1
|
Umeda T, Yokoyama O, Suzuki M, Kaneshige M, Isa T, Nishimura Y. Future spinal reflex is embedded in primary motor cortex output. SCIENCE ADVANCES 2024; 10:eadq4194. [PMID: 39693430 DOI: 10.1126/sciadv.adq4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements. Motor-related cortical areas, predominantly primary motor cortex (M1), encode subsequent afferent activities attributed to forelimb movement. M1 also encodes a subcomponent of muscle activity evoked by these afferent activities, corresponding to spinal reflexes. Furthermore, selective disruption of the afferent pathway specifically reduced this subcomponent of muscle activity, suggesting that M1 output drives muscle activity not only through direct descending pathways but also through the "transafferent" pathway composed of descending plus subsequent spinal reflex pathways. Thus, M1 provides optimal motor output based on an internal forward model that prospectively computes future spinal reflexes.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878502, Japan
| | - Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Miki Kaneshige
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 6068510, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 3320012, Japan
| |
Collapse
|
2
|
Hu C, Ti CHE, Yuan K, Chen C, Khan A, Shi X, Chu WCW, Tong RKY. Effects of high-definition tDCS targeting individual motor hotspot with EMG-driven robotic hand training on upper extremity motor function: a pilot randomized controlled trial. J Neuroeng Rehabil 2024; 21:169. [PMID: 39304930 PMCID: PMC11414071 DOI: 10.1186/s12984-024-01468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Delivering HD-tDCS on individual motor hotspot with optimal electric fields could overcome challenges of stroke heterogeneity, potentially facilitating neural activation and improving motor function for stroke survivors. However, the intervention effect of this personalized HD-tDCS has not been explored on post-stroke motor recovery. In this study, we aim to evaluate whether targeting individual motor hotspot with HD-tDCS followed by EMG-driven robotic hand training could further facilitate the upper extremity motor function for chronic stroke survivors. METHODS In this pilot randomized controlled trial, eighteen chronic stroke survivors were randomly allocated into two groups. The HDtDCS-group (n = 8) received personalized HD-tDCS using task-based fMRI to guide the stimulation on individual motor hotspot. The Sham-group (n = 10) received only sham stimulation. Both groups underwent 20 sessions of training, each session began with 20 min of HD-tDCS and was then followed by 60 min of robotic hand training. Clinical scales (Fugl-meyer Upper Extremity scale, FMAUE; Modified Ashworth Scale, MAS), and neuroimaging modalities (fMRI and EEG-EMG) were conducted before, after intervention, and at 6-month follow-up. Two-way repeated measures analysis of variance was used to compare the training effect between HDtDCS- and Sham-group. RESULTS HDtDCS-group demonstrated significantly better motor improvement than the Sham-group in terms of greater changes of FMAUE scores (F = 6.5, P = 0.004) and MASf (F = 3.6, P = 0.038) immediately and 6 months after the 20-session intervention. The task-based fMRI activation significantly shifted to the ipsilesional motor area in the HDtDCS-group, and this activation pattern increasingly concentrated on the motor hotspot being stimulated 6 months after training within the HDtDCS-group, whereas the increased activation is not sustainable in the Sham-group. The neuroimaging results indicate that neural plastic changes of the HDtDCS-group were guided specifically and sustained as an add-on effect of the stimulation. CONCLUSIONS Stimulating the individual motor hotspot before robotic hand training could further enhance brain activation in motor-related regions that promote better motor recovery for chronic stroke. TRIAL REGISTRATION This study was retrospectively registered in ClinicalTrials.gov (ID NCT05638464).
Collapse
Affiliation(s)
- Chengpeng Hu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Hang Eden Ti
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangqian Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
da Silva Costa AA, Moraes R, den Otter R, Gennaro F, Bakker L, Rocha Dos Santos PC, Hortobágyi T. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol Aging 2024; 141:85-101. [PMID: 38850592 DOI: 10.1016/j.neurobiolaging.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance. DATA AVAILABILITY: The datasets used in this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands.
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lisanne Bakker
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Department of Kinesiology, Hungarian University of Sports Science, Budapest 1123, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Alshehri MA, Alzahrani H, van den Hoorn W, Klyne DM, Vette AH, Hendershot BD, Roberts BWR, Larivière C, Barbado D, Vera-Garcia FJ, van Dieen JH, Cholewicki J, Nussbaum MA, Madigan ML, Reeves NP, Silfies SP, Brown SHM, Hodges PW. Trunk postural control during unstable sitting among individuals with and without low back pain: A systematic review with an individual participant data meta-analysis. PLoS One 2024; 19:e0296968. [PMID: 38265999 PMCID: PMC10807788 DOI: 10.1371/journal.pone.0296968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Sitting on an unstable surface is a common paradigm to investigate trunk postural control among individuals with low back pain (LBP), by minimizing the influence lower extremities on balance control. Outcomes of many small studies are inconsistent (e.g., some find differences between groups while others do not), potentially due to confounding factors such as age, sex, body mass index [BMI], or clinical presentations. We conducted a systematic review with an individual participant data (IPD) meta-analysis to investigate whether trunk postural control differs between those with and without LBP, and whether the difference between groups is impacted by vision and potential confounding factors. METHODS We completed this review according to PRISMA-IPD guidelines. The literature was screened (up to 7th September 2023) from five electronic databases: MEDLINE, CINAHL, Embase, Scopus, and Web of Science Core Collection. Outcome measures were extracted that describe unstable seat movements, specifically centre of pressure or seat angle. Our main analyses included: 1) a two-stage IPD meta-analysis to assess the difference between groups and their interaction with age, sex, BMI, and vision on trunk postural control; 2) and a two-stage IPD meta-regression to determine the effects of LBP clinical features (pain intensity, disability, pain catastrophizing, and fear-avoidance beliefs) on trunk postural control. RESULTS Forty studies (1,821 participants) were included for the descriptive analysis and 24 studies (1,050 participants) were included for the IPD analysis. IPD meta-analyses revealed three main findings: (a) trunk postural control was worse (higher root mean square displacement [RMSdispl], range, and long-term diffusion; lower mean power frequency) among individuals with than without LBP; (b) trunk postural control deteriorated more (higher RMSdispl, short- and long-term diffusion) among individuals with than without LBP when vision was removed; and (c) older age and higher BMI had greater adverse impacts on trunk postural control (higher short-term diffusion; longer time and distance coordinates of the critical point) among individuals with than without LBP. IPD meta-regressions indicated no associations between the limited LBP clinical features that could be considered and trunk postural control. CONCLUSION Trunk postural control appears to be inferior among individuals with LBP, which was indicated by increased seat movements and some evidence of trunk stiffening. These findings are likely explained by delayed or less accurate corrective responses. SYSTEMATIC REVIEW REGISTRATION This review has been registered in PROSPERO (registration number: CRD42021124658).
