1
|
Jin Y, Li W, Rasool HMH, Ning X, Ba X, Gao Y, Guo X, Ran T, Zhou J. Effectiveness of newly isolated bacteriophages targeting multidrug-resistant Extraintestinal Pathogenic Escherichia coli strain (TZ1_3) in food preservation and mice health modulation. Food Chem 2025; 472:142833. [PMID: 39827555 DOI: 10.1016/j.foodchem.2025.142833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 106 plaque-forming units (PFU). Notably, phage therapy administered via intraperitoneal injection (1012 PFU) effectively reduced ExPEC numbers in the heart, liver, spleen and kidney, restored α-diversity of gut microbes, and increased levels of acetic (13.98 %-37.58 %) and valeric acid (10.27 %-31.51 %) in ExPEC-infected mice. Additionally, phage injections caused no detrimental effects on body weight (which increased by 6.49 %-8.11 %), and on gut microbes in healthy mice. Overall, this study highlights the potential of phages in controlling foodborne microorganisms.
Collapse
Affiliation(s)
- Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Wei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hafiz Muhammad Hamza Rasool
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xuan Ning
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yidan Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xinyu Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
2
|
Vilar LC, Rego ACS, Miguel MAL, Paranhos RPDR, Laport MS, Rossi CC, Giambiagi-deMarval M. Staphylococcus spp. and methicillin-resistance gene mecA dispersion in seawater: A case study of Guanabara Bay's recreational and touristic waters. Comp Immunol Microbiol Infect Dis 2025; 118:102326. [PMID: 39954386 DOI: 10.1016/j.cimid.2025.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Environmental Staphylococci, particularly coagulase-negative Staphylococci (CoNS), are known reservoirs of antimicrobial resistance genes and human-animal opportunistic pathogens, yet their role within the One Health framework remains underexplored. In this study, we isolated 12 species of CoNS from two sites 10 km apart in Guanabara Bay, Rio de Janeiro, with the most frequent species being the opportunistic Staphylococcus saprophyticus (30.3 %), Staphylococcus warneri (25.7 %), and Staphylococcus epidermidis (16.7 %). GTG5-PCR fingerprinting revealed significant genetic diversity, yet identical profiles persisted across both sites throughout the year, indicating strain dispersion and persistence. Among the 66 strains analyzed, 42 exhibited resistance to clinically significant antimicrobials, including methicillin-resistant strains harboring the mecA gene. Remarkably, 22.7 % of the strains carried CRISPR-Cas systems, a frequency unusually high for Staphylococcus spp., suggesting that bacteriophage pressure in the seawater environment may drive this increase. The presence of antimicrobial-resistant CoNS in Guanabara Bay, a popular recreational area, represents a potential public health risk.
Collapse
Affiliation(s)
- Lucas Cecílio Vilar
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Marinella Silva Laport
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Biochemistry and Molecular Biology Department, Federal University of Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Zheng K, Sun J, Liang Y, Kong L, Paez-Espino D, Mcminn A, Wang M. VITAP: a high precision tool for DNA and RNA viral classification based on meta-omic data. Nat Commun 2025; 16:2226. [PMID: 40044690 PMCID: PMC11883027 DOI: 10.1038/s41467-025-57500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
The rapid growth in the number of newly identified DNA and RNA viral sequences underscores the need for an accurate and comprehensive classification system for all viral realms at different taxonomic levels. Here, we establish the Viral Taxonomic Assignment Pipeline (VITAP), which addresses classification challenges by integrating alignment-based techniques with graphs, offering high precision in classifying both DNA and RNA viral sequences and providing confidence level for each taxonomic unit. This tool automatically updates its database in sync with the latest references from the International Committee on Taxonomy of Viruses (ICTV), efficiently classifying viral sequences as short as 1,000 base pairs to genus level. VITAP possesses good generalization capabilities, maintaining accuracy comparable to other pipelines while achieving higher annotation rates across most DNA and RNA viral phyla. Its application in deep-sea viromes has led to significant taxonomic updates, providing comprehensive diversity information of viruses from deep-sea. VITAP is available at https://github.com/DrKaiyangZheng/VITAP .
Collapse
Affiliation(s)
- Kaiyang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianhua Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Liangliang Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | | | - Andrew Mcminn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Wu L, Liu Y, Shi W, Chang T, Liu P, Liu K, He Y, Li Z, Shi M, Jiao N, Lang AS, Dong X, Zheng Q. Uncovering the hidden RNA virus diversity in Lake Nam Co: Evolutionary insights from an extreme high-altitude environment. Proc Natl Acad Sci U S A 2025; 122:e2420162122. [PMID: 39903107 PMCID: PMC11831205 DOI: 10.1073/pnas.2420162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Alpine lakes, characterized by isolation, low temperatures, oligotrophic conditions, and intense ultraviolet radiation, remain a poorly explored ecosystem for RNA viruses. Here, we present the first comprehensive metatranscriptomic study of RNA viruses in Lake Nam Co, a high-altitude alkaline saline lake on the Tibetan Plateau. Using a combination of sequence- and structure-based homology searches, we identified 742 RNA virus species, including 383 novel genus-level groups and 84 novel family-level groups exclusively found in Lake Nam Co. These findings significantly expand the known diversity of the Orthornavirae, uncovering evolutionary adaptations such as permutated RNA-dependent RNA polymerase motifs and distinct RNA secondary structures. Notably, 14 additional RNA virus families potentially infecting prokaryotes were predicted, broadening the known host range of RNA viruses and questioning the traditional assumption that RNA viruses predominantly target eukaryotes. The presence of auxiliary metabolic genes in viral genomes suggested that RNA viruses (families f.0102 and Nam-Co_family_51) exploit host energy production mechanisms in energy-limited alpine lakes. Low nucleotide diversity, single nucleotide polymorphism frequencies, and pN/pS ratios indicate strong purifying selection in Nam Co viral populations. Our findings offer insights into RNA virus evolution and ecology, highlighting the importance of extreme environments in uncovering hidden viral diversity and further shed light into their potential ecological implications, particularly in the context of climate change.
