1
|
Secaira-Morocho H, Chede A, Gonzalez-de-Salceda L, Garcia-Pichel F, Zhu Q. An evolutionary optimum amid moderate heritability in prokaryotic cell size. Cell Rep 2024; 43:114268. [PMID: 38776226 DOI: 10.1016/j.celrep.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
We investigate the distribution and evolution of prokaryotic cell size based on a compilation of 5,380 species. Size spans four orders of magnitude, from 100 nm (Mycoplasma) to more than 1 cm (Thiomargarita); however, most species congregate heavily around the mean. The distribution approximates but is distinct from log normality. Comparative phylogenetics suggests that size is heritable, yet the phylogenetic signal is moderate, and the degree of heritability is independent of taxonomic scale (i.e., fractal). Evolutionary modeling indicates the presence of an optimal cell size to which most species gravitate. The size is equivalent to a coccus of 0.70 μm in diameter. Analyses of 1,361 species with sequenced genomes show that genomic traits contribute to size evolution moderately and synergistically. Given our results, scaling theory, and empirical evidence, we discuss potential drivers that may expand or shrink cells around the optimum and propose a stability landscape model for prokaryotic cell size.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Abhinav Chede
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Luis Gonzalez-de-Salceda
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
2
|
Dang C, Morrissey EM. The size and diversity of microbes determine carbon use efficiency in soil. Environ Microbiol 2024; 26:e16633. [PMID: 38733078 DOI: 10.1111/1462-2920.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Soil is home to a multitude of microorganisms from all three domains of life. These organisms and their interactions are crucial in driving the cycling of soil carbon. One key indicator of this process is Microbial Carbon Use Efficiency (CUE), which shows how microbes influence soil carbon storage through their biomass production. Although CUE varies among different microorganisms, there have been few studies that directly examine how biotic factors influence CUE. One such factor could be body size, which can impact microbial growth rates and interactions in soil, thereby influencing CUE. Despite this, evidence demonstrating a direct causal connection between microbial biodiversity and CUE is still scarce. To address these knowledge gaps, we conducted an experiment where we manipulated microbial body size and biodiversity through size-selective filtering. Our findings show that manipulating the structure of the microbial community can reduce CUE by approximately 65%. When we restricted the maximum body size of the microbial community, we observed a reduction in bacterial diversity and functional potential, which in turn lowered the community's CUE. Interestingly, when we included large body size micro-eukarya in the soil, it shifted the soil carbon cycling, increasing CUE by approximately 50% and the soil carbon to nitrogen ratio by about 25%. Our metrics of microbial diversity and community structure were able to explain 36%-50% of the variation in CUE. This highlights the importance of microbial traits, community structure and trophic interactions in mediating soil carbon cycling.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Patro M, Duggin IG, Albers SV, Ithurbide S. "Influence of plasmids, selection markers and auxotrophic mutations on Haloferax volcanii cell shape plasticity". Front Microbiol 2023; 14:1270665. [PMID: 37840741 PMCID: PMC10570808 DOI: 10.3389/fmicb.2023.1270665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Haloferax volcanii and other Haloarchaea can be pleomorphic, adopting different shapes, which vary with growth stages. Several studies have shown that H. volcanii cell shape is sensitive to various external factors including growth media and physical environment. In addition, several studies have noticed that the presence of a recombinant plasmid in the cells is also a factor impacting H. volcanii cell shape, notably by favoring the development of rods in early stages of growth. Here we investigated the reasons for this phenomenon by first studying the impact of auxotrophic mutations on cell shape in strains that are commonly used as genetic backgrounds for selection during strain engineering (namely: H26, H53, H77, H98, and H729) and secondly, by studying the effect of the presence of different plasmids containing selection markers on the cell shape of these strains. Our study showed that most of these auxotrophic strains have variation in cell shape parameters including length, aspect ratio, area and circularity and that the plasmid presence is impacting these parameters too. Our results indicated that ΔhdrB strains and hdrB selection markers have the most influence on H. volcanii cell shape, in addition to the sole presence of a plasmid. Finally, we discuss limitations in studying cell shape in H. volcanii and make recommendations based on our results for improving reproducibility of such studies.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Iain G. Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
5
|
Moger-Reischer RZ, Glass JI, Wise KS, Sun L, Bittencourt DMC, Lehmkuhl BK, Schoolmaster DR, Lynch M, Lennon JT. Evolution of a minimal cell. Nature 2023; 620:122-127. [PMID: 37407813 PMCID: PMC10396959 DOI: 10.1038/s41586-023-06288-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4 contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7-9.
Collapse
Affiliation(s)
| | - J I Glass
- J. Craig Venter Institute, La Jolla, CA, USA
| | - K S Wise
- J. Craig Venter Institute, La Jolla, CA, USA
| | - L Sun
- J. Craig Venter Institute, La Jolla, CA, USA
- Novartis Gene Therapy, San Diego, CA, USA
| | - D M C Bittencourt
- J. Craig Venter Institute, La Jolla, CA, USA
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - B K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - D R Schoolmaster
- US Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - M Lynch
- Arizona State University, Tempe, AZ, USA
| | - J T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Paiva AR, Pilloni G. Inferring Microbial Biomass Yield and Cell Weight Using Probabilistic Macrochemical Modeling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:442-454. [PMID: 35038296 DOI: 10.1109/tcbb.2021.3139290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Growth rates and biomass yields are key descriptors used in microbiology studies to understand how microbial species respond to changes in the environment. Of these, biomass yield estimates are typically obtained using cell counts and measurements of the feed substrate. These quantities are perturbed with measurement noise however. Perhaps most crucially, estimating biomass from cell counts, as needed to assess yields, relies on an assumed cell weight. Noise and discrepancies on these assumptions can lead to significant changes in conclusions regarding the microbes' response. This article proposes a methodology to address these challenges using probabilistic macrochemical models of microbial growth. It is shown that a model can be developed to fully use the experimental data, relax assumptions and greatly improve robustness to a priori estimates of the cell weight, and provides uncertainty estimates of key parameters. This methodology is demonstrated in the context of a specific case study and the estimation characteristics are validated in several scenarios using synthetically generated microbial growth data.
