1
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
2
|
Tasopoulou KM, Karakasiliotis I, Argyriou C, Bampali M, Tsaroucha AK, Dovrolis N, Christaina E, Georgiadis GS. Next-Generation Sequencing of microRNAs in Small Abdominal Aortic Aneurysms: MiR-24 as a Biomarker. Ann Vasc Surg 2024; 99:366-379. [PMID: 37922957 DOI: 10.1016/j.avsg.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.
Collapse
Affiliation(s)
- Kalliopi-Maria Tasopoulou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Argyriou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Bampali
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Christaina
- Department of Biostatistics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
3
|
Zhang Y, Huang X, Sun T, Shi L, Liu B, Hong Y, Fu QL, Zhang Y, Li X. MicroRNA-19b-3p dysfunction of mesenchymal stem cell-derived exosomes from patients with abdominal aortic aneurysm impairs therapeutic efficacy. J Nanobiotechnology 2023; 21:135. [PMID: 37101174 PMCID: PMC10131394 DOI: 10.1186/s12951-023-01894-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Senescence of vascular smooth muscle cells (VSMCs) contributes to the formation of abdominal aortic aneurysm (AAA). Although mesenchymal stem cell exosomes (MSC-EXO) have been confirmed to restrict the development of AAA, their biological activity depends largely on the physiological state of the MSCs. This study aimed to compare the effects of adipose-derived MSC-EXO from healthy donors (HMEXO) and AAA patients (AMEXO) on senescence of VSMCs in AAA and explore the underlying mechanisms. An ApoE-/- mouse model of AAA was used to investigate the therapeutic effects of HMEXO, AMEXO or miR-19b-3p-AMEXO on AAA development. This in vitro model of AAA was established by treating VSMCs with Ang II (Angiotensin II). The senescence of VSMCs was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The morphology of mitochondria in VSMCs was examined by MitoTracker staining. HMEXO exhibited superior capacity compared with AMEXO to inhibit VSMC senescence and attenuate AAA formation in Ang II-treated ApoE-/- mice. In vitro, both AMEXO and HMEXO inhibited Ang II-induced VSMC senescence via downregulation of mitochondrial fission. Notably, compared with HMEXO, the ability of AMEXO to inhibit VSMC senescence was significantly decreased. miRNA sequencing and the expression of miR-19b-3p was significantly decreased in AMEXO compared with HMEXO. Luciferase assay suggested that MST4 (Mammalian sterile-20-like kinase 4) is a potential target of miR-19b-3p. Mechanistically, miR-19b-3p in HMEXO ameliorated VSMC senescence by inhibiting mitochondrial fission via regulation of the MST4/ERK/Drp1 signaling pathway. Overexpression of miR-19b-3p in AMEXO improved their beneficial effect on AAA formation. Our study reveals that MSC-exosomal miR-19b-3p exerts protective effects against Ang II-induced AAA and VSMC senescence via regulation of the MST4/ERK/Drp1 pathway. The pathological state of AAA patients alters the miRNA components of AMEXO and impairs their therapeutic benefits.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tucheng Sun
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linli Shi
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Lopez JL, Ramirez JL, Phu TA, Duong P, Bouchareychas L, Kuhrau CR, Lin PY, Eckalbar WL, Barczak AJ, Rudolph JD, Maliskova L, Conte MS, Vartanian SM, Raffai RL, Oskowitz AZ. Patients with abdominal aortic aneurysms have reduced levels of microRNA 122-5p in circulating exosomes. PLoS One 2023; 18:e0281371. [PMID: 36787323 PMCID: PMC9928131 DOI: 10.1371/journal.pone.0281371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVE There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.
Collapse
Affiliation(s)
- Jose L. Lopez
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Joel L. Ramirez
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Tuan Anh Phu
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco, California, United States of America
| | - Phat Duong
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco, California, United States of America
| | - Laura Bouchareychas
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco, California, United States of America
| | - Christina R. Kuhrau
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Pei-Yu Lin
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Walter L. Eckalbar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea J. Barczak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua D. Rudolph
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Lenka Maliskova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. Conte
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Shant M. Vartanian
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Robert L. Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco, California, United States of America
| | - Adam Z. Oskowitz
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Plasma complement component C2: a potential biomarker for predicting abdominal aortic aneurysm related complications. Sci Rep 2022; 12:21252. [PMID: 36482198 PMCID: PMC9732295 DOI: 10.1038/s41598-022-24698-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Blood-based adjunctive measures that can reliably predict abdominal aortic aneurysm (AAA)-related complications hold promise for mitigating the AAA disease burden. In this pilot study, we sought to evaluate the prognostic performance of complement factors in predicting AAA-related clinical outcomes. We recruited consecutive AAA patients (n = 75) and non-AAA patients (n = 75) presenting to St. Michael's Hospital. Plasma levels of complement proteins were assessed at baseline, as well as prospectively measured regularly over a period of 2 years. The primary outcome was the incidence of rapidly progressing AAA (i.e. aortic expansion), defined as change in AAA diameter by either 0.5 cm in 6 months, or 1 cm in 12 months. Secondary outcomes included incidence of major adverse aortic events (MAAE) and major adverse cardiovascular events (MACE). All study outcomes (AAA diameter, MACE and MAAE) were obtained during follow-up. Multivariable adjusted Cox regression analyses were performed to assess the prognostic value of plasma C2 levels in patients with AAA regarding rapid aortic expansion and MAAE and MACE. Event-free survival rates of both groups were also compared. Compared to non-AAA patients, patients with AAA demonstrated significantly higher plasma concentrations of C1q, C4, Factor B, Factor H and Factor D, and significantly lower plasma concentrations of C2, C3, and C4b (p = 0.001). After a median of 24 months from initial baseline measurements, C2 was determined as the strongest predictor of rapid aortic expansion (HR 0.10, p = 0.040), MAAE (HR 0.09, p = 0.001) and MACE (HR 0.14, p = 0.011). Based on the data from the survival analysis, higher levels of C2 at admission in patients with AAA predicted greater risk for rapid aortic expansion and MAAE (not MACE). Plasma C2 has the potential to be a biomarker for predicting rapid aortic expansion, MAAE, and the eventual need for an aortic intervention in AAA patients.
Collapse
|
6
|
Towards Precritical Medical Therapy of the Abdominal Aortic Aneurysm. Biomedicines 2022; 10:biomedicines10123066. [PMID: 36551822 PMCID: PMC9775372 DOI: 10.3390/biomedicines10123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pharmacotherapy for abdominal aortic aneurysm (AAA) can be useful for prevention, especially in people at higher risk, for slowing down AAA progression, as well as for post-surgery adjuvant treatment. Our review focuses on novel pharmacotherapy approaches targeted towards slowing down progression of AAA, known also as secondary prevention therapy. Guidelines for AAA are not specific to slow down the expansion rate of an abdominal aortic aneurysm, and therefore no medical therapy is recommended. New ideas are urgently needed to develop a novel medical therapy. We are hopeful that in the future, pharmacologic treatment will play a key role in the prevention and treatment of AAA.
Collapse
|
7
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
8
|
Bian H, Wang Y, Wu P, Han N, Wang L, Li X, Zhang X, Cho K, Zhang Y, Yin J, Jiang B. Rosmarinic Acid Suppresses Abdominal Aortic Aneurysm Progression in Apolipoprotein E-deficient Mice. PLANTA MEDICA 2022; 88:899-912. [PMID: 34741296 DOI: 10.1055/a-1659-3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An abdominal aortic aneurysm is a life-threatening cardiovascular disorder caused by dissection and rupture. No effective medicine is currently available for the > 90% of patients whose aneurysms are below the surgical threshold. The present study investigated the impact of rosmarinic acid, salvianolic acid C, or salvianolic acid B on experimental abdominal aortic aneurysms. Abdominal aortic aneurysms were induced in apolipoprotein E-deficient mice via infusion of angiotensin II for 4 wks. Rosmarinic acid, salvianolic acid C, salvianolic acid B, or doxycycline as a positive control was provided daily through intraperitoneal injection. Administration of rosmarinic acid was found to decrease the thickness of the aortic wall, as determined by histopathological assay. Rosmarinic acid also exhibited protection against elastin fragmentation in aortic media and down-regulated cell apoptosis and proliferation in the aortic adventitia. Infiltration of macrophages, T lymphocytes, and neutrophils in aortic aneurysms was found, especially at the aortic adventitia. Rosmarinic acid, salvianolic acid C, or salvianolic acid B inhibited the infiltration on macrophages specifically, but these compounds did not influence T lymphocytes and neutrophils. Expression of matrix metalloproteinase 9 and macrophage migration inhibitory factor significantly increased in aortic aneurysms. Rosmarinic acid and salvianolic acid C decreased the expression of matrix metalloproteinase-9 in media, and rosmarinic acid also tended to reduce migration inhibitory factor expression. Further then, partial least squares-discriminate analysis was used to classify metabolic changes among different treatments. Rosmarinic acid affected most of the metabolites in the biosynthesis of the citrate cycle, fatty acid pathway significantly. Our present study on mice demonstrated that rosmarinic acid inhibited multiple pathological processes, which were the key features important in abdominal aortic aneurysm formation. Further study on rosmarinic acid, the novel candidate for aneurysmal therapy, should be undertaken to determine its potential for clinical use.
