1
|
Peñas-Torramilans R, Outeiral R, Santiago J, Vázquez E, Weidberg N. Influence of a changing wave climate on the quality and morphometry of the stalked barnacle Pollicipes pollicipes (Gmelin, 1789), along the coasts of NW Iberia. REVIEWS IN FISH BIOLOGY AND FISHERIES 2024; 34:781-804. [PMID: 38756184 PMCID: PMC11093743 DOI: 10.1007/s11160-024-09838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 05/18/2024]
Abstract
Wave climate is shifting over the last decades along the Atlantic coasts of Europe ultimately driven by large-scale patterns of atmospheric variability forced by anthropogenic global warming. Changes in wave height and surf zone orbital currents are hypothesized to drive marked shifts in the shape of intertidal organisms such as the stalked barnacle Pollicipes pollicipes, whose quality and market price are known to decrease non linearly with the peduncle length: width ratio S. This study evaluates wave trends in NW Iberian Peninsula, using the Spanish Port System 2006-2020 SIMAR wave hindcast. On the other hand, trends in stalked barnacle morphology and quality are estimated from 26 sites at the management regions of Baiona and A Guarda between 2011 and 2020. Results show evidence of temporal changes in barnacle quality and, especially, morphometry caused by simultaneous shifts in winter wave induced orbital currents. Because of the non linear relationship between S and the high quality threshold, large increases in S are usually translated to small reductions in quality. However, we identified a tipping point around S = 2.4 that if surpassed can lead to great drops in barnacle quality. In addition, changes in wave forcing will have different effects at each extraction site, as trends in wave climate are decoupled from barnacle morphometry at steeper sites sheltered from the predominant wave direction. In conclusion, this knowledge could be applied to develop site specific barnacle harvesting strategies based on annual wave climate forecasts. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11160-024-09838-2.
Collapse
Affiliation(s)
- Raquel Peñas-Torramilans
- CIM – Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Spain
- Present Address: Departament d’Enginyeria Civil i Ambiental (DECA), Laboratori d’Enginyeria Marítima (LIM), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), C. Jordi Girona, 1-3, 08034 Barcelona, Catalunya Spain
| | - Raquel Outeiral
- Confraría de Pescadores de A Guarda, Baixo Muro, 32, 36780 A Guardia, Galicia Spain
| | - José Santiago
- Cofradía de Pescadores La Anunciada de Baiona, Casa del Mar, Segunda Planta, 36300 Baiona, Spain
| | - Elsa Vázquez
- CIM – Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Spain
| | - Nicolas Weidberg
- CIM – Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Spain
- Department of Biological Sciences, University of South Carolina, Columbia, SC USA
- Present Address: Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Koehl MAR. A Life Outside. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:1-23. [PMID: 37669565 DOI: 10.1146/annurev-marine-032223-014227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
How do the morphologies of organisms affect their physical interactions with the environment and other organisms? My research in marine systems couples field studies of the physical habitats, life history strategies, and ecological interactions of organisms with laboratory analyses of their biomechanics. Here, I review how we pursued answers to three questions about marine organisms: (a) how benthic organisms withstand and utilize the water moving around them, (b) how the interaction between swimming and turbulent ambient water flow affects where small organisms go, and (c) how hairy appendages catch food and odors. I also discuss the importance of different types of mentors, the roadblocks for women in science when I started my career, the challenges and delights of interdisciplinary research, and my quest to understand how I see the world as a dyslexic.
Collapse
Affiliation(s)
- M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
3
|
Sivasundarampillai J, Youssef L, Priemel T, Mikulin S, Eren ED, Zaslansky P, Jehle F, Harrington MJ. A strong quick-release biointerface in mussels mediated by serotonergic cilia-based adhesion. Science 2023; 382:829-834. [PMID: 37972188 DOI: 10.1126/science.adi7401] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
The mussel byssus stem provides a strong and compact mechanically mismatched biointerface between living tissue and a nonliving biopolymer. Yet, in a poorly understood process, mussels can simply jettison their entire byssus, rebuilding a new one in just hours. We characterized the structure and composition of the byssus biointerface using histology, confocal Raman mapping, phase contrast-enhanced microcomputed tomography, and advanced electron microscopy, revealing a sophisticated junction consisting of abiotic biopolymer sheets interdigitated between living extracellular matrix. The sheet surfaces are in intimate adhesive contact with billions of motile epithelial cilia that control biointerface strength and stem release through their collective movement, which is regulated neurochemically. We posit that this may involve a complex sensory pathway by which sessile mussels respond to environmental stresses to release and relocate.