Collapse
Affiliation(s)
- Mansour Abdullah Alshehri
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hosam Alzahrani
- Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Wolbert van den Hoorn
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Canada
| | - Brad D. Hendershot
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, United States of America
| | - Brad W. R. Roberts
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Canada
| | - Christian Larivière
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, Quebec, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal Rehabilitation Institute, Montreal, Quebec, Canada
| | - David Barbado
- Sport Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Francisco J. Vera-Garcia
- Sport Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL Foundation), Miguel Hernández University of Elche, Alicante, Spain
| | - Jaap H. van Dieen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jacek Cholewicki
- Center for Neuromusculoskeletal Clinical Research, Michigan State University, Lansing, Michigan, United States of America
- Department of Osteopathic Manipulative Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Maury A. Nussbaum
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael L. Madigan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Spinal Cord fMRI: A New Window into the Central Nervous System. Neuroscientist 2023; 29:715-731. [PMID: 35822665 PMCID: PMC10623605 DOI: 10.1177/10738584221101827] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the brain, the spinal cord forms the central nervous system. Initially considered a passive relay between the brain and the periphery, the spinal cord is now recognized as being active and plastic. Yet, it remains largely overlooked by the human neuroscience community, in stark contrast with the wealth of research investigating the brain. In this review, we argue that fMRI, traditionally used to image cerebral function, can be extended beyond the brain to help unravel spinal mechanisms involved in human behaviors. To this end, we first outline strategies that have been proposed to tackle the challenges inherent to spinal cord fMRI. Then, we discuss how they have been utilized to provide insights into the functional organization of spinal sensorimotor circuits, highlighting their potential to address fundamental and clinical questions. By summarizing guidelines and applications of spinal cord fMRI, we hope to stimulate and support further research into this promising yet underexplored field.
Collapse
Affiliation(s)
- Nawal Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Elvira Pirondini
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of BioEngineering, University of Pittsburgh, PA, USA
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
6
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
7
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Raffalt PC, Yentes JM, Freitas SR, Vaz JR. Calculating sample entropy from isometric torque signals: methodological considerations and recommendations. Front Physiol 2023; 14:1173702. [PMID: 37324377 PMCID: PMC10267410 DOI: 10.3389/fphys.2023.1173702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
We investigated the effect of different sampling frequencies, input parameters and observation times for sample entropy (SaEn) calculated on torque data recorded from a submaximal isometric contraction. Forty-six participants performed sustained isometric knee flexion at 20% of their maximal contraction level and torque data was sampled at 1,000 Hz for 180 s. Power spectral analysis was used to determine the appropriate sampling frequency. The time series were downsampled to 750, 500, 250, 100, 50, and 25 Hz to investigate the effect of different sampling frequency. Relative parameter consistency was investigated using combinations of vector lengths of two and three and tolerance limits of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4, and data lengths between 500 and 18,000 data points. The effect of different observations times was evaluated using Bland-Altman plot for observations times between 5 and 90 s. SaEn increased at sampling frequencies below 100 Hz and was unaltered above 250 Hz. In agreement with the power spectral analysis, this advocates for a sampling frequency between 100 and 250 Hz. Relative consistency was observed across the tested parameters and at least 30 s of observation time was required for a valid calculation of SaEn from torque data.
Collapse
Affiliation(s)
- Peter C. Raffalt
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M. Yentes
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
| | - Sandro R. Freitas
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - João R. Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| |
Collapse
|
9
|
Kinany N, Khatibi A, Lungu O, Finsterbusch J, Büchel C, Marchand-Pauvert V, Ville DVD, Vahdat S, Doyon J. Decoding cerebro-spinal signatures of human behavior: application to motor sequence learning. Neuroimage 2023; 275:120174. [PMID: 37201642 DOI: 10.1016/j.neuroimage.2023.120174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Mapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked. Although the recent advent of functional magnetic resonance imaging (fMRI) sequences that can simultaneously target the brain and spinal cord has opened up new avenues for studying these mechanisms at multiple levels of the CNS, research to date has been limited to inferential univariate techniques that cannot fully unveil the intricacies of the underlying neural states. To address this, we propose to go beyond traditional analyses and instead use a data-driven multivariate approach leveraging the dynamic content of cerebro-spinal signals using innovation-driven coactivation patterns (iCAPs). We demonstrate the relevance of this approach in a simultaneous brain-spinal cord fMRI dataset acquired during motor sequence learning (MSL), to highlight how large-scale CNS plasticity underpins rapid improvements in early skill acquisition and slower consolidation after extended practice. Specifically, we uncovered cortical, subcortical and spinal functional networks, which were used to decode the different stages of learning with a high accuracy and, thus, delineate meaningful cerebro-spinal signatures of learning progression. Our results provide compelling evidence that the dynamics of neural signals, paired with a data-driven approach, can be used to disentangle the modular organization of the CNS. While we outline the potential of this framework to probe the neural correlates of motor learning, its versatility makes it broadly applicable to explore the functioning of cerebro-spinal networks in other experimental or pathological conditions.
Collapse
Affiliation(s)
- N Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.
| | - A Khatibi
- Center of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - O Lungu
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - C Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - V Marchand-Pauvert
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie biomédicale, Paris F-75006, France
| | - D Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - S Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, FL 32611, United States
| | - J Doyon
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Del Vecchio A, Marconi Germer C, Kinfe TM, Nuccio S, Hug F, Eskofier B, Farina D, Enoka RM. The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies. J Neurosci 2023; 43:2860-2873. [PMID: 36922028 PMCID: PMC10124954 DOI: 10.1523/jneurosci.1265-22.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 03/17/2023] Open
Abstract
The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes, underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions. Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit discharge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis. The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor neurons innervating synergistic muscles.SIGNIFICANCE STATEMENT It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each representing a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct neural modules for the hand muscles.