Collapse
|
7
|
Mu H, Han F, Wang Q, Wang Y, Dai X, Zhu M. Recent functional insights into the magic role of (p)ppGpp in growth control. Comput Struct Biotechnol J 2022; 21:168-175. [PMID: 36544478 PMCID: PMC9747358 DOI: 10.1016/j.csbj.2022.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid growth and survival are two key traits that enable bacterial cells to thrive in their natural habitat. The guanosine tetraphosphate and pentaphosphate [(p)ppGpp], also known as "magic spot", is a key second messenger inside bacterial cells as well as chloroplasts of plants and green algae. (p)ppGpp not only controls various stages of central dogma processes (replication, transcription, ribosome maturation and translation) and central metabolism but also regulates various physiological processes such as pathogenesis, persistence, motility and competence. Under extreme conditions such as nutrient starvation, (p)ppGpp-mediated stringent response is crucial for the survival of bacterial cells. This mini-review highlights some of the very recent progress on the key role of (p)ppGpp in bacterial growth control in light of cellular resource allocation and cell size regulation. We also briefly discuss some recent functional insights into the role of (p)ppGpp in plants and green algae from the angle of growth and development and further discuss several important open directions for future studies.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Lou J, Cai J, Hu X, Liang Y, Sun Y, Zhu Y, Meng Q, Zhu T, Gao H, Yu Z, Yin J. The stringent starvation protein SspA modulates peptidoglycan synthesis by regulating the expression of peptidoglycan synthases. Mol Microbiol 2022; 118:716-730. [PMID: 36308522 DOI: 10.1111/mmi.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 01/18/2023]
Abstract
The peptidoglycan (PG) layer of bacterial cells is essential for maintaining the cell shape and survival of cells; therefore, the synthesis of PG needs to be spatiotemporally controlled. While it is well established that PG synthesis is mediated posttranslationally through interactions between PG synthases and their cognate partners, much less is known about the transcriptional regulation of genes encoding these synthases. Based on a previous finding that the Gram-negative bacterium Shewanella oneidensis lacking the prominent PG synthase exhibits impaired cell wall integrity, we performed genetic selections to isolate the suppressors. We discovered that disrupting the sspA gene encoding stringent starvation protein A (SspA) is sufficient to suppress compromised PG. SspA serves as a transcriptional repressor that regulates the expression of the two types of PG synthases, class A penicillin-binding proteins and SEDS/bPBP protein complexes. SspA is an RNA polymerase-associated protein, and its regulation involves interactions with the σ70 -RNAP complex and an antagonistic effect of H-NS, a global nucleoid-associated protein. We also present evidence that the regulation of PG synthases by SspA is conserved in Escherichia coli, adding a new dimension to the current understanding of PG synthesis and its regulation.
Collapse
Affiliation(s)
- Jie Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jingxiao Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yanqun Liang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yijuan Sun
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiling Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haichun Gao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
MraZ Transcriptionally Controls the Critical Level of FtsL Required for Focusing Z-Rings and Kickstarting Septation in Bacillus subtilis. J Bacteriol 2022; 204:e0024322. [PMID: 35943250 PMCID: PMC9487581 DOI: 10.1128/jb.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.
Collapse
|
10
|
Das S, Datta PP. Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae. Arch Microbiol 2022; 204:617. [PMID: 36097213 DOI: 10.1007/s00203-022-03233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
CgtA, a highly conserved 50S ribosome-associated essential GTPase, acts as a repressor of the stringent stress response under nutrient-rich growth conditions to suppress basal levels of the alarmone ppGpp in V. cholerae. To further explore the in vivo functionality of CgtA, we introduced an amino acid substitution, i.e., Gly98Asp, in a conserved glycine residue in the N-terminal domain. The constructed V. cholerae mutant was designated CgtA(G98D). Comparison of cell sizes of the CgtA(G98D)mutant with its isogenic wild-type (Wt) strain N16961 under different phases of growth by Transmission Electron Microscopy (TEM) and statistical analysis suggests that CgtA may control the cell size of V. cholerae. The cell length is significantly reduced, corresponding to the delayed growth in the mid-logarithmic phase. The differences in the cell length of CgtA(G98D) and Wt are indistinguishable in the late logarithmic phase. During the stationary phase, marked by higher OD600, a sub-population of CgtA(G98D) cells outnumbered the Wt cells lengthwise. CgtA(G98D) cells appeared slenderer than Wt cells with significantly reduced cell width. However, the centerline curvature is preserved in CgtA(G98D) cells. We propose that in addition to its multitude of intracellular roles, CgtA may influence the cell size of V. cholerae.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India.
