1
|
Xia W, Li J, Cai Q, Deng C, Zhou Z, Yu X, Huang C, Cheng B. Exploring the antibiofilm potential of chitosan nanoparticles by functional modification with chloroquine and deoxyribonuclease. Carbohydr Polym 2025; 347:122726. [PMID: 39486956 DOI: 10.1016/j.carbpol.2024.122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
Planktonic bacteria tend to form sessile community architectures to shield resident bacteria from various environmental stresses. The formed biofilm leads to the failure of conventional antimicrobial therapy. Extracellular macromolecules, including extracellular DNA (eDNA), proteins, lipids, and polysaccharides, crosslink into gel-like structures through electrostatic forces in the mature biofilm matrix. The stereo-structural integrity and chemical inertia of the extracellular polymeric matrix result in comprehensive antimicrobial resistance to antibacterial polysaccharides. Herein, an ionic gelation method was employed to functionalize cationic chitosan nanoparticles (CSNPs) with chloroquine and deoxyribonuclease. The modification involved shifting eDNA chirality through a DNA-intercalating agent, chloroquine, and hydrolyzing an eDNA scaffold with deoxyribonuclease. The antibiofilm activity was assessed against a standard Staphylococcus aureus strain and clinical subtype isolates. Functional modifications targeting eDNA improved the chitosan anti-biofilm efficiency (residual biomass decreased from 74.2 to 90.3 % to 16.7-24.6 %) by disrupting the biofilm matrix. The functional CSNPs worked as a sensitizer prodrug, contributing to a bactericidal process of chitosan itself (cell wall damage increased from 11.38-18.16 % to 55.2-61.4 %) by dispersing the biofilm-enclosed bacteria. In vivo, the bacterial burden of infected mouse joints was reduced by 4.1 lg CFU/mL. Our results indicate the potential of this chitosan-based anti-infection strategy in biofilm-related infections.
Collapse
Affiliation(s)
- Wenyang Xia
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Li
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuchen Cai
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Changxu Deng
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglong Huang
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Biao Cheng
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Kuchma S, Geiger C, Webster S, Fu Y, Montoya R, O’Toole G. Genetic Analysis of Flagellar-Mediated Surface Sensing by Pseudomonas aeruginosa PA14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627040. [PMID: 39677620 PMCID: PMC11643085 DOI: 10.1101/2024.12.05.627040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Surface sensing is a key aspect of the early stage of biofilm formation. For P. aeruginosa, the type IV pili (TFP), the TFP alignment complex and PilY1 were shown to play a key role in c-di-GMP signaling upon surface contact. The role of the flagellar machinery in surface sensing is less well understood in P. aeruginosa. Here we show, consistent with findings from other groups, that a mutation in the gene encoding the flagellar hook protein (ΔflgK) or flagellin (ΔfliC) results in a strain that overproduces the Pel exopolysaccharide (EPS) with a concomitant increase in c-di-GMP levels. We use a candidate gene approach and genetic screens, combined with phenotypic assays, to identify key roles for the MotAB and MotCD stators and the FliG protein, a component of the flagellar switch complex, in stimulating the surface-dependent, increased c-di-GMP level noted for these flagellar mutants. These findings are consistent with previous studies showing a role for the stators in surface sensing. We also show that mutations in the genes coding for the diguanylate cyclases SadC and RoeA as well as SadB, a protein involved in early surface colonization, abrogate the increased c-d-GMP-related phenotypes of the ΔflgK mutant. Together, these data indicate that bacteria monitor the status of flagellar synthesis and/or function during surface sensing as a means to trigger the biofilm program.
Collapse
Affiliation(s)
- Sherry Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - C.J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Shanice Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Yu Fu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert Montoya
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G.A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Deng Y, Zhu Y, He J, Yin X, Li Q, Chen Z, Wang B, Zheng L. Complete genome analysis of deep-sea hydrothermal sulfur-oxidizing bacterium Sulfitobacter sp. TCYB15 associated with mussel Bathymodiolus marisindicus and insights into its habitat adaptation. Mar Genomics 2024; 78:101148. [PMID: 39388762 DOI: 10.1016/j.margen.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Yadan Deng
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yunjin Zhu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiaxuan He
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xin Yin
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Qian Li
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhengxing Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Bingshu Wang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Zheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
4
|
Wang Q, Wang M, Chen Y, Miao Q, Jin W, Ma Y, Pan J, Hu B. Deciphering microbiome and fungi-bacteria interactions in chronic wound infections using metagenomic sequencing. Eur J Clin Microbiol Infect Dis 2024; 43:2383-2396. [PMID: 39367927 DOI: 10.1007/s10096-024-04955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Chronic wounds caused by infections impose a considerable global healthcare burden. The microbial features of these infections and possible correlations between bacteria and fungi may influence wound healing. However, metagenomic next-generation sequencing (mNGS) analyses of these features remain sparse. Therefore, we performed mNGS on chronic wound infection samples to investigate features and correlations between the bacteriome and mycobiome in 66 patients (28: chronic wounds; 38: non-chronic wounds). METHODS Microbial community characteristics in patients with wound infections, microbiome-systemic inflammation associations, and bacteria-fungi correlations were analyzed. RESULTS Infections constituted the primary cause of wounds in this study. Nontuberculous mycobacteria (23%) and Mycobacterium tuberculosis (13%) were the most common pathogens associated with chronic wounds, whereas Staphylococcus aureus (15%) was the most prevalent in non-chronic wound infections. Patients with chronic wound infections had a higher abundance of Pseudomonas aeruginosa than those without chronic wounds. Microbes with a high relative abundance in chronic wound infections were less significantly associated with plasma inflammatory factors than those in non-chronic wound infections. Additionally, a positive correlation between Candida glabrata and P. aeruginosa and an association between Malassezia restricta and anaerobic species were detected in patients with chronic wound infections. CONCLUSION Our results further support the hypothesis that P. aeruginosa is a microbial biomarker of chronic wound infection regardless of the causative pathogens. Moreover, we propose a positive correlation between C. glabrata and P. aeruginosa in chronic wound infections, which advances the current understanding of fungi-bacteria correlations in patients with chronic wound infections.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meixia Wang