Collapse
Affiliation(s)
- Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Carina Marconi Germer
- Department of Bioengineering, Federal University of Pernambuco, CEP 50670-901 Recife, Brazil
| | - Thomas M Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Stefano Nuccio
- Department Human Movement Science, University of Rome Foro Italico, 00185 Rome, Italy
| | - François Hug
- Le Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, 06103 Nice, France
| | - Bjoern Eskofier
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado CO 80309
| |
Collapse
|
11
|
Werner I, Valero-Cuevas FJ, Federolf P. Mountain Hiking: Prolonged Eccentric Muscle Contraction during Simulated Downhill Walking Perturbs Sensorimotor Control Loops Needed for Safe Dynamic Foot-Ground Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5424. [PMID: 37048038 PMCID: PMC10094178 DOI: 10.3390/ijerph20075424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Safe mountain hiking requires precise control of dynamic foot-ground interactions. In addition to vision and vestibular afferents, limb proprioception, sensorimotor control loops, and reflex responses are used to adapt to the specific nature of the ground contact. Diminished leg dexterity and balance during downhill walking is usually attributed to fatigue. We investigated the supplementary hypothesis that the eccentric contractions inherent to downhill walking can also disrupt muscle proprioception, as well as the sensorimotor control loops and reflex responses that depend on it. In this study, we measured leg dexterity (LD), anterior-posterior (AP) and medio-lateral (ML) bipedal balance, and maximal voluntary leg extension strength in young and healthy participants before and after 30 min of simulated downhill walking at a natural pace on a treadmill at a 20° decline. Post-pre comparisons of LD (p < 0.001) and AP balance (p = 0.001) revealed significant reductions in dynamic foot-ground interactions after eccentric exercise without an accompanying reduction in leg extension strength. We conclude that eccentric contractions during downhill walking can disrupt the control of dynamic foot-ground interactions independently of fatigue. We speculate that mountaineering safety could be improved by increasing conscious attention to compensate for unadjusted proprioception weighting, especially in the descent.
Collapse
Affiliation(s)
- Inge Werner
- Department of Sport Science, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Federolf
- Department of Sport Science, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
13
|
Elias LA, Hur P, Sieck GC. Editorial: Towards an understanding of spinal and corticospinal pathways and mechanisms. Front Hum Neurosci 2023; 17:1181647. [PMID: 37025971 PMCID: PMC10070955 DOI: 10.3389/fnhum.2023.1181647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Leonardo Abdala Elias
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil
- Neural Engineering Research Laboratory, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Leonardo Abdala Elias
| | - Pilwon Hur
- School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Yokoyama H, Kaneko N, Sasaki A, Saito A, Nakazawa K. Firing behavior of single motor units of the tibialis anterior in human walking as non-invasively revealed by HDsEMG decomposition. J Neural Eng 2022; 19. [PMID: 36541453 DOI: 10.1088/1741-2552/aca71b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Objective.Investigation of the firing behavior of motor units (MUs) provides essential neuromuscular control information because MUs are the smallest organizational component of the neuromuscular system. The MUs activated during human infants' leg movements and rodent locomotion, mainly controlled by the spinal central pattern generator (CPG), show highly synchronous firing. In addition to spinal CPGs, the cerebral cortex is involved in neuromuscular control during walking in human adults. Based on the difference in the neural control mechanisms of locomotion between rodent, human infants and adults, MU firing behavior during adult walking probably has some different features from the other populations. However, so far, the firing activity of MUs in human adult walking has been largely unknown due to technical issues.Approach.Recent technical advances allow noninvasive investigation of MU firing by high-density surface electromyogram (HDsEMG) decomposition. We investigated the MU firing behavior of the tibialis anterior (TA) muscle during walking at a slow speed by HDsEMG decomposition.Main results.We found recruitment threshold modulation of MU between walking and steady isometric contractions. Doublet firings, and gait phase-specific firings were also observed during walking. We also found high MU synchronization during walking over a wide range of frequencies, probably including cortical and spinal CPG-related components. The amount of MU synchronization was modulated between the gait phases and motor tasks. These results suggest that the central nervous system flexibly controls MU firing to generate appropriate force of TA during human walking.Significance.This study revealed the MU behavior during walking at a slow speed and demonstrated the feasibility of noninvasive investigation of MUs during dynamic locomotor tasks, which will open new frontiers for the study of neuromuscular systems in the fields of neuroscience and biomedical engineering.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan
| | - Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
15
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom M, Baker SE, Kurz MJ. Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy. Front Neurol 2022; 13:930303. [PMID: 36016542 PMCID: PMC9396222 DOI: 10.3389/fneur.2022.930303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Although most neurophysiological studies of persons with cerebral palsy (CP) have been focused on supraspinal networks, recent evidence points toward the spinal cord as a central contributor to their motor impairments. However, it is unclear if alterations in the spinal pathways are also linked to deficits in the sensory processing observed clinically. This investigation aimed to begin to address this knowledge gap by evaluating the flexor carpi radialis (FCR) H-reflex in adults with CP and neurotypical (NT) controls while at rest and during an isometric wrist flexion task. The maximal H-wave (Hmax) and M-wave (Mmax) at rest were calculated and utilized to compute Hmax/Mmax ratios (H:M ratios). Secondarily, the facilitation of the H-wave was measured while producing an isometric, voluntary wrist flexion contraction (i.e., active condition). Finally, a wrist position sense test was used to quantify the level of joint position sense. These results revealed that the adults with CP had a lower H:M ratio compared with the NT controls while at rest. The adults with CP were also unable to facilitate their H-reflexes with voluntary contraction and had greater position sense errors compared with the controls. Further, these results showed that the adults with CP that had greater wrist position sense errors tended to have a lower H:M ratio at rest. Overall, these findings highlight that aberration in the spinal cord pathways of adults with CP might play a role in the sensory processing deficiencies observed in adults with CP.