Collapse
Affiliation(s)
- Lilin Wu
- Department of Marine Biology and Technology, College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen361005, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenqing Shi
- Department of Marine Biology and Technology, College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen361005, China
| | - Tianyi Chang
- Department of Marine Biology and Technology, College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen361005, China
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yong He
- Alibaba Cloud Intelligence, Alibaba Group, Hangzhou310013, China
| | - Zhaorong Li
- Alibaba Cloud Intelligence, Alibaba Group, Hangzhou310013, China
| | - Mang Shi
- Centre for Infection and Immunity Study, School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen518107, China
| | - Nianzhi Jiao
- Department of Marine Biology and Technology, College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen361005, China
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, NLA1C 5S7, Canada
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen361005, China
| | - Qiang Zheng
- Department of Marine Biology and Technology, College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen361005, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen361005, China
| |
Collapse
|
5
|
Kim MJ, Kim KE, Kim HJ, Kim YJ, Lee TK, Kim SM, Cha HG, Jung SW. Co-occurrence patterns between Chlorophyta and nucleocytoplasmic large DNA virus in coastal ecosystem, South Korea. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106944. [PMID: 39756247 DOI: 10.1016/j.marenvres.2025.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are known to infect phytoplankton and play a significant role in regulating their population dynamics. In this study, we aimed to investigate the co-occurrence patterns between phytoplankton and NCLDVs in the southern coastal ecosystem of South Korea. We collected seawater every month from March 2018 to December 2020 and analyzed the samples using Cytochrome c Oxidase subunit I metabarcoding and metagenomic analyses. Chlorophyta (36.08%) was the most abundant eukaryotic taxon, with Bathycoccaceae (58.25%) and Mamiellaceae (41.51%) being the most dominant families within Chlorophyta. Bathycoccaceae was dominant in winter, whereas Mamiellaceae was dominant in summer. In the NCLDV community, Phycodnaviridae (75.12%) was found to be the major family. The co-occurrence pattern of Phycodnaviridae showed a high correlation with Bathycoccaceae and Mamiellaceae, which is explained by the "boom-and-bust" concept. In particular, we predicted co-occurrence patterns between Bathycoccus prasinos and Prasnovirus, with known infectious relationships, and confirmed co-occurrence patterns between B. prasinos and Coccolithovirus and Micromonas pusilla and Prymnesiovirus, with unknown infectious relationships. These co-occurrence patterns between Chlorophyta and Phycodnaviridae provide valuable insights into the control of pico-sized primary production and the microbial loop of the coastal ecosystem.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Seon Min Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Hyung-Gon Cha
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Yu C, Yu M, Ma R, Wei S, Jin M, Jiao N, Zheng Q, Zhang R, Feng X. A novel Alteromonas phage with tail fiber containing six potential iron-binding domains. Microbiol Spectr 2025; 13:e0093424. [PMID: 39565130 PMCID: PMC11705849 DOI: 10.1128/spectrum.00934-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Viruses play a vital role in regulating microbial communities, contributing to biogeochemical cycles of carbon, nitrogen, and essential metals. Alteromonas is widespread and plays an essential role in marine microbial ecology. However, there is limited knowledge about the interactions of Alteromonas and its viruses (alterophages). This study isolated a novel podovirus, vB_AmeP-R22Y (R22Y), which infects Alteromonas marina SW-47 (T). Phylogenetic analysis suggested that R22Y represented a novel viral genus within the Schitoviridae family. R22Y exhibited a broad host range and a relatively large burst size, exerting an important impact on the adaptability and dynamics of host populations. Two auxiliary metabolic genes, encoding Acyl carrier protein and AAA domain-containing protein, were predicted in R22Y, which may potentially assist in host fatty acid metabolism and VB12 biosynthesis, respectively. Remarkably, the prediction of the R22Y tail fiber structure revealed six conserved histidine residues (HxH motifs) that could potentially bind iron ions, suggesting that alterophages may function as organic iron-binding ligands in the marine environment. Our isolation and characterization of R22Y complements the Trojan Horse hypothesis, proposes the possible role of alterophages for marine iron biogeochemical cycling, and provides new insights into phage-host interactions in the iron-limited ocean.IMPORTANCEIron (Fe), as an essential micronutrient, is often a limiting factor for microbial growth in marine ecosystems. The Trojan Horse hypothesis suggests that iron in the phage tail fibers is recognized by the host's siderophore-bound iron receptor, enabling the phage to attach and initiate infection. The potential role of phages as iron-binding ligands has significant implications for oceanic trace metal biogeochemistry. In this study, we isolated a new phage R22Y with the potential to bind iron ions, using Alteromonas, a major siderophore producer, as the host. The tail fiber structure of R22Y exhibits six conserved HxH motifs, suggesting that each phage could potentially bind up to 36 iron ions. R22Y may contribute to colloidal organically complexed dissolved iron in the marine environment. This finding provides further insights into the Trojan Horse hypothesis, suggesting that alterophages may act as natural iron-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meishun Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shuzhen Wei
- School of Ocean and Earth Science, Tongji University, Shanghai, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
7
|
Zang B, Zhou H, Zhao Y, Sano D, Chen R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135950. [PMID: 39326145 DOI: 10.1016/j.jhazmat.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyvinyl chloride (PVC) microplastics present in sewage were trapped in sludge, thereby hindering anaerobic digestion performance of waste active sludge (WAS). Phages regulate virocell metabolism by encoding auxiliary metabolic genes (AMGs) related to energy acquisition and material degradation, supporting hosts survive in harsh environments and play a crucial role in biogeochemical cycles. This study investigated the potential effects of phages on the recovery of WAS anaerobic digestion under PVC stress. We observed a significant alteration in the phage community induced by PVC microplastics. Phages encoded AMGs related to anaerobic digestion and cell growth probably alleviate PVC microplastics inhibition on WAS anaerobic digestion, and 54.2 % of hydrolysis-related GHs and 40.8 % of acidification-related AMGs were actively transcribed in the PVC-exposed group. Additionally, the degradation of chitin and peptidoglycan during hydrolysis and the conversion of glucose to pyruvate during acidification were more susceptible to phages. Prediction of phage-host relationship indicated that the phyla Pseudomonadota were predominantly targeted hosts by hydrolysis-related and acidification-related phages, and PVC toxicity had minimal impact on phage-host interaction. Our findings highlight the importance of phages in anaerobic digestion and provide a novel strategy for using phages in the functional recovery of microplastic-exposed sludge.
Collapse
Affiliation(s)
- Bei Zang
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hang Zhou
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yubin Zhao
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
8
|
Henshaw RJ, Moon J, Stehnach MR, Bowen BP, Kosina SM, Northen TR, Guasto JS, Floge SA. Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria. Nat Microbiol 2024; 9:3184-3195. [PMID: 39548345 DOI: 10.1038/s41564-024-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
Chemical cues mediate interactions between marine phytoplankton and bacteria, underpinning ecosystem-scale processes including nutrient cycling and carbon fixation. Phage infection alters host metabolism, stimulating the release of chemical cues from intact plankton, but how these dynamics impact ecology and biogeochemistry is poorly understood. Here we determine the impact of phage infection on dissolved metabolite pools from marine cyanobacteria and the subsequent chemotactic response of heterotrophic bacteria using time-resolved metabolomics and microfluidics. Metabolites released from intact, phage-infected Synechococcus elicited strong chemoattraction from Vibrio alginolyticus and Pseudoalteromonas haloplanktis, especially during early infection stages. Sustained bacterial chemotaxis occurred towards live-infected Synechococcus, contrasted by no discernible chemotaxis towards uninfected cyanobacteria. High-throughput microfluidics identified 5'-deoxyadenosine and 5'-methylthioadenosine as key attractants. Our findings establish that, before lysis, phage-infected picophytoplankton release compounds that attract motile heterotrophic bacteria, suggesting a mechanism for resource transfer that might impact carbon and nutrient fluxes across trophic levels.
Collapse
Affiliation(s)
- Richard J Henshaw
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Institute of Environmental Engineering, ETH Zürich, Zurich, Switzerland
| | - Jonathan Moon
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Michael R Stehnach
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Vila-Nistal M, Logares R, Gasol JM, Martinez-Garcia M. Time Series Data Provide Insights into the Evolution and Abundance of One of the Most Abundant Viruses in the Marine Virosphere: The Uncultured Pelagiphages vSAG 37-F6. Viruses 2024; 16:1669. [PMID: 39599783 PMCID: PMC11598899 DOI: 10.3390/v16111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses play a pivotal role in ecosystems by influencing biochemical cycles and impacting the structure and evolution of their host cells. The widespread pelagiphages infect Pelagibacter spp., the most abundant marine microbe on Earth, and thus play a significant role in carbon transformation through the viral shunt. Among these viruses, the uncultured lytic pelagiphage vSAG 37-F6, uncovered by single-virus genomics, is likely the most numerous virus in the ocean. While previous research has delved into the diversity and spatial distribution of vSAG 37-F6, there is still a gap in understanding its temporal dynamics, hindering our insight into its ecological impact. We explored the temporal dynamics of vSAG 37-F6, assessing periodic fluctuations in abundance and evolutionary patterns using long- and short-term data series. In the long-term series (7 years), metagenomics showed negative selection acting on all viral genes, with a highly conserved overall diversity over time composed of a pool of yearly emergent, highly similar novel strains that exhibited a seasonal abundance pattern with two peaks during winter and fall and a decrease in months with higher UV radiation. Most non-synonymous polymorphisms occurred in structural viral proteins located in regions with low conformational restrictions, suggesting that many of the viral genes of this population are highly purified over its evolution. At the fine-scale resolution (24 h time series), combining digital PCR and metagenomics, we identified two peaks of cellular infection for the targeted vSAG 37-F6 viral strain (up to approximately 103 copies/ng of prokaryotic DNA), one before sunrise and the second shortly after midday. Considering the high number of co-occurring strains of this microdiverse virus, the abundance values at the species or genus level could be orders of magnitudes higher. These findings represent a significant advancement in understanding the dynamics of the potentially most abundant oceanic virus, providing valuable insights into ecologically relevant marine viruses.
Collapse
Affiliation(s)
- Marina Vila-Nistal
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain; (R.L.); (J.M.G.)
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain; (R.L.); (J.M.G.)