Collapse
Affiliation(s)
- Huimiao Bian
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Wang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Peng Wu
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Na Han
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - XianJing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kenka Cho
- Takarazuka University of Medical and Health Care, Hanayashiki-Midorigaoka, Takarazuka-city, Japan
| | - Yongyu Zhang
- West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Jun Yin
- Shenyang Pharmaceutical University, Wenhua Road #103, Shenyang, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Ren J, Wu J, Tang X, Chen S, Wang W, Lv Y, Wu L, Yang D, Zheng Y. Ageing- and AAA-associated differentially expressed proteins identified by proteomic analysis in mice. PeerJ 2022; 10:e13129. [PMID: 35637715 PMCID: PMC9147329 DOI: 10.7717/peerj.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease of high prevalence in old age, and its incidence gradually increases with increasing age. There were few studies about differences in the circulatory system in the incidence of AAA, mainly because younger patients with AAA are fewer and more comorbid nonatherosclerotic factors. Method We induced AAA in ApoE-/- male mice of different ages (10 or 24 weeks) and obtained plasma samples. After the top 14 most abundant proteins were detected, the plasma was analyzed by a proteomic study using the data-dependent acquisition (DDA) technique. The proteomic results were compared between different groups to identify age-related differentially expressed proteins (DEPs) in the circulation that contribute to AAA formation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed by R software. The top 10 proteins were determined with the MCC method of Cytoscape, and transcription factor (TF) prediction of the DEPs was performed with iRegulon (Cytoscape). Results The aortic diameter fold increase was higher in the aged group than in the youth group (p < 0.01). Overall, 92 DEPs related to age and involved in AAA formation were identified. GO analysis of the DEPs showed enrichment of the terms wounding healing, response to oxidative stress, regulation of body fluid levels, ribose phosphate metabolic process, and blood coagulation. The KEGG pathway analysis showed enrichment of the terms platelet activation, complement and coagulation cascades, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and ECM-receptor interaction. The top 10 proteins were Tpi1, Eno1, Prdx1, Ppia, Prdx6, Vwf, Prdx2, Fga, Fgg, and Fgb, and the predicted TFs of these proteins were Nfe2, Srf, Epas1, Tbp, and Hoxc8. Conclusion The identified proteins related to age and involved in AAA formation were associated with the response to oxidative stress, coagulation and platelet activation, and complement and inflammation pathways, and the TFs of these proteins might be potential targets for AAA treatments. Further experimental and biological studies are needed to elucidate the role of these age-associated and AAA-related proteins in the progression of AAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Hawkins RB, Salmon M, Su G, Lu G, Leroy V, Bontha SV, Mas VR, Jr GRU, Ailawadi G, Sharma AK. Mesenchymal Stem Cells Alter MicroRNA Expression and Attenuate Thoracic Aortic Aneurysm Formation. J Surg Res 2021; 268:221-231. [PMID: 34371281 PMCID: PMC11044812 DOI: 10.1016/j.jss.2021.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAA) are a progressive disease characterized by inflammation, smooth muscle cell activation and matrix degradation. We hypothesized that mesenchymal stem cells (MSCs) can immunomodulate vascular inflammation and remodeling via altered microRNA (miRNAs) expression profile to attenuate TAA formation. MATERIALS AND METHODS C57BL/6 mice underwent topical elastase application to form descending TAAs. Mice were also treated with MSCs on days 1 and 5 and aortas were analyzed on day 14 for aortic diameter. Cytokine array was performed in aortic tissue and total RNA was tagged and hybridized for miRNAs microarray analysis. Immunohistochemistry was performed for elastin degradation and leukocyte infiltration. RESULTS Treatment with MSCs significantly attenuated aortic diameter and TAA formation compared to untreated mice. MSC administration also attenuated T-cell, neutrophil and macrophage infiltration and prevented elastic degradation to mitigate vascular remodeling. MSC treatment also attenuated aortic inflammation by decreasing proinflammatory cytokines (CXCL13, IL-27, CXCL12 and RANTES) and upregulating anti-inflammatory interleukin-10 expression in aortic tissue of elastase-treated mice. TAA formation demonstrated activation of specific miRNAs that are associated with aortic inflammation and vascular remodeling. Our results also demonstrated that MSCs modulate a different set of miRNAs that are associated with decrease leukocyte infiltration and vascular inflammation to attenuate the aortic diameter and TAA formation. CONCLUSIONS These results indicate that MSCs immunomodulate specific miRNAs that are associated with modulating hallmarks of aortic inflammation and vascular remodeling of aortic aneurysms. Targeted therapies designed using MSCs and miRNAs have the potential to regulate the growth and development of TAAs.
Collapse
Affiliation(s)
- Robert B Hawkins
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Morgan Salmon
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Sai Vineela Bontha
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Valeria R Mas
- Department of Surgery, University of Maryland, Baltimore, Maryland
| | | | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida.
| |
Collapse
|
11
|
Xu B, Li G, Guo J, Ikezoe T, Kasirajan K, Zhao S, Dalman RL. Angiotensin-converting enzyme 2, coronavirus disease 2019, and abdominal aortic aneurysms. J Vasc Surg 2021; 74:1740-1751. [PMID: 33600934 PMCID: PMC7944865 DOI: 10.1016/j.jvs.2021.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the current, world-wide coronavirus disease 2019 (COVID-19) pandemic. Angiotensin-converting enzyme 2 (ACE2) is the SARS-CoV-2 host entry receptor for cellular inoculation and target organ injury. We reviewed ACE2 expression and the role of ACE2-angiotensin 1-7-Mas receptor axis activity in abdominal aortic aneurysm (AAA) pathogenesis to identify potential COVID-19 influences on AAA disease pathogenesis. METHODS A comprehensive literature search was performed on PubMed, National Library of Medicine. Key words included COVID-19, SARS-CoV-2, AAA, ACE2, ACE or angiotensin II type 1 (AT1) receptor inhibitor, angiotensin 1-7, Mas receptor, age, gender, respiratory diseases, diabetes, and autoimmune diseases. Key publications on the epidemiology and pathogenesis of COVID-19 and AAAs were identified and reviewed. RESULTS All vascular structural cells, including endothelial and smooth muscle cells, fibroblasts, and pericytes express ACE2. Cigarette smoking, diabetes, chronic obstructive pulmonary disease, lupus, certain types of malignancies, and viral infection promote ACE2 expression and activity, with the magnitude of response varying by sex and age. Genetic deficiency of AT1 receptor, or pharmacologic ACE or AT1 inhibition also increases ACE2 and its catalytic product angiotensin 1-7. Genetic ablation or pharmacologic inhibition of ACE2 or Mas receptor augments, whereas ACE2 activation or angiotensin 1-7 treatment attenuates, progression of experimental AAAs. The potential influences of SARS-CoV-2 on AAA pathogenesis include augmented ACE-angiotensin II-AT1 receptor activity resulting from decreased reciprocal ACE2-angiotensin 1-7-Mas activation; increased production of proaneurysmal mediators stimulated by viral spike proteins in ACE2-negative myeloid cells or by ACE2-expressing vascular structural cells; augmented local or systemic cross-talk between viral targeted nonvascular, nonleukocytic ACE2-expressing cells via ligand recognition of their cognate leukocyte receptors; and hypoxemia and increased systemic inflammatory tone experienced during severe COVID-19 illness. CONCLUSIONS COVID-19 may theoretically influence AAA disease through multiple SARS-CoV-2-induced mechanisms. Further investigation and clinical follow-up will be necessary to determine whether and to what extent the COVID-19 pandemic will influence the prevalence, progression, and lethality of AAA disease in the coming decade.