| |
Collapse
|
11
|
Wozniak KJ, Burby PE, Nandakumar J, Simmons LA. Structure and kinase activity of bacterial cell cycle regulator CcrZ. PLoS Genet 2022; 18:e1010196. [PMID: 35576203 PMCID: PMC9135335 DOI: 10.1371/journal.pgen.1010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/26/2022] [Accepted: 04/09/2022] [Indexed: 11/24/2022] Open
Abstract
CcrZ is a recently discovered cell cycle regulator that connects DNA replication initiation with cell division in pneumococci and may have a similar function in related bacteria. CcrZ is also annotated as a putative kinase, suggesting that CcrZ homologs could represent a novel family of bacterial kinase-dependent cell cycle regulators. Here, we investigate the CcrZ homolog in Bacillus subtilis and show that cells lacking ccrZ are sensitive to a broad range of DNA damage. We demonstrate that increased expression of ccrZ results in over-initiation of DNA replication. In addition, increased expression of CcrZ activates the DNA damage response. Using sensitivity to DNA damage as a proxy, we show that the negative regulator for replication initiation (yabA) and ccrZ function in the same pathway. We show that CcrZ interacts with replication initiation proteins DnaA and DnaB, further suggesting that CcrZ is important for replication timing. To understand how CcrZ functions, we solved the crystal structure bound to AMP-PNP to 2.6 Å resolution. The CcrZ structure most closely resembles choline kinases, consisting of a bilobal structure with a cleft between the two lobes for binding ATP and substrate. Inspection of the structure reveals a major restructuring of the substrate-binding site of CcrZ relative to the choline-binding pocket of choline kinases, consistent with our inability to detect activity with choline for this protein. Instead, CcrZ shows activity on D-ribose and 2-deoxy-D-ribose, indicating adaptation of the choline kinase fold in CcrZ to phosphorylate a novel substrate. We show that integrity of the kinase active site is required for ATPase activity in vitro and for function in vivo. This work provides structural, biochemical, and functional insight into a newly identified, and conserved group of bacterial kinases that regulate DNA replication initiation.
Collapse
Affiliation(s)
- Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Reis PCJ, Thottathil SD, Prairie YT. The role of methanotrophy in the microbial carbon metabolism of temperate lakes. Nat Commun 2022; 13:43. [PMID: 35013226 PMCID: PMC8748455 DOI: 10.1038/s41467-021-27718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Previous stable isotope and biomarker evidence has indicated that methanotrophy is an important pathway in the microbial loop of freshwater ecosystems, despite the low cell abundance of methane-oxidizing bacteria (MOB) and the low methane concentrations relative to the more abundant dissolved organic carbon (DOC). However, quantitative estimations of the relative contribution of methanotrophy to the microbial carbon metabolism of lakes are scarce, and the mechanism allowing methanotrophy to be of comparable importance to DOC-consuming heterotrophy remained elusive. Using incubation experiments, microscopy, and multiple water column profiles in six temperate lakes, we show that MOB play a much larger role than their abundances alone suggest because of their larger cell size and higher specific activity. MOB activity is tightly constrained by the local methane:oxygen ratio, with DOC-rich lakes with large hypolimnetic volume fraction showing a higher carbon consumption through methanotrophy than heterotrophy at the whole water column level. Our findings suggest that methanotrophy could be a critical microbial carbon consumption pathway in many temperate lakes, challenging the prevailing view of a DOC-centric microbial metabolism in these ecosystems.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada.
| | - Shoji D Thottathil
- Department of Environmental Science, SRM University AP, Amaravati, Andhra Pradesh, 522 502, India
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
13
|
Polerecky L, Eichner M, Masuda T, Zavřel T, Rabouille S, Campbell DA, Halsey K. Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS. Front Microbiol 2021; 12:621634. [PMID: 34917040 PMCID: PMC8670600 DOI: 10.3389/fmicb.2021.621634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Tomáš Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-mer, France
| | | | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Nat Commun 2021; 12:4347. [PMID: 34301933 PMCID: PMC8302735 DOI: 10.1038/s41467-021-24645-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Heterologous expression of biosynthetic gene clusters (BGCs) avails yield improvements and mining of natural products, but it is limited by lacking of more efficient Gram-negative chassis. The proteobacterium Schlegelella brevitalea DSM 7029 exhibits potential for heterologous BGC expression, but its cells undergo early autolysis, hindering further applications. Herein, we rationally construct DC and DT series genome-reduced S. brevitalea mutants by sequential deletions of endogenous BGCs and the nonessential genomic regions, respectively. The DC5 to DC7 mutants affect growth, while the DT series mutants show improved growth characteristics with alleviated cell autolysis. The yield improvements of six proteobacterial natural products and successful identification of chitinimides from Chitinimonas koreensis via heterologous expression in DT mutants demonstrate their superiority to wild-type DSM 7029 and two commonly used Gram-negative chassis Escherichia coli and Pseudomonas putida. Our study expands the panel of Gram-negative chassis and facilitates the discovery of natural products by heterologous expression.