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain
| |
Collapse
|
10
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
11
|
Bastien GE, Cable RN, Batterbee C, Wing AJ, Zaman L, Duhaime MB. Virus-host interactions predictor (VHIP): Machine learning approach to resolve microbial virus-host interaction networks. PLoS Comput Biol 2024; 20:e1011649. [PMID: 39292721 PMCID: PMC11441702 DOI: 10.1371/journal.pcbi.1011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Viruses of microbes are ubiquitous biological entities that reprogram their hosts' metabolisms during infection in order to produce viral progeny, impacting the ecology and evolution of microbiomes with broad implications for human and environmental health. Advances in genome sequencing have led to the discovery of millions of novel viruses and an appreciation for the great diversity of viruses on Earth. Yet, with knowledge of only "who is there?" we fall short in our ability to infer the impacts of viruses on microbes at population, community, and ecosystem-scales. To do this, we need a more explicit understanding "who do they infect?" Here, we developed a novel machine learning model (ML), Virus-Host Interaction Predictor (VHIP), to predict virus-host interactions (infection/non-infection) from input virus and host genomes. This ML model was trained and tested on a high-value manually curated set of 8849 virus-host pairs and their corresponding sequence data. The resulting dataset, 'Virus Host Range network' (VHRnet), is core to VHIP functionality. Each data point that underlies the VHIP training and testing represents a lab-tested virus-host pair in VHRnet, from which meaningful signals of viral adaptation to host were computed from genomic sequences. VHIP departs from existing virus-host prediction models in its ability to predict multiple interactions rather than predicting a single most likely host or host clade. As a result, VHIP is able to infer the complexity of virus-host networks in natural systems. VHIP has an 87.8% accuracy rate at predicting interactions between virus-host pairs at the species level and can be applied to novel viral and host population genomes reconstructed from metagenomic datasets.
Collapse
Affiliation(s)
- G. Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel N. Cable
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cecelia Batterbee
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - A. J. Wing
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Bonachela JA. Viral plasticity facilitates host diversity in challenging environments. Nat Commun 2024; 15:7473. [PMID: 39209841 PMCID: PMC11362530 DOI: 10.1038/s41467-024-51344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The antagonistic coevolution of microbes and viruses influences fundamentally the diversity of microbial communities. Information on how environmental variables interact with emergent defense-counterdefense strategies and community composition is, however, still scarce. Following biological intuition, diversity should increase with improved growth conditions, which offset evolutionary costs; however, laboratory and regional data suggest that microbial diversity decreases in nutrient-rich conditions. Moreover, global oceanic data show that microbial and viral diversity decline for high latitudes, although the underlying mechanisms are unknown. This article addresses these gaps by introducing an eco-evolutionary model for bacteria-virus antagonistic coevolution. The theory presented here harmonizes the observations above and identifies negative density dependence and viral plasticity (dependence of virus performance on host physiological state) as key drivers: environmental conditions selecting for slow host growth also limit viral performance, facilitating the survival of a diverse host community; host diversity, in turn, enables viral portfolio effects and bet-hedging strategies that sustain viral diversity. From marine microbes to phage therapy against antibiotic-resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution highlights the need to consider eco-evolutionary interactions across a gradient of growth conditions.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
13
|
Wang C, Zheng R, Zhang T, Sun C. Polysaccharides induce deep-sea Lentisphaerae strains to release chronic bacteriophages. eLife 2024; 13:RP92345. [PMID: 39207920 PMCID: PMC11361711 DOI: 10.7554/elife.92345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Viruses are ubiquitous in nature and play key roles in various ecosystems. Notably, some viruses (e.g. bacteriophage) exhibit alternative life cycles, such as chronic infections without cell lysis. However, the impact of chronic infections and their interactions with the host organisms remains largely unknown. Here, we found for the first time that polysaccharides induced the production of multiple temperate phages infecting two deep-sea Lentisphaerae strains (WC36 and zth2). Through physiological assays, genomic analysis, and transcriptomics assays, we found these bacteriophages were released via a chronic style without host cell lysis, which might reprogram host polysaccharide metabolism through the potential auxiliary metabolic genes. The findings presented here, together with recent discoveries made on the reprogramming of host energy-generating metabolisms by chronic bacteriophages, shed light on the poorly explored marine virus-host interaction and bring us closer to understanding the potential role of chronic viruses in marine ecosystems.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Tianhang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
15
|
Hou Y, Diao W, Jia R, Sun W, Feng W, Li B, Zhu J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. ENVIRONMENTAL RESEARCH 2024; 251:118717. [PMID: 38518910 DOI: 10.1016/j.envres.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Weixu Diao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
16
|
Yu M, Zhang M, Zeng R, Cheng R, Zhang R, Hou Y, Kuang F, Feng X, Dong X, Li Y, Shao Z, Jin M. Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments. Nat Commun 2024; 15:3228. [PMID: 38622147 PMCID: PMC11018836 DOI: 10.1038/s41467-024-47600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.
Collapse
Affiliation(s)
- Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Ruolin Cheng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Fangfang Kuang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xiyang Dong
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Yinfang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
17
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Du S, Wu Y, Ying H, Wu Z, Yang M, Chen F, Shao J, Liu H, Zhang Z, Zhao Y. Genome sequences of the first Autographiviridae phages infecting marine Roseobacter. Microb Genom 2024; 10. [PMID: 38630615 DOI: 10.1099/mgen.0.001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The ubiquitous and abundant marine phages play critical roles in shaping the composition and function of bacterial communities, impacting biogeochemical cycling in marine ecosystems. Autographiviridae is among the most abundant and ubiquitous phage families in the ocean. However, studies on the diversity and ecology of Autographiviridae phages in marine environments are restricted to isolates that infect SAR11 bacteria and cyanobacteria. In this study, ten new roseophages that infect marine Roseobacter strains were isolated from coastal waters. These new roseophages have a genome size ranging from 38 917 to 42 634 bp and G+C content of 44.6-50 %. Comparative genomics showed that they are similar to known Autographiviridae phages regarding gene content and architecture, thus representing the first Autographiviridae roseophages. Phylogenomic analysis based on concatenated conserved genes showed that the ten roseophages form three distinct subgroups within the Autographiviridae, and sequence analysis revealed that they belong to eight new genera. Finally, viromic read-mapping showed that these new Autographiviridae phages are widely distributed in global oceans, mostly inhabiting polar and estuarine locations. This study has expanded the current understanding of the genomic diversity, evolution and ecology of Autographiviridae phages and roseophages. We suggest that Autographiviridae phages play important roles in the mortality and community structure of roseobacters, and have broad ecological applications.
Collapse
Affiliation(s)
- Sen Du
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ying Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Hanqi Ying
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zuqing Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Jiabing Shao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - He Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
19
|
Li Z, Guo X, Liu B, Huang T, Liu R, Liu X. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants. WATER RESEARCH 2024; 253:121289. [PMID: 38341975 DOI: 10.1016/j.watres.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Antibiotic resistance poses a significant threat to global health, and the microbe-rich activated sludge environment may contribute to the dissemination of antibiotic resistance genes (ARGs). ARGs spread across various bacterial populations via multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages (phages). However, the potential role of phages in spreading ARGs in wastewater treatment systems remains unclear. This study characterized the core resistome, mobile genetic elements (MGEs), and virus-associated ARGs (vir_ARGs) in influents (Inf) and effluents (Eff) samples from nine WWTPs in eastern China. The abundance of ARGs in the Inf samples was higher than that in the Eff samples. A total of 21 core ARGs were identified, accounting for 38.70 %-83.70 % of the different samples. There was an increase in MGEs associated with phage-related processes from influents to effluents (from 12.68 % to 21.10 %). These MGEs showed strong correlations in relative abundance and composition with the core ARGs in the Eff samples. Across the Inf and Eff samples, 58 unique vir_ARGs were detected, with the Eff samples exhibiting higher diversity of vir_ARGs than the Inf samples. Statistical analyses indicated a robust relationship between core ARG profile, MGEs associated with phage-related processes, and vir_ARG composition in the Eff samples. Additionally, the co-occurrence of MGEs and ARGs in viral genomes was observed, ranging from 22.73 % to 68.75 %. This co-occurrence may exacerbate the persistence and spread of ARGs within WWTPs. The findings present new information on the changes in core ARGs, MGEs, and phage-associated ARGs from influents to effluents in WWTPs and provide new insights into the role of phage-associated ARGs in these systems.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| |
Collapse
|
20
|
He T, Jin M, Cui P, Sun X, He X, Huang Y, Xiao X, Zhang T, Zhang X. Environmental viromes reveal the global distribution signatures of deep-sea DNA viruses. J Adv Res 2024; 57:107-117. [PMID: 37075861 PMCID: PMC10918349 DOI: 10.1016/j.jare.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
INTRODUCTION Viruses are abundant and ecologically significant in marine ecosystems. However, the virome of deep-sea sediments is not extensively investigated. OBJECTIVES To explore the distribution pattern of deep-sea viruses on a global scale, the viromes of DNA viruses isolated from 138 sediments of 5 deep-sea ecosystems were characterized. METHODS The viral particles were purified from each sediment sample. Then the viral DNAs were extracted and subjected to viral metagenomic analysis. RESULTS Here, we constructed a global deep-sea environmental virome dataset by analyzing the viral DNA of 138 sediment samples. A total of 347,737 viral operational taxonomic units (vOTUs) were identified, of which 84.94% were hitherto unknown, indicating that deep sea was a reservoir of novel DNA viruses. Furthermore, circular viral genome analysis revealed 98,581 complete genomes. The classified vOTUs included eukaryotic (44.55%) and prokaryotic (25.75%) viruses, and were taxonomically assigned to 63 viral families. The composition and abundance of the deep-sea sediment viromes were dependent on the deep-sea ecosystem as opposed to geographical region. Further analysis revealed that the viral community differentiation in different deep-sea ecosystems was driven by the virus-mediated energy metabolism. CONCLUSION Our findings showed that deep-sea ecosystems are a reservoir of novel DNA viruses and the viral community is shaped by the environmental characteristics of deep-sea ecosystems, thus presenting critical information for determining the ecological significance of viruses in global deep-sea ecosystems.