Collapse
Affiliation(s)
- Jenaes Sivasundarampillai
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucia Youssef
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Sydney Mikulin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - E Deniz Eren
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin Berlin, Berlin 14197, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
4
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
6
|
Ferry LA, Higham TE. Ecomechanics and the Rules of Life: a Critical Conduit Between the Physical and Natural Sciences. Integr Comp Biol 2022; 62:icac114. [PMID: 35878412 DOI: 10.1093/icb/icac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nature provides the parameters, or boundaries, within which organisms must cope in order to survive. Therefore, ecological conditions have an unequivocal influence on the ability of organisms to perform the necessary functions for survival. Biomechanics brings together physics and biology to understand how an organism will function under a suite of conditions. Despite a relatively rich recent history linking physiology and morphology with ecology, less attention has been paid to the linkage between biomechanics and ecology. This linkage, however, could provide key insights into patterns and processes of evolution. Ecomechanics, also known as ecological biomechanics or mechanical ecology, is not necessarily new, but has received far less attention than ecophysiology or ecomorphology. Here, we briefly review the history of ecomechanics, and then identify what we believe are grand challenges for the discipline and how they can inform some of the most pressing questions in science today, such as how organisms will cope with global change.
Collapse
Affiliation(s)
- Lara A Ferry
- Arizona State University, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Glendale, AZ, USA
| | - Timothy E Higham
- University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA, USA
| |
Collapse
|
7
|
Di Santo V. EcoPhysioMechanics: Integrating energetics and biomechanics to understand fish locomotion under climate change. Integr Comp Biol 2022; 62:icac095. [PMID: 35759407 PMCID: PMC9494520 DOI: 10.1093/icb/icac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Ecological physiologists and biomechanists have been broadly investigating swimming performance in a diversity of fishes, however the connection between form, function and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective I argue that working within the framework of 'EcoPhysioMechanics', i.e., integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how ecophysiomechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments.
Collapse
Affiliation(s)
- Valentina Di Santo
- Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 11419 Stockholm, Sweden
| |
Collapse
|
8
|
Nicastro KR, Seuront L, McQuaid CD, Zardi GI. Symbiont-induced intraspecific phenotypic variation enhances plastic trapping and ingestion in biogenic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153922. [PMID: 35183637 DOI: 10.1016/j.scitotenv.2022.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Plastic contamination has major effects on biodiversity, enhancing the consequences of other forms of global anthropogenic disturbance such as climate change and habitat fragmentation. Despite this and the recognised importance of intraspecific diversity, we still know relatively little about how plastic pollution affects diversity below the species level. Here, we assessed the effects of intraspecific variation in a habitat forming species (the Mediterranean mussel Mytilus galloprovincialis) on the trapping and ingestion of microplastics. We focused on symbiont-induced phenotypic variation in mussel beds. Using fractal analysis, we measured an increase in the complexity of mussel bed surfaces by ca. 15% caused by phototropic shell-degrading endoliths. By simulating high tide flow conditions and incoming waves, we found that symbionts significantly increased microplastic accumulation in mussel beds. This likely reflects deceleration of near-bed flow velocities, creation of turbulence in the bottom boundary layer and consequently increased particle retention. This effect was not constant at high tide, with no effect of infestation on retention at the base of the mussel bed under mid and high flow conditions and reduced microplastic trapping on the surface of mussel shells. Nevertheless, under natural conditions, the ingestion and trapping of microplastic were higher by the mussels comprising beds with symbionts than those in beds without symbionts. Given the dependency of many species on mussel biogenic habitats, there is an increased risk of plastics moving up the food chain in mussel beds infested by symbiotic endoliths. Our results highlight how the effects of within-species phenotypic diversity may influence the consequences of rising levels of plastic pollution.
Collapse
Affiliation(s)
- Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
9
|
Koehl MAR. Ecological biomechanics of marine macrophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1104-1121. [PMID: 35199170 DOI: 10.1093/jxb/erab536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Macroalgae and seagrasses in coastal habitats are exposed to turbulent water currents and waves that deform them and can rip them off the substratum, but that also transport essential water-borne substances to them and disperse their propagules and wastes. Field studies of the physical environment, ecological interactions, and life history strategies of marine macrophytes reveal which aspects of their biomechanical performance are important to their success in different types of natural habitats and enable us to design ecologically relevant laboratory experiments to study biomechanical function. Morphology and tissue mechanical properties determine the hydrodynamic forces on macrophytes and their fate when exposed to those forces, but different mechanical designs can perform well in the same biophysical habitat. There is a trade-off between maximizing photosynthesis and minimizing breakage, and some macrophytes change their morphology in response to environmental cues. Water flow in marine habitats varies on a wide range of temporal and spatial scales, so diverse flow microhabitats can occur at the same site. Likewise, the size, shape, and tissue material properties of macrophytes change as they grow and age, so it is important to understand the different physical challenges met by macrophytes throughout their lives.