- Department of Hospital Infection Control, Zhongshan Hospital Xiamen Branch Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenting Jin
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Ma
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Sathishkumar P, Khan F. Leveraging bacteria-inspired nanomaterials for targeted controlling biofilm and virulence properties of Pseudomonas aeruginosa. Microb Pathog 2024; 197:107103. [PMID: 39505089 DOI: 10.1016/j.micpath.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen designated as a high-priority pathogen because of its role in major healthcare-associated and nosocomial infections. Biofilm production by these bacteria is one of the adaptive resistance mechanisms to traditional antibiotics, making treatment challenging, especially for immunocompromised patients. P. aeruginosa also produces a variety of virulence factors, which aid in invasion, adhesion, persistence, and immune system protection. Recent advances in nanotechnology-based therapy, notably the application of bioinspired metal and metal-oxide nanomaterials, have been seen as a viable way to control P. aeruginosa biofilm and virulence. Because of its ease of growth and culture, synthesizing metal and metal-oxide nanomaterials using bacterial species has become one of the most environmentally benign green synthesis options. The application of bacterial-inspired nanomaterials is particularly successful for targeted control of P. aeruginosa infection due to interactions with cell membrane components and transport systems. This paper delves into and provides a complete overview of the application of bacterial-inspired metal and metal-oxide nanomaterials to treat P. aeruginosa infection by targeting biofilm and virulence characteristics. The review focused on synthesizing and applying gold, silver, copper, iron, magnetite, and zinc oxide nanomaterials to mitigate P. aeruginosa biofilm and virulence. The underlying mechanism of these metal and metal-oxide nanoparticles in relation to biofilm and virulence features has also been thoroughly discussed. The current review introduces novel approaches to treating and controlling drug-resistant P. aeruginosa using bacterial-inspired nanomaterials as a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
6
|
Tirandaz H, Dastgheib SMM, Hamedi J. Sub-minimum inhibitory concentration of tetrakis(hydroxymethyl)phosphonium sulfate enhances biocorrosion of carbon steel by Pseudomonas aeruginosa. Sci Rep 2024; 14:28918. [PMID: 39572582 PMCID: PMC11582731 DOI: 10.1038/s41598-024-70157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/13/2024] [Indexed: 11/24/2024] Open
Abstract
Biocide treatments are commonly employed to mitigate unwanted microbial activities in industrial water systems. This study illuminates the intriguing phenomenon wherein sub-minimum inhibitory concentration (sub-MIC) of tetrakis(hydroxymethyl)phosphonium sulfate (THPS), a frequently used biocide, stimulates the formation of biofilms by Pseudomonas aeruginosa, consequently intensifying the corrosion of carbon steel. Introducing 160 µg/ml THPS, constituting a sub-MIC level, into the culture medium resulted in a notable increase in biofilm thickness and corrosion rate, elevating them from 82 µm and 10 mpy to 97 µm and 18.7 mpy, respectively. Electrochemical impedance spectroscopy, Tafel polarization and linear polarization resistance measurements substantiated the extent of corrosion. Furthermore, the treated biofilm exhibited a heightened presence of extracellular polymeric substances, improved adherence to the metal surface, enhanced structural integrity, and an extended dispersal phase. Confocal laser scanning microscopy (CLSM) images revealed a greater abundance of viable sessile cells within the inner layers of the treated biofilm. These findings underscore the role of sub-MIC levels of biocides as a potential driving force for developing more corrosive biofilms on industrial materials, emphasizing the critical importance of precise biocide dosing.
Collapse
Affiliation(s)
- Hassan Tirandaz
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Malik S, Kumaraguru G, Bruat M, Chefdor F, Depierreux C, Héricourt F, Carpin S, Shanmugam G, Lamblin F. Organic extracts from sustainable hybrid poplar hairy root cultures as potential natural antimicrobial and antibiofilm agents. PROTOPLASMA 2024; 261:1311-1326. [PMID: 39060468 DOI: 10.1007/s00709-024-01971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In order to meet growing consumer demands in terms of naturalness, the pharmaceutical, food, and cosmetic industries are looking for active molecules of plant origin. In this context, hairy roots are considered a promising biotechnological system for the sustainable production of compounds of interest. Poplars (genus Populus, family Salicaceae) are trees of ecological interest in temperate alluvial forests and are also cultivated for their industrial timber. Poplar trees also produce specialized metabolites with a wide range of bioactive properties. The present study aimed to assess the hybrid poplar hairy root extracts for antimicrobial and antibiofilm activities against four main life-threatening strains of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Ethyl acetate extracts from two hairy root lines (HP15-3 and HP A4-12) showed significant antibacterial properties as confirmed by disc diffusion assay. Antibiofilm activities were found to be dose dependent with significant biofilm inhibition (75-95%) recorded at 1000 µg.mL-1 in all the bacterial strains tested. Dose-dependent enhancement in the release of exopolysaccharides was observed in response to treatment with extracts, possibly because of stress and bacterial cell death. Fluorescence microscopy confirmed loss of cell viability of treated bacterial cells concomitant with increased production of reactive oxygen species compared to the untreated control. Overall, this study demonstrates for the first time a high potential of poplar hairy root extracts as a natural and safe platform to produce antimicrobial agents in pharmaceutical, food, industrial water management, or cosmetic industries.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Gowtham Kumaraguru
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Margot Bruat
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Françoise Chefdor
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Christiane Depierreux
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - François Héricourt
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Sabine Carpin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Frédéric Lamblin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France.