Collapse
Affiliation(s)
- Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| | - Gang Li
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Toru Ikezoe
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | | | - Sihai Zhao
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
12
|
Zhang M, Sui W, Cheng C, Xue F, Tian Z, Cheng J, Zhang J, Zhang T, Zhang J, Wang W, Xiong W, Hao P, Ma J, Xu X, Wang S, Sun S, Zhang M, Zhang Y, Zhang C. Erythropoietin promotes abdominal aortic aneurysms in mice through angiogenesis and inflammatory infiltration. Sci Transl Med 2021; 13:13/603/eaaz4959. [PMID: 34290056 DOI: 10.1126/scitranslmed.aaz4959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/04/2020] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disease, but the underlying mechanisms remain unknown. Here, we tested the hypothesis that erythropoietin (EPO) may promote the formation of AAA. We found that EPO dose-dependently promoted the formation of AAA in both Apoe -/- (66.7%) and wild-type (WT) (60%) mice receiving a high dose of EPO. EPO monoclonal antibodies given to Apoe -/- mice receiving angiotensin II (AngII) stimulation resulted in a markedly lower incidence of AAA (from 86.7 to 20%, P < 0.001), and EPO receptor (EPOR) knockdown in Epor +/- Apoe -/- mice substantially reduced the incidence of AAA compared to Apoe -/- mice after AngII stimulation (from 86.7 to 45.5%, P < 0.05), further supporting the finding that EPO is a contributor to AAA formation. EPO-induced AAA resulted in increased microvessels, phagocyte infiltration, and matrix metalloproteinase secretion, as well as reduced collagen and smooth muscle cells (SMCs). Experiments in vitro and ex vivo demonstrated that EPO induced proliferation, migration, and tube formation of endothelial cells via the JAK2/STAT5 signaling pathway. In humans, serum EPO concentrations were higher in patients with AAA than in healthy individuals and correlated with the size of the AAA, suggesting a potential link between EPO and the severity of AAA in humans. In conclusion, we found that EPO promotes the formation of AAA in both Apoe -/- and WT mice by enhancing angiogenesis, inflammation, collagen degradation, and apoptosis of SMCs and that EPO/EPOR signaling is essential for AngII-induced AAA. The association between EPO and AAA in humans warrants further study.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenhai Sui
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Cheng Cheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fei Xue
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhenyu Tian
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Cheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jie Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tao Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Shandong First Medical University, Jinan 250013, Shandong, China
| | - Jianlin Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Weiwei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenjing Xiong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xingli Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shangwen Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Meng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
13
|
Su Z, Gu Y. Identification of key genes and pathways involved in abdominal aortic aneurysm initiation and progression. Vascular 2021; 30:639-649. [PMID: 34139912 DOI: 10.1177/17085381211026474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The study aimed to assess the gene expression profile of biopsies obtained from the neck of human abdominal aortic aneurysm (AAA) and the main site of AAA dilatation and to investigate the molecular mechanism underlying the development of AAA. METHODS The microarray profile of GSE47472 and GSE57691 were obtained from the Gene Expression Omnibus (GEO) database. The GSE47472 was a microarray dataset of tissues from the aortic neck of AAA patients versus normal controls. The GSE57691 was a microarray dataset including the tissues from main site of AAA dilatation versus normal controls. Differentially expressed genes (DEGs) were chosen using the R package and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG). The hub genes were identified in the protein-protein interaction (PPI) network. RESULTS 342 upregulated DEGs and 949 downregulated DEGs were obtained from GSE47472. The upregulated DEGs were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved glycosaminoglycan degradation, vasopressin-regulated water reabsorption, and pyruvate metabolism. The hub genes in GSE47472 mainly include VAMP8, PTPRC, DYNLL1, RPL38, RPS4X, HNRNPA1, PRMT1, TGOLN2, PA2G4, and CUL2. From GSE57691, 248 upregulated DEGs and 1120 downregulated DEGs were selected. The upregulated DEGs of GSE57691 were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in metabolic process (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved the mitochondrial respiratory, respiratory chain complex, and respiratory chain. RPS15A, RPS5, RPL23, RPL27A, RPS24, RPL35A, RPS4X, RPL7, RPS25, and RPL21 were identified as the hub genes. CONCLUSION At the early stage of AAA, the current study indicated the importance of glycosaminoglycan degradation and anaerobic metabolism. We also identified several hub genes closely related to AAA (VAMP8, PTPRC, DYNLL1, etc.). At the progression of the AAA, the dysfunctional mitochondria played a critical role in AAA formation and the RPS15A, RPS5, RPL23, etc., were identified as the hub genes.
Collapse
Affiliation(s)
- Zhixiang Su
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| | - Yongquan Gu
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| |
Collapse
|
14
|
Chiang MT, Chen IM, Hsu FF, Chen YH, Tsai MS, Hsu YW, Leu HB, Huang PH, Chen JW, Liu FT, Chen YH, Chau LY. Gal-1 (Galectin-1) Upregulation Contributes to Abdominal Aortic Aneurysm Progression by Enhancing Vascular Inflammation. Arterioscler Thromb Vasc Biol 2021; 41:331-345. [PMID: 33147994 DOI: 10.1161/atvbaha.120.315398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a vascular degenerative disease causing sudden rupture of aorta and significant mortality in elders. Nevertheless, no prognostic and therapeutic target is available for disease management. Gal-1 (galectin-1) is a β-galactoside-binding lectin constitutively expressed in vasculature with roles in maintaining vascular homeostasis. This study aims to investigate the potential involvement of Gal-1 in AAA progression. Approach and Results: Gal-1 was significantly elevated in circulation and aortic tissues of Ang II (angiotensin II)-infused apoE-deficient mice developing AAA. Gal-1 deficiency reduced incidence and severity of AAA with lower expression of aortic MMPs (matrix metalloproteases) and proinflammatory cytokines. TNFα (tumor necrosis factor alpha) induced Gal-1 expression in cultured vascular smooth muscle cells and adventitial fibroblasts. Gal-1 deletion enhanced TNFα-induced MMP9 expression in fibroblasts but not vascular smooth muscle cells. Cysteinyl-labeling assay demonstrated that aortic Gal-1 exhibited susceptibility to oxidation in vivo. Recombinant oxidized Gal-1 induced expression of MMP9 and inflammatory cytokines to various extents in macrophages, vascular smooth muscle cells, and fibroblasts through activation of MAP (mitogen-activated protein) kinase signaling. Clinically, serum MMP9 level was significantly higher in both patients with AAA and coronary artery disease than in control subjects, whereas serum Gal-1 level was elevated in patients with AAA but not coronary artery disease when compared with controls. CONCLUSIONS Gal-1 is highly induced and contributes to AAA by enhancing matrix degradation activity and inflammatory responses in experimental model. The pathological link between Gal-1 and AAA is also observed in human patients. These findings support the potential of Gal-1 as a disease biomarker and therapeutic target of AAA.
Collapse
MESH Headings
- Adventitia/metabolism
- Adventitia/pathology
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortitis/chemically induced
- Aortitis/metabolism
- Aortitis/pathology
- Case-Control Studies
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Galectin 1/blood
- Galectin 1/deficiency
- Galectin 1/genetics
- Galectin 1/metabolism
- Humans
- Inflammation Mediators/metabolism
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Up-Regulation
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Ming-Tsai Chiang
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - I-Ming Chen
- Division of Cardiovascular Surgery, Department of Surgery (I.-M.C.), Taipei Veterans General Hospital, Taiwan
| | - Fu-Fei Hsu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Yen-Hui Chen
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Min-Shao Tsai
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Yaw-Wen Hsu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Hsin-Bang Leu
- Division of Healthcare and Management, Healthcare Center (H.-B.L.), Taipei Veterans General Hospital, Taiwan
- Department of Medicine, School of Medicine (H.-B.L., Ying-Hwa Chen), National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Institute of Clinical Medicine (P.-H.H.), National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Institute of Pharmacology (J.-W.C.), National Yang-Ming University, Taipei, Taiwan
| | - Fu-Tong Liu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Ying-Hwa Chen
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Department of Medicine, School of Medicine (H.-B.L., Ying-Hwa Chen), National Yang-Ming University, Taipei, Taiwan
| | - Lee-Young Chau
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| |
Collapse
|
15
|
MiR-126-5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates Ang II-induced abdominal aortic aneurysm in mice. J Transl Med 2020; 100:1564-1574. [PMID: 32612287 DOI: 10.1038/s41374-020-0454-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potential lethal disease that is defined by an irreversible dilatation (>50%) of the aorta. During AAA expansion, the aortic wall is often remodeled, which is featured by extracellular matrix (ECM) degeneration, medial and adventitial inflammation, depletion and phenotypic switching of vascular smooth muscle cells (SMCs). Recent studies have suggested microRNAs as vital regulators for vascular SMC function. Our earlier work demonstrated an anti-AAA role of miR-126-5p in ApoE-/- mice infused with angiotensin (Ang) II. The present study aimed to further elucidate its role in AAA pathogenesis with a focus on aortic SMC phenotypic switching. Ventricular zone expressed PH domain containing 1 (VEPH1) was identified as a novel negative regulator for vascular SMC differentiation by our group, and its expression was negatively correlated to miR-126-5p in mouse abdominal aortas based on the present microarray data. In vivo, in addition attenuating Ang II infusion-induced aortic dilation and elastin degradation, miR-126-5p agomirs also significantly reduced the expression of VEPH1. In vitro, to induce synthetic transition of human aortic smooth muscle cells (hAoSMCs), cells were stimulated with 1 μM Ang II for 24 h. Ectopic overexpression of miR-126-5p restored the differentiation of hAoSMCs-the expression of contractile/differentiated SMC markers, MYH11, and α-SMA, increased, whilst that of synthetic/dedifferentiated SMC markers, PCNA and Vimentin, decreased. Both mus and homo VEPH1 genes were validated as direct targets for miR-126-5p. VEPH1 re-expression impaired miR-126-5p-induced differentiation of hAoSMCs. In addition, Ang II-induced upregulation in matrix metalloproteinase (MMP)-9 and MMP2, two key proteases responsible for ECM degradation, in mouse aortas and hAoSMCs was reduced by miR-126-5p overexpression as well. Collectively, these results reveal an important, but previously unexplored, role of miR-126-5p in inhibiting AAA development-associated aortic SMC dedifferentiation.