Collapse
Affiliation(s)
- Mimi A R Koehl
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
10
|
Higham TE, Ferry LA, Schmitz L, Irschick DJ, Starko S, Anderson PSL, Bergmann PJ, Jamniczky HA, Monteiro LR, Navon D, Messier J, Carrington E, Farina SC, Feilich KL, Hernandez LP, Johnson MA, Kawano SM, Law CJ, Longo SJ, Martin CH, Martone PT, Rico-Guevara A, Santana SE, Niklas KJ. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends Ecol Evol 2021; 36:860-873. [PMID: 34218955 DOI: 10.1016/j.tree.2021.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| | - Lara A Ferry
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Lars Schmitz
- W.M. Keck Science Department, 925 N. Mills Avenue, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Duncan J Irschick
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Samuel Starko
- Botany Department and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip J Bergmann
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 1N4, Canada
| | - Leandro R Monteiro
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense. Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, cep 28013-602, Brazil
| | - Dina Navon
- Human Genetics Institute of NJ, Rutgers University, Piscataway, NJ 08854, USA
| | - Julie Messier
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada
| | - Emily Carrington
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Stacy C Farina
- Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Kara L Feilich
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chris J Law
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Department of Mammalogy and Division of Paleontology, Richard Gilder Graduate School, American Museum of Natural History, 200 Central Park West, New York, New York 10024, USA
| | - Sarah J Longo
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Christopher H Martin
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Patrick T Martone
- Botany Department and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Roberts EA, Newcomb LA, McCartha MM, Harrington KJ, LaFramboise SA, Carrington E, Sebens KP. Resource allocation to a structural biomaterial: Induced production of byssal threads decreases growth of a marine mussel. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Emily A. Roberts
- Department of Biology University of Washington Seattle WA USA
- Friday Harbor Laboratories University of Washington Friday Harbor WA USA
| | - Laura A. Newcomb
- Department of Biology University of Washington Seattle WA USA
- Friday Harbor Laboratories University of Washington Friday Harbor WA USA
| | | | | | - Sam A. LaFramboise
- Friday Harbor Laboratories University of Washington Friday Harbor WA USA
| | - Emily Carrington
- Department of Biology University of Washington Seattle WA USA
- Friday Harbor Laboratories University of Washington Friday Harbor WA USA
| | - Kenneth P. Sebens
- Department of Biology University of Washington Seattle WA USA
- Friday Harbor Laboratories University of Washington Friday Harbor WA USA
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
12
|
Roche DG. Effects of wave-driven water flow on the fast-start escape response of juvenile coral reef damselfishes. J Exp Biol 2021; 224:jeb.234351. [PMID: 33602678 DOI: 10.1242/jeb.234351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Fish often evade predators with a fast-start escape response. Studies typically examine this behaviour in still water despite water motion being an inherent feature of aquatic ecosystems. In shallow habitats, waves create complex flows that likely influence escape performance, particularly in small fishes with low absolute swimming speeds relative to environmental flows. I examined how wave-driven water flow affects the behaviour and kinematics of escape responses in juveniles of three coral reef damselfishes (Pomacentridae) with different body morphologies. Tropical damselfishes have similar fin and body shapes during early development, with the exception of body depth, a trait deemed important for postural control and stability. Wave-driven flow increased response latency in two of the three species tested: fish with a fusiform body responded 2.9 times slower in wave-driven flow than in still water, whereas this difference was less pronounced in fish with an intermediate body depth (1.9 times slower response) and absent in fish with a laterally compressed body. The effect of wave-driven flow on swimming performance (cumulative escape distance and turning rate) was variable and depended on the timing and trajectory of escape responses in relation to the wave phase. Given intense predation pressure on juvenile coral reef fishes during settlement, interspecific differences in how wave-driven flow affects their ability to escape predators could influence the distribution and abundance of species across spatial and temporal scales.
Collapse
Affiliation(s)
- Dominique G Roche
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
13
|
Discrete steps of successional pathways differ in kelp forest and urchin barren communities. COMMUNITY ECOL 2021. [DOI: 10.1007/s42974-020-00035-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Alcaraz G, Toledo B, Burciaga LM. The energetic costs of living in the surf and impacts on zonation of shells occupied by hermit crabs. J Exp Biol 2020; 223:jeb222703. [PMID: 32647017 DOI: 10.1242/jeb.222703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/07/2020] [Indexed: 08/26/2023]
Abstract
Crashing waves create a hydrodynamic gradient in which the most challenging effects occur at the wave breaking zone and decrease towards the upper protected tide pools. Hydrodynamic forces depend on the shape of the submerged body; streamlined shapes decrease drag forces compared with bluff or globose bodies. Unlike other animals, hermit crabs can choose their shell shape to cope with the effects of water flow. Hermit crabs occupy larger and heavier shells (conical shape) in wave-exposed sites than those used in protected areas (globose shape). First, we investigated whether a behavioral choice could explain the shells used in sites with different wave action. Then, we experimentally tested whether the shells most frequently used in sites with different wave action reduce the energetic cost of coping with water flow. Metabolic rate was measured using a respirometric system fitted with propellers in opposite walls to generate bidirectional water flow. The choice of shell size when a large array of sizes are available was consistent with the shell size used in different intertidal sites; hermit crabs chose heavier conical shells in water flow conditions than in still water, and the use of heavy conical shells reduced the energetic cost of coping with water motion. In contrast to conical shells, small globose shells imposed lower energy costs of withstanding water flow than large globose shells. The size and type of shells used in different zones of the rocky shore were consistent with an adaptive response to reduce the energetic costs of withstanding wave action.