Collapse
Affiliation(s)
- S. Shekar Dukkipati
- Boys Town National Research Hospital, Omaha, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sarah J. Walker
- Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Morgan Busboom
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Sarah E. Baker
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Max J. Kurz
- Boys Town National Research Hospital, Omaha, NE, United States
- School of Medicine, Creighton University, Omaha, NE, United States
- *Correspondence: Max J. Kurz
| |
Collapse
|
16
|
Castellucci GA, Guenther FH, Long MA. A Theoretical Framework for Human and Nonhuman Vocal Interaction. Annu Rev Neurosci 2022; 45:295-316. [PMID: 35316612 PMCID: PMC9909589 DOI: 10.1146/annurev-neuro-111020-094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| | - Frank H. Guenther
- Departments of Speech, Language & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael A. Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Paravlic AH, Meulenberg CJ, Drole K. The Time Course of Quadriceps Strength Recovery After Total Knee Arthroplasty Is Influenced by Body Mass Index, Sex, and Age of Patients: Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:865412. [PMID: 35692543 PMCID: PMC9174520 DOI: 10.3389/fmed.2022.865412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction For patients with osteoarthritis who have undergone total knee arthroplasty (TKA), quadriceps strength is a major determinant of general physical function regardless of the parameters adopted for functional assessment. Understanding the time course of quadriceps strength recovery and effectiveness of different rehabilitation protocols is a must. Therefore, the aim of this study was to: (i) determine the magnitude of maximal voluntary strength (MVS) loss and the time course of recovery of the quadriceps muscle following TKA, (ii) identify potential moderators of strength outcomes, and (iii) investigate whether different rehabilitation practices can moderate the strength outcomes following TKA, respectively. Design General scientific databases and relevant journals in the field of orthopedics were searched, identifying prospective studies that investigated quadriceps’ MVS pre-to post-surgery. Results Seventeen studies with a total of 832 patients (39% males) were included. Results showed that in the early post-operative days, the involved quadriceps’ MVS markedly declined, after which it slowly recovered over time in a linear fashion. Thus, the greatest decline of the MVS was observed 3 days after TKA. When compared to pre-operative values, the MVS was still significantly lower 3 months after TKA and did not fully recover up to 6 months following TKA. Furthermore, a meta-regression analysis identified that the variables, time point of evaluation, patient age, sex, and BMI, significantly moderate the MVS of the quadriceps muscle. Conclusion The analyzed literature data showed that the decrease in strength of the involved quadriceps muscles following TKA is considerable and lasts for several months post-surgery. Therefore, we recommend to specifically target the strengthening of knee extensor muscles, preserve motor control, and apply appropriate nutrition to ensure a holistic quadriceps muscle recovery. Since age, sex, and BMI were found to be moderating factors in patients’ recovery, further research should include specific analyses considering these moderators.
Collapse
Affiliation(s)
- Armin H. Paravlic
- Institute for Kinesiology Research, Scientific Research Center Koper, Koper, Slovenia
- Faculty of Sport, Institute of Kinesiology, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Sport Studies, Masaryk University, Brno, Czechia
- *Correspondence: Armin H. Paravlic,
| | - Cécil J. Meulenberg
- Institute for Kinesiology Research, Scientific Research Center Koper, Koper, Slovenia
| | - Kristina Drole
- Faculty of Sport, Institute of Kinesiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Alshehri MA, van den Hoorn W, Klyne DM, Hodges PW. Postural control of the trunk in individuals with and without low back pain during unstable sitting: A protocol for a systematic review with an individual participant data meta-analysis. PLoS One 2022; 17:e0268381. [PMID: 35551559 PMCID: PMC9098032 DOI: 10.1371/journal.pone.0268381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Postural control of the trunk is critical for performance of everyday activities and the health of spinal tissues. Although some studies report that individuals with low back pain (LBP) have poorer/compromised postural control than pain-free individuals when sitting on an unstable surface, others do not. Analyses commonly lack the statistical power to evaluate the relevance of features that could impact the performance of postural control, such as sex, age, anthropometrics, pain intensity or disability. This paper outlines a protocol for a systematic review with an individual participant data (IPD) meta-analysis that aims to synthesise the evidence and evaluate differences of postural control measures between individuals with and without LBP during unstable sitting. Methods and analysis A systematic review with IPD meta-analysis will be conducted according to PRISMA-IPD guidelines. To identify relevant studies, electronic databases and the reference lists of included articles will be screened. Unstable seat movements are derived from centre of pressure (CoP) data using a force plate or angle of the seat using motion systems/sensors. The comprehensiveness of reporting and methodological quality of included studies will be assessed. Analysis will involve a descriptive analysis to synthesise the findings of all included studies and a quantitative synthesis using two-stage IPD meta-analysis of studies that include both individuals with and without LBP for which IPD set can be obtained from authors. Analyses will include consideration of confounding variables. Ethics Exemption from ethical approval was obtained for this review (University of Queensland, ID: 2019003026). Systematic review registration PROSPERO ID: CRD42021124658.
Collapse
Affiliation(s)
- Mansour Abdullah Alshehri
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
- Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wolbert van den Hoorn
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
19
|
Rasul A, Lorentzen J, Frisk RF, Sinkjær T, Nielsen JB. Contribution of sensory feedback to Soleus muscle activity during voluntary contraction in humans. J Neurophysiol 2022; 127:1147-1158. [PMID: 35320034 DOI: 10.1152/jn.00430.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback contributes to plantar flexor muscle activity during walking, but it is unknown whether this is also the case during non-locomotor movements. Here, we explored the effect of reduction of sensory feedback to ankle plantar flexors during voluntary isometric contractions. 13 adult volunteers were seated with the right leg attached to a foot plate which could be moved in dorsi- or plantarflexion direction by a computer-controlled motor. During static plantar flexion while the plantar flexors were slowly stretched, a sudden plantar flexion caused a decline in Soleus EMG at stretch reflex latency. This decline in EMG remained when transmission from dorsiflexors was blocked. It disappeared following block of transmission from plantar flexors. Imposed plantarflexion failed to produce a similar decline in EMG during static or ramp-and-hold plantar flexion in the absence of slow stretch. Instead, a decline in EMG was observed 15-20 ms later, which disappeared following block of transmission from dorsiflexors. Imposed plantarflexion in the stance phase during walking caused a decline in SOL EMG which in contrast remained following block of transmission from dorsiflexors. These findings imply that the contribution of spinal interneurons to the neural drive to muscles during gait and voluntary movement differs and supports that a locomotion specific spinal network contributes to plantar flexor muscle activity during human walking.