Collapse
|
16
|
Plana E, Oto J, Medina P, Fernández-Pardo Á, Miralles M. Novel contributions of neutrophils in the pathogenesis of abdominal aortic aneurysm, the role of neutrophil extracellular traps: A systematic review. Thromb Res 2020; 194:200-208. [DOI: 10.1016/j.thromres.2020.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
|
17
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
18
|
Zhang J, Liu J, Zhao M, Ye J, Xu Y, Wang Z, Ye D, Ding W, Li D, Liu M, Wang M, Wan J. The expression of interleukin 20 increases in plasma and aortic tissues from patients with acute aortic dissection. Clin Chim Acta 2020; 510:373-380. [PMID: 32730761 DOI: 10.1016/j.cca.2020.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/07/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Acute aortic dissection (AAD) is the most devasting cardiovascular disease associated with high mortality. The occurrence and progression of AAD can be regulated by inflammatory processes, and further understanding of this inflammatory pathogenesis may improve the treatment of AAD. Interleukin 20 (IL-20), as an inflammatory mediator, has been demonstrated to be associated with several inflammatory diseases. However, the association between IL and 20 and AAD is still unknown. METHODS Five aortic dissection tissue samples and five control aortic tissue samples were evaluated in our study. The expression of IL-20 and its receptor subunits (IL-20Rα and IL-20Rβ) was detected by immunofluorescence staining. From January 2018 to March 2018, 70 consecutive AAD patients and 25 non-AAD (NAD) patients were enrolled in this study. Diagnosis was based on computed tomography angiography (CTA) results. Blood samples were obtained from the patients on the first day of hospitalization. Plasma IL-20, TNF-α and IL-6 concentrations were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. RESULTS The expression levels of IL-20 and its receptor subunits (IL-20Rα and IL-20Rβ) were increased in the sites of arterial wall dissection in the AAD patients. In a separate group, the plasma IL-20, TNF-α and IL-6 concentrations were significantly higher in the AAD patients than in the non-AAD patients. Spearman's correlation analysis showed that plasma IL-20 was positively correlated with plasma TNF-α and IL-6, D-dimer, C-reaction protein (CRP), creatinine, fasting blood glucose, systolic blood pressure (SBP), and diastolic blood pressure (DBP). Multiple linear regression revealed that IL-20, in addition to IL-6, glucose, CRP and D-dimer, was independently associated with the presence of AAD. CONCLUSION IL-20 was closely associated with the presence of AAD. IL-20 may contribute to the inflammatory pathogenesis of AAD.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Dan Li
- Pediatric Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglin Liu
- Emergency Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
19
|
Zhou Y, Wang M, Zhang J, Xu P, Wang H. MicroRNA-29a-3p regulates abdominal aortic aneurysm development and progression via direct interaction with PTEN. J Cell Physiol 2020; 235:9414-9423. [PMID: 32383156 DOI: 10.1002/jcp.29746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/07/2022]
Abstract
Various research studies have been conducted in deducing the role of microRNAs (miRNAs) in the pathogenesis and physiological processes of various systematic diseases. This study aims at demonstration of the important role played by miR-29a-3p, through association with phosphatase and tensin homolog (PTEN), in the regulation of abdominal aortic aneurysm development and progression. Quantitative real-time polymerase chain reaction (RT-qPCR) examined miRNA-19a-3p and PMEPA1 expression in multiplied vascular smooth muscle cells (VSMCs). Cell transfection upregulated or downregulated the genes and cell counting kit-8 assay determined cellular viability. RT-qPCR detected cellular proliferation and cell death using the cell proliferation and apoptosis biomarkers Ki87 and proliferating cell nuclear antigen, caspase-8 and caspase-3, respectively. Furthermore, luciferase assay analyzed the luciferase activity and western blot analysis determined miRNA-19a-3p and PMEPA1 protein expression in proliferation and apoptosis biomarkers. TargetScan 4.2 online software (www.targetscan.org) was used to perform the bioinformatics analysis so as to forecast the putative targets of miR-29a-3p and PTEN. The results inferred that there was an increased expression of miRNA-29a-3p found in AAA-mimic cells with increased cellular viability and significant pathological apoptosis. Further, when the expression of miRNA-29a-3p was downregulated, it reduced the cell viability of AAA cells. On the basis of the gene interplays, it can be understood that the PTEN was directly targeted by miRNA-29a-3p so as to regulate the AAA progression. Thus, PTEN was found to strengthen the proliferation effect of miRNA-29a-3p in AAA cells. The current study thus shed more insights about the molecular mechanistic roles of miRNA-29a-3p and PTEN, opening doors for novel therapeutic approach to AAA.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meigui Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Zhang
- Cardiac Surgery Center & Heart Failure Center, Sichuan Academy of Medical Sciences·Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peng Xu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haitao Wang
- Cardiac Surgery Center & Heart Failure Center, Sichuan Academy of Medical Sciences·Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Trabelsi O, Dumas V, Breysse E, Laroche N, Avril S. In vitro histomechanical effects of enzymatic degradation in carotid arteries during inflation tests with pulsatile loading. J Mech Behav Biomed Mater 2020; 103:103550. [PMID: 32090945 DOI: 10.1016/j.jmbbm.2019.103550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023]
Abstract
In this paper, the objective is to assess the histomechanical effects of collagen proteolysis in arteries under loading conditions reproducing in vivo environment. Thirteen segments of common porcine carotid arteries (8 proximal and 5 distal) were immersed in a bath of bacterial collagenase and tested with a pulsatile tension/inflation machine. Diameter, pressure and axial load were monitored throughout the tests and used to derive the stress-stretch curves and to determine the secant circumferential stiffness. Results were analysed separately for proximal and distal segments, before and after 1, 2 and 3 h of enzymatic degradation. A histological analysis was performed to relate the arterial microstructure to its mechanical behavior under collagen proteolysis. Control (before enzymatic degradation) and treated populations (after 1, 2 or 3 h of enzymatic degradation) were found statistically incomparable, and histology confirmed the alteration of the fibrous structure of collagen bundles induced by the collagenase treatment. A decrease of the secant circumferential stiffness of the arterial wall was noticed mostly at the beginning of the treatment, and was less pronounced after 1 h. These results constitute an important set of enzymatically damaged arteries that can be used to validate biomechanical computational models correlating structure and properties of blood vessels.
Collapse
Affiliation(s)
- Olfa Trabelsi
- Mines Saint-Etienne, University of Lyon, INSERM, U1059,Sainbiose, 42023, Saint-Etienne, France; Sorbonne University, University of Technology of Compiègne, CNRS, UMR 7338 BMBI, 60205, Compiègne, France.
| | - Virginie Dumas
- University of Lyon, National School of Engineers of Saint-Etienne, LTDS, UMR 5513 CNRS, 42100, Saint-Etienne, France.
| | - Edouard Breysse
- Mines Saint-Etienne, University of Lyon, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
| | - Norbert Laroche
- University of Lyon, Jean Monnet University, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
| | - Stephane Avril
- Mines Saint-Etienne, University of Lyon, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
| |
Collapse
|
21
|
O'Donnell TFX, Carpenter JP, Lane JS, Trani J, Hussain S, Healey C, Malas MB, Schermerhorn ML. Endovascular Aneurysm Sealing is Associated with Higher Medium-Term Survival than Traditional EVAR. Ann Vasc Surg 2020; 63:145-154. [PMID: 31629124 PMCID: PMC7012730 DOI: 10.1016/j.avsg.2019.08.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Endovascular aneurysm repair (EVAR) is the dominant treatment modality for abdominal aortic aneurysm (AAA). Periprocedural risks are low, and cardiovascular events are the principle determinants of long-term survival. Recently, the concept of endovascular aneurysm sealing (EVAS) has been introduced into clinical investigation. In previous cohort studies, EVAS has been associated with a lower all-cause mortality than expected despite device issues. We used a propensity weighted approach to investigate whether EVAS was associated with lower all-cause mortality after aneurysm repair. METHODS We compared 333 patients in the Nellix United States Investigational Device Exemption trial to 15,431 controls from the Vascular Quality Initiative between 2014 and 2016 after applying the exclusion criteria from the investigational device exemption (hemodialysis, creatinine > 2.0 mg/dL, or rupture). We calculated propensity scores and applied inverse probability weighting to compare risk adjusted medium-term survival using Kaplan-Meier and Cox regression. RESULTS After weighting, patients treated with the Nellix EVAS system experienced higher 3-year survival than controls from the Vascular Quality Initiative (93% vs. 88%, respectively). This corresponded to a 41% lower risk of mortality for EVAS compared with EVAR (HR 0.59 [0.38-0.92], P = 0.02). Subgroup analysis demonstrated that the association between EVAS and higher survival was strongest in the subgroup of patients with aneurysms over 5.5 cm (P for interaction < 0.001). In this subgroup, EVAS patients experienced half the rate of mortality as those patients treated with EVAR, with 3-year survival of 92% compared with 86% (HR 0.5 [0.3-0.9], P = 0.02). CONCLUSIONS In this select group of patients, EVAS was associated with higher medium-term survival than traditional EVAR. Although issues with the device have recently surfaced, this exploratory analysis shows that the concept of sac sealing may hold promise. Further study is needed to confirm this finding and determine whether EVAS is associated with lower rates of cardiovascular events.