Collapse
|
15
|
Effects of PatU3 Peptides on Cell Size and Heterocyst Frequency of Anabaena sp. Strain PCC 7120. J Bacteriol 2021; 203:e0010821. [PMID: 33846118 DOI: 10.1128/jb.00108-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
patU, one of the genes specifically found in filamentous cyanobacteria, is required for the pattern formation in heterocyst-forming species. In Anabaena sp. strain PCC 7120, patU is split into patU5 and patU3, and only patU3 is involved in heterocyst patterning. Here, we report that PatU3 is also involved in control of cell size. A patU3 deletion mutant showed remarkably smaller cell size and much higher heterocyst frequency than the wild type. Yeast two-hybrid and pulldown assays demonstrated a direct interaction between PatU3 and the cell division protein Ftn6. Without the N-terminal 16-amino-acid (aa) portion (MQERFQAVIKRRLQIH [the identified octapeptide is underlined]), PatU3 was no longer able to interact with Ftn6. This portion of PatU3 is also required for the interaction with PatN, a protein related to heterocyst differentiation/patterning. Addition of the 16-aa peptide or AVIKRRLQ-containing peptides restored the cell size and heterocyst frequency of a patU3 deletion mutant to normal or nearly wild-type levels. PatU3(1-16aa)-GFP, the N-terminal 16-aa sequence fused with green fluorescent protein (GFP), formed polar aggregates and peripheral patches in heterocysts of Anabaena sp. strain PCC 7120, whereas PatU3(1-198aa)-GFP showed a homogeneous distribution in the cytoplasm of all cells. The N-terminal AVIKRRLQ-containing sequence may function in intact PatU3, as a separate peptide, or both. IMPORTANCE PatU (or split into PatU5 and PatU3) is distributed in almost all filamentous cyanobacteria, including those that do not form heterocysts (except Pseudanabaena); however, its functions other than heterocyst differentiation/patterning have not been reported before. In this study, we found that PatU3 in Anabaena sp. strain PCC 7120 is involved in cell size determination. The N-terminal 16-aa sequence of PatU3 is required for the control of cell size and interaction with the cell division protein Ftn6, and an octapeptide (aa 7 to aa 14) within the 16-aa sequence can restore the cell size (and heterocyst frequency) of a patU3 deletion mutant to normal. Such a peptide, if generated from PatU or PatU3 in vivo, may promote intercellular coordination in filamentous cyanobacteria.
Collapse
|
16
|
Threshold accumulation of a constitutive protein explains E. coli cell-division behavior in nutrient upshifts. Proc Natl Acad Sci U S A 2021; 118:2016391118. [PMID: 33931503 DOI: 10.1073/pnas.2016391118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite a boost of recent progress in dynamic single-cell measurements and analyses in Escherichia coli, we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division and on the molecular origin of the observed "adder correlations," whereby cells divide, adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device. We find that the division rate changes quickly after nutrients change, much before growth rate goes to a steady state, and in a way that adder correlations are robustly conserved. Comparison of these data to simple mathematical models falsifies proposed mechanisms, where replication-segregation or septum completions are the limiting step for cell division. Instead, we show that the accumulation of a putative constitutively expressed "P-sector divisor" protein explains the behavior during the shift.
Collapse
|
17
|
FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nat Commun 2021; 12:2448. [PMID: 33907196 PMCID: PMC8079713 DOI: 10.1038/s41467-021-22526-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine. Bacterial cell division by cell wall synthesis proteins is guided by treadmilling filaments of the cytoskeleton protein FtsZ. Here authors use nanofabrication, advanced microscopy, and microfluidics to resolve the function of FtsZ treadmilling in the Gram-positive model organism Bacillus subtilis.
Collapse
|
18
|
Czerwińska-Główka D, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Łapkowski M, Krukiewicz K. Electrically-responsive antimicrobial coatings based on a tetracycline-loaded poly(3,4-ethylenedioxythiophene) matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112017. [PMID: 33812635 DOI: 10.1016/j.msec.2021.112017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The growth of bacteria and the formation of complex bacterial structures on biomedical devices is a major challenge in modern medicine. The aim of this study was to develop a biocompatible, conducting and antibacterial polymer coating applicable in biomedical engineering. Since conjugated polymers have recently aroused strong interest as controlled delivery systems for biologically active compounds, we decided to employ a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix to immobilize a powerful, first-line antibiotic: tetracycline (Tc). Drug immobilization was carried out simultaneously with the electrochemical polymerization process, allowing to obtain a polymer coating with good electrochemical behaviour (charge storage capacity of 19.15 ± 6.09 mC/cm2) and high drug loading capacity (194.7 ± 56.2 μg/cm2). Biological activity of PEDOT/Tc matrix was compared with PEDOT matrix and a bare Pt surface against a model Gram-negative bacteria strain of Escherichia coli with the use of LIVE/DEAD assay and SEM microscopy. Finally, PEDOT/Tc was shown to serve as a robust electroactive coating exhibiting antibacterial activity.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | - Wioletta Przystaś
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Beata Cwalina
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Mieczysław Łapkowski
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
19
|
Angert ER. Challenges Faced by Highly Polyploid Bacteria with Limits on DNA Inheritance. Genome Biol Evol 2021; 13:6156627. [PMID: 33677487 PMCID: PMC8245194 DOI: 10.1093/gbe/evab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Most studies of bacterial reproduction have centered on organisms that undergo binary fission. In these models, complete chromosome copies are segregated with great fidelity into two equivalent offspring cells. All genetic material is passed on to offspring, including new mutations and horizontally acquired sequences. However, some bacterial lineages employ diverse reproductive patterns that require management and segregation of more than two chromosome copies. Epulopiscium spp., and their close relatives within the Firmicutes phylum, are intestinal symbionts of surgeonfish (family Acanthuridae). Each of these giant (up to 0.6 mm long), cigar-shaped bacteria contains tens of thousands of chromosome copies. Epulopiscium spp. do not use binary fission but instead produce multiple intracellular offspring. Only ∼1% of the genetic material in an Epulopiscium sp. type B mother cell is directly inherited by its offspring cells. And yet, even in late stages of offspring development, mother-cell chromosome copies continue to replicate. Consequently, chromosomes take on a somatic or germline role. Epulopiscium sp. type B is a strict anaerobe and while it is an obligate symbiont, its host has a facultative association with this intestinal microorganism. Therefore, Epulopiscium sp. type B populations face several bottlenecks that could endanger their diversity and resilience. Multilocus sequence analyses revealed that recombination is important to diversification in populations of Epulopiscium sp. type B. By employing mechanisms common to others in the Firmicutes, the coordinated timing of mother-cell lysis, offspring development and congression may facilitate the substantial recombination observed in Epulopiscium sp. type B populations.