Collapse
Affiliation(s)
- Aqella Rasul
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Rasmus Feld Frisk
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Thomas Sinkjær
- Department of Health Science and Technology. Aalborg University, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
20
|
Towards reliable spinal cord fMRI: assessment of common imaging protocols. Neuroimage 2022; 250:118964. [DOI: 10.1016/j.neuroimage.2022.118964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 01/29/2023] Open
|
21
|
Madarshahian S, Latash ML. Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 2021; 240:321-340. [PMID: 34725732 DOI: 10.1007/s00221-021-06255-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
We explored the synergic organization of motor units in extrinsic finger muscles, flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC). Healthy subjects produced accurate cyclical force by pressing with the middle phalanges of one of the three fingers (Index, Middle, and Ring) and all three together. Two wireless sensor arrays were used to record and identify motor unit action potentials in FDS and EDC. Stable motor unit groups were identified within each muscle and across both muscles. Analysis of motor units combined over the two muscles showed one of the first two motor unit groups with consistently opposite signs of the loading factors for the FDS and EDC motor units, and the other group with consistently same signs of the loading factors for the two muscles. We interpret the two motor unit groups as reflections of the reciprocal and co-activation commands within the theory of control with spatial referent coordinates. Force changes within the cycle were primarily associated with the modulation of the co-activation motor unit group. Analysis of inter-cycle variance within the spaces of motor unit groups defined for FDS and EDC separately showed force-stabilizing synergies across both single-finger and three-finger tasks. In contrast, analysis within the motor unit groups defined across both muscles failed to show force-stabilizing synergies. We interpret these results as a reflection of the trade-off across levels within a hierarchical control system.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Therkildsen ER, Nielsen JB, Beck MM, Yamaguchi T, Lorentzen J. The effect of cathodal transspinal direct current stimulation on tibialis anterior stretch reflex components in humans. Exp Brain Res 2021; 240:159-171. [PMID: 34686909 DOI: 10.1007/s00221-021-06243-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
Spinal DC stimulation (tsDCS) shows promise as a technique for the facilitation of functional recovery of motor function following central nervous system (CNS) lesion. However, the network mechanisms that are responsible for the effects of tsDCS are still uncertain. Here, in a series of experiments, we tested the hypothesis that tsDCS increases the excitability of the long-latency stretch reflex, leading to increased excitability of corticospinal neurons in the primary motor cortex. Experiments were performed in 33 adult human subjects (mean age 28 ± 7 years/14 females). Subjects were seated in a reclining armchair with the right leg attached to a footplate, which could be quickly plantarflexed (100 deg/s; 6 deg amplitude) to induce stretch reflexes in the tibialis anterior (TA) muscle at short (45 ms) and longer latencies (90-95 ms). This setup also enabled measuring motor evoked potentials (MEPs) and cervicomedullary evoked potentials (cMEPs) from TA evoked by transcranial magnetic stimulation (TMS) and electrical stimulation at the cervical junction, respectively. Cathodal tsDCS at 2.5 and 4 mA was found to increase the long-latency reflex without any significant effect on the short-latency reflex. Furthermore, TA MEPs, but not cMEPs, were increased following tsDCS. We conclude that cathodal tsDCS over lumbar segments may facilitate proprioceptive transcortical reflexes in the TA muscle, and we suggest that the most likely explanation of this facilitation is an effect on ascending fibers in the dorsal columns.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Elsass Foundation, Holmegaardsvej 28, 2920, Charlottenlund, Denmark
| | - Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Tomofumi Yamaguchi
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1Bunkyo-ku, HongoTokyo, Japan
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
24
|
Megía-García Á, Serrano-Muñoz D, Comino-Suárez N, Del-Ama AJ, Moreno JC, Gil-Agudo A, Taylor J, Gómez-Soriano J. Effect of posture and body weight loading on spinal posterior root reflex responses. Eur J Neurosci 2021; 54:6575-6586. [PMID: 34494329 DOI: 10.1111/ejn.15448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The posterior root muscle response (PRM) is a monosynaptic reflex that is evoked by single pulse transcutaneous spinal cord stimulation (tSCS). The main aim of this work was to analyse how body weight loading influences PRM reflex threshold measured from several lower limb muscles in healthy participants. PRM reflex responses were evoked with 1-ms rectangular monophasic pulses applied at an interval of 6 s via a self-adhesive electrode (9 × 5 cm) at the T11-T12 vertebral level. Surface electromyographic activity of lower limb muscles was recorded during four different conditions, one in decubitus supine (DS) and the other three involving standing at 100%, 50%, and 0% body weight loading (BW). PRM threshold intensity, peak-to-peak amplitude, and latency for each muscle were analysed in different conditions study. PRM reflex threshold increased with body weight unloading compared with DS, and the largest change was observed between DS and 0% BW for the proximal muscles and between DS and 50% BW for distal muscles. Peak-to-peak amplitude analysis showed only a significant mean decrease of 34.6% (SD 10.4, p = 0.028) in TA and 53.6% (SD 15.1, p = 0.019) in GM muscles between DS and 50% BW. No significant differences were observed for PRM latency. This study has shown that sensorimotor networks can be activated with tSCS in various conditions of body weight unloading. Higher stimulus intensities are necessary to evoke reflex response during standing at 50% body weight loading. These results have practical implications for gait rehabilitation training programmes that include body weight support.