Collapse
Affiliation(s)
- Tianliang He
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Pei Cui
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China
| | - Xumei Sun
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China
| | - Xuebao He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yaqin Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510760, China
| | - Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510760, China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Li H, Cai L, Wang L, Wang Y, Xu J, Zhang R. The structure and assembly mechanisms of T4-like cyanophages community in the South China Sea. Microbiol Spectr 2024; 12:e0200223. [PMID: 38193726 PMCID: PMC10846272 DOI: 10.1128/spectrum.02002-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Marine ecosystems contain an immense diversity of phages, many of which infect cyanobacteria (cyanophage) that are largely responsible for primary productivity. To characterize the genetic diversity and biogeographic distribution of the marine T4-like cyanophage community in the northern South China Sea, the T4-like cyanophage portal protein gene (g20) was amplified. Phylogenetic analysis revealed that marine T4-like cyanophages were highly diverse, with g20 operational taxonomic units being affiliated with five defined clades (Clusters I-V). Cluster II had a wide geographic distribution, Cluster IV was the most abundant in the open sea, and Cluster I was dominant in coastal shelf environments. Our results showed T4-like cyanophages (based on g20) community was generally shaped via heterogeneous selection. Highly variable environmental factors (such as salinity and temperature) can heterogeneously select different cyanophage communities. Nevertheless, the dominant drivers of the T4-like cyanophage community based on the g20 and g23 (T4-like phage major capsid protein gene) were different, probably due to different coverages by the primer sets. Furthermore, the community assembly processes of T4-like cyanophages were affected by host traits (abundance and distribution), viral traits (latent period, burst size, and host range), and environmental properties (temperature and salinity).IMPORTANCECyanophages are abundant and ubiquitous in the oceans, altering population structures and evolution of cyanobacteria, which account for a large portion of global carbon fixation, through host mortality, horizontal gene transfer, and the modulation of host metabolism. However, little is known about the biogeography and ecological drivers that shape the cyanophage community. Here, we use g20 and g23 genes to examine the biogeographic patterns and the assembly mechanisms of T4-like cyanophage community in the northern part of the South China Sea. The different coverages of primer sets might lead to the different dominant drivers of T4-like cyanophage community based on g20 and g23 genes. Our results showed that characteristics of viral traits (latent period, burst size, and host range) and host traits (abundance and distribution) were found to either limit or enhance the biogeographic distribution of T4-like cyanophages. Overall, both virus and host properties are critical to consider when determining rules of community assembly for viruses.
Collapse
Affiliation(s)
- Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Zhang X, Wan H, Jin M, Huang L, Zhang X. Environmental viromes reveal global virosphere of deep-sea sediment RNA viruses. J Adv Res 2024; 56:87-102. [PMID: 37054879 PMCID: PMC10834809 DOI: 10.1016/j.jare.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Viruses are the most abundant and diverse life forms on the earth. Both DNA viruses and RNA viruses play important roles in marine ecosystems via regulating biogeochemical cycles. OBJECTIVES However, the virome of marine RNA viruses has been rarely explored so far. In this study, therefore, the environmental viromes of deep-sea sediment RNA viruses were characterized on a global scale to reveal the global virosphere of deep-sea RNA viruses. METHODS The viral particles were purified from each of 133 deep-sea sediment samples and then characterized based on metagenomes of RNA viruses. RESULTS In this study, we established the global virome dataset of deep-sea RNA viruses purified from 133 sediment samples that were collected from typical deep-sea ecosystems of three oceans. A total of 85,059 viral operational taxonomic units (vOTUs) were identified, of which only 1.72% were hitherto known, indicating that the deep-sea sediment is a repository of novel RNA viruses. These vOTUs were classified into 20 viral families, including prokaryotic (7.09%) and eukaryotic (65.81%) RNA viruses. Furthermore, 1,463 deep-sea RNA viruses with complete genomes were obtained. The differentiation of RNA viral communities was driven by the deep-sea ecosystems as opposed to geographical region. Specifically, the virus-encoded metabolic genes took great effects on the differentiation of RNA viral communities by mediating the energy metabolism in the deep-sea ecosystems. CONCLUSIONS Therefore, our findings indicate that the deep sea is a vast reservoir of novel RNA viruses for the first time, and the differentiation of RNA viral communities is driven by the deep-sea ecosystems through energy metabolism.
Collapse
Affiliation(s)
- Xinyi Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Haitao Wan
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Min Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Liquan Huang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
23
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel R. Investigating the viral ecology and contribution to the microbial ecology in full-scale mesophilic anaerobic digesters. CHEMOSPHERE 2024; 349:140743. [PMID: 37984648 DOI: 10.1016/j.chemosphere.2023.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
In an attempt to assess the diversity of viruses and their potential to modulate the metabolism of functional microorganisms in anaerobic digesters, we collected digestate from three mesophilic anaerobic digesters in full-scale wastewater treatment plants treating real municipal wastewater. The reads were analyzed using bioinformatics algorithms to elucidate viral diversity, identify their potential role in modulating the metabolism of functional microorganisms, and provide essential genomic information for the potential use of virus-mediated treatment in controlling the anaerobic digester microbiome. We found that Siphoviridae was the dominant family in mesophilic anaerobic digesters, followed by Myoviridae and Podoviridae. Lysogeny was prevalent in mesophilic anaerobic digesters as the majority of metagenome-assembled genomes contained at least one viral genome within them. One virus within the genome of an acetoclastic methanogen (Methanothrix soehngenii) was observed with a gene (fwdE) acquired via lateral transfer from hydrogenotrophic methanogens. The virus-mediated acquisition of fwdE gene enables possibility of mixotrophic methanogenesis in Methanothrix soehngenii. This evidence highlighted that lysogeny provides fitness advantage to methanogens in anaerobic digesters by adding flexibility to changing substrates. Similarly, we found auxiliary metabolic genes, such as cellulase and alpha glucosidase, of bacterial origin responsible for sludge hydrolysis in viruses. Additionally, we discovered novel viral genomes and provided genomic information on viruses infecting acidogenic, acetogenic, and pathogenic bacteria that can potentially be used for virus-mediated treatment to deal with the souring problem in anaerobic digesters and remove pathogens from biosolids before land application. Collectively, our study provides a genome-level understanding of virome in conjunction with the microbiome in anaerobic digesters that can be used to optimize the anaerobic digestion process for efficient biogas generation.
Collapse
Affiliation(s)
- Bishav Bhattarai
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| | - Ananda Shankar Bhattacharjee
- Department of Environmental Sciences, The University of California, Riverside, Riverside, CA, United States; USDA-ARS, United States Salinity Laboratory, Riverside, CA, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (ICM-CISC), Barcelona, Spain
| | - Ramesh Goel
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
24
|
Duan N, Hand E, Pheko M, Sharma S, Emiola A. Structure-guided discovery of anti-CRISPR and anti-phage defense proteins. Nat Commun 2024; 15:649. [PMID: 38245560 PMCID: PMC10799925 DOI: 10.1038/s41467-024-45068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Bacteria use a variety of defense systems to protect themselves from phage infection. In turn, phages have evolved diverse counter-defense measures to overcome host defenses. Here, we use protein structural similarity and gene co-occurrence analyses to screen >66 million viral protein sequences and >330,000 metagenome-assembled genomes for the identification of anti-phage and counter-defense systems. We predict structures for ~300,000 proteins and perform large-scale, pairwise comparison to known anti-CRISPR (Acr) and anti-phage proteins to identify structural homologs that otherwise may not be uncovered using primary sequence search. This way, we identify a Bacteroidota phage Acr protein that inhibits Cas12a, and an Akkermansia muciniphila anti-phage defense protein, termed BxaP. Gene bxaP is found in loci encoding Bacteriophage Exclusion (BREX) and restriction-modification defense systems, but confers immunity independently. Our work highlights the advantage of combining protein structural features and gene co-localization information in studying host-phage interactions.