Collapse
Affiliation(s)
- Thomas F X O'Donnell
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA; Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Jeffrey P Carpenter
- Division of Vascular Surgery, Cooper Medical School of Rowan University, Camden, NJ
| | - John S Lane
- Division of Vascular and Endovascular Surgery, University of California San Diego, San Diego, CA; Division of Vascular Surgery, San Diego VA Hospital, San Diego CA
| | - Jose Trani
- Division of Vascular Surgery, Cooper Medical School of Rowan University, Camden, NJ
| | - Sajjad Hussain
- Division of Vascular Surgery, St. Vincent's Hospital, Indianapolis, IN
| | | | - Mahmoud B Malas
- Division of Vascular and Endovascular Surgery, University of California San Diego, San Diego, CA
| | - Marc L Schermerhorn
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA.
| |
Collapse
|
22
|
Wang Y, Nanda V, Leeper NJ. Clonal Smooth Muscle Cell Expansion, Autophagy, and Vascular Integrity in Aortic Aneurysm Disease. Arterioscler Thromb Vasc Biol 2020; 39:982-983. [PMID: 31116606 DOI: 10.1161/atvbaha.119.312739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ying Wang
- From the Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., V.N., N.J.L.)
| | - Vivek Nanda
- From the Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., V.N., N.J.L.)
| | - Nicholas J Leeper
- From the Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., V.N., N.J.L.).,Stanford Cardiovascular Institute, Stanford University, CA (N.J.L.)
| |
Collapse
|
23
|
Li Y, Yang D, Sun B, Zhang X, Li F, Liu Z, Zheng Y. Discovery of crucial cytokines associated with abdominal aortic aneurysm formation by protein array analysis. Exp Biol Med (Maywood) 2019; 244:1648-1657. [PMID: 31665916 DOI: 10.1177/1535370219885101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As a common disease, abdominal aortic aneurysm (AAA) features permanently progressively dilated abdominal aorta. Various cytokines are implicated in AAA pathogenesis. Clarification of involved cytokines combined with functional analysis may provide new insights into AAA pathogenesis. Using a mouse model, this study analyzed the cytokine profiles in AAA. Cytokines were measured in AAA tissues of saline control or angiotensin II-treated ApoE−/− mice using an antibody array of 200 cytokines, cytokine receptors, and related proteins. Statistical analysis revealed that 21 of 200 proteins were differentially expressed in AAA. These differentially expressed proteins were subjected to function and pathway enrichment analysis, which revealed that leukocyte migration and positive regulation of cell adhesion were the most significant biological processes. Specific signaling pathways, including Janus kinase/signal transducers and activators of transcription and cytokine–cytokine receptor interaction, were prominent in Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Importantly, our data identified cytokines which had not previously been illustrated in AAA pathogenic pathways. Bivariate correlation analysis between these cytokines and protease activity showed that granulocyte colony-stimulating factor (G-CSF), macrophage inflammatory protein 1 g, cardiotrophin 1, milk fat globule-EGF factor 8 protein, interleukin 33, and periostin were positively correlated with matrix metalloprotease 1 (MMP-1), MMP-9, cathepsin B, and cathepsin L. G-CSF was positively correlated with cathepsin L. In conclusion, these results demonstrate that cytokine profile is significantly altered in AAA, and that the newly identified crucial cytokines may function potentially in AAA pathogenesis. Impact statement Various cytokines are known contributors to abdominal aortic aneurysm (AAA) pathologic processes, but the mechanisms underlying the pathogenesis remains unclear. We illustrated the altered cytokine profiles in AAA by high throughput antibody array of 200 cytokines, cytokine receptors and related proteins, as well as bioinformatics analysis of differentially expressed proteins in lesion tissues from AAA mice infused with angiotensin II. Functional analyses of differentially expressed cytokines showed clustering on cell migration and adhesion processes. More importantly, crucial cytokines whose association with AAA formation had not been established were identified. Significant correlations were found between these cytokines and protease activity. This study identifies several crucial markers for further researches on the molecular basis of AAA.
Collapse
Affiliation(s)
- Yuan Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bo Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xu Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
24
|
Sudhahar V, Das A, Horimatsu T, Ash D, Leanhart S, Antipova O, Vogt S, Singla B, Csanyi G, White J, Kaplan JH, Fulton D, Weintraub NL, Kim HW, Ushio-Fukai M, Fukai T. Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b. Arterioscler Thromb Vasc Biol 2019; 39:2320-2337. [PMID: 31554420 DOI: 10.1161/atvbaha.119.313374] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Copper (Cu) is essential micronutrient, and its dysregulation is implicated in aortic aneurysm (AA) development. The Cu exporter ATP7A (copper-transporting P-type ATPase/Menkes ATPase) delivers Cu via the Cu chaperone Atox1 (antioxidant 1) to secretory Cu enzymes, such as lysyl oxidase, and excludes excess Cu. Lysyl oxidase is shown to protect against AA formation. However, the role and mechanism of ATP7A in AA pathogenesis remain unknown. Approach and Results: Here, we show that Cu chelator markedly inhibited Ang II (angiotensin II)-induced abdominal AA (AAA) in which ATP7A expression was markedly downregulated. Transgenic ATP7A overexpression prevented Ang II-induced AAA formation. Conversely, Cu transport dysfunctional ATP7Amut/+/ApoE-/- mice exhibited robust AAA formation and dissection, excess aortic Cu accumulation as assessed by X-ray fluorescence microscopy, and reduced lysyl oxidase activity. In contrast, AAA formation was not observed in Atox1-/-/ApoE-/- mice, suggesting that decreased lysyl oxidase activity, which depends on both ATP7A and Atox1, was not sufficient to develop AAA. Bone marrow transplantation suggested importance of ATP7A in vascular cells, not bone marrow cells, in AAA development. MicroRNA (miR) array identified miR-125b as a highly upregulated miR in AAA from ATP7Amut/+/ApoE-/- mice. Furthermore, miR-125b target genes (histone methyltransferase Suv39h1 and the NF-κB negative regulator TNFAIP3 [tumor necrosis factor alpha induced protein 3]) were downregulated, which resulted in increased proinflammatory cytokine expression, aortic macrophage recruitment, MMP (matrix metalloproteinase)-2/9 activity, elastin fragmentation, and vascular smooth muscle cell loss in ATP7Amut/+/ApoE-/- mice and reversed by locked nucleic acid-anti-miR-125b infusion. CONCLUSIONS ATP7A downregulation/dysfunction promotes AAA formation via upregulating miR-125b, which augments proinflammatory signaling in a Cu-dependent manner. Thus, ATP7A is a potential therapeutic target for inflammatory vascular disease.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., S.L., T.F.)
| | - Archita Das
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA
| | - Tetsuo Horimatsu
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Medicine (Cardiology) (T.H., D.A., N.L.W., H.W.K., M.U.-F.), Medical College of Georgia at Augusta University, GA
| | - Dipankar Ash
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Medicine (Cardiology) (T.H., D.A., N.L.W., H.W.K., M.U.-F.), Medical College of Georgia at Augusta University, GA
| | - Silvia Leanhart
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., S.L., T.F.)
| | - Olga Antipova
- X-ray Science Division, Argonne National Laboratory, IL (O.A., S.V.)
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, IL (O.A., S.V.)
| | - Bhupesh Singla
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA
| | - Gabor Csanyi
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA
| | - Joseph White
- Department of Pathology (J.W.), Medical College of Georgia at Augusta University, GA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (J.H.K.)
| | - David Fulton
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA
| | - Neal L Weintraub
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Medicine (Cardiology) (T.H., D.A., N.L.W., H.W.K., M.U.-F.), Medical College of Georgia at Augusta University, GA
| | - Ha Won Kim
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Medicine (Cardiology) (T.H., D.A., N.L.W., H.W.K., M.U.-F.), Medical College of Georgia at Augusta University, GA
| | - Masuko Ushio-Fukai
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Medicine (Cardiology) (T.H., D.A., N.L.W., H.W.K., M.U.-F.), Medical College of Georgia at Augusta University, GA
| | - Tohru Fukai
- From the Vascular Biology Center (V.S., A.D., T.H., D.A., S.L., B.S., G.C., D.F., N.L.W., H.W.K., M.U.-F., T.F.), Medical College of Georgia at Augusta University, GA.,Department of Pharmacology and Toxicology (V.S., A.D., B.S., G.C., D.F., T.F.), Medical College of Georgia at Augusta University, GA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., S.L., T.F.)
| |
Collapse
|
25
|
Miyake T, Miyake T, Kurashiki T, Morishita R. Molecular Pharmacological Approaches for Treating Abdominal Aortic Aneurysm. Ann Vasc Dis 2019; 12:137-146. [PMID: 31275464 PMCID: PMC6600097 DOI: 10.3400/avd.ra.18-00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is considered to be a potent life-threatening disorder in elderly individuals. Although many patients with a small AAA are detected during routine abdominal screening, there is no effective therapeutic option to prevent the progression or regression of AAA in the clinical setting. Recent advances in molecular biology have led to the identification of several important molecules, including microRNA and transcription factor, in the process of AAA formation. Regulation of these factors using nucleic acid drugs is expected to be a novel therapeutic option for AAA. Nucleic acid drugs can bind to target factors, mRNA, microRNA, and transcription factors in a sequence-specific fashion, resulting in a loss of function of the target molecule at the transcriptional or posttranscriptional level. Of note, inhibition of a transcription factor using a decoy strategy effectively suppresses experimental AAA formation, by regulating the expression of several genes associated with the disease progression. This review focuses on recent advances in molecular therapy of using nucleic acid drugs to treat AAA.