| |
Collapse
|
8
|
Kačániová M, Garzoli S, Ben Hsouna A, Bianchi A, Kluz MI, Elizondo-Luevano JH, Ban Z, Ben Saad R, Mnif W, Haščík P. The Potential of Thymus serpyllum Essential Oil as an Antibacterial Agent against Pseudomonas aeruginosa in the Preservation of Sous Vide Red Deer Meat. Foods 2024; 13:3107. [PMID: 39410141 PMCID: PMC11476099 DOI: 10.3390/foods13193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Foodborne infections caused by microbes are a serious health risk. Regarding this, customer preferences for "ready-to-eat" or minimally processed (MP) deer meat are one of the main risk factors. Given the health dangers associated with food, essential oil (EO) is a practical substitute used to decrease pathogenic germs and extend the shelf-life of MP meals. Nonetheless, further data regarding EO use in MP meals are required. In order to evaluate new, safer alternatives to chemicals for disease control and food preservation, this research was carried out in the following areas to assess the antibacterial and antibiofilm characteristics of Thymus serpyllum (TSEO) essential oil, which is extracted from dried flowering stalks. Furthermore, this study applied an essential oil of wild thyme and inoculated the sous vide deer meat with Pseudomonas aeruginosa for seven days at 4 °C in an effort to prolong its shelf-life. Against P. aeruginosa, the essential oil exhibited potent antibacterial action. The findings of the minimal biofilm inhibition concentration (MBIC) crystal violet test demonstrated the substantial antibiofilm activity of the TSEO. The TSEO modified the protein profiles of bacteria on glass and plastic surfaces, according to data from MALDI-TOF MS analysis. Moreover, it was discovered that P. aeruginosa was positively affected by the antibacterial properties of TSEO. The anti-Pseudomonas activity of the TSEO was marginally higher in vacuum-packed sous vide red deer meat samples than in control samples. The most frequently isolated species from sous vide deer meat, if we do not consider the applied bacteria Pseudomonas aeruginosa, were P. fragi, P. lundensis, and P. taetrolens. These results highlight the antibacterial and antibiofilm qualities of TSEO, demonstrating its potential for food preservation and extending the shelf-life of deer meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences of Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
9
|
Holt JD, Schultz D, Nadell CD. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Curr Biol 2024; 34:4129-4142.e4. [PMID: 39163856 PMCID: PMC11686572 DOI: 10.1016/j.cub.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Collapse
Affiliation(s)
- Jacob D Holt
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
10
|
Cheng Y, Liang Y, Tan X, Liu L. Host long noncoding RNAs in bacterial infections. Front Immunol 2024; 15:1419782. [PMID: 39295861 PMCID: PMC11408731 DOI: 10.3389/fimmu.2024.1419782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
11
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Wan C, Ju X, Xu D, Ou J, Zhu M, Lu G, Li K, Jiang W, Li C, Hu X, Tian Y, Niu Z. Escherichia coli exopolysaccharides disrupt Pseudomonas aeruginosa biofilm and increase its antibiotic susceptibility. Acta Biomater 2024; 185:215-225. [PMID: 39067645 DOI: 10.1016/j.actbio.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen that causes infectious diseases. It has high tendency to form biofilms, resulting in the failure of traditional antibiotic therapies. Inspired by the phenomenon that co-culture of Escherichia coli (E. coli) and P. aeruginosa leads to a biofilm reduction, we reveal that E. coli exopolysaccharides (EPS) can disrupt P. aeruginosa biofilm and increase its antibiotic susceptibility. The results show that E. coli EPS effectively inhibit biofilm formation and disrupt mature biofilms in P. aeruginosa, Staphylococcus aureus, and E. coli itself. The maximal inhibition and disruption rates against P. aeruginosa biofilm are 40 % and 47 %, respectively. Based on the biofilm-disrupting ability of E. coli EPS, we develop an E. coli EPS/antibiotic combining strategy for the treatment of P. aeruginosa biofilms. The combination with E. coli EPS increases the antibacterial efficiency of tobramycin against P. aeruginosa biofilms in vitro and in vivo. This study provides a promising strategy for treating biofilm infections. STATEMENT OF SIGNIFICANCE: Biofilm formation is a leading cause of chronic infections. It blocks antibiotics, increases antibiotic-tolerance, and aids in immune evasion, thus representing a great challenge in clinic. This study proposes a promising approach to combat pathogenic Pseudomonas aeruginosa (P. aeruginosa) biofilms by combining Escherichia coli exopolysaccharides with antibiotics. This strategy shows high efficiency in different P. aeruginosa stains, including two laboratory strains, PAO1 and ATCC 10145, as well as a clinically acquired carbapenem-resistant strain. In addition, in vivo experiments have shown that this approach is effective against implanted P. aeruginosa biofilms and can prevent systemic inflammation in mice. This strategy offers new possibilities to address the clinical failure of conventional antibiotic therapies for microbial biofilms.
Collapse
Affiliation(s)
- Chenxiao Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhao Ou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guojun Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Li
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Walton B, Abbondante S, Marshall ME, Dobruchowska JM, Alvi A, Gallagher LA, Vallikat N, Zhang Z, Wozniak DJ, Yu EW, Boons GJ, Pearlman E, Rietsch A. A biofilm-tropic Pseudomonas aeruginosa bacteriophage uses the exopolysaccharide Psl as receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607380. [PMID: 39185188 PMCID: PMC11343166 DOI: 10.1101/2024.08.12.607380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Bacteria in nature can exist in multicellular communities called biofilms. Biofilms also form in the course of many infections. Pseudomonas aeruginosa infections frequently involve biofilms, which contribute materially to the difficulty to treat these infections with antibiotic therapy. Many biofilm-related characteristics are controlled by the second messenger, cyclic-di-GMP, which is upregulated on surface contact. Among these factors is the exopolysaccharide Psl, which is a critically important component of the biofilm matrix. Here we describe the discovery of a P. aeruginosa bacteriophage, which we have called Clew-1, that directly binds to and uses Psl as a receptor. While this phage does not efficiently infect planktonically growing bacteria, it can disrupt P. aeruginosa biofilms and replicate in biofilm bacteria. We further demonstrate that the Clew-1 can reduce the bacterial burden in a mouse model of P. aeruginosa keratitis, which is characterized by the formation of a biofilm on the cornea. Due to its reliance on Psl for infection, Clew-1 does not actually form plaques on wild-type bacteria under standard in vitro conditions. This argues that our standard isolation procedures likely exclude bacteriophage that are adapted to using biofilm markers for infection. Importantly, the manner in which we isolated Clew-1 can be easily extended to other strains of P. aeruginosa and indeed other bacterial species, which will fuel the discovery of other biofilm-tropic bacteriophage and expand their therapeutic use.