Collapse
Affiliation(s)
- Álvaro Megía-García
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Natalia Comino-Suárez
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antonio J Del-Ama
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Rey Juan Carlos University, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel Gil-Agudo
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain
| | - Julian Taylor
- Sensorimotor Function Group, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| |
Collapse
|
25
|
Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Murray LM, Knikou M. Neurophysiological Changes After Paired Brain and Spinal Cord Stimulation Coupled With Locomotor Training in Human Spinal Cord Injury. Front Neurol 2021; 12:627975. [PMID: 34040572 PMCID: PMC8141587 DOI: 10.3389/fneur.2021.627975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological changes that involve activity-dependent neuroplasticity mechanisms via repeated stimulation and locomotor training are not commonly employed in research even though combination of interventions is a common clinical practice. In this randomized clinical trial, we established neurophysiological changes when transcranial magnetic stimulation (TMS) of the motor cortex was paired with transcutaneous thoracolumbar spinal (transspinal) stimulation in human spinal cord injury (SCI) delivered during locomotor training. We hypothesized that TMS delivered before transspinal (TMS-transspinal) stimulation promotes functional reorganization of spinal networks during stepping. In this protocol, TMS-induced corticospinal volleys arrive at the spinal cord at a sufficient time to interact with transspinal stimulation induced depolarization of alpha motoneurons over multiple spinal segments. We further hypothesized that TMS delivered after transspinal (transspinal-TMS) stimulation induces less pronounced effects. In this protocol, transspinal stimulation is delivered at time that allows transspinal stimulation induced action potentials to arrive at the motor cortex and affect descending motor volleys at the site of their origin. Fourteen individuals with motor incomplete and complete SCI participated in at least 25 sessions. Both stimulation protocols were delivered during the stance phase of the less impaired leg. Each training session consisted of 240 paired stimuli delivered over 10-min blocks. In transspinal-TMS, the left soleus H-reflex increased during the stance-phase and the right soleus H-reflex decreased at mid-swing. In TMS-transspinal no significant changes were found. When soleus H-reflexes were grouped based on the TMS-targeted limb, transspinal-TMS and locomotor training promoted H-reflex depression at swing phase, while TMS-transspinal and locomotor training resulted in facilitation of the soleus H-reflex at stance phase of the step cycle. Furthermore, both transspinal-TMS and TMS-transspinal paired-associative stimulation (PAS) and locomotor training promoted a more physiological modulation of motor activity and thus depolarization of motoneurons during assisted stepping. Our findings support that targeted non-invasive stimulation of corticospinal and spinal neuronal pathways coupled with locomotor training produce neurophysiological changes beneficial to stepping in humans with varying deficits of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Monika Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Jeffrey Li
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States.,Ph.D. Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
26
|
Geed S, Grainger M, Harris-Love ML, Lum PS, Dromerick AW. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 2021; 239:1517-1530. [PMID: 33751158 PMCID: PMC8317198 DOI: 10.1007/s00221-021-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.
Collapse
Affiliation(s)
- Shashwati Geed
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA.
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA.
| | - Megan Grainger
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Michelle L Harris-Love
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Peter S Lum
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
- Department of Bioengineering, The Catholic University of America, Washington, DC, USA
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| |
Collapse
|
27
|
Saito A, Nakagawa K, Masugi Y, Nakazawa K. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions. Exp Brain Res 2020; 239:463-474. [PMID: 33221989 PMCID: PMC7936942 DOI: 10.1007/s00221-020-05973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023]
Abstract
Voluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan. .,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan.
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Matoba, Kawagoe, Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
28
|
Yamaguchi T, Beck MM, Therkildsen ER, Svane C, Forman C, Lorentzen J, Conway BA, Lundbye‐Jensen J, Geertsen SS, Nielsen JB. Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans. Physiol Rep 2020; 8:e14531. [PMID: 32812363 PMCID: PMC7435034 DOI: 10.14814/phy2.14531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Optimization of motor performance is of importance in daily life, in relation to recovery following injury as well as for elite sports performance. The present study investigated whether transcutaneous spinal direct current stimulation (tsDCS) may enhance voluntary ballistic activation of ankle muscles and descending activation of spinal motor neurons in able-bodied adults. Forty-one adults (21 men; 24.0 ± 3.2 years) participated in the study. The effect of tsDCS on ballistic motor performance and plantar flexor muscle activation was assessed in a double-blinded sham-controlled cross-over experiment. In separate experiments, the underlying changes in excitability of corticospinal and spinal pathways were probed by evaluating soleus (SOL) motor evoked potentials (MEPs) following single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex, SOL H-reflexes elicited by tibial nerve stimulation and TMS-conditioning of SOL H-reflexes. Measures were obtained before and after cathodal tsDCS over the thoracic spine (T11-T12) for 10 min at 2.5 mA. We found that cathodal tsDCS transiently facilitated peak acceleration in the ballistic motor task compared to sham tsDCS. Following tsDCS, SOL MEPs were increased without changes in H-reflex amplitudes. The short-latency facilitation of the H-reflex by subthreshold TMS, which is assumed to be mediated by the fast conducting monosynaptic corticomotoneuronal pathway, was also enhanced by tsDCS. We argue that tsDCS briefly facilitates voluntary motor output by increasing descending drive from corticospinal neurones to spinal plantar flexor motor neurons. tsDCS can thus transiently promote within-session CNS function and voluntary motor output and holds potential as a technique in the rehabilitation of motor function following central nervous lesions.
Collapse
Affiliation(s)
- Tomofumi Yamaguchi
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Physical Therapy, Faculty of Health ScienceJuntendo UniversityTokyoJapan
- JSPS Postdoctoral Fellow for Research AbroadTokyoJapan
| | - Mikkel M. Beck
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | | | - Christian Svane
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
| | - Christian Forman
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
| | - Jakob Lorentzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Elsass FoundationCharlottenlundDenmark
| | - Bernard A. Conway
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowUK
| | - Jesper Lundbye‐Jensen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | - Svend S. Geertsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | - Jens B. Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Elsass FoundationCharlottenlundDenmark
| |
Collapse
|
29
|
Fujiwara T. The role of spinal reciprocal inhibition and intracortical inhibition in functional recovery from stroke. Exp Brain Res 2020; 238:1701-1705. [PMID: 32556426 DOI: 10.1007/s00221-020-05849-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
Spinal reciprocal inhibition (RI) and intracortical inhibition are important physiological mechanisms for voluntary movement control and functional recovery of voluntary movement in patients with stroke. Spasticity, which impairs motor performance, is one of the major manifestations of stroke. RI may be involved in reducing spasticity. This might allow finger extension, and, therefore, better hand function by reducing co-contraction with finger extensors. One potential mechanism of functional reorganization of the motor cortex is that pre-existing masking pathways are unmasked by decreased intracortical inhibition. The inhibitory neurotransmitter GABA plays an important role in this process. Changes in RI might be mediated through unmasking of cortical pathways through decreased inhibition, with the neurotransmitter GABA. These changes can be assessed using short-latency intracortical inhibition (SICI) and RI. Functional recovery in the chronic phase of stroke induced by rehabilitation was accompanied by SICI and spinal RI changes. Cortical reorganization and spinal plasticity might play important roles in functional recovery induced by rehabilitation, even in patients with chronic severe hemiparesis. This review aims to provide a focused overview of neuroplasticity of spinal RI and intracortical inhibition associated with functional motor recovery from stroke.