Collapse
Affiliation(s)
- Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuo Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Kurashiki
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
26
|
Prucha M, Sedivy P, Stadler P, Zdrahal P, Prokopova P, Voska L, Sedlackova L. Abdominal aortic aneurysm as an IgG4-related disease. Clin Exp Immunol 2019; 197:361-365. [PMID: 31032886 PMCID: PMC6693967 DOI: 10.1111/cei.13307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
The objectives of this study were to evaluate patients with aortic abdominal aneurysm (AAA) with regard to immunoglobulin (Ig)G4‐related disease (IgG4‐RD). IgG4‐RD represents a recently defined condition comprised of a collection of disorders characterized by IgG4 hypergammaglobulinemia, the presence of IgG4‐positive plasma cells in organs affected with fibrotic or sclerotizing changes and typical histopathological features. It was identified as a possible cause of vasculitis in large vessels. Studies have been published on a possible association between inflammatory aortic or cardiovascular disease and IgG4‐RD. We examined 114 patients with AAA requiring surgery in order to identify findings which are characteristic of IgG4‐RD. Aneurysm samples from seven patients showed histopathological features consistent with IgG4‐RD and the presence of IgG4+ plasma cells. Only two of these seven patients showed elevated IgG4 serum levels higher 1·35 g/l. In five of the patients, the concentration of serum IgG4 was lower than 1·20 g/l, with the number of IgG4+ plasma cells being higher than 50/high‐power field. These findings were consistent with AAA being a heterogeneous group of inflammatory diseases with different pathogenesis.
Collapse
Affiliation(s)
- M Prucha
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - P Sedivy
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - P Stadler
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - P Zdrahal
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - P Prokopova
- Department of Pathology, Na Homolce Hospital, Prague, Czech Republic
| | - L Voska
- Department of Clinical and Experimental Pathology, IKEM, Prague, Czech Republic
| | - L Sedlackova
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
27
|
Legaki E, Klonaris C, Athanasiadis D, Patelis N, Sioziou A, Liakakos T, Gazouli M. DAB2IP Expression in Abdominal Aortic Aneurysm: EZH2 and mir-363-3p as Potential Mediators. In Vivo 2019; 33:737-742. [PMID: 31028191 PMCID: PMC6559911 DOI: 10.21873/invivo.11533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Nine genetic loci have been associated with abdominal aortic aneurysm (AAA) susceptibility, including DAB2IP. This gene is playing a role in apoptosis, cell proliferation and epithelial-to-mesenchymal transition in cancers. This study aimed to elucidate the differential expression levels of DAB2IP in AAA tissues and investigate whether mir-363-3p and EZH2 can be considered as potential mediators of its expression. MATERIALS AND METHODS 18 AAA samples and 15 non-aneurysmatic controls were collected. Relative mRNA expression levels of DAB2IP, EZH2 and mir-363-3p were measured using qPCR. RESULTS DAB2IP was significant up-regulated (~2.29 fold) in AAA tissues, while EZH2 and mir-363-3p were down-regulated (3.28 and 3.62-fold, respectively). A limited negative correlation was found between the DAB2IP and EZH2 expression and between DAB2IP and the mir-363-3p. CONCLUSION An increased expression of DAB2IP in AAA tissues was shown. We suggest 2 potential mediators of DAB2IP expression in abdominal aortic aneurysm, EZH2 and mir-363-3p.
Collapse
Affiliation(s)
- Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Klonaris
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Athanasiadis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Nikolaos Patelis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anna Sioziou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Liakakos
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Guo X, Fang ZM, Wei X, Huo B, Yi X, Cheng C, Chen J, Zhu XH, Bokha AOKA, Jiang DS. HDAC6 is associated with the formation of aortic dissection in human. Mol Med 2019; 25:10. [PMID: 30925865 PMCID: PMC6441237 DOI: 10.1186/s10020-019-0080-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.
Collapse
Affiliation(s)
- Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,NHC Key Laboratory of Organ Transplantation, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
29
|
PRUCHA M, SEDIVY P, STADLER P, ZDRAHAL P, MATOSKA V, STRNAD H. Gene Expression in Patients With Abdominal Aortic Aneurysm – More Than Immunological Mechanisms Involved. Physiol Res 2019; 68:385-394. [DOI: 10.33549/physiolres.933905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious condition of unclear pathogenesis and progression. Two samples were collected from 48 patients during AAA surgery. One sample was collected from the aneurysm, the other from the aneurysm proximal neck where the tissue did not exhibit any aneurysmal changes. Subsequently, gene expression profiles using microarrays (Illumina) were compared in RNA extracted from the samples. Overall, 2,185 genes were found to be upregulated and 2,100 downregulated; from which 158 genes had a different expression with FDR<0.05 (False Discovery Rate) and FC≥2 (Fold Change). Of this number, 115 genes were over-expressed and 43 under-expressed. The analysis of the gene list based on their biological pathways revealed that the regulation of inflammation was mediated by chemokine and cytokine signaling pathways, the integrin signaling pathway, and T and B cell activation. Moreover, a change was identified in the expression of genes involved in both intercellular and intracellular signaling systems.
Collapse
Affiliation(s)
- M PRUCHA
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - P SEDIVY
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - P STADLER
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - P ZDRAHAL
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - V MATOSKA
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - H STRNAD
- Genomics and Bioinformatics Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
O'Donnell TF, Deery SE, Boitano LT, Siracuse JJ, Schermerhorn ML, Scali ST, Schanzer A, Lancaster RT, Patel VI. Aneurysm sac failure to regress after endovascular aneurysm repair is associated with lower long-term survival. J Vasc Surg 2019; 69:414-422. [DOI: 10.1016/j.jvs.2018.04.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
|
31
|
Seto SW, Chang D, Kiat H, Wang N, Bensoussan A. Chinese Herbal Medicine as a Potential Treatment of Abdominal Aortic Aneurysm. Front Cardiovasc Med 2018; 5:33. [PMID: 29732374 PMCID: PMC5919947 DOI: 10.3389/fcvm.2018.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an irreversible condition where the abdominal aorta is dilated leading to potentially fatal consequence of aortic rupture. Multiple mechanisms are involved in the development and progression of AAA, including chronic inflammation, oxidative stress, vascular smooth muscle (VSMC) apoptosis, immune cell infiltration and extracellular matrix (ECM) degradation. Currently surgical therapies, including minimally invasive endovascular aneurysm repair (EVAR), are the only viable interventions for AAAs. However, these treatments are not appropriate for the majority of AAAs, which measure <50 mm. Substantial effort has been invested to identify and develop pharmaceutical treatments such as statins and doxycycline for this potentially lethal condition but these interventions failed to offer a cure or to retard the progression of AAA. Chinese herbal medicine (CHM) has been used for the management of cardiovascular diseases for thousands of years in China and other Asian countries. The unique multi-component and multi-target property of CHMs makes it a potentially ideal therapy for multifactorial diseases such as AAA. In this review, we review the current scientific evidence to support the use of CHMs for the treatment of AAA. Mechanisms of action underlying the effects of CHMs on AAA are also discussed.
Collapse
Affiliation(s)
- Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,School of Medicine, Western Sydney University, Penrith, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ning Wang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Alan Bensoussan
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
32
|
Klaus V, Schmies F, Reeps C, Trenner M, Geisbüsch S, Lohoefer F, Eckstein HH, Pelisek J. Cathepsin S is associated with degradation of collagen I in abdominal aortic aneurysm. VASA 2018; 47:285-293. [PMID: 29624112 DOI: 10.1024/0301-1526/a000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cathepsins have been described in the pathogenesis of abdominal aortic aneurysm (AAA), their exact role, especially in collagen degradation, is still unclear. The aim of the present study was therefore to analyse relevant cathepsins in human AAA tissue samples in relation to collagen I, III, and their degradation products. MATERIALS AND METHODS Samples from 37 AAA patients obtained from elective open surgical repair and eight healthy non-aneurysmatic aortas from kidney donors were included. Expression of cathepsins B, D, K, L, S, cystatin C, collagen I and III, their degraded products C-Telopeptide of type 1 and 3 collagen (CTX-I, CTX-III), cellular markers for leukocytes (CD45), T cells (CD3), macrophage scavenger receptor-1 (MSR-1), synthetic, and contractile smooth muscle cells (SMCs) (smoothelin: SMTH, collagen I and III, myosin heavy chain: MHC, embryonic smooth muscle myosin heavy chain: SMemb) were determined at messenger RNA (mRNA) level, using SYBRGreen-based quantitative PCR and at protein level using enzyme-linked immunosorbent assay (ELISA). RESULTS Expression of cathepsins B, D, L, and S at mRNA level was significantly elevated in AAA compared to control aorta (1.7-fold, p = 0.025; 2.5-fold, p = 0.002; 2.6-fold, p = 0.034; and 7.0-fold, p = 0.003). Expression of cathepsin S correlated significantly with leukocytes and macrophages (ρ = 0.398, p = 0.033 and ρ = 0.422, p = 0.020), synthetic SMCs were significantly associated with cathepsins B, D, and L (ρ = 0.522, p = 0.003; ρ = 0.431, p = 0.015 and ρ = 0.467, p = 0.008). At protein level, cathepsins B and S were elevated in AAA compared to controls (5.4-fold, p = 0.001 and 7.3-fold, p < 0.001). Significant correlations were observed between collagen I, its degraded product, and cathepsin S (r = -0.350, p = 0.034 and r = +0.504, p < 0.001). Expression of cathepsin B was associated with SMCs, expression of cathepsin S with inflammatory cells. CONCLUSIONS Particularly cathepsin S was associated with the degradation product of collagen I and thus might be involved in the progression of AAA. Furthermore, cathepsin S correlated with inflammatory cells.