Collapse
Affiliation(s)
- Brenna Walton
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Serena Abbondante
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Michaela Ellen Marshall
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Justyna M. Dobruchowska
- Dept. of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, NL
| | - Amani Alvi
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | | | - Nikhil Vallikat
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Zhemin Zhang
- Dept. of Pharmacology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Daniel J. Wozniak
- Dept. of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, U.S.A
- Dept. of Microbiology, The Ohio State University, Columbus, OH, U.S.A
| | - Edward W. Yu
- Dept. of Pharmacology, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Geert-Jan Boons
- Dept. of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, NL
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, U.S.A
- Dept. of Chemistry, University of Georgia, Athens, GA, U.S.A
| | - Eric Pearlman
- Dept. of Ophthalmology, University of California, Irvine, CA, U.S.A
- Institute of Immunology, University of California, Irvine, CA, U.S.A
| | - Arne Rietsch
- Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
14
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Song G, Li M, Zhou B, Qi H, Guo J. Gallium-based metal-organic frameworks with antibacterial and anti-inflammatory properties for oral health protection. Heliyon 2024; 10:e31788. [PMID: 38845911 PMCID: PMC11153188 DOI: 10.1016/j.heliyon.2024.e31788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The fascial space of the oral and maxillofacial region contains loose connective tissues, which possess weak anti-infection ability and are often prone to infection, leading to acute suppurative inflammation and sepsis through blood. Although antibiotic use can reduce the probability of bacterial infections, owing to the emergence of antibiotic-resistant bacteria, the search for new antimicrobial drugs is imminent. Herein, we report a metal-organic framework (MOF) antibacterial material designed and synthesized with gallium (Ga) as the central atom, which possesses significant antibacterial, anti-inflammatory, and antioxidant effects. Our data suggested that GA-based MOFs (Ga-MOFs; 1 μg/mL) could sufficiently kill Porphyromonas gingivalis, Streptococcus pyogenes, and Staphylococcus aureus. Ga-MOFs exhibited a bactericidal effect against these three pathogens by disrupting biofilm formation, exopolysaccharide production, and bacterial membrane integrity. In addition, we found that 1 μg/mL of Ga-MOFs was not cytotoxic to human oral epithelial cell (HOEC) lines and it significantly reduced the adhesion of the three pathogens to HOEC. Ga-MOFs protect macrophages from excessive oxidative stress by scavenging excess intracellular reactive oxygen species and upregulating antioxidant gene levels, thereby enhancing cellular antioxidant defense. In addition, Ga-MOFs can promote the transformation of macrophages from the proinflammatory phenotype to the anti-inflammatory phenotype, thereby protecting oral health. Herein, novel Ga-MOF materials were chemically synthesized for therapeutic applications in oral infections, which provides new ideas for the development of novel nonantibiotic drugs to accelerate patient recovery.
Collapse
Affiliation(s)
- Gongyuan Song
- Shijiazhuang Stomatology Hospital, Shijiazhuang, 050000, China
| | - Min Li
- Handan Stomatology Hospital, Handan, 056000, China
| | - Bing Zhou
- Cangzhou People's Hospital, Cangzhou, 061000, China
| | - Hongguang Qi
- Gucheng County Hospital of Hebei Provence, 253800, China
| | - Jie Guo
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
16
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
17
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
18
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
19
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
20
|
Liu X, Yang Y, Takizawa S, Graham NJD, Chen C, Pu J, Ng HY. New insights into the concentration-dependent regulation of membrane biofouling formation via continuous nanoplastics stimulation. WATER RESEARCH 2024; 253:121268. [PMID: 38340700 DOI: 10.1016/j.watres.2024.121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.
Collapse
Affiliation(s)
- Xinhui Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chao Chen
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian Pu
- Institute for the Advanced Study of Sustainability, United Nations University, Jingumae 5-53-70, Shibuya-ku, Tokyo 150-8925, Japan; Institute for Future Initiatives, The University of Tokyo, Tokyo 113-0033, Japan
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
21
|
Chen Y, Xiang G, Liu P, Zhou X, Guo P, Wu Z, Yang J, Chen P, Huang J, Liao K. Prevalence and molecular characteristics of ceftazidime-avibactam resistance among carbapenem-resistant Pseudomonas aeruginosa clinical isolates. J Glob Antimicrob Resist 2024; 36:276-283. [PMID: 38295902 DOI: 10.1016/j.jgar.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVES Resistance against ceftazidime-avibactam (CZA) in carbapenem-resistant Pseudomonas aeruginosa (CRPA) is emerging. This study was aimed at detecting the prevalence and molecular characteristics of CZA-resistant CRPA clinical isolates in Guangdong Province, China. METHODS The antimicrobial susceptibility profile of these strains was determined. A subset of 16 CZA-resistant CRPA isolates was analysed by whole-genome sequencing (WGS). Genetic surroundings of carbapenem resistance genes and pan-genome-wide association analysis were further studied. RESULTS Of the 250 CRPA isolates, CZA resistance rate was 6.4% (16/250). The minimum inhibitory concentration (MIC) of CZA range was from 0.25 to >256 mg/L. MIC50 and MIC90 were 2/4 and 8/4 mg/L, respectively. Among the 16 CZA-resistant CRPA strains, 31.3% (5/16) of them carried class B carbapenem resistance genes, including blaIMP-4, blaIMP-45, and blaVIM-2, located on IncP-2 megaplasmids or chromosomes, respectively. Pan-genome-wide association analysis of accessory genes for CZA-susceptible or -resistant CRPA isolates showed that PA1874, a hypothetical protein containing BapA prefix-like domain, was enriched in CZA-resistant group significantly. CONCLUSIONS Class B carbapenem resistance genes play important roles in CZA resistance. Meanwhile, the PA1874 gene may be a novel mechanism involving in CZA resistance. It is necessary to continually monitor CZA-resistant CRPA isolates.