Collapse
Affiliation(s)
- Ning Duan
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Emily Hand
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mannuku Pheko
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shikha Sharma
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Akintunde Emiola
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
26
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
27
|
Sun X, Jiang H, Zhang S. Diversities and interactions of phages and bacteria in deep-sea sediments as revealed by metagenomics. Front Microbiol 2024; 14:1337146. [PMID: 38260883 PMCID: PMC10801174 DOI: 10.3389/fmicb.2023.1337146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Phages are found virtually everywhere, even in extreme environments, and are extremely diverse both in their virion structures and in their genomic content. They are thought to shape the taxonomic and functional composition of microbial communities as well as their stability. A number of studies on laboratory culture and viral metagenomic research provide deeper insights into the abundance, diversity, distribution, and interaction with hosts of phages across a wide range of ecosystems. Although most of these studies focus on easily accessible samples, such as soils, lakes, and shallow oceans, little is known about bathypelagic phages. In this study, through analyzing the 16S rRNA sequencing and viral metagenomic sequencing data of 25 samples collected from five different bathypelagic ecosystems, we detected a high diversity of bacteria and phages, particularly in the cold seep and hydrothermal vent ecosystems, which have stable chemical energy. The relative abundance of phages in these ecosystems was higher than in other three abyssal ecosystems. The low phage/host ratios obtained from host prediction were different from shallow ecosystems and indicated the prevalence of prophages, suggesting the complexity of phage-bacteria interactions in abyssal ecosystems. In the correlation analysis, we revealed several phages-bacteria interaction networks of potential ecological relevance. Our study contributes to a better understanding of the interactions between bathypelagic bacteria and their phages.
Collapse
Affiliation(s)
| | | | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Bolaños LM, Michelsen M, Temperton B. Metagenomic time series reveals a Western English Channel viral community dominated by members with strong seasonal signals. THE ISME JOURNAL 2024; 18:wrae216. [PMID: 39441997 PMCID: PMC11561400 DOI: 10.1093/ismejo/wrae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Marine viruses are key players of ocean biogeochemistry, profoundly influencing microbial community ecology and evolution. Despite their importance, few studies have explored continuous inter-seasonal viral metagenomic time series in marine environments. Viral dynamics are complex, influenced by multiple factors such as host population dynamics and environmental conditions. To disentangle the complexity of viral communities, we developed an unsupervised machine learning framework to classify viral contigs into "chronotypes" based on temporal abundance patterns. Analysing an inter-seasonal monthly time series of surface viral metagenomes from the Western English Channel, we identified chronotypes and compared their functional and evolutionary profiles. Results revealed a consistent annual cycle with steep compositional changes from winter to summer and steadier transitions from summer to winter. Seasonal chronotypes were enriched in potential auxiliary metabolic genes of the ferrochelatases and 2OG-Fe(II) oxygenase orthologous groups compared to non-seasonal types. Chronotypes clustered into four groups based on their correlation profiles with environmental parameters, primarily driven by temperature and nutrients. Viral contigs exhibited a rapid turnover of polymorphisms, akin to Red Queen dynamics. However, within seasonal chronotypes, some sequences exhibited annual polymorphism recurrence, suggesting that a fraction of the seasonal viral populations evolve more slowly. Classification into chronotypes revealed viral genomic signatures linked to temporal patterns, likely reflecting metabolic adaptations to environmental fluctuations and host dynamics. This novel framework enables the identification of long-term trends in viral composition, environmental influences on genomic structure, and potential viral interactions.
Collapse
Affiliation(s)
- Luis M Bolaños
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Mojica KDA, Brussaard CPD. Viruses of Plankton: On the Edge of the Viral Frontier. Microorganisms 2023; 12:31. [PMID: 38257858 PMCID: PMC10819161 DOI: 10.3390/microorganisms12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The field of aquatic viral ecology has continued to evolve rapidly over the last three decades [...].
Collapse
Affiliation(s)
- Kristina D. A. Mojica
- Division of Marine Science, School of Ocean Science and Engineering, The University of Southern Mississippi, Stennis Space Center, Hancock County, MS 39529, USA
| | - Corina P. D. Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ—Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, The Netherlands;
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1000 GG Amsterdam, The Netherlands
| |
Collapse
|
30
|
Bellanger M, Visscher P, White RA. Viral enumeration using cost-effective wet-mount epifluorescence microscopy for aquatic ecosystems and modern microbialites. Appl Environ Microbiol 2023; 89:e0174423. [PMID: 38014959 PMCID: PMC10734538 DOI: 10.1128/aem.01744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Low-cost and robust viral enumeration is a critical first step toward understanding the global virome. Our method is a deep drive integration providing a window into viral dark matter within aquatic ecosystems. We enumerated the viruses within Green Lake and Great Salt Lake microbialites, EPS, and water column. The entire weight of all the viruses in Green Lake and Great Salt Lake are ~598 g and ~2.2 kg, respectively.
Collapse
Affiliation(s)
- Madeline Bellanger
- Department of Bioinformatics and Genomics, North Carolina Research Campus, The University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER), The University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Pieter Visscher
- Department of Marine Sciences and Geoscience, University of Connecticut, Storrs, Connecticut, USA
| | - Richard Allen White
- Department of Bioinformatics and Genomics, North Carolina Research Campus, The University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER), The University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
31
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
32
|
Morick D, Davidovich N, Zemah-Shamir Z, Kroin Y, Bigal E, Sierra E, Segura-Göthlin S, Wosnick N, Hauser-Davis RA, Tchernov D, Scheinin AP. First description of a Gammaherpesvirus in a common dolphin (Delphinus delphis) from the Eastern Mediterranean Sea. Vet Res Commun 2023; 47:2253-2258. [PMID: 37088865 DOI: 10.1007/s11259-023-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
In September 2020, a male common dolphin (Delphinus delphis) was found dead on a beach near Bat-Yam, Israel. A small, raised, well circumscribed penile lesion (i.e., mass) was identified and removed for histology and molecular characterizations. By histology, the penile mass presented focal keratinization of the squamous epithelium and a mild ballooning of acanthocytes in lower epithelium levels, as well as features compatible with viral plaques, and tested positive for a gammaherpesvirus through molecular characterization analyses. Tissue samples from the lungs, liver, and spleen, however, tested negative for herpesvirus infection. The gammaherpesvirus detected herein is similar to other isolates found in several areas worldwide in different cetacean species. This is the first reported case of gammaherpesvirus infection in dolphins from the eastern Mediterranean Sea, indicative of the need for long-term assessments to create viral infections databases in cetaceans, especially in a climate change context, which is likely to intensify infectious disease outbreaks in marine mammals in the future.
Collapse
Affiliation(s)
- Danny Morick
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel.
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
- Hong Kong Branch of Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Nadav Davidovich
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
- Israeli Veterinary Services, 20250, Bet Dagan, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Eva Sierra
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Las Palmas, Spain
| | - Simone Segura-Göthlin
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Las Palmas, Spain
| | - Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | - Dan Tchernov
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
- Hong Kong Branch of Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aviad P Scheinin
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
33
|
Kallies R, Hu D, Abdulkadir N, Schloter M, Rocha U. Identification of Huge Phages from Wastewater Metagenomes. Viruses 2023; 15:2330. [PMID: 38140571 PMCID: PMC10747093 DOI: 10.3390/v15122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Huge phages have genomes larger than 200 kilobases, which are particularly interesting for their genetic inventory and evolution. We screened 165 wastewater metagenomes for the presence of viral sequences. After identifying over 600 potential huge phage genomes, we reduced the dataset using manual curation by excluding viral contigs that did not contain viral protein-coding genes or consisted of concatemers of several small phage genomes. This dataset showed seven fully annotated huge phage genomes. The phages grouped into distinct phylogenetic clades, likely forming new genera and families. A phylogenomic analysis between our huge phages and phages with smaller genomes, i.e., less than 200 kb, supported the hypothesis that huge phages have undergone convergent evolution. The genomes contained typical phage protein-coding genes, sequential gene cassettes for metabolic pathways, and complete inventories of tRNA genes covering all standard and rare amino acids. Our study showed a pipeline for huge phage analyses that may lead to new enzymes for therapeutic or biotechnological applications.