Collapse
Affiliation(s)
- Guillermina Alcaraz
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Brenda Toledo
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis M Burciaga
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
15
|
Bauer U, Poppinga S, Müller UK. Mechanical Ecology-Taking Biomechanics to the Field. Integr Comp Biol 2020; 60:820-828. [PMID: 32275745 DOI: 10.1093/icb/icaa018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Synopsis Interdisciplinary research can have strong and surprising synergistic effects, leading to rapid knowledge gains. Equally important, it can help to reintegrate fragmented fields across increasingly isolated specialist sub-disciplines. However, the lack of a common identifier for research "in between fields" can make it difficult to find relevant research outputs and network effectively. We illustrate and address this issue for the emerging interdisciplinary hotspot of "mechanical ecology," which we define here as the intersection of quantitative biomechanics and field ecology at the organism level. We show that an integrative approach crucially advances our understanding in both disciplines by (1) putting biomechanical mechanisms into a biologically meaningful ecological context and (2) addressing the largely neglected influence of mechanical factors in organismal and behavioral ecology. We call for the foundation of knowledge exchange platforms such as meeting symposia, special issues in journals, and focus groups dedicated to mechanical ecology.
Collapse
Affiliation(s)
- Ulrike Bauer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
16
|
Jehle F, Macías-Sánchez E, Sviben S, Fratzl P, Bertinetti L, Harrington MJ. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat Commun 2020; 11:862. [PMID: 32054841 PMCID: PMC7018715 DOI: 10.1038/s41467-020-14709-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function. The mussel byssus cuticle is a wear-resistant and extensible metalloprotein composite. Here, the authors probed the cuticle nanostructure and composition before, during and after fabrication revealing a crucial role of metal-binding proteins that self-organize via liquid-liquid phase separation.
Collapse
Affiliation(s)
- Franziska Jehle
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Elena Macías-Sánchez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Sanja Sviben
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany.
| | - Matthew J Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany. .,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 0B8, Canada.
| |
Collapse
|
17
|
Domenici P, Seebacher F. The impacts of climate change on the biomechanics of animals: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coz102. [PMID: 31976075 PMCID: PMC6956782 DOI: 10.1093/conphys/coz102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 05/09/2023]
Abstract
Anthropogenic climate change induces unprecedented variability in a broad range of environmental parameters. These changes will impact material properties and animal biomechanics, thereby affecting animal performance and persistence of populations. Climate change implies warming at the global level, and it may be accompanied by altered wind speeds, wave action, ocean circulation, acidification as well as increased frequency of hypoxic events. Together, these environmental drivers affect muscle function and neural control and thereby movement of animals such as bird migration and schooling behaviour of fish. Altered environmental conditions will also modify material properties of animals. For example, ocean acidification, particularly when coupled with increased temperatures, compromises calcified shells and skeletons of marine invertebrates and byssal threads of mussels. These biomechanical consequences can lead to population declines and disintegration of habitats. Integrating biomechanical research with ecology is instrumental in predicting the future responses of natural systems to climate change and the consequences for ecosystem services such as fisheries and ecotourism.
Collapse
Affiliation(s)
- Paolo Domenici
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170 Italy
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Choi F, Gouhier T, Lima F, Rilov G, Seabra R, Helmuth B. Mapping physiology: biophysical mechanisms define scales of climate change impacts. CONSERVATION PHYSIOLOGY 2019; 7:coz028. [PMID: 31423312 PMCID: PMC6691486 DOI: 10.1093/conphys/coz028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 05/11/2023]
Abstract
The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating 'physiological landscapes' that display spatially and temporally explicit patterns of 'microrefugia'. Our framework shows how non-linear interactions between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the 'thermal roughness' of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches.
Collapse
Affiliation(s)
- Francis Choi
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA
| | - Tarik Gouhier
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA
| | - Fernando Lima
- CIBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Vairão, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanography and Limnology Research Institute, Haifa, Israel
| | - Rui Seabra
- CIBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Vairão, Portugal
| | - Brian Helmuth
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA
| |
Collapse
|
19
|
Marcoux TM, Korsmeyer KE. Energetics and behavior of coral reef fishes during oscillatory swimming in a simulated wave surge. ACTA ACUST UNITED AC 2019; 222:jeb.191791. [PMID: 30659085 DOI: 10.1242/jeb.191791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022]
Abstract
Oxygen consumption rates were measured for coral reef fishes during swimming in a bidirectional, oscillatory pattern to simulate station-holding in wave-induced, shallow-water flows. For all species examined, increases in wave intensity, as simulated by increases in frequency and amplitude of oscillation, yielded increased metabolic rates and net costs of swimming (NCOS; swimming metabolic rate minus standard metabolic rate). Comparing species with different swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) and simultaneous pectoral-caudal fin swimming Amphiprion ocellaris (Pomacentridae) turned around to face the direction of swimming most of the time, whereas the median-paired fin (MPF) swimmers, the pectoral fin swimming Ctenochaetus strigosus (Acanthuridae) and dorsal-anal fin swimming Sufflamen bursa (Balistidae), more frequently swam in reverse for one half of the oscillation to avoid turning. Contrary to expectations, the body-caudal fin (BCF) swimming Kuhlia spp. had the lowest overall NCOS in the oscillatory swimming regime compared with the MPF swimmers. However, when examining the effect of increasing frequency of oscillation at similar average velocities, Ku hlia spp. showed a 24% increase in NCOS with a 50% increase in direction changes and accelerations. The two strict MPF swimmers had lower increases on average, suggestive of reduced added costs with increasing frequency of direction changes with this swimming mode. Further studies are needed on the costs of unsteady swimming to determine whether these differences can explain the observed prevalence of fishes using the MPF pectoral fin swimming mode in reef habitats exposed to high, wave-surge-induced water flows.