Collapse
|
20
|
Rouillard J, van Zuilen M, Pisapia C, Garcia-Ruiz JM. An Alternative Approach for Assessing Biogenicity. ASTROBIOLOGY 2021; 21:151-164. [PMID: 33544651 PMCID: PMC7876362 DOI: 10.1089/ast.2020.2282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
The search for signs of life in the ancient rock record, extreme terrestrial environments, and other planetary bodies requires a well-established, universal, and unambiguous test of biogenicity. This is notably true for cellular remnants of microbial life, since their relatively simple morphologies resemble various abiogenic microstructures that occur in nature. Although lists of qualitative biogenicity criteria have been devised, debates regarding the biogenicity of many ancient microfossils persist to this day. We propose here an alternative quantitative approach for assessing the biogenicity of putative microfossils. In this theoretical approach, different hypotheses-involving biology or not and depending on the geologic setting-are put forward to explain the observed objects. These hypotheses correspond to specific types of microstructures/systems. Using test samples, the morphology and/or chemistry of these systems are then characterized at the scale of populations. Morphologic parameters include, for example, circularity, aspect ratio, and solidity, while chemical parameters could include elementary ratios (e.g., N/C ratio), isotopic enrichments (e.g., δ13C), or chirality (e.g., molar proportion of stereoisomers), among others. Statistic trends distinguishing the different systems are then searched for empirically. The trends found are translated into "decision spaces" where the different systems are quantitatively discriminated and where the potential microfossil population can be located as a single point. This approach, which is formulated here on a theoretical level, will solve several problems associated with the classical qualitative criteria of biogenicity. Most importantly, it could be applied to reveal the existence of cellular life on other planets, for which characteristics of morphology and chemical composition are difficult to predict.
Collapse
Affiliation(s)
- Joti Rouillard
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| | - Mark van Zuilen
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Juan-Manuel Garcia-Ruiz
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| |
Collapse
|
21
|
Abstract
The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.
Collapse
|
22
|
Noh MH, Cha S, Kim M, Jung GY. Recent Advances in Microbial Cell Growth Regulation Strategies for Metabolic Engineering. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena. mSphere 2020; 5:5/5/e00747-20. [PMID: 33115834 PMCID: PMC7593598 DOI: 10.1128/msphere.00747-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena. The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth. IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.
Collapse
|
24
|
Liang B, Quan B, Li J, Loton C, Bredeche MF, Lindner AB, Xu L. Artificial modulation of cell width significantly affects the division time of Escherichia coli. Sci Rep 2020; 10:17847. [PMID: 33082450 PMCID: PMC7576201 DOI: 10.1038/s41598-020-74778-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial cells have characteristic spatial and temporal scales. For instance, Escherichia coli, the typical rod-shaped bacteria, always maintains a relatively constant cell width and cell division time. However, whether the external physical perturbation of cell width has an impact on cell division time remains largely unexplored. In this work, we developed two microchannel chips, namely straight channels and ‘necked’ channels, to precisely regulate the width of E. coli cells and to investigate the correlation between cell width and division time of the cells. Our results show that, in the straight channels, the wide cells divide much slower than narrow cells. In the ‘necked’ channels, the cell division is remarkably promoted compared to that in straight channels with the same width. Besides, fluorescence time-lapse microscopy imaging of FtsZ dynamics shows that the cell pre-constriction time is more sensitive to cell width perturbation than cell constriction time. Finally, we revealed a significant anticorrelation between the death rate and the division rate of cell populations with different widths. Our work provides new insights into the correlation between the geometrical property and division time of E. coli cells and sheds new light on the future study of spatial–temporal correlation in cell physiology.