Collapse
Affiliation(s)
- René Kallies
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Die Hu
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Nafi’u Abdulkadir
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Michael Schloter
- Department of Environmental Health, Helmholtz Munich, Ingolstaedter Landstr. 1, D-85758 Neuherberg, Germany;
| | - Ulisses Rocha
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| |
Collapse
|
34
|
Chen Y, Zhang T, Lai Q, Zhang M, Yu M, Zeng R, Jin M. Characterization and Comparative Genomic Analysis of a Deep-Sea Bacillus Phage Reveal a Novel Genus. Viruses 2023; 15:1919. [PMID: 37766325 PMCID: PMC10535572 DOI: 10.3390/v15091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus-host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from deep-sea sediments in the South China Sea. vB_BteM-A9Y has a hexametric head and a long, complex contractile tail, which are typical features of myophages. vB_BteM-A9Y initiated host lysis at 60 min post infection with a burst size of 75 PFU/cell. The phage genome comprises 38,634 base pairs and encodes 54 predicted open reading frames (ORFs), of which 27 ORFs can be functionally annotated by homology analysis. Interestingly, abundant ORFs involved in DNA damage repair were identified in the phage genome, suggesting that vB_BteM-A9Y encodes multiple pathways for DNA damage repair, which may help to maintain the stability of the host/phage genome. A BLASTn search of the whole genome sequence of vB_BteM-A9Y against the GenBank revealed no existing homolog. Consistently, a phylogenomic tree and proteome-based phylogenetic tree analysis showed that vB_BteM-A9Y formed a unique branch. Further comparative analysis of genomic nucleotide similarity and ORF homology of vB_BteM-A9Y with its mostly related phages showed that the intergenomic similarity between vB_BteM-A9Y and these phages was 0-33.2%. Collectively, based on the comprehensive morphological, phylogenetic, and comparative genomic analysis, we propose that vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, our study will increase our knowledge on deep-sea virus diversity and virus-host interactions, as well as expanding our knowledge on phage taxonomy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Tianyou Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350000, China;
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
35
|
Yang M, Du S, Zhang Z, Xia Q, Liu H, Qin F, Wu Z, Ying H, Wu Y, Shao J, Zhao Y. Genomic diversity and biogeographic distributions of a novel lineage of bacteriophages that infect marine OM43 bacteria. Microbiol Spectr 2023; 11:e0494222. [PMID: 37607063 PMCID: PMC10580990 DOI: 10.1128/spectrum.04942-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
The marine methylotrophic OM43 clade is considered an important bacterial group in coastal microbial communities. OM43 bacteria, which are closely related to phytoplankton blooms, have small cell sizes and streamlined genomes. Bacteriophages profoundly shape the evolutionary trajectories, population dynamics, and physiology of microbes. The prevalence and diversity of several phages that infect OM43 bacteria have been reported. In this study, we isolated and sequenced two novel OM43 phages, MEP401 and MEP402. These phages share 90% of their open reading frames (ORFs) and are distinct from other known phage isolates. Furthermore, a total of 99 metagenomic viral genomes (MVGs) closely related to MEP401 and MEP402 were identified. Phylogenomic analyses suggest that MEP401, MEP402, and these identified MVGs belong to a novel subfamily in the family Zobellviridae and that they can be separated into two groups. Group I MVGs show conserved whole-genome synteny with MEP401, while group II MVGs possess the MEP401-type DNA replication module and a distinct type of morphogenesis and packaging module, suggesting that genomic recombination occurred between phages. Most members in these two groups were predicted to infect OM43 bacteria. Metagenomic read-mapping analysis revealed that the phages in these two groups are globally ubiquitous and display distinct biogeographic distributions, with some phages being predominant in cold regions, some exclusively detected in estuarine stations, and others displaying wider distributions. This study expands our knowledge of the diversity and ecology of a novel phage lineage that infects OM43 bacteria by describing their genomic diversity and global distribution patterns. IMPORTANCE OM43 phages that infect marine OM43 bacteria are important for host mortality, community structure, and physiological functions. In this study, two OM43 phages were isolated and characterized. Metagenomic viral genome (MVG) retrieval using these two OM43 phages as baits led to the identification of two phage groups of a new subfamily in the family Zobellviridae. We found that group I MVGs share similar genomic content and arrangement with MEP401 and MEP402, whereas group II MVGs only possess the MEP401-type DNA replication module. Metagenomic mapping analysis suggests that members in these two groups are globally ubiquitous with distinct distribution patterns. This study provides important insights into the genomic diversity and biogeography of the OM43 phages in the global ocean.
Collapse
Affiliation(s)
- Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanqi Ying
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yin Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Zhong ZP, Vik D, Rapp JZ, Zablocki O, Maughan H, Temperton B, Deming JW, Sullivan MB. Lower viral evolutionary pressure under stable versus fluctuating conditions in subzero Arctic brines. MICROBIOME 2023; 11:174. [PMID: 37550784 PMCID: PMC10405475 DOI: 10.1186/s40168-023-01619-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions. RESULTS We used long- and short-read viromics and metatranscriptomics to study viruses in Arctic cryopeg brine, sea ice brine, and underlying seawater, recovering 11,088 vOTUs (~species-level taxonomic unit), a 4.4-fold increase of known viruses in these brines. More specifically, the long-read-powered viromes doubled the number of longer (≥25 kb) vOTUs generated and recovered more hypervariable regions by >5-fold compared to short-read viromes. Distribution assessment, by comparing to known viruses in public databases, supported that cryopeg brine viruses were of marine origin yet distinct from either sea ice brine or seawater viruses, while 94% of sea ice brine viruses were also present in seawater. A virus-encoded, ecologically important exopolysaccharide biosynthesis gene was identified, and many viruses (~half of metatranscriptome-inferred "active" vOTUs) were predicted as actively infecting the dominant microbial genera Marinobacter and Polaribacter in cryopeg and sea ice brines, respectively. Evolutionarily, microdiversity (intra-species genetic variations) analyses suggested that viruses within the stable cryopeg brine were under significantly lower evolutionary pressures than those in the fluctuating sea ice environment, while many sea ice brine virus-tail genes were under positive selection, indicating virus-host co-evolutionary arms races. CONCLUSIONS Our results confirmed the benefits of long-read-powered viromics in understanding the environmental virosphere through significantly improved genomic recovery, expanding viral discovery and the potential for biological inference. Evidence of viruses actively infecting the dominant microbes in subzero brines and modulating host metabolism underscored the potential impact of viruses on these remote and underexplored extreme ecosystems. Microdiversity results shed light on different strategies viruses use to evolve and adapt when extreme conditions are stable versus fluctuating. Together, these findings verify the value of long-read-powered viromics and provide foundational data on viral evolution and virus-microbe interactions in Earth's destabilized and rapidly disappearing cryosphere. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Josephine Z Rapp
- Department of Biology, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, UK
| | - Jody W Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Jin Y, Li W, Zhang H, Ba X, Li Z, Zhou J. The Post-Antibiotic Era: A New Dawn for Bacteriophages. BIOLOGY 2023; 12:biology12050681. [PMID: 37237494 DOI: 10.3390/biology12050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Phages are the most biologically diverse entities in the biosphere, infecting specific bacteria. Lytic phages quickly kill bacteria, while lysogenic phages integrate their genomes into bacteria and reproduce within the bacteria, participating in the evolution of natural populations. Thus, lytic phages are used to treat bacterial infections. However, due to the huge virus invasion, bacteria have also evolved a special immune mechanism (CRISPR-Cas systems, discovered in 1987). Therefore, it is necessary to develop phage cocktails and synthetic biology methods to infect bacteria, especially against multidrug-resistant bacteria infections, which are a major global threat. This review outlines the discovery and classification of phages and the associated achievements in the past century. The main applications of phages, including synthetic biology and PT, are also discussed, in addition to the effects of PT on immunity, intestinal microbes, and potential safety concerns. In the future, combining bioinformatics, synthetic biology, and classic phage research will be the way to deepen our understanding of phages. Overall, whether phages are an important element of the ecosystem or a carrier that mediates synthetic biology, they will greatly promote the progress of human society.