Collapse
Affiliation(s)
- Travis M Marcoux
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
20
|
Gaylord B, Barclay KM, Jellison BM, Jurgens LJ, Ninokawa AT, Rivest EB, Leighton LR. Ocean change within shoreline communities: from biomechanics to behaviour and beyond. CONSERVATION PHYSIOLOGY 2019; 7:coz077. [PMID: 31754431 PMCID: PMC6855281 DOI: 10.1093/conphys/coz077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 05/11/2023]
Abstract
Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities. In particular, we examine case examples of altered morphologies and material properties, disrupted consumer-prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the broad capacity for biomechanical and behavioural shifts in organisms to influence the ecology of a transforming world.
Collapse
Affiliation(s)
- Brian Gaylord
- Bodega Marine Laboratory, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
- Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
- Corresponding author:
| | - Kristina M Barclay
- Earth and Atmospheric Sciences Department, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Brittany M Jellison
- Biology Department, Bowdoin College, 255 Main Street, Brunswick, ME 04011, USA
| | - Laura J Jurgens
- Marine Biology Department, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Aaron T Ninokawa
- Bodega Marine Laboratory, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
| | - Emily B Rivest
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, 1370 Greate Road, Gloucester Point, VA 23062, USA
| | - Lindsey R Leighton
- Earth and Atmospheric Sciences Department, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
21
|
Allen RM, Metaxas A, Snelgrove PVR. Applying Movement Ecology to Marine Animals with Complex Life Cycles. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:19-42. [PMID: 28813201 DOI: 10.1146/annurev-marine-121916-063134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.
Collapse
Affiliation(s)
- Richard M Allen
- Department of Ocean Sciences and Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada;
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna Metaxas
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul V R Snelgrove
- Department of Ocean Sciences and Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada;
| |
Collapse
|
22
|
Dubé CE, Boissin E, Maynard JA, Planes S. Fire coral clones demonstrate phenotypic plasticity among reef habitats. Mol Ecol 2017; 26:3860-3869. [DOI: 10.1111/mec.14165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline E. Dubé
- PSL Research University; EPHE-UPVD-CNRS; USR 3278 CRIOBE; Université de Perpignan; Perpignan France
- Laboratoire d'Excellence “CORAIL”; Perpignan France
| | - Emilie Boissin
- PSL Research University; EPHE-UPVD-CNRS; USR 3278 CRIOBE; Université de Perpignan; Perpignan France
- Laboratoire d'Excellence “CORAIL”; Perpignan France
| | - Jeffrey A. Maynard
- Laboratoire d'Excellence “CORAIL”; Perpignan France
- SymbioSeas and Marine Applied Research Center; Wilmington NC USA
| | - Serge Planes
- PSL Research University; EPHE-UPVD-CNRS; USR 3278 CRIOBE; Université de Perpignan; Perpignan France
- Laboratoire d'Excellence “CORAIL”; Perpignan France
| |
Collapse
|
23
|
Priemel T, Degtyar E, Dean MN, Harrington MJ. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat Commun 2017; 8:14539. [PMID: 28262668 PMCID: PMC5343498 DOI: 10.1038/ncomms14539] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023] Open
Abstract
Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity–properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. However, a poor understanding of this dynamic biofabrication process has hindered effective translation of byssus design principles into synthetic materials. Here, we explore mussel byssus assembly in Mytilus edulis using a synergistic combination of histological staining and confocal Raman microspectroscopy, enabling in situ tracking of specific proteins during induced thread formation from soluble precursors to solid fibres. Our findings reveal critical insights into this complex biological manufacturing process, showing that protein precursors spontaneously self-assemble into complex architectures, while maturation proceeds in subsequent regulated steps. Beyond their biological importance, these findings may guide development of advanced materials with biomedical and industrial relevance. Mussels attach to rocks using a byssus, which possesses unique properties of adhesion, toughness and self-healing. Here, the authors explore the fabrication process of mussel byssus demonstrating the self-assembly of specific proteins into multi-scale organized structures using artificially induced byssus threads.
Collapse
Affiliation(s)
- Tobias Priemel
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Elena Degtyar
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Matthew J Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
24
|
Abstract
Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification.