Collapse
Affiliation(s)
- Veronika Klaus
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Fadwa Schmies
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Reeps
- 2 University Centre for Vascular Medicine and Department of Vascular Surgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Matthias Trenner
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sarah Geisbüsch
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Fabian Lohoefer
- 3 Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Hans-Henning Eckstein
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jaroslav Pelisek
- 1 Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
33
|
Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proc Natl Acad Sci U S A 2018; 115:1907-1912. [PMID: 29432192 PMCID: PMC5828611 DOI: 10.1073/pnas.1717906115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cysteinyl-leukotrienes (cys-LTs) are lipid mediators involved in human inflammatory diseases, in particular asthma. We have previously identified cys-LTs in tissue specimens of human abdominal aortic aneurysm (AAA) and linked these mediators to increased metalloproteinase activity. Here we show in vivo that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against aneurysm in three mouse models of AAA at doses comparable to human medical practice. Together, these data support the role of cys-LTs in AAA and indicate a new potential therapeutic approach for treatment of this clinically silent and highly lethal disease. Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1α (MIP-1α) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.
Collapse
|
34
|
The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67:2-77.e2. [DOI: 10.1016/j.jvs.2017.10.044] [Citation(s) in RCA: 1150] [Impact Index Per Article: 164.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Plana E, Gálvez L, Medina P, Navarro S, Miralles M. Estudio de selección de microRNA como posibles biomarcadores de aneurisma de aorta abdominal. ANGIOLOGIA 2018. [DOI: 10.1016/j.angio.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Liang B, Che J, Zhao H, Zhang Z, Shi G. MiR-195 promotes abdominal aortic aneurysm media remodeling by targeting Smad3. Cardiovasc Ther 2017; 35. [PMID: 28665537 DOI: 10.1111/1755-5922.12286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bing Liang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Jianbo Che
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Hui Zhao
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Zhi Zhang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Gongning Shi
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| |
Collapse
|
37
|
Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 2017; 261:78-89. [DOI: 10.1016/j.atherosclerosis.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
|
38
|
Shi Y, Yang CQ, Wang SW, Li W, Li J, Wang SM. Characterization of Fc gamma receptor IIb expression within abdominal aortic aneurysm. Biochem Biophys Res Commun 2017; 485:295-300. [DOI: 10.1016/j.bbrc.2017.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
|
39
|
Klaus V, Tanios-Schmies F, Reeps C, Trenner M, Matevossian E, Eckstein HH, Pelisek J. Association of Matrix Metalloproteinase Levels with Collagen Degradation in the Context of Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2017; 53:549-558. [PMID: 28209269 DOI: 10.1016/j.ejvs.2016.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE/BACKGROUND Matrix metalloproteinases (MMPs) have already been identified as key players in the pathogenesis of abdominal aortic aneurysm (AAA). However, the current data remain inconclusive. In this study, the expression of MMPs at mRNA and protein levels were investigated in relation to the degradation of collagen I and collagen III. METHODS Tissue samples were obtained from 40 patients with AAA undergoing open aortic repair, and from five healthy controls during kidney transplantation. Expression of MMPs 1, 2, 3, 7, 8, 9, and 12, and tissue inhibitor of metalloproteinase (TIMP)1, and TIMP2 were measured at the mRNA level using quantitative reverse transcription polymerase chain reaction. At the protein level, MMPs, collagen I, and collagen III, and their degradation products carboxy-terminal collagen cross-links (CTX)-I and CTX-III, were quantified via enzyme linked immunosorbent assay. In addition, immunohistochemistry and gelatine zymography were performed. RESULTS In AAA, significantly enhanced mRNA expression was observed for MMPs 3, 9, and 12 compared with controls (p ≤ .001). MMPs 3, 9, and 12 correlated significantly with macrophages (p = .007, p = .018, and p = .015, respectively), and synthetic smooth muscle cells with MMPs 1, 2, and 9 (p = .020, p = .018, and p = .027, respectively). At the protein level, MMPs 8, 9, and 12 were significantly elevated in AAA (p = .006, p = .0004, and p < .001, respectively). No significant correlation between mRNA and protein was observed for any MMP. AAA contained significantly reduced intact collagen I (twofold; p = .002), whereas collagen III was increased (4.6 fold; p < .001). Regarding degraded collagen I and III relative to intact collagens, observations were inverse (1.4 fold increase for CTX-1 [p < .001]; fivefold decrease for CTX-III [p = .004]). MMPs 8, 9, and 12 correlated with collagen I (p = .019, p < .001, and p = 0.003, respectively), collagen III (p = .015, p < .001, and p < .001, respectively), and degraded collagen I (p = .012, p = .049, and p = .001, respectively). CONCLUSION No significant relationship was found between mRNA and protein and MMP levels. MMPs 9 and 12 were overexpressed in AAA at the mRNA and protein level, and MMP-8 at the protein level. MMP-2 was detected in synthetic SMCs. Collagen I and III showed inverse behaviour in AAA. In particular, MMPs 8, 9, and 12 appear to be associated with collagen I, collagen III, and their degradation products.
Collapse
Affiliation(s)
- V Klaus
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Tanios-Schmies
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Reeps
- Universitätsklinikum Carl Gustav Carus Dresden, Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Dresden, Germany
| | - M Trenner
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Matevossian
- Department of Surgery, Munich Transplant Centre, Munich, Germany
| | - H-H Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - J Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
40
|
Cyron CJ, Humphrey JD. Growth and Remodeling of Load-Bearing Biological Soft Tissues. MECCANICA 2017; 52:645-664. [PMID: 28286348 PMCID: PMC5342900 DOI: 10.1007/s11012-016-0472-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The past two decades reveal a growing role of continuum biomechanics in understanding homeostasis, adaptation, and disease progression in soft tissues. In this paper, we briefly review the two primary theoretical approaches for describing mechano-regulated soft tissue growth and remodeling on the continuum level as well as hybrid approaches that attempt to combine the advantages of these two approaches while avoiding their disadvantages. We also discuss emerging concepts, including that of mechanobiological stability. Moreover, to motivate and put into context the different theoretical approaches, we briefly review findings from mechanobiology that show the importance of mass turnover and the prestressing of both extant and new extracellular matrix in most cases of growth and remodeling. For illustrative purposes, these concepts and findings are discussed, in large part, within the context of two load-bearing, collagen dominated soft tissues - tendons/ligaments and blood vessels. We conclude by emphasizing further examples, needs, and opportunities in this exciting field of modeling soft tissues.