Collapse
Affiliation(s)
- Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wei Li
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
38
|
Zheng K, Dong Y, Liang Y, Liu Y, Zhang X, Zhang W, Wang Z, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:271-285. [PMID: 37275543 PMCID: PMC10232697 DOI: 10.1007/s42995-022-00160-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/01/2022] [Indexed: 06/07/2023]
Abstract
Pseudoalteromonas, with a ubiquitous distribution, is one of the most abundant marine bacterial genera. It is especially abundant in the deep sea and polar seas, where it has been found to have a broad metabolic capacity and unique co-existence strategies with other organisms. However, only a few Pseudoalteromonas phages have so far been isolated and investigated and their genomic diversity and distribution patterns are still unclear. Here, the genomes, taxonomic features and distribution patterns of Pseudoalteromonas phages are systematically analyzed, based on the microbial and viral genomes and metagenome datasets. A total of 143 complete or nearly complete Pseudoalteromonas-associated phage genomes (PSAPGs) were identified, including 34 Pseudoalteromonas phage isolates, 24 proviruses, and 85 Pseudoalteromonas-associated uncultured viral genomes (UViGs); these were assigned to 47 viral clusters at the genus level. Many integrated proviruses (n = 24) and filamentous phages were detected (n = 32), suggesting the prevalence of viral lysogenic life cycle in Pseudoalteromonas. PSAPGs encoded 66 types of 249 potential auxiliary metabolic genes (AMGs) relating to peptidases and nucleotide metabolism. They may also participate in marine biogeochemical cycles through the manipulation of the metabolism of their hosts, especially in the phosphorus and sulfur cycles. Siphoviral and filamentous PSAPGs were the predominant viral lineages found in polar areas, while some myoviral and siphoviral PSAPGs encoding transposase were more abundant in the deep sea. This study has expanded our understanding of the taxonomy, phylogenetic and ecological scope of marine Pseudoalteromonas phages and deepens our knowledge of viral impacts on Pseudoalteromonas. It will provide a baseline for the study of interactions between phages and Pseudoalteromonas in the ocean. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00160-z.
Collapse
Affiliation(s)
- Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Wenjing Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
| | - Yeong Yik Sung
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Haide College, Ocean University of China, Qingdao, 266100 China
- The Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| |
Collapse
|
39
|
Gilbert NE, LeCleir GR, Pound HL, Strzepek RF, Ellwood MJ, Twining BS, Roux S, Boyd PW, Wilhelm SW. Giant Virus Infection Signatures Are Modulated by Euphotic Zone Depth Strata and Iron Regimes of the Subantarctic Southern Ocean. mSystems 2023; 8:e0126022. [PMID: 36794943 PMCID: PMC10134803 DOI: 10.1128/msystems.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.
Collapse
Affiliation(s)
- Naomi E. Gilbert
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gary R. LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Robert F. Strzepek
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip W. Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
40
|
Hesketh-Best PJ, Bosco-Santos A, Garcia SL, O’Beirne MD, Werne JP, Gilhooly WP, Silveira CB. Viruses of sulfur oxidizing phototrophs encode genes for pigment, carbon, and sulfur metabolisms. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:126. [PMID: 38665202 PMCID: PMC11041744 DOI: 10.1038/s43247-023-00796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2024]
Abstract
Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.
Collapse
Affiliation(s)
| | - Alice Bosco-Santos
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Sofia L. Garcia
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Molly D. O’Beirne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Josef P. Werne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - William P. Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
| | | |
Collapse
|
41
|
Luo L, Ma X, Guo R, Jiang T, Wang T, Shao H, He H, Wang H, Liang Y, McMinn A, Guo C, Wang M. Characterization and genomic analysis of a novel Synechococcus phage S-H9-2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Res 2023; 328:199072. [PMID: 36781075 DOI: 10.1016/j.virusres.2023.199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Cyanophages are known to influence the population dynamics and community structure of cyanobacteria and thus play an important role in biogeochemical cycles in aquatic ecosystems. In this study, a novel Synechococcus phage S-H9-2 infecting Synechococcus sp. WH 8102 was isolated from the coastal water of the Yellow Sea. Synechococcus phage S-H9-2 contains a 187,320 bp genome of double-stranded DNA with a G + C content of 40.3%, 202 potential open reading frames (ORFs), and 15 tRNAs. Phylogenetic analysis and nucleotide-based intergenomic similarity suggest that Synechococcus phage S-H9-2 belongs to the Bristolvirus genus under the family Kyanoviridae. Homologs of the S-H9-2 open reading frame can be found in a variety of marine environments, as shown by the results of mapping the genome sequence of S-H9-2 to the Global Ocean Viromes 2.0 dataset. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as phylogenetic relationships based on complete genome sequences, reflect the mechanism of phage-host interaction and host-specific strategies for adaptation to environmental conditions. This study enriches the current genomic database of cyanophage and contributed to our understanding of the virus-host interactions and their adaption to the environment.
Collapse
Affiliation(s)
- Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaohong Ma
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao266011, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, SA
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
42
|
Cai L, Weinbauer MG, Xie L, Zhang R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci Rev 2023; 10:nwad009. [PMID: 36960220 PMCID: PMC10029852 DOI: 10.1093/nsr/nwad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche BP28, France
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
43
|
Graham EH, Tom WA, Neujahr AC, Adamowicz MS, Clarke JL, Herr JR, Fernando SC. The persistence and stabilization of auxiliary genes in the human skin virome. Virol J 2023; 20:49. [PMID: 36949545 PMCID: PMC10031188 DOI: 10.1186/s12985-023-02012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The human skin contains a diverse microbiome that provides protective functions against environmental pathogens. Studies have demonstrated that bacteriophages modulate bacterial community composition and facilitate the transfer of host-specific genes, potentially influencing host cellular functions. However, little is known about the human skin virome and its role in human health. Especially, how viral-host relationships influence skin microbiome structure and function is poorly understood. RESULTS Population dynamics and genetic diversity of bacteriophage communities in viral metagenomic data collected from three anatomical skin locations from 60 subjects at five different time points revealed that cutaneous bacteriophage populations are mainly composed of tailed Caudovirales phages that carry auxiliary genes to help improve metabolic remodeling to increase bacterial host fitness through antimicrobial resistance. Sequence variation in the MRSA associated antimicrobial resistance gene, erm(C) was evaluated using targeted sequencing to further confirm the presence of antimicrobial resistance genes in the human virome and to demonstrate how functionality of such genes may influence persistence and in turn stabilization of bacterial host and their functions. CONCLUSIONS This large temporal study of human skin associated viruses indicates that the human skin virome is associated with auxiliary metabolic genes and antimicrobial resistance genes to help increase bacterial host fitness.
Collapse
Grants
- 2017-IJ-CX-0025, 2019-75-CX-0075, and 2019-R2-CX-0048 U.S. Department of Justice
- 2017-IJ-CX-0025, 2019-75-CX-0075, and 2019-R2-CX-0048 U.S. Department of Justice
- 2017-IJ-CX-0025, 2019-75-CX-0075, and 2019-R2-CX-0048 U.S. Department of Justice
- 2017-IJ-CX-0025, 2019-75-CX-0075, and 2019-R2-CX-0048 U.S. Department of Justice
- 2017-IJ-CX-0025, 2019-75-CX-0075, and 2019-R2-CX-0048 U.S. Department of Justice
- 2018-67015-27496 and 2018-68003-27545 National Institute of Food and Agriculture
Collapse
Affiliation(s)
- Ema H Graham
- PhD Program in Complex Biosystems, University of Nebraska, 3940 Fair St, C220K, Lincoln, NE, 68583, USA
| | - Wesley A Tom
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Alison C Neujahr
- PhD Program in Complex Biosystems, University of Nebraska, 3940 Fair St, C220K, Lincoln, NE, 68583, USA
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583, USA
| | - Michael S Adamowicz
- College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jennifer L Clarke
- PhD Program in Complex Biosystems, University of Nebraska, 3940 Fair St, C220K, Lincoln, NE, 68583, USA
- Department of Statistics, University of Nebraska, Lincoln, NE, 68588, USA
- Food Science and Technology Department, University of Nebraska, Lincoln, NE, 68588, USA
| | - Joshua R Herr
- PhD Program in Complex Biosystems, University of Nebraska, 3940 Fair St, C220K, Lincoln, NE, 68583, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68503, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68503, USA
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Samodha C Fernando
- PhD Program in Complex Biosystems, University of Nebraska, 3940 Fair St, C220K, Lincoln, NE, 68583, USA.
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583, USA.
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA.
- College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE, 68583, USA.
- Food Science and Technology Department, University of Nebraska, Lincoln, NE, 68588, USA.