Collapse
Affiliation(s)
- Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjuan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianling Zhou
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juhua Yang
- Vision Medicals Co., Ltd, Guangzhou, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junqi Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Organ Transplant Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
23
|
Su Q, Lu D, Kong J, Lin H, Xuan G, Wang J. PqsA mutation-mediated enhancement of phage-mediated combat against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1296777. [PMID: 38469347 PMCID: PMC10925624 DOI: 10.3389/fcimb.2024.1296777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Phage therapy is a potential approach in the biocontrol of foodborne pathogens. However, the emergence of phage resistance and the narrow host range of most phage isolates continue to limit the antimicrobial efficacy of phages. Here, we investigated the potential of the pqsA gene, encoding the anthranilate-CoA ligase enzyme, as an adjuvant for phage therapy. The knockout of the pqsA gene significantly enhanced the bactericidal effect of phages vB_Pae_QDWS and vB_Pae_S1 against Pseudomonas aeruginosa. Under phage infection pressure, the growth of the PaΔpqsA was significantly inhibited within 8 h compared to the wild-type PAO1. Furthermore, we found that altering phage adsorption is not how PaΔpqsA responds to phage infection. Although pqsA represents a promising target for enhancing phage killing, it may not be applicable to all phages, such as types vB_Pae_W3 and vB_Pae_TR. Our findings provide new material reserves for the future design of novel phage-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingxue Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
24
|
Ruijgrok G, Wu DY, Overkleeft HS, Codée JDC. Synthesis and application of bacterial exopolysaccharides. Curr Opin Chem Biol 2024; 78:102418. [PMID: 38134611 DOI: 10.1016/j.cbpa.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Exopolysaccharides are produced and excreted by bacteria in the generation of biofilms to provide a protective environment. These polysaccharides are generally generated as heterogeneous polymers of varying length, featuring diverse substitution patterns. To obtain well-defined fragments of these polysaccharides, organic synthesis often is the method of choice, as it allows for full control over chain length and the installation of a pre-determined substitution pattern. This review presents several recent syntheses of exopolysaccharide fragments of Pseudomonas aeruginosa and Staphylococcus aureus and illustrates how these have been used to study biosynthesis enzymes and generate synthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Gijs Ruijgrok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Dung-Yeh Wu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| |
Collapse
|
25
|
Hemmati J, Nazari M, Ahmadi A, Bayati M, Jalili M, Taheri M, Mohammadi Y, Asghari B. In vitro evaluation of biofilm phenotypic and genotypic characteristics among clinical isolates of Pseudomonas aeruginosa in Hamadan, West of Iran. J Appl Genet 2024; 65:213-222. [PMID: 38017355 DOI: 10.1007/s13353-023-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Due to high antimicrobial resistance and biofilm-forming ability, Pseudomonas aeruginosa is one of the seriously life-threatening agents causing chronic and nosocomial infections. This study was performed to determine the antibiotic resistance pattern, biofilm formation, and frequency of biofilm-related genes in P. aeruginosa strains. In total, 123 P. aeruginosa isolates were collected from different clinical sources. Antimicrobial susceptibility testing (AST) was performed to detect multidrug-resistant P. aeruginosa (MDRPA) isolates. To evaluate the biofilm-forming isolates, the microtiter plate (MTP) method was carried out. Also, the prevalence of biofilm genotype patterns, including pslA, pslD, pelA, pelF, and algD genes, was detected by polymerases chain reaction (PCR). According to our findings, the highest resistance and susceptibility rates were found in ceftazidime with 74.7% (n = 92) and ciprofloxacin with 42.2% (n = 52), respectively. In our study, the highest level of antibiotic resistance belonged to wound isolates which meropenem had the most antibacterial activity against them. In total, 86.1% (n = 106) P. aeruginosa isolates were determined as MDRPA, of which 61.3% (n = 65) were able to form strong biofilm. The highest and lowest frequency of biofilm-related genes among biofilm producer isolates belonged to pelF with 82.1% (n = 101) and algD with 55.2% (n = 68), respectively. The findings of the conducted study indicate a significant relationship between MDRPA and biofilm genotypic/phenotypic patterns, suggesting the necessity of a careful surveillance program in hospital settings.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nazari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amjad Ahmadi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maral Bayati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Jalili
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
26
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
27
|
Chen Y, Rong C, Gao W, Luo S, Guo Y, Gu Y, Yang G, Xu W, Zhu C, Qu LL. Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. J Colloid Interface Sci 2024; 653:540-550. [PMID: 37729761 DOI: 10.1016/j.jcis.2023.09.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Reactive oxygen species (ROS) are ideal alternative antibacterial reagents for rapid and effective sterilization. Although a variety of ROS-based antimicrobial strategies have been developed, many are still limited by their inefficiency. Herein, we report the synthesis of the Ag-MXene nanozyme, which have superior peroxidase-like activity for antibacterial applications. As a result, Ag-MXene nanozyme can efficiently increase the level of intracellular ROS, converting H2O2 into hydroxyl radicals that effectively kill both Gram-negative and Gram-positive bacteria and disrupting the bacterial biofilm formation. Moreover, a sensitive and selective colorimetric biosensor was constructed for assaying cholesterol based on the Ag-MXene's prominent peroxidase-mimicking activity and the cholesterol oxidase cascade reaction. The biosensor exhibits high performance with a linear cholesterol detection range of 2-800 μM, and a detection limit of 0.6 μM. Ag-MXene nanozyme can be used for the rapid detection of cholesterol in serum without complicated sample pretreatment. Collectively, it is conceivable that the proposed Ag-MXene nanozyme could be used as a biocide and as a cholesterol sensor. This study provides a broad prospect for the rapid detection and sterilization of MXene nanozymes in the biomedical field.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Chengyu Rong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenhui Gao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Siyu Luo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
28
|