Collapse
Affiliation(s)
- Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
30
|
Spastic movement disorder: should we forget hyperexcitable stretch reflexes and start talking about inappropriate prediction of sensory consequences of movement? Exp Brain Res 2020; 238:1627-1636. [DOI: 10.1007/s00221-020-05792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
31
|
On Primitives in Motor Control. Motor Control 2020; 24:318-346. [DOI: 10.1123/mc.2019-0099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 11/18/2022]
Abstract
The concept of primitives has been used in motor control both as a theoretical construct and as a means of describing the results of experimental studies involving multiple moving elements. This concept is close to Bernstein’s notion of engrams and level of synergies. Performance primitives have been explored in spaces of peripheral variables but interpreted in terms of neural control primitives. Performance primitives reflect a variety of mechanisms ranging from body mechanics to spinal mechanisms and to supraspinal circuitry. This review suggests that primitives originate at the task level as preferred time functions of spatial referent coordinates or at mappings from higher level referent coordinates to lower level, frequently abundant, referent coordinate sets. Different patterns of performance primitives can emerge depending, in particular, on the external force field.
Collapse
|
32
|
Cofré Lizama LE, Bastani A, van der Walt A, Kilpatrick T, Khan F, Galea MP. Increased ankle muscle coactivation in the early stages of multiple sclerosis. Mult Scler J Exp Transl Clin 2020; 6:2055217320905870. [PMID: 32110431 PMCID: PMC7016311 DOI: 10.1177/2055217320905870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background Neural damage at early stages of multiple sclerosis (MS) can subtly affect gait muscle activation patterns. Detecting these changes using current clinical tools, however, is not possible. We propose using muscle coactivation measures to detect these subtle gait changes. This may also help in identifying people with MS (PwMS) that may benefit from strategies aimed at preventing further mobility impairments. Objective We aimed to determine if coactivation of ankle muscles during gait is greater in PwMS with Expanded Disability Status Scale (EDSS) score <3.5. A secondary aim is to determine whether coactivation increases are speed dependent. Methods For this study 30 PwMS and 15 healthy controls (HC) walked on a treadmill at 1.0 m/s, 1.2 m/s and 1.4 m/s. Electromyography was recorded from the tibialis anterior (TA), soleus (SO) and lateral gastrocnemius (LG). The coactivation index was calculated between SO/TA and LG/TA. Ankle kinematics data were also collected. Results Compared with HC, PwMS exhibited significantly greater SO/TA and LG/TA coactivation, which was greater during early stance and swing phases (p < .01). Speed did not affect coactivation except during early stance. Ankle kinematic changes were also observed. Conclusion PwMS exhibited greater ankle muscles coactivation than controls regardless of the speed of walking. These changes in muscle activation may serve as a biomarker of neurodegeneration occurring at early stages of the disease.
Collapse
Affiliation(s)
- L Eduardo Cofré Lizama
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Andisheh Bastani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neurosciences, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - Trevor Kilpatrick
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Fary Khan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.,Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Melbourne, Australia.,Department of Rehabilitation Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Mary P Galea
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.,Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Melbourne, Australia.,Department of Rehabilitation Medicine, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
33
|
Berret B, Jean F. Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction. PLoS Comput Biol 2020; 16:e1007414. [PMID: 32109941 PMCID: PMC7065824 DOI: 10.1371/journal.pcbi.1007414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Understanding the underpinnings of biological motor control is an important issue in movement neuroscience. Optimal control theory is a leading framework to rationalize this problem in computational terms. Previously, optimal control models have been devised either in deterministic or in stochastic settings to account for different aspects of motor control (e.g. average behavior versus trial-to-trial variability). While these approaches have yielded valuable insights about motor control, they typically fail in explaining muscle co-contraction. Co-contraction of a group of muscles associated to a motor function (e.g. agonist and antagonist muscles spanning a joint) contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g. joint viscoelasticity) and is thought to be mainly under the influence of descending signals from the brain. Here we present a theory suggesting that one primary goal of motor planning may be to issue feedforward (open-loop) motor commands that optimally specify both force and impedance, according to noisy neuromusculoskeletal dynamics and to optimality criteria based on effort and variance. We show that the proposed framework naturally accounts for several previous experimental findings regarding the regulation of force and impedance via muscle co-contraction in the upper-limb. Stochastic optimal (closed-loop) control, preprogramming feedback gains but requiring on-line state estimation processes through long-latency sensory feedback loops, may then complement this nominal feedforward motor command to fully determine the limb’s mechanical impedance. The proposed stochastic optimal open-loop control theory may provide new insights about the general articulation of feedforward/feedback control mechanisms and justify the occurrence of muscle co-contraction in the neural control of movement. This study presents a novel computational theory to explain the planning of force and impedance (e.g. viscoelasticity) in the neural control of movement. It assumes that one main goal of motor planning is to elaborate feedforward motor commands that determine both the force and the impedance required for the task at hand. These feedforward motor commands (i.e. that are defined prior to movement execution) are designed to minimize effort and variance costs considering the uncertainty arising from sensorimotor or environmental noise. A major outcome of this mathematical framework is the explanation of muscle co-contraction (i.e. the concurrent contraction of a group of muscles involved in a motor function). Muscle co-contraction has been shown to occur in many situations but previous modeling works struggled to account for it. Although effortful, co-contraction contributes to increase the robustness of motor behavior (e.g. small variance) upstream of sophisticated optimal closed-loop control processes that require state estimation from delayed sensory feedback to function. This work may have implications regarding our understanding of the neural control of movement in computational terms. It also provides a theoretical ground to explain how to optimally plan force and impedance within a general and versatile framework.
