variant of our patient disrupts the splice donor site of intron 22 and causes the elimination of exon 22 (r.3766_3917+1del) leading to an in-frame deletion of the protein (p.Leu1256_Trp1306del). Functional studies showed a two-fold increase of its RNA expression, while the protein expression level was reduced by 60%, suggesting a partial LOF mechanism of pathogenesis. Thus, this is the first patient with NDHSAL caused by an autosomal recessive splicing variant in HECW2. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - Marcello Bellusci
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Laura Hernández-Sánchez
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | | | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofia IMIBIC, E-14004, Córdoba, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| |
Collapse
|