Wang D, Naqvi STA, Lei F, Zhang Z, Yu H, Ma LZ. Glycosyl hydrolase from Pseudomonas fluorescens inhibits the biofilm formation of Pseudomonads. Biofilm 2023; 6:100155. [PMID: 37928620 PMCID: PMC10622837 DOI: 10.1016/j.bioflm.2023.100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix and play a vital role in biofilm architecture. In previous studies, a glycosyl hydrolase, PslGPA, from Pseudomonas aeruginosa was found to be able to inhibit biofilm formation by disintegrating exopolysaccharide in biofilms. Here, we investigate the potential spectrum of PslG homologous protein with anti-biofilm activity. One glycosyl hydrolase from Pseudomonas fluorescens, PslGPF, exhibits anti-biofilm activities and the key catalytic residues of PslGPF are conserved with those of PslGPA. PslGPF at concentrations as low as 50 nM efficiently inhibits the biofilm formation of P. aeruginosa and disassemble its preformed biofilm. Furthermore, PslGPF exhibits anti-biofilm activity on a series of Pseudomonads, including P. fluorescens, Pseudomonas stutzeri and Pseudomonas syringae pv. phaseolicola. PslGPF stays active under various temperatures. Our findings suggest that P. fluorescens glycosyl hydrolase PslGPF has potential to be a broad spectrum inhibitor on biofilm formation of a wide range of Pseudomonads.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Syed Tatheer Alam Naqvi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fanglin Lei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Yunnan University, Kunming, 650500, PR China
| | - Zhenyu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
29
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
31
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
32
|
Zhang Y, Bhasme P, Reddy DS, Liu D, Yu Z, Zhao T, Zheng Y, Kumar A, Yu H, Ma LZ. Dual functions: A coumarin-chalcone conjugate inhibits cyclic-di-GMP and quorum-sensing signaling to reduce biofilm formation and virulence of pathogens. MLIFE 2023; 2:283-294. [PMID: 38817812 PMCID: PMC10989777 DOI: 10.1002/mlf2.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 06/01/2024]
Abstract
Antibiotic resistance or tolerance of pathogens is one of the most serious global public health threats. Bacteria in biofilms show extreme tolerance to almost all antibiotic classes. Thus, use of antibiofilm drugs without bacterial-killing effects is one of the strategies to combat antibiotic tolerance. In this study, we discovered a coumarin-chalcone conjugate C9, which can inhibit the biofilm formation of three common pathogens that cause nosocomial infections, namely, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, with the best antibiofilm activity against P. aeruginosa. Further investigations indicate that C9 decreases the synthesis of the key biofilm matrix exopolysaccharide Psl and bacterial second messenger cyclic-di-GMP. Meanwhile, C9 can interfere with the regulation of the quorum sensing (QS) system to reduce the virulence of P. aeruginosa. C9 treatment enhances the sensitivity of biofilm to several antibiotics and reduces the survival rate of P. aeruginosa under starvation or oxidative stress conditions, indicating its excellent potential for use as an antibiofilm-forming and anti-QS drug.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dinesh S. Reddy
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Dejian Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Tianhu Zhao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Amit Kumar
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Ruhal R, Ghosh M, Kumar V, Jain D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001392. [PMID: 37702709 PMCID: PMC10569066 DOI: 10.1099/mic.0.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic, multidrug-resistant pathogen capable of adapting to numerous environmental conditions and causing fatal infections in immunocompromised patients. The predominant lifestyle of P. aeruginosa is in the form of biofilms, which are structured communities of bacteria encapsulated in a matrix containing exopolysaccharides, extracellular DNA (eDNA) and proteins. The matrix is impervious to antibiotics, rendering the bacteria tolerant to antimicrobials. P. aeruginosa also produces a plethora of virulence factors such as pyocyanin, rhamnolipids and lipopolysaccharides among others. In this study we present the molecular characterization of pslC and pslI genes, of the exopolysaccharide operon, that code for putative glycosyltransferases. PslC is a 303 amino acid containing putative GT2 glycosyltrasferase, whereas PslI is a 367 aa long protein, possibly functioning as a GT4 glycosyltransferase. Mutation in either of these two genes results in a significant reduction in biofilm biomass with concomitant decline in c-di-GMP levels in the bacterial cells. Moreover, mutation in pslC and pslI dramatically increased susceptibility of P. aeruginosa to tobramycin, colistin and ciprofloxacin. Additionally, these mutations also resulted in an increase in rhamnolipids and pyocyanin formation. We demonstrate that elevated rhamnolipids promote a swarming phenotype in the mutant strains. Together these results highlight the importance of PslC and PslI in the biogenesis of biofilms and their potential as targets for increased antibiotic susceptibility and biofilm inhibition.
Collapse
Affiliation(s)
- Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Vineet Kumar
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
34
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LE. Cell arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545666. [PMID: 37645902 PMCID: PMC10462148 DOI: 10.1101/2023.06.20.545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | | | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
35
|
Zheng X, Gao M, Wu L, Lu X, Lin Q, Zhong H, Lu Y, Zhang Y, Zhang X. Ceftazidime-assisted synthesis of ultrasmall chitosan nanoparticles for biofilm penetration and eradication of Pseudomonas aeruginosa. Sci Rep 2023; 13:13481. [PMID: 37596397 PMCID: PMC10439121 DOI: 10.1038/s41598-023-40653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections present a grave threat to immunocompromised individuals, particularly those with cystic fibrosis due to the development of bacterial biofilms. In this study, we engineered self-assembling chitosan-ceftazidime nanoparticles (CSCE) capable of effectively penetrating biofilms and eradicating P. aeruginosa. The CSCE nanoparticles were synthesized through ionic cross-linking, combining negatively charged ceftazidime with positively charged chitosan, resulting in uniform nanoparticles measuring approximately 40 nm in diameter, exhibiting high dispersity and excellent biocompatibility. Remarkably, these nanoparticles exhibited significant inhibition of P. aeruginosa growth, reduced pyocyanin production, and diminished biofilm formation, achieving a maximum inhibition rate of 22.44%. Furthermore, in vivo investigations demonstrated enhanced survival in mice with abdominal P. aeruginosa infection following treatment with CSCE nanoparticles, accompanied by reduced levels of inflammatory cytokines Interleukin-6 (125.79 ± 18.63 pg/mL), Interleukin-17 (125.67 ± 5.94 pg/mL), and Tumor Necrosis Factor-α (135.4 ± 11.77 pg/mL). Critically, mice treated with CSCE nanoparticles showed no presence of bacteria in the bloodstream following intraperitoneal P. aeruginosa infection. Collectively, our findings highlight the potential of these synthesized nanoparticles as effective agents against P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaoran Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Hai Zhong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211100, China.