Collapse
Affiliation(s)
- Baihui Liang
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China
| | - Chantal Loton
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Marie-Florence Bredeche
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Ariel B Lindner
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France.,Centre for Research and Interdisciplinarity (CRI), Paris Descartes University, 75014, Paris, France
| | - Luping Xu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
25
|
Smułek W, Zdarta A, Grzywaczyk A, Guzik U, Siwińska-Ciesielczyk K, Ciesielczyk F, Strzemiecka B, Jesionowski T, Voelkel A, Kaczorek E. Evaluation of the physico-chemical properties of hydrocarbons-exposed bacterial biomass. Colloids Surf B Biointerfaces 2020; 196:111310. [PMID: 32911293 DOI: 10.1016/j.colsurfb.2020.111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
In the efforts for the removal of hazardous materials from the environment biological processes are a valuable tool. Although much attention has been paid to the changes in bacteria at the omics level, another, physical-chemical perspective on the issue is essential, as little is known of microbial response to continuous exposition on harmful substances. This study provides in-depth characterization of the physical-chemical parameters of bacterial biomass after hydrocarbons exposure. To provide comparability of the harmful effects of chlorotoluenes and xylenes non-exposed and 12-months hydrocarbons exposed cells were analyzed, using the advanced spectrometric methods, inverse gas chromatography and low-temperature N2 sorption to evaluate acid-base as well as dispersive properties of the studied biomass. Presented results indicate P. fluorescens B01 cells strategy aimed at protecting the cell, thus lowering its' biodegradation efficiency as a result of metabolic stress. The outcome of the study was that prolonged exposure to pollutants might reduce the bioavailability of hydrocarbons to bacteria cells, and consequently decrease the effectiveness of decontamination of polluted sites by indigenous microorganisms.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Filip Ciesielczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Beata Strzemiecka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
26
|
Bacterial Surface Colonization of Sputter-Coated Platinum Films. MATERIALS 2020; 13:ma13122674. [PMID: 32545439 PMCID: PMC7345058 DOI: 10.3390/ma13122674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
Due to its biocompatibility and advantageous electrochemical properties, platinum is commonly used in the design of biomedical devices, e.g., surgical instruments, as well as electro-medical or orthopedic implants. This article verifies the hypothesis that a thin layer of sputter-coated platinum may possess antibacterial effects. The purpose of this research was to investigate the adhesion and growth ability of a model strain of Gram-negative bacteria, Escherichia coli, on a surface of a platinum-coated glass slide. Although some previous literature reports suggests that a thin layer of platinum would inhibit the formation of bacterial biofilm, the results of this study suggest otherwise. The decrease in the number of bacterial cells attached to the platinum-coated glass, which was observed within first three hours of culturing, was found to be a short-time effect, vanishing after 24 h. Consequently, it was shown that a thin layer of sputter-coated platinum did not exhibit any antibacterial effect. For this reason, this study indicates an urgent need for the development of new methods of surface modification that could reduce bacterial surface colonization of platinum-based biomedical devices.
Collapse
|
27
|
Zatulovskiy E, Skotheim JM. On the Molecular Mechanisms Regulating Animal Cell Size Homeostasis. Trends Genet 2020; 36:360-372. [PMID: 32294416 PMCID: PMC7162994 DOI: 10.1016/j.tig.2020.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Cell size is fundamental to cell physiology because it sets the scale of intracellular geometry, organelles, and biosynthetic processes. In animal cells, size homeostasis is controlled through two phenomenologically distinct mechanisms. First, size-dependent cell cycle progression ensures that smaller cells delay cell cycle progression to accumulate more biomass than larger cells prior to cell division. Second, size-dependent cell growth ensures that larger and smaller cells grow slower per unit mass than more optimally sized cells. This decade has seen dramatic progress in single-cell technologies establishing the diverse phenomena of cell size control in animal cells. Here, we review this recent progress and suggest pathways forward to determine the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci 2020; 29:629-646. [PMID: 31747090 PMCID: PMC7021008 DOI: 10.1002/pro.3737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell-wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre-eminent class of antibiotics-the β-lactams, exemplified by the penicillins and cephalosporins-from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β-lactams is bacterial cell-wall destruction. In the monoderm (single membrane, Gram-positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β-lactam-unreactive transpeptidase enzyme that functions in cell-wall construction. In the diderm (dual membrane, Gram-negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β-lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell-wall construction and cell-wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β-lactams. This review summarizes how the β-lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| |
Collapse
|
29
|
de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, Dos Santos Silva L, da Silva Cutrim B, Vieira SL, Bezerra Filho CM, de Sousa EM, Napoleão TH, Krogfelt KA, Løbner-Olesen A, Paiva PMG, Nascimento da Silva LC. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 2019; 9:18159. [PMID: 31796807 PMCID: PMC6890730 DOI: 10.1038/s41598-019-54616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.
Collapse
Affiliation(s)
| | - Adrielle Zagmignan
- Programas de Pós-Graduação, Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | | | | | | | | | | | | | | | - Karen Angeliki Krogfelt
- Department of Viral and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Jin Y, Zheng H, Ibanez ACS, Patil PD, Lv S, Luo M, Duncan TM, Luk YY. Cell-Wall-Targeting Antibiotics Cause Lag-Phase Bacteria to Form Surface-Mediated Filaments Promoting the Formation of Biofilms and Aggregates. Chembiochem 2019; 21:825-835. [PMID: 31553819 DOI: 10.1002/cbic.201900508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 01/01/2023]
Abstract
Antibiotics are known to promote bacterial formation of enhanced biofilms, the mechanism of which is not well understood. Here, using biolayer interferometry, we have shown that bacterial cultures containing antibiotics that target cell walls cause biomass deposition on surfaces over time with a linear profile rather than the Langmuir-like profiles exhibited by bacterial adherence in the absence of antibiotics. We observed about three times the initial rate and 12 times the final biomass deposition on surfaces for cultures containing carbenicillin than without. Unexpectedly, in the presence of antibiotics, the rate of biomass deposition inversely correlated with bacterial densities from different stages of a culture. Detailed studies revealed that carbenicillin caused faster growth of filaments that were seeded on surfaces from young bacteria (from lag phase) than those from high-density fast-growing bacteria, with rates of filament elongation of about 0.58 and 0.13 μm min-1 , respectively. With surfaces that do not support bacterial adherence, few filaments were observed even in solution. These filaments aggregated in solution and formed increased amounts of biofilms on surfaces. These results reveal the lifestyle of antibiotic-induced filamentous bacteria, as well as one way in which the antibiotics promote biofilm formation.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Hewen Zheng
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Arizza Chiara S Ibanez
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Pankaj D Patil
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Suqi Lv
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Minrui Luo
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, NY, 13244-4100, USA
| |
Collapse
|
31
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
32
|
Kindler O, Pulkkinen O, Cherstvy AG, Metzler R. Burst statistics in an early biofilm quorum sensing model: the role of spatial colony-growth heterogeneity. Sci Rep 2019; 9:12077. [PMID: 31427659 PMCID: PMC6700081 DOI: 10.1038/s41598-019-48525-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.