Collapse
Affiliation(s)
- J Herbert Waite
- Marine Sciences Institute, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
25
|
Reinecke A, Bertinetti L, Fratzl P, Harrington MJ. Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads. J Struct Biol 2016; 196:329-339. [DOI: 10.1016/j.jsb.2016.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
|
26
|
Gunderson AR, Armstrong EJ, Stillman JH. Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2016; 8:357-78. [PMID: 26359817 DOI: 10.1146/annurev-marine-122414-033953] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Collapse
Affiliation(s)
- Alex R Gunderson
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Eric J Armstrong
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Jonathon H Stillman
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| |
Collapse
|
27
|
Jones T, Gardner JP, Bell JJ. Modelling the effect of wave forces on subtidal macroalgae: A spatial evaluation of predicted disturbance for two habitat-forming species. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Schmitt CNZ, Winter A, Bertinetti L, Masic A, Strauch P, Harrington MJ. Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J R Soc Interface 2015; 12:0466. [PMID: 26311314 PMCID: PMC4614455 DOI: 10.1098/rsif.2015.0466] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/31/2015] [Indexed: 11/12/2022] Open
Abstract
Protein-metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA-metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.
Collapse
Affiliation(s)
- Clemens N Z Schmitt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Alette Winter
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Peter Strauch
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Matthew J Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| |
Collapse
|
29
|
Schmitt CNZ, Politi Y, Reinecke A, Harrington MJ. Role of Sacrificial Protein–Metal Bond Exchange in Mussel Byssal Thread Self-Healing. Biomacromolecules 2015; 16:2852-61. [DOI: 10.1021/acs.biomac.5b00803] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clemens N. Z. Schmitt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Yael Politi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Antje Reinecke
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Matthew J. Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| |
Collapse
|
30
|
Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 2015; 218:1956-67. [DOI: 10.1242/jeb.114926] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For ‘normal’ body temperatures – benign temperatures near the species' mean – thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new ‘optimal’ temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories.
Collapse
Affiliation(s)
- W. Wesley Dowd
- Loyola Marymount University, Department of Biology, Los Angeles, CA 90045, USA
| | - Felicia A. King
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
31
|
Higham TE, Stewart WJ, Wainwright PC. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes. Integr Comp Biol 2015; 55:6-20. [DOI: 10.1093/icb/icv052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
|
33
|
Mehrabani H, Ray N, Tse K, Evangelista D. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture. PeerJ 2014; 2:e588. [PMID: 25279268 PMCID: PMC4179385 DOI: 10.7717/peerj.588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/31/2014] [Indexed: 11/20/2022] Open
Abstract
Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice), or in environments with moisture and cold air (e.g., plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli). The geometric dimensions of the features have only a small (∼6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their interaction with surface pattern.
Collapse
Affiliation(s)
- Homayun Mehrabani
- Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Neil Ray
- Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Kyle Tse
- Department of Mechanical Engineering, University of California , Berkeley, CA , USA
| | - Dennis Evangelista
- Department of Integrative Biology, University of California , Berkeley, CA , USA
| |
Collapse
|
34
|
Carrington E, Waite JH, Sarà G, Sebens KP. Mussels as a model system for integrative ecomechanics. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:443-469. [PMID: 25195867 DOI: 10.1146/annurev-marine-010213-135049] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions.
Collapse
Affiliation(s)
- Emily Carrington
- Department of Biology and Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250; ,
| | | | | | | |
Collapse
|
35
|
Cornwall CE, Boyd PW, McGraw CM, Hepburn CD, Pilditch CA, Morris JN, Smith AM, Hurd CL. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One 2014; 9:e97235. [PMID: 24824089 PMCID: PMC4019523 DOI: 10.1371/journal.pone.0097235] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/16/2014] [Indexed: 11/30/2022] Open
Abstract
Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 ‘ambient’ and 7.65 a worst case ‘ocean acidification’ scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.
Collapse
Affiliation(s)
| | - Philip W. Boyd
- National Institute for Water and Atmospheric research (NIWA) Centre of Physical and Chemical Oceanography, Dunedin, New Zealand
| | - Christina M. McGraw
- School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts, United States of America
| | | | - Conrad A. Pilditch
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Jaz N. Morris
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Abigail M. Smith
- School of Science and Technology, University of New England, Armidale, Australia
| | - Catriona L. Hurd
- Department of Botany, University of Otago, Dunedin, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
36
|
Nishizaki MT, Carrington E. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation. ACTA ACUST UNITED AC 2014; 217:2101-9. [PMID: 24625651 DOI: 10.1242/jeb.101030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance.
Collapse
Affiliation(s)
- Michael T Nishizaki
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| | - Emily Carrington
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA Friday Harbor Laboratories, Friday Harbor, WA 98250, USA
| |
Collapse
|
37
|
A Hydrodynamic Modelling Framework for Strangford Lough Part 1: Tidal Model. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2014. [DOI: 10.3390/jmse2010046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Gao H, Kwong S, Yang J, Cao J. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation. Inf Sci (N Y) 2013. [DOI: 10.1016/j.ins.2013.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Harley CDG. Linking ecomechanics and ecophysiology to interspecific interactions and community dynamics. Ann N Y Acad Sci 2013; 1297:73-82. [PMID: 24033326 DOI: 10.1111/nyas.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To predict community-level responses to climate change, we must understand how variation in environmental conditions drives changes in an organism's ability to acquire resources and translate those resources into growth, reproduction, and survival. This challenge can be approached mechanistically by establishing linkages from biophysics to community ecology. For example, body temperature can be predicted from environmental conditions and species-specific morphological and behavioral traits. Variation in body temperature within and among species dictates physiological performance, rates of resource acquisition, and growth. These ecological characteristics, along with population size, define the strength with which species interact. Finally, the direct (individual level) and indirect (community level) effects of temperature jointly determine community structure. This mechanistic framework can complement correlational approaches to better predict ecological responses to climate change and identify which characteristics of a species or community act as leverage points for change. Research priorities for further development of the mechanistic approach include documentation and prediction of relevant spatial and temporal variation in body temperature and the relationships between body temperature, individual performance, and interspecific interactions.