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
36
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|
37
|
Wang Y, Jin Y, Sun F, Zhang Y, Liu Q, Wang Q, Yang D, Zhang Y. The c-di-GMP signalling component YfiR regulates multiple bacterial phenotypes and virulence in Pseudomonas plecoglossicida. J Appl Microbiol 2023; 134:lxad157. [PMID: 37500265 DOI: 10.1093/jambio/lxad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIMS Pseudomonas plecoglossicida (P. plecoglossicida) is the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea) and it causes severe economic loss to its industry. Biofilm formation, related to intracellular cyclic bis (3'-5') diguanylic acid (c-di-GMP) levels, is essential for the lifestyle of P. plecoglossicida. This research aims to investigate the role of YfiR-a key regulator of the diguanylate cyclase YfiN to regulate c-di-GMP levels and reveal its regulatory function of bacterial virulence expression in P. plecoglossicida. METHODS AND RESULTS A genetic analysis was carried out to identify the yfiBNR operon for c-di-GMP regulation in P. plecoglossicida. Then, we constructed a yfiR mutant and observed increased c-di-GMP levels, enhanced biofilm formation, increased exopolysaccharides, and diminished swimming and swarming motility in this strain. Moreover, through establishing a yolk sac microinjection infection model in zebrafish larvae, an attenuated phenotype of yfiR mutant that manifested as restored survival and lower bacterial colonization was found. CONCLUSIONS YfiR is the key regulator of virulence in P. plecoglossicida, which contributes to c-di-GMP level, biofilm formation, exopolysaccharides production, swimming, swarming motility, and bacterial colonization in zebrafish model.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yinhua Jin
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Sun
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
38
|
Jin LM, Shen H, Che XY, Jin Y, Yuan CM, Zhang NH. Anti-bacterial mechanism of baicalin-tobramycin combination on carbapenem-resistant Pseudomonas aeruginosa. World J Clin Cases 2023; 11:4026-4034. [PMID: 37388786 PMCID: PMC10303599 DOI: 10.12998/wjcc.v11.i17.4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) is an important cause of nosocomial infections, and contributes to high morbidity and mortality, especially in intensive care units. P. aeruginosa is considered a 'critical' category bacterial pathogen by the World Health Organization to encourage an urgent need for research and development of new antibiotics against its infections.
AIM To investigate the effectiveness of baicalin combined with tobramycin therapy as a potential treatment method for carbapenem-resistant P. aeruginosa (CRPA) infections.
METHODS Polymerase chain reaction (PCR) and RT-PCR were used to detect the expression levels of drug-resistant genes (including VIM, IMP and OprD2) and biofilm-related genes (including algD, pslA and lasR) in CRPA that confer resistance to tobramycin, baicalin and tobramycin combined with baicalin (0, 1/8, 1/4, 1/2 and 1MIC).
RESULTS There was a correlation between biofilm formation and the expression of biofilm-related genes. In addition, VIM, IMP, OprD2, algD, pslA and lasR that confer biofilm production under different concentrations in CRPA were significantly correlated. The synergistic effect of baicalin combined with tobramycin was a significant down-regulation of VIM, IMP, algD, pslA and lasR.
CONCLUSION Baicalin combined with tobramycin therapy can be an effective treatment method for patients with CRPA infection.
Collapse
Affiliation(s)
- Li-Min Jin
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Hui Shen
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Xing-Ying Che
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Ye Jin
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Chun-Mei Yuan
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Neng-Hua Zhang
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
39
|
Tournay RJ, Firrincieli A, Parikh SS, Sivitilli DM, Doty SL. Effect of Arsenic on EPS Synthesis, Biofilm Formation, and Plant Growth-Promoting Abilities of the Endophytes Pseudomonas PD9R and Rahnella laticis PD12R. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37256822 DOI: 10.1021/acs.est.2c08586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytoremediation, a cost-effective, eco-friendly alternative to conventional remediation, could expand efforts to remediate arsenic-contaminated soils. As with other pollutants, the plant microbiome may improve phytoremediation outcomes for arsenic-contaminated sites. We used in vitro and in silico methods to compare the arsenic resistance mechanisms, synthesis of extracellular polymeric substances (EPS), biofilm formation, and plant growth-promoting abilities of the endophytes Pseudomonas sp. PD9R and Rahnella laticis PD12R. PD12R, which tolerates arsenate (As(V)) and arsenite (As(III)) to concentrations fivefold greater than PD9R, synthesizes high volumes of EPS in response to arsenic, and sequesters arsenic in the capsular EPS and cells. While arsenic exposure induced EPS synthesis in both strains, only PD12R continued to form biofilms at high As(III) and As(V) concentrations. The effects of endophyte inoculation on Arabidopsis growth varied by strain and As(V) concentration, and PD9R had positive effect on plants exposed to low levels of arsenic. Comparative genomic analyses exploring the EPS synthesis and arsenic resistance mechanisms against other Pseudomonas and Rahnella strains suggest that both strains possess atypical arsenic resistance mechanisms from other plant-associated strains, while the configuration of the EPS synthesis systems appeared to be more broadly distributed among plant- and non-plant-associated strains.