Collapse
Affiliation(s)
- Oliver Kindler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Otto Pulkkinen
- Institute for Molecular Medicine Finland and Helsinki Institute for Information Technology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
33
|
Wen K, Huang L, Wang Q, Yu J. Modulation of first-passage time for gene expression via asymmetric cell division. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How to balance the size of exponentially growing cells has always been a focus of biologists. Recent experiments have uncovered that the cell is divided into two daughter cells only when the level of time-keeper protein reaches a fixed threshold and cell division in prokaryote is not completely symmetric. The timing of cell division is essentially random because gene expression is stochastic, but cells seen to manage to have precise timing of cell division events. Although the inter-cellular variability of gene expression has attracted much attention, the randomness of event timing has been rarely studied. In our analysis, the timing of cell division is formulated as the first-passage time (denoted by FPT) for time-keeper protein’s level to cross a critical threshold firstly, we derive exact analytical formulae for the mean and noise of FPT based on stochastic gene expression model with asymmetric cell division. The results of numerical simulation show that the regulatory factors (division rate, newborn cell size, exponential growth rate and threshold) have significant influence on the mean and noise of FPT. We also show that both the increase of division rate and newborn cell size could reduce the mean of FPT and increase the noise of FPT, the larger the exponential growth rate is, the smaller the mean and noise of FPT will be; and the larger the threshold value is, the higher the mean of FPT is and the lower the noise is. In addition, compared with symmetric division, asymmetric division can reduce the mean of FPT and improve the noise of FPT. In summary, our results provide insight into the relationship between regulatory factors and FPT and reveal that asymmetric division is an effective mechanism to shorten the mean of FPT.
Collapse
Affiliation(s)
- Kunwen Wen
- School of Mathematics, Jiaying University, Meizhou 514015, P. R. China
| | - Lifang Huang
- School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, P. R. China
| | - Qi Wang
- Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianshe Yu
- Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
34
|
Abstract
Individual cell types have characteristic sizes, suggesting that size sensing mechanisms may coordinate transcription, translation, and metabolism with cell growth rates. Two types of size-sensing mechanisms have been proposed: spatial sensing of the location or dimensions of a signal, subcellular structure or organelle; or titration-based sensing of the intracellular concentrations of key regulators. Here we propose that size sensing in animal cells combines both titration and spatial sensing elements in a dynamic mechanism whereby microtubule motor-dependent localization of RNA encoding importin β1 and mTOR, coupled with regulated local protein synthesis, enable cytoskeleton length sensing for cell growth regulation.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
35
|
Brzozowski RS, Huber M, Burroughs AM, Graham G, Walker M, Alva SS, Aravind L, Eswara PJ. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Front Microbiol 2019; 10:623. [PMID: 31024470 PMCID: PMC6459960 DOI: 10.3389/fmicb.2019.00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mirella Huber
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Gianni Graham
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Merryck Walker
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Sameeksha S Alva
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
36
|
Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:239-250. [PMID: 30463882 PMCID: PMC6325893 DOI: 10.1534/g3.118.200854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
Collapse
|
37
|
Burby PE, Simmons ZW, Simmons LA. DdcA antagonizes a bacterial DNA damage checkpoint. Mol Microbiol 2019; 111:237-253. [PMID: 30315724 PMCID: PMC6351180 DOI: 10.1111/mmi.14151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease-mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome-wide screens identified the gene ddcA as critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting from ddcA deletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion of ddcA resulted in sensitivity to yneA overexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP-YneA fusion we found that DdcA prevents YneA-dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint in Bacillus subtilis.
Collapse
Affiliation(s)
- Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zackary W. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
38
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
39
|
Dai X, Shen Z, Wang Y, Zhu M. Sinorhizobium meliloti, a Slow-Growing Bacterium, Exhibits Growth Rate Dependence of Cell Size under Nutrient Limitation. mSphere 2018; 3:e00567-18. [PMID: 30404932 PMCID: PMC6222050 DOI: 10.1128/msphere.00567-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/23/2023] Open
Abstract
Bacterial cells need to coordinate the cell cycle with biomass growth to maintain cell size homeostasis. For fast-growing bacterial species like Escherichia coli and Bacillus subtilis, it is well-known that cell size exhibits a strong dependence on the growth rate under different nutrient conditions (known as the nutrient growth law). However, cell size changes little with slow growth (doubling time of >90 min) for E. coli, posing the interesting question of whether slow-growing bacteria species also observe the nutrient growth law. Here, we quantitatively characterize the cell size and cell cycle parameter of a slow-growing bacterium, Sinorhizobium meliloti, at different nutrient conditions. We find that S. meliloti exhibits a threefold change in its cell size when its doubling time varies from 2 h to 6 h. Moreover, the progression rate of its cell cycle is much longer than that of E. coli, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate. Our study shows that the nutrient growth law holds robustly regardless of the growth capacity of the bacterial species, generalizing its applicability among the bacterial kingdom.IMPORTANCE The dependence of cell size on growth rate is a fundamental principle in the field of bacterial cell size regulation. Previous studies of cell size regulation mainly focus on fast-growing bacterial species such as Escherichia coli and Bacillussubtilis We find here that Sinorhizobium meliloti, a slow-growing bacterium, exhibits a remarkable growth rate-dependent cell size pattern under nutrient limitation, generalizing the applicability of the empirical nutrient growth law of cell size. Moreover, S. meliloti exhibits a much slower speed of cell cycle progression than E. coli does, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate.