Collapse
Affiliation(s)
- C J Cyron
- Institute for Computational Mechanics, Technische Universität München, Garching, Germany
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
41
|
Challenges and opportunities in limiting abdominal aortic aneurysm growth. J Vasc Surg 2017; 65:225-233. [DOI: 10.1016/j.jvs.2016.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|
42
|
Zhang Y, Liu Z, Zhou M, Liu C. MicroRNA-129-5p inhibits vascular smooth muscle cell proliferation by targeting Wnt5a. Exp Ther Med 2016; 12:2651-2656. [PMID: 27698769 DOI: 10.3892/etm.2016.3672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrant smooth muscle cells (SMCs) play important roles in the formation of abdominal aortic aneurysm (AAA). Although the molecular mechanism of AAA formation has been investigated, there is a lack of understanding concerning the role of microRNAs (miRNAs) in AAA, which the current study aimed to address. Firstly, miRNA array analysis was performed in order to compare the miRNA profiles in a mouse model of AAA with those in normal control mice, and differentially expressed miRNAs were identified. miR-129-5p was selected for further analysis, and was used to transfect human SMCs. The results of an MTT assay revealed that miR-129-5p inhibited the proliferation of SMCs, and flow cytometry indicated that apoptosis was induced. Bioinformatic analysis predicted that Wnt5a was the potential target gene of miR-129-5p, and this was verified by luciferase assay. In summary, miR-129-5p inhibits cellular proliferation, induces apoptosis and modulates the Wnt5a signaling pathway in SMCs.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
43
|
Ultee KH, Hoeks SE, Gonçalves FB, Boersma E, Stolker RJ, Verhagen HJ, Rouwet EV. Peripheral artery disease patients may benefit more from aggressive secondary prevention than aneurysm patients to improve survival. Atherosclerosis 2016; 252:147-152. [DOI: 10.1016/j.atherosclerosis.2016.07.900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/18/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
|
44
|
Pafili K, Gouni-Berthold I, Papanas N, Mikhailidis DP. Abdominal aortic aneurysms and diabetes mellitus. J Diabetes Complications 2015; 29:1330-6. [PMID: 26440573 DOI: 10.1016/j.jdiacomp.2015.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that risk profiles differ between coronary artery disease and abdominal aortic aneurysms (AAAs). However, diabetes mellitus (DM) appears to be negatively associated with AAA formation. The underlying mechanisms for this negative relationship are far from defined, but may include: increased arterial wall matrix formation via advanced glycation end products; suppression of plasmin and reduction of levels and activity of matrix metalloproteinases (MMP)-2 and 9; diminished aortic wall macrophage infiltration, elastolysis and neovascularization. In addition, the effect of pharmacological agents used for the treatment of patients with DM on AAA formation has been studied with rather controversial results. Statins, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, fenofibrate, antibiotics and some hypoglycemic agents are beginning to be appreciated for a potential modest protection from AAAs, but further studies are needed.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Nikolaos Papanas
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital campus, University College London Medical School, University College London (UCL), London NW3 2QG, UK
| |
Collapse
|
45
|
Chen X, Zheng C, He Y, Tian L, Li J, Li D, Jin W, Li M, Zheng S. Identification of key genes associated with the human abdominal aortic aneurysm based on the gene expression profile. Mol Med Rep 2015; 12:7891-8. [PMID: 26498477 PMCID: PMC4758287 DOI: 10.3892/mmr.2015.4448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/17/2015] [Indexed: 12/30/2022] Open
Abstract
The present study was aimed at screening the key genes associated with abdominal aortic aneurysm (AAA) in the neck, and to investigate the molecular mechanism underlying the development of AAA. The gene expression profile, GSE47472, including 14 AAA neck samples and eight donor controls, was downloaded from the Gene Expression Omnibus database. The total AAA samples were grouped into two types to avoid bias. Differentially expressed genes (DEGs) were screened in patients with AAA and subsequently compared with donor controls using linear models for microarray data, or the Limma package in R, followed by gene ontology enrichment analysis. Furthermore, a protein-protein interaction (PPI) network based on the DEGs was constructed to detect highly connected regions using a Cytoscape plugin. In total, 388 DEGs in the AAA samples were identified. These DEGs were predominantly associated with limb development, including embryonic limb development and appendage development. Nuclear receptor co-repressor 1 (NCOR1), histone 4 (H4), E2F transcription factor 4 (E2F4) and hepatocyte nuclear factor 4α (HNF4A) were the four transcription factors associated with AAA. Furthermore, HNF4A indirectly interacted with the other three transcription factors. Additionally, six clusters were selected from the PPI network. The DEG screening process and the construction of an interaction network enabled an understanding of the mechanism of AAA to be gleaned. HNF4A may exert an important role in AAA development through its interactions with the three other transcription factors (E2F4, NCOR1 and H4), and the mechanism of this coordinated regulation of the transcription factors in AAA may provide a suitable target for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Xudong Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Chengfei Zheng
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yunjun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianhui Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Jin
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
46
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
47
|
Stather PW, Sylvius N, Sidloff DA, Dattani N, Verissimo A, Wild JB, Butt HZ, Choke E, Sayers RD, Bown MJ. Identification of microRNAs associated with abdominal aortic aneurysms and peripheral arterial disease. Br J Surg 2015; 102:755-66. [PMID: 25832031 DOI: 10.1002/bjs.9802] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND MicroRNAs are crucial in the regulation of cardiovascular disease and represent potential therapeutic targets to decrease abdominal aortic aneurysm (AAA) expansion. The aim of this study was to identify circulating microRNAs associated with AAA. METHODS Some 754 microRNAs in whole-blood samples from 15 men with an AAA and ten control subjects were quantified using quantitative reverse transcriptase-PCR. MicroRNAs demonstrating a significant association with AAA were validated in peripheral blood and plasma samples of men in the following groups (40 in each): healthy controls, controls with peripheral arterial disease (PAD), men with a small AAA (30-54 mm), those with a large AAA (over 54 mm), and those following AAA repair. MicroRNA expression was also assessed in aortic tissue. RESULTS Twenty-nine differentially expressed microRNAs were identified in the discovery study. Validation study revealed that let-7e (fold change (FC) -1·80; P = 0·001), miR-15a (FC -2·24; P < 0·001) and miR-196b (FC -2·26; P < 0·001) were downregulated in peripheral blood from patients with an AAA, and miR-411 was upregulated (FC 5·90; P = 0·001). miR-196b was also downregulated in plasma from the same individuals (FC -3·75; P = 0·029). The same miRNAs were similarly expressed differentially in patients with PAD compared with healthy controls. Validated and predicted microRNA targets identified through miRWalk revealed that these miRNAs were all regulators of AAA-related genes (vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, DAB2 interacting protein, α1-antitrypsin, C-reactive protein, interleukin 6, osteoprotegerin, methylenetetrahydrofolate reductase, tumour necrosis factor α). CONCLUSION In this study, circulating levels of let-7e, miR-15a, miR-196b and miR-411 were differentially expressed in men with an AAA compared with healthy controls, but also differentially expressed in men with PAD. Modulation of these miRNAs and their target genes may represent a new therapeutic pathway to affect the progression of AAA and atherosclerosis.
Collapse
Affiliation(s)
- P W Stather
- Departments of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Duggirala A, Delogu F, Angelini TG, Smith T, Caputo M, Rajakaruna C, Emanueli C. Non coding RNAs in aortic aneurysmal disease. Front Genet 2015; 6:125. [PMID: 25883602 PMCID: PMC4381652 DOI: 10.3389/fgene.2015.00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023] Open
Abstract
An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches. Non-coding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs have opened the field of ncRNAs capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers for aortic aneurysm. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focus at ncRNA roles in aorta aneurysms. We discuss the potential of therapeutic interventions targeting ncRNAs and we describe the research models allowing for mechanistic studies and clinical translation attempts for controlling aneurysm progression. Furthermore, we discuss the potential role of microRNAs and lncRNAs as clinical biomarkers.
Collapse
Affiliation(s)
- Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Francesca Delogu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | | | - Tanya Smith
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK ; Rush Centre for Congenital and Structural Heart Disease, Rush University Medical Centre Chicago, IL, USA
| | - Cha Rajakaruna
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| |
Collapse
|
49
|
Kim CW, Kumar S, Son DJ, Jang IH, Griendling KK, Jo H. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol 2014; 34:1412-21. [PMID: 24812324 DOI: 10.1161/atvbaha.113.303134] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is characterized as a progressive dilation and degradation of the aortic wall, associated with activation of matrix metalloproteinases (MMPs) and inflammation. Emerging evidence indicates a role for microRNAs (miRNAs) in AAA pathogenesis, but it is unclear whether abdominal aortic endothelial miRNAs play a role in the disease process. We aimed to identify miRNAs in the abdominal aortic endothelium that play a critical role in AAA development. APPROACH AND RESULTS The mouse model of AAA induced by angiotensin II infusion was used in this study. Through a miRNA array and validation study, we initially identified the murine-specific miR-712 and subsequently its human/murine homolog miR-205 as angiotensin II-induced miRNAs in the abdominal aortic endothelium in vivo and in vitro. Mechanistically, miR-712 stimulated MMP activity in the aortic wall by directly targeting 2 MMP inhibitors: tissue inhibitor of metalloproteinase 3 (TIMP3) and reversion-inducing cysteine-rich protein with kazal motifs (RECK). Silencing of miR-712 and miR-205 by using anti-miR-712 and anti-miR-205, respectively, significantly decreased the aortic MMP activity and inflammation, preventing AAA development in angiotensin II-infused ApoE(-/-) mice. Further, upregulation of 4 angiotensin II-sensitive miRNAs, miR-205, -21, -133b, and -378, identified in this murine study were confirmed in human AAA samples compared with nondiseased control. CONCLUSIONS Our results demonstrate that angiotensin II-sensitive miR-712 and its human homolog miR-205 downregulate TIMP3 and RECK, which in turn stimulate aortic MMP activity and inflammation, leading to AAA development. Targeting these miRNAs may be a novel therapeutic strategy to prevent AAA.
Collapse
Affiliation(s)
- Chan Woo Kim
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.)
| | - Sandeep Kumar
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.)
| | - Dong Ju Son
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.)
| | - In-Hwan Jang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.)
| | - Kathy K Griendling
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.)
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., S.K., D.J.S., I.-H.J., H.J.); and Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA (C.W.K., S.K., D.J.S., I.-H.J., K.K.G., H.J.).
| |
Collapse
|