Collapse
Affiliation(s)
- Robert J Tournay
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Andrea Firrincieli
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Shruti S Parikh
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Dominic M Sivitilli
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Sharon L Doty
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Chung J, Eisha S, Park S, Morris AJ, Martin I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci 2023; 24:ijms24108709. [PMID: 37240055 DOI: 10.3390/ijms24108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shafinaz Eisha
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Subin Park
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Morris
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Isaac Martin
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
41
|
Sanya DRA, Onésime D, Vizzarro G, Jacquier N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol 2023; 23:86. [PMID: 36991325 PMCID: PMC10060139 DOI: 10.1186/s12866-023-02832-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is the causal agent of a wide variety of infections. This non-fermentative Gram-negative bacillus can colonize zones where the skin barrier is weakened, such as wounds or burns. It also causes infections of the urinary tract, respiratory system or bloodstream. P. aeruginosa infections are common in hospitalized patients for which multidrug-resistant, respectively extensively drug-resistant isolates can be a strong contributor to a high rate of in-hospital mortality. Moreover, chronic respiratory system infections of cystic fibrosis patients are especially concerning, since very tedious to treat. P. aeruginosa exploits diverse cell-associated and secreted virulence factors, which play essential roles in its pathogenesis. Those factors encompass carbohydrate-binding proteins, quorum sensing that monitor the production of extracellular products, genes conferring extensive drug resistance, and a secretion system to deliver effectors to kill competitors or subvert host essential functions. In this article, we highlight recent advances in the understanding of P. aeruginosa pathogenicity and virulence as well as efforts for the identification of new drug targets and the development of new therapeutic strategies against P. aeruginosa infections. These recent advances provide innovative and promising strategies to circumvent infection caused by this important human pathogen.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Grazia Vizzarro
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
- Present Address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
42
|
Cai J, Zhou M, Zhang Y, Ma Y, Zhang Y, Wang Q. Identification of determinants for entering into a viable but nonculturable state in Vibrio alginolyticus by Tn-seq. Appl Microbiol Biotechnol 2023; 107:1813-1827. [PMID: 36729225 DOI: 10.1007/s00253-023-12376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
The viable but nonculturable (VBNC) state is a dormant state of nonsporulating bacteria that enhances survival in adverse environments. Systematic genome-wide research on the genetic basis of VBNC formation is warranted. In this study, we demonstrated that the marine bacterium Vibrio alginolyticus lost culturability but remained viable and entered into the VBNC state when exposed to low nutrient concentrations for prolonged periods of time. Using transposon-insertion sequencing (Tn-seq), we identified 635 determinants governing the formation of the VBNC state, including 322 genes with defective effects on VBNC formation and 313 genes contributing to entry into the VBNC state. Tn-seq analysis revealed that genes involved in various metabolic pathways were shown to have an inhibitory effect on VBNC formation, while genes related to chemotaxis or folate biosynthesis promoted entry into the VBNC state. Moreover, the effects of these genes on the formation of VBNC were validated with the growth of deletion mutants of eight selected genes under nutrient-limited conditions. Interestingly, fleQ and pyrI were identified as essential for entry into the VBNC state, and they affected the formation of the VBNC state independent of RpoE or ToxR regulation. Collectively, these results provide new insights into the mechanism of VBNC formation. KEY POINTS: • Vibrio alginolyticus has the ability to enter into the VBNC state under low nutrient conditions at low temperature. • The 635 determinants for entry into the VBNC state were systematically identified by transposon-insertion sequencing. • PyrI and FleQ were validated to play significant roles in the formation of the VBNC state.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
43
|
A Library of Promoter- gfp Fusion Reporters for Studying Systematic Expression Pattern of Cyclic-di-GMP Metabolism-Related Genes in Pseudomonas aeruginosa. Appl Environ Microbiol 2023; 89:e0189122. [PMID: 36744921 PMCID: PMC9973039 DOI: 10.1128/aem.01891-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is an environmental microorganism and is a model organism for biofilm research. Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that plays critical roles in biofilm formation. P. aeruginosa contains approximately 40 genes that encode enzymes that participate in the metabolism of c-di-GMP (biosynthesis or degradation), yet it lacks tools that aid investigation of the systematic expression pattern of those genes. In this study, we constructed a promoter-gfp fusion reporter library that consists of 41 reporter plasmids. Each plasmid contains a promoter of corresponding c-di-GMP metabolism-related (CMR) genes from P. aeruginosa reference strain PAO1; thus, each promoter-gfp fusion reporter can be used to detect the promoter activity as well as the transcription of corresponding gene. The promoter activity was tested in P. aeruginosa and Escherichia coli. Among the 41 genes, the promoters of 26 genes showed activity in both P. aeruginosa and E. coli. The library was applied to determine the influence of different temperatures, growth media, and subinhibitory concentrations of antibiotics on the transcriptional profile of the 41 CMR genes in P. aeruginosa. The results showed that different growth conditions did affect the transcription of different genes, while the promoter activity of a few genes was kept at the same level under several different growth conditions. In summary, we provide a promoter-gfp fusion reporter library for systematic monitoring or study of the regulation of CMR genes in P. aeruginosa. In addition, the functional promoters can also be used as a biobrick for synthetic biology studies. IMPORTANCE The opportunistic pathogen P. aeruginosa can cause acute and chronic infections in humans, and it is one of the main pathogens in nosocomial infections. Biofilm formation is one of the most important causes for P. aeruginosa persistence in hosts and evasion of immune and antibiotic attacks. c-di-GMP is a critical second messenger to control biofilm formation. In P. aeruginosa reference strain PAO1, 41 genes are predicted to participate in the making and breaking of this dinucleotide. A major missing piece of information in this field is the systematic expression profile of those genes in response to changing environment. Toward this goal, we constructed a promoter-gfp transcriptional fusion reporter library that consists of 41 reporter plasmids, each of which contains a promoter of corresponding c-di-GMP metabolism-related genes in P. aeruginosa. This library provides a helpful tool to understand the complex regulation network related to c-di-GMP and to discover potential therapeutic targets.
Collapse
|
44
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
45
|
Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front Microbiol 2022; 13:955286. [PMID: 36090087 PMCID: PMC9459144 DOI: 10.3389/fmicb.2022.955286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the major pathogens implicated in human opportunistic infection and a common cause of clinically persistent infections such as cystic fibrosis, urinary tract infections, and burn infections. The main reason for the persistence of P. aeruginosa infections is due to the ability of P. aeruginosa to secrete extracellular polymeric substances such as exopolysaccharides, matrix proteins, and extracellular DNA during invasion. These substances adhere to and wrap around bacterial cells to form a biofilm. Biofilm formation leads to multiple antibiotic resistance in P. aeruginosa, posing a significant challenge to conventional single antibiotic therapeutic approaches. It has therefore become particularly important to develop anti-biofilm drugs. In recent years, a number of new alternative drugs have been developed to treat P. aeruginosa infectious biofilms, including antimicrobial peptides, quorum-sensing inhibitors, bacteriophage therapy, and antimicrobial photodynamic therapy. This article briefly introduces the process and regulation of P. aeruginosa biofilm formation and reviews several developed anti-biofilm treatment technologies to provide new directions for the treatment of P. aeruginosa biofilm infection.
Collapse
|
46
|
Alías-Villegas C, Fuentes-Romero F, Cuéllar V, Navarro-Gómez P, Soto MJ, Vinardell JM, Acosta-Jurado S. Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators. Int J Mol Sci 2022; 23:7698. [PMID: 35887044 PMCID: PMC9316994 DOI: 10.3390/ijms23147698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.
Collapse
Affiliation(s)
- Cynthia Alías-Villegas
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Francisco Fuentes-Romero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - Pilar Navarro-Gómez
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - María J. Soto
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - José-María Vinardell
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| |
Collapse
|
47
|
Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 2022; 13:1114199. [PMID: 36762094 PMCID: PMC9905436 DOI: 10.3389/fmicb.2022.1114199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feifeng Zhong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gongyong Peng, ✉
| |
Collapse
|