Collapse
Affiliation(s)
- Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zichu Shen
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yiheng Wang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
40
|
Abstract
Bacterial cell size depends on growth rate, cell cycle progression, and the cell volume per origin upon initiating chromosome replication (initiation volume). Here, we perform the first systematic and quantitative study of the effect of hyperosmotic stress on the E. coli cell size and cell cycle. We find that hyperosmotic stress significantly reduces the initiation volume. The reduced initiation volume is attributed to the increased DnaA concentration caused by water loss at high osmolarity, indicating a fundamental role of water content in cell size and cell cycle regulation. Bacterial cell size is closely associated with biomass growth and cell cycle progression, including chromosome replication and cell division. It is generally proposed that Escherichia coli cells tightly control the timing of chromosome replication through maintaining a constant cell volume per origin upon initiating chromosome replication (constant initiation volume) under various growth conditions. Here, we quantitatively characterize the cell size and cell cycle of Escherichia coli cells growing exponentially under hyperosmotic stress, which is a common environmental stressor that profoundly affects the bacterial water content. The bacterial cell size is reduced by hyperosmotic stress, even though the C and D periods are remarkably prolonged, indicating a significantly reduced initiation volume. The reduced initiation volume originates from the higher concentration of DnaA initiator protein caused by water loss at high osmolarity. Our study shows suggests a fundamental role of water content in regulating bacterial cell size and has also revealed a new role of the DnaA protein in regulating the chromosome replication elongation beyond regulating the replication initiation process. IMPORTANCE Bacterial cell size depends on growth rate, cell cycle progression, and the cell volume per origin upon initiating chromosome replication (initiation volume). Here, we perform the first systematic and quantitative study of the effect of hyperosmotic stress on the E. coli cell size and cell cycle. We find that hyperosmotic stress significantly reduces the initiation volume. The reduced initiation volume is attributed to the increased DnaA concentration caused by water loss at high osmolarity, indicating a fundamental role of water content in cell size and cell cycle regulation.
Collapse
|
41
|
Zhang W, Tian Y, Hu X, He S, Niu Q, Chen C, Zhu S, Yan X. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry. Anal Chem 2018; 90:12768-12775. [PMID: 30277744 DOI: 10.1021/acs.analchem.8b03135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rapid and reliable size measurement of single submicron particles (100-1000 nm) is important for quality control of particulate matter, biomedical research, environmental study, and drug delivery system development. Though direct measurement of the elastically scattered light from individual submicron particles represents the simplest method for particle size measurement, the inadequate instrument sensitivity and complicated relationship between scattering intensity and particle size render it a great challenge. Combining the superior sensitivity of a laboratory-built high-sensitivity flow cytometer (HSFCM) in the side scattering (SSC) detection of single nanoparticles and the great efforts in synthesizing 38 highly monodisperse silica spheres ranging from 180 to 880 nm with small size intervals, here we report the first comprehensive comparison between the experimentally measured and Mie theory calculated intensities of light scattered by single submicron particles. Good agreements were observed for both the silica spheres and polystyrene beads at both the perpendicular and the parallel polarizations of the incident laser beam. Compared with perpendicular polarization, parallel polarization can resolve differently sized beads better due to the continuously increased scattering intensity with particle size. The predictive capability of the simple numerical model constructed in present work can be exploited to allow us to foresee scattering behavior on flow cytometers. More importantly, the linear correlation between the measured and the calculated scattering intensities enables us to develop a method that can measure the particle size of submicron particles with the precision and accuracy of Mie theory rather than a calibration curve fitted by several sparsely separated size reference standards. Comparable sizing resolution and accuracy to those of electron microscopy were demonstrated for Gram-positive bacteria Staphylococcus aureus. The as-developed method shows great potential in guiding the accurate size measurement of submicron particles.
Collapse
Affiliation(s)
- Wenqiang Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Ye Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Xiuxiu Hu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Shengbin He
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Qian Niu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Shaobin Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| |
Collapse
|
42
|
Björklund M. Cell size homeostasis: Metabolic control of growth and cell division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:409-417. [PMID: 30315834 DOI: 10.1016/j.bbamcr.2018.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Joint regulation of growth rate and cell division rate determines cell size. Here we discuss how animal cells achieve cell size homeostasis potentially involving multiple signaling pathways converging at metabolic regulation of growth rate and cell cycle progression. While several models have been developed to explain cell size control, comparison of the two predominant models shows that size homeostasis is dependent on the ability to adjust cellular growth rate based on cell size. Consequently, maintenance of size homeostasis requires that larger cells can grow slower than small cells in relative terms. We review recent experimental evidence showing that such size adjustment occurs primarily at or immediately before the G1/S transition of the cell cycle. We further propose that bidirectional feedback between growth rate and size results in cell size sensing and discuss potential mechanisms how this may be accomplished.
Collapse
Affiliation(s)
- Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University School of Medicine, International Campus, 718 East Haizhou Rd., Haining, Zhejiang 314400, PR China.
| |
Collapse
|
43
|
Björklund M, Marguerat S. Editorial: Determinants of Cell Size. Front Cell Dev Biol 2017; 5:115. [PMID: 29326932 PMCID: PMC5737056 DOI: 10.3389/fcell.2017.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mikael Björklund
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, United Kingdom.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|