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
44
|
Qin J, Ji B, Ma Y, Liu X, Wang T, Liu G, Li B, Wang G, Gao P. Diversity and potential function of pig gut DNA viruses. Heliyon 2023; 9:e14020. [PMID: 36915549 PMCID: PMC10006684 DOI: 10.1016/j.heliyon.2023.e14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Viruses are ubiquitous in the gut of animals and play an important role in the ecology of the gut microbiome. The potential effects of these substances on the growth and development of the body are not fully known. Little is known about the effects of breeding environment on pig gut virome. Here, there are 3584 viral operational taxonomic units (vOTUs) longer than 5 kb identified by virus-enriched metagenome sequencing from 25 pig fecal samples. Only a small minority of vOTUs (11.16%) can be classified at the family level, and ∼50% of the genes could be annotated, supporting the concept of pig gut as reservoirs of substantial undescribed viral genetic diversity. The composition of pig gut virome in the six regions may be related to geography. There are only 20 viral clusters (VCs) shared among pig gut virome in six regions of Shanxi Province. These viruses rarely carry antibiotic resistance genes (ARGs). At the same time, they possess abundant auxiliary metabolic genes (AMGs) potentially involved in carbon, sulfur metabolism and cofactor biosynthesis, etc. This study has revealed the unique characteristics and potential function of pig gut DNA virome and established a foundation for the recognition of the viral roles in gut environment.
Collapse
Affiliation(s)
- Junjun Qin
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bingzhen Ji
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xin Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tian Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
45
|
Tsertou MI, Triga A, Droubogiannis S, Kokkari C, Anasi G, Katharios P. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a Mediterranean fish hatchery: Description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie. Front Microbiol 2023; 14:1078669. [PMID: 36925475 PMCID: PMC10013915 DOI: 10.3389/fmicb.2023.1078669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Tenacibaculum larymnensis sp. nov., a novel species of the Tenacibaculum genus was isolated from a commercial fish hatchery in Greece. The novel species is phylogenetically close to T. discolor and was biochemically and genetically characterized. The genome of T. larymnensis has 3.66 Mbps length, 31.83% GC content and the genomic analysis demonstrated that it harbors a wide enzymatic repertoire suggestive of increased degrading capacity but also several virulence factors including hemolysins, secretion systems, transporters, siderophores, pili and extracellular proteins. Using the novel strain, a virulent bacteriophage designated as Tenacibaculum phage Larrie was isolated and characterized. Larrie is a novel Siphovirus with relatively large genome, 77.5 kbps with 111 ORFs, a GC content of 33.7% and an exclusively lytic lifestyle. The new phage-host system can serve as an efficient model to study microbial interactions in the aquatic environment which contribute to the nutrient cycling.
Collapse
Affiliation(s)
- Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
46
|
Spatiotemporal Dynamics of Coastal Viral Community Structure and Potential Biogeochemical Roles Affected by an Ulva prolifera Green Tide. mSystems 2023; 8:e0121122. [PMID: 36815859 PMCID: PMC10134843 DOI: 10.1128/msystems.01211-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
Collapse
|
47
|
Viral Community Structure and Potential Functions in the Dried-Out Aral Sea Basin Change along a Desiccation Gradient. mSystems 2023; 8:e0099422. [PMID: 36625585 PMCID: PMC9948696 DOI: 10.1128/msystems.00994-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dried-out Aral Sea basin represents an extreme environment due to a man-made ecological disaster. Studies conducted in this unique environment revealed high levels of pollution and a specifically adapted microbiota; however, viral populations remained entirely unexplored. By employing an in-depth analysis based on the sequencing of metagenomic DNA recovered from rhizosphere samples of Suaeda acuminata (C. A. Mey.) Moq. along a desiccation gradient of 5, 10, and 40 years, we detected a diverse viral community comprising 674 viral populations (viral operational taxonomic units [vOTUs]) dominated by Caudovirales. Targeted analyses highlighted that viral populations in this habitat are subjected to certain dynamics that are driven mainly by the gradient of desiccation, the corresponding salinity, and the rhizosphere bacterial populations. In silico predictions linked the viruses to dominant prokaryotic taxa in the Aral Sea basin, such as Gammaproteobacteria, Actinomycetia, and Bacilli. The lysogenic lifestyle was predicted to be predominant in areas that dried out 5 years ago, representing the early revegetation phase. Metabolic prediction of viral auxiliary metabolic genes (AMGs) suggests that viruses may play a role in the biogeochemical cycles, stress resilience, and competitiveness of their hosts due to the presence of genes that are involved in biofilm formation. Overall, our study provides important insights into viral ecology in an extreme environment and expands our knowledge related to virus occurrence in terrestrial systems. IMPORTANCE Environmental viruses have added a wealth of knowledge to ecological studies with the emergence of metagenomic technology and approaches. They are also becoming recognized as important genetic repositories that underpin the functioning of terrestrial ecosystems but have remain moslty unexplored. Using shotgun metagenome sequencing and bioinformatic tools, we found that the viral community structure was affected during natural revegetation in the dried-up Aral Sea area, a model habitat for investigating natural ecological restoration but still understudied. In this study, we highlight the importance of viruses, elements that are overlooked, for their potential contribution to terrestrial ecosystems, i.e., nutrient cycles, stress resilience, and host competitiveness, during natural revegetation.
Collapse
|
48
|
Nelson CE, Wegley Kelly L, Haas AF. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:431-460. [PMID: 36100218 DOI: 10.1146/annurev-marine-042121-080917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.
Collapse
Affiliation(s)
- Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, and Sea Grant College Program, School of Ocean and Earth Sciences and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA;
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands;
| |
Collapse
|
49
|
Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, Yang LL, Guo YX, Jin T, Shi M, Yao T, Lu J, Ye LT, Shi SK, Wang M, Duan M, Zhang DC. A remarkably diverse and well-organized virus community in a filter-feeding oyster. MICROBIOME 2023; 11:2. [PMID: 36611217 PMCID: PMC9825006 DOI: 10.1186/s40168-022-01431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Viruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation. RESULTS Here, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oyster Crassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels. CONCLUSIONS In this study, we generated a first "knowledge landscape" of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yi-Fei Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Majorbio Bio-Pharm Technology Co Ltd, Shanghai, 201203, China
| | - Hong-Ying Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Guang Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Li-Ling Yang
- Tianjin Agricultural University, Tianjin, 300384, China
| | | | - Tao Jin
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Mang Shi
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Shao-Kun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, Guangdong, China
| | - Meng Wang
- Bureau of Agriculture and Rural Affairs of Conghua District, Guangzhou, 510925, Guangdong, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China, Hubei.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
50
|
Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, Chen F. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Front Microbiol 2023; 14:1164101. [PMID: 37138617 PMCID: PMC10149686 DOI: 10.3389/fmicb.2023.1164101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Marine phages play an important role in marine biogeochemical cycles by regulating the death, physiological metabolism, and evolutionary trajectory of bacteria. The Roseobacter group is an abundant and important heterotrophic bacterial group in the ocean, and plays an important role in carbon, nitrogen, sulfur and phosphorus cycling. The CHAB-I-5 lineage is one of the most dominant Roseobacter lineages, but remains largely uncultured. Phages infecting CHAB-I-5 bacteria have not yet been investigated due to the lack of culturable CHAB-I-5 strains. In this study, we isolated and sequenced two new phages (CRP-901 and CRP-902) infecting the CHAB-I-5 strain FZCC0083. We applied metagenomic data mining, comparative genomics, phylogenetic analysis, and metagenomic read-mapping to investigate the diversity, evolution, taxonomy, and biogeography of the phage group represented by the two phages. The two phages are highly similar, with an average nucleotide identity of 89.17%, and sharing 77% of their open reading frames. We identified several genes involved in DNA replication and metabolism, virion structure, DNA packing, and host lysis from their genomes. Metagenomic mining identified 24 metagenomic viral genomes closely related to CRP-901 and CRP-902. Genomic comparison and phylogenetic analysis demonstrated that these phages are distinct from other known viruses, representing a novel genus-level phage group (CRP-901-type). The CRP-901-type phages do not contain DNA primase and DNA polymerase genes, but possess a novel bifunctional DNA primase-polymerase gene with both primase and polymerase activities. Read-mapping analysis showed that the CRP-901-type phages are widespread across the world's oceans and are most abundant in estuarine and polar waters. Their abundance is generally higher than other known roseophages and even higher than most pelagiphages in the polar region. In summary, this study has greatly expanded our understanding of the genetic diversity, evolution, and distribution of roseophages. Our analysis suggests that the CRP-901-type phage is an important and novel marine phage group that plays important roles in the physiology and ecology of roseobacters.
Collapse
Affiliation(s)
- Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yanlin Zhao,
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Feng Chen,
| |
Collapse
|