Collapse
Affiliation(s)
- Christopher D G Harley
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Crimaldi JP, Zimmer RK. The physics of broadcast spawning in benthic invertebrates. ANNUAL REVIEW OF MARINE SCIENCE 2013; 6:141-165. [PMID: 23957600 DOI: 10.1146/annurev-marine-010213-135119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most benthic invertebrates broadcast their gametes into the sea, whereupon successful fertilization relies on the complex interaction between the physics of the surrounding fluid flow and the biological properties and behavior of eggs and sperm. We present a holistic overview of the impact of instantaneous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Although mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before dilution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance contact rates between sperm and chemoattractant-releasing eggs. We argue that sperm motility is a biological adaptation that replaces molecular diffusion in conventional mixing processes and enables gametes to bridge the gap that remains after aggregation by the flow.
Collapse
Affiliation(s)
- John P Crimaldi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428;
| | | |
Collapse
|
41
|
Roche DG, Taylor MK, Binning SA, Johansen JL, Domenici P, Steffensen JF. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata). J Exp Biol 2013; 217:414-22. [DOI: 10.1242/jeb.085811] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata. Using intermittent-flow respirometry, we measured critical swimming speed (Ucrit), oxygen consumption rate (ṀO2) and pectoral fin use in steady flow versus unsteady flows with either low (0.5 body lengths per second; BLs-1) or high amplitude (1.0 BLs-1) velocity fluctuations, with a 5 s period. Individuals in low amplitude unsteady flow performed as well as fish in steady flow. However, swimming costs in high amplitude unsteady flow were on average 25.3 % higher than in steady flow and 14.2% higher than estimated values obtained from simulations based on the non-linear relationship between swimming speed and oxygen consumption rate in steady flow. Time-averaged pectoral fin use (fin beat frequency measured over 300 s) was similar among treatments. However, measures of instantaneous fin use (fin beat period) and body movement in high amplitude unsteady flow indicate that individuals with greater variation in the duration of their fin beats were better at holding station and consumed less oxygen than fish with low variation in fin beat period. These results suggest that the costs of swimming in unsteady flows are context dependent in labriform swimmers, and may be influenced by individual differences in the ability of fishes to adjust their fin beats to the flow environment.
Collapse
|
42
|
Madin JS, Hughes TP, Connolly SR. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS One 2012; 7:e46637. [PMID: 23056379 PMCID: PMC3464260 DOI: 10.1371/journal.pone.0046637] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/03/2012] [Indexed: 11/18/2022] Open
Abstract
Two facets of climate change--increased tropical storm intensity and ocean acidification--are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms' short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs.
Collapse
Affiliation(s)
- Joshua S Madin
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | | | | |
Collapse
|
43
|
Webb TJ. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol Evol 2012; 27:535-41. [DOI: 10.1016/j.tree.2012.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
|
44
|
Harper EM, Clark MS, Hoffman JI, Philipp EER, Peck LS, Morley SA. Iceberg scour and shell damage in the Antarctic bivalve Laternula elliptica. PLoS One 2012; 7:e46341. [PMID: 23029484 PMCID: PMC3460817 DOI: 10.1371/journal.pone.0046341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance.
Collapse
Affiliation(s)
- Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
45
|
Waite JH, Broomell CC. Changing environments and structure--property relationships in marine biomaterials. ACTA ACUST UNITED AC 2012; 215:873-83. [PMID: 22357581 DOI: 10.1242/jeb.058925] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most marine organisms make functional biomolecular materials that extend to varying degrees 'beyond their skins'. These materials are very diverse and include shells, spines, frustules, tubes, mucus trails, egg capsules and byssal threads, to mention a few. Because they are devoid of cells, these materials lack the dynamic maintenance afforded intra-organismic tissues and thus are usually assumed to be inherently more durable than their internalized counterparts. Recent advances in nanomechanics and submicron spectroscopic imaging have enabled the characterization of structure-property relationships in a variety of extra-organismic materials and provided important new insights about their adaptive functions and stability. Some structure-property relationships in byssal threads are described to show how available analytical methods can reveal hitherto unappreciated interdependences between these materials and their prevailing chemical, physical and ecological environments.
Collapse
Affiliation(s)
- J Herbert Waite
- Marine Science Institute, and Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
46
|
Gaylord B, Nickols KJ, Jurgens L. Roles of transport and mixing processes in kelp forest ecology. J Exp Biol 2012; 215:997-1007. [PMID: 22357593 DOI: 10.1242/jeb.059824] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Fluid-dynamic transport and mixing processes affect birth, death, immigration and emigration rates in kelp forests, and can modulate broader community interactions. In the most highly studied canopy-forming kelp, Macrocystis pyrifera (the giant kelp), models of hydrodynamic and oceanographic phenomena influencing spore movement provide bounds on reproduction, quantify patterns of local and regional propagule supply, identify scales of population connectivity, and establish context for agents of early life mortality. Other analyses yield insight into flow-mediated species interactions within kelp forests. In each case, advances emerge from the use of ecomechanical approaches that propagate physical-biological connections at the scale of the individual to higher levels of ecological organization. In systems where physical factors strongly influence population, community or ecosystem properties, such mechanics-based methods promote crucial progress but are just beginning to realize their full potential.
Collapse
Affiliation(s)
- Brian Gaylord
- Bodega Marine Laboratory, PO Box 247, 2099 Westshore Road, Bodega Bay, CA 94923, USA.
| | | | | |
Collapse
|
47
|
|
48
|
Whitehead A. Comparative genomics in ecological physiology: toward a more nuanced understanding of acclimation and adaptation. J Exp Biol 2012; 215:884-91. [DOI: 10.1242/jeb.058735] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Summary
Organisms that live in variable environments must adjust their physiology to compensate for environmental change. Modern functional genomics technologies offer global top-down discovery-based tools for identifying and exploring the mechanistic basis by which organisms respond physiologically to a detected change in the environment. Given that populations and species from different niches may exhibit different acclimation abilities, comparative genomic approaches may offer more nuanced understanding of acclimation responses, and provide insight into the mechanistic and genomic basis of variable acclimation. The physiological genomics literature is large and growing, as is the comparative evolutionary genomics literature. Yet, expansion of physiological genomics experiments to exploit taxonomic variation remains relatively undeveloped. Here, recent advances in the emerging field of comparative physiological genomics are considered, including examples of plants, bees and fish, and opportunities for further development are outlined particularly in the context of climate change research. Elements of robust experimental design are discussed with emphasis on the phylogenetic comparative approach. Understanding how acclimation ability is partitioned among populations and species in nature, and knowledge of the relevant genes and mechanisms, will be important for characterizing and predicting the ecological and evolutionary consequences of human-accelerated environmental change.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
49
|
Crimaldi JP. The role of structured stirring and mixing on gamete dispersal and aggregation in broadcast spawning. J Exp Biol 2012; 215:1031-9. [DOI: 10.1242/jeb.060145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Summary
Broadcast-spawning benthic invertebrates synchronously release sperm and eggs from separate locations into the surrounding flow, whereupon the process depends on structured stirring by the flow field (at large scales), and sperm motility and taxis (at small scales) to bring the gametes together. The details of the relevant physical and biological aspects of the problem that result in successful and efficient fertilization are not well understood. This review paper includes relevant work from both the physical and biological communities to synthesize a more complete understanding of the processes that govern fertilization success; the focus is on the role of structured stirring on the dispersal and aggregation of gametes. The review also includes a summary of current trends and approaches for numerical and experimental simulations of broadcast spawning.
Collapse
|
50
|
Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA, Sato KN, Russell AD, Hettinger A. Functional impacts of ocean acidification in an ecologically critical foundation species. ACTA ACUST UNITED AC 2011; 214:2586-94. [PMID: 21753053 DOI: 10.1242/jeb.055939] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthropogenic CO(2) is reducing the pH and altering the carbonate chemistry of seawater, with repercussions for marine organisms and ecosystems. Current research suggests that calcification will decrease in many species, but compelling evidence of impaired functional performance of calcium carbonate structures is sparse, particularly in key species. Here we demonstrate that ocean acidification markedly degrades the mechanical integrity of larval shells in the mussel Mytilus californianus, a critical community member on rocky shores throughout the northeastern Pacific. Larvae cultured in seawater containing CO(2) concentrations expected by the year 2100 (540 or 970 ppm) precipitated weaker, thinner and smaller shells than individuals raised under present-day seawater conditions (380 ppm), and also exhibited lower tissue mass. Under a scenario where mussel larvae exposed to different CO(2) levels develop at similar rates, these trends suggest a suite of potential consequences, including an exacerbated vulnerability of new settlers to crushing and drilling attacks by predators; poorer larval condition, causing increased energetic stress during metamorphosis; and greater risks from desiccation at low tide due to shifts in shell area to body mass ratios. Under an alternative scenario where responses derive exclusively from slowed development, with impacted individuals reaching identical milestones in shell strength and size by settlement, a lengthened larval phase could increase exposure to high planktonic mortality rates. In either case, because early life stages operate as population bottlenecks, driving general patterns of distribution and abundance, the ecological success of this vital species may be tied to how ocean acidification proceeds in coming decades.
Collapse
Affiliation(s)
- Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA.
| | | | | | | | | | | | | | | |
Collapse
|