Collapse
Affiliation(s)
- Bastien Berret
- Université Paris-Saclay CIAMS, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| | - Frédéric Jean
- Unité de Mathématiques Appliquées, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
34
|
Effects of Voluntary Agonist–Antagonist Coactivation on Stability of Vertical Posture. Motor Control 2019; 23:304-326. [DOI: 10.1123/mc.2018-0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Button DC, Kalmar JM. Understanding exercise-dependent plasticity of motoneurons using intracellular and intramuscular approaches. Appl Physiol Nutr Metab 2019; 44:1125-1133. [PMID: 31075205 DOI: 10.1139/apnm-2018-0862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal motoneurons (MN) exhibit exercise-dependent adaptations to increased activity, such as exercise and locomotion, as well as decreased activity associated with disuse, spinal cord injury, and aging. The development of several experimental approaches, in both human and animal models, has contributed significantly to our understanding of this plasticity. The purpose of this review is to summarize how intracellular recordings in an animal model and motor unit recordings in a human model have, together, contributed to our current understanding of exercise-dependent MN plasticity. These approaches and techniques will allow neuroscientists to continue to advance our understanding of MN physiology and the plasticity of the "final common path" of the motor system, and to design experiments to answer the critical questions that are emerging in this field.
Collapse
Affiliation(s)
- Duane C Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Jayne M Kalmar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
36
|
Donenberg JG, Fetters L, Johnson R. The effects of locomotor training in children with spinal cord injury: a systematic review. Dev Neurorehabil 2019; 22:272-287. [PMID: 29920126 DOI: 10.1080/17518423.2018.1487474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Discuss the effectiveness of locomotor training (LT) in children following spinal cord injury (SCI). This intervention was assessed following an exhaustive search of the literature using the Preferred Reporting Items for Systematic Reviews and Meta- Analyses: The PRISMA Statement as a guideline. METHOD Six databases were searched including PubMed, PEDro, CINAHL, Cochrane, PsycINFO, and Web of Knowledge in January 2016 and November 2016, without date restrictions. Inclusion criteria were: studies in English and peer-reviewed and journal articles with a primary intervention of LT in children following SCI. RESULTS Twelve articles, reporting eleven studies, were included. A systematic review assessing locomotor training in children with SCI published in April 2016 was also included. Participants were ages 15 months to 18 years old. Forms of LT included body-weight supported treadmill or over ground training, functional electrical stimulation, robotics, and virtual reality. Protocols differed in set-up and delivery mode, with improvements seen in ambulation for all 41 participants following LT. CONCLUSION Children might benefit from LT to develop or restore ambulation following SCI. Age, completeness, and level of injury remain the most important prognostic factors to consider with this intervention. Additional benefits include improved bowel/ bladder management and control, bone density, cardiovascular endurance, and overall quality of life. Looking beyond the effects LT has just on ambulation is crucial because it can offer benefits to all children sustaining a SCI, even if restoration or development of walking is not the primary goal. Further rigorous research is required to determine the overall effectiveness of LT.
Collapse
Affiliation(s)
- Jennifer Glenna Donenberg
- a Division of Biokinesiology & Physical Therapy , University of Southern California , Los Angeles , CA , USA
| | - Linda Fetters
- a Division of Biokinesiology & Physical Therapy , University of Southern California , Los Angeles , CA , USA
| | - Robert Johnson
- b Norris Medical Library , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
37
|
Avrillon S, Hug F, Guilhem G. Between-muscle differences in coactivation assessed using elastography. J Electromyogr Kinesiol 2018; 43:88-94. [DOI: 10.1016/j.jelekin.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023] Open
|
38
|
Maddahi Y, Zareinia K, Tomanek B, Sutherland GR. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training. Proc Inst Mech Eng H 2018; 232:954411918806934. [PMID: 30355029 DOI: 10.1177/0954411918806934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A haptic device is an actuated human-machine interface utilized by an operator to dynamically interact with a remote environment. This interaction could be virtual (virtual reality) or physical such as using a robotic arm. To date, different mechanisms have been considered to actuate the haptic device to reflect force feedback from the remote environment. In a low-force environment or limited working envelope, the control of some actuation mechanisms such as hydraulic and pneumatic may be problematic. In the development of a haptic device, challenges include limited space, high accuracy or resolution, limitations in kinematic and dynamic solutions, points of singularity, dexterity as well as control system development/design. Furthermore, the haptic interface designed to operate in a magnetic resonance imaging environment adds additional challenges related to electromagnetic interference, static/variable magnetic fields, and the use of magnetic resonance-compatible materials. Such a device would allow functional magnetic resonance imaging to obtain information on the subject's brain activity while performing a task. When used for surgical trainees, functional magnetic resonance imaging could provide an assessment of surgical skills. In this application, the trainee, located supine within the magnet bore while observing the task environment on a graphical user interface, uses a low-force magnetic resonance-compatible haptic device to perform virtual surgical tasks in a limited space. In the quest to develop such a device, this review reports the multiple challenges faced and their potential solutions. The review also investigates efforts toward prototyping such devices and classifies the main components of a magnetic resonance-compatible device including actuation and sensory systems and materials used.
Collapse
Affiliation(s)
- Yaser Maddahi
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kourosh Zareinia
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- 2 Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Boguslaw Tomanek
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- 3 Division of Medical Physics, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Garnette R Sutherland
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Impaired Ability to Suppress Excitability of Antagonist Motoneurons at Onset of Dorsiflexion in Adults with Cerebral Palsy. Neural Plast 2018; 2018:1265143. [PMID: 30402086 PMCID: PMC6198563 DOI: 10.1155/2018/1265143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
We recently showed that impaired gait function in adults with cerebral palsy (CP) is associated with reduced rate of force development in ankle dorsiflexors. Here, we explore potential mechanisms. We investigated the suppression of antagonist excitability, calculated as the amount of soleus H-reflex depression at the onset of ankle dorsiflexion compared to rest, in 24 adults with CP (34.3 years, range 18–57; GMFCS 1.95, range 1–3) and 15 healthy, age-matched controls. Furthermore, the central common drive to dorsiflexor motoneurons during a static contraction in the two groups was examined by coherence analyses. The H-reflex was significantly reduced by 37% at the onset of dorsiflexion compared to rest in healthy adults (P < 0.001) but unchanged in adults with CP (P = 0.91). Also, the adults with CP had significantly less coherence. These findings suggest that the ability to suppress antagonist motoneuronal excitability at movement onset is impaired and that the central common drive during static contractions is reduced in adults with CP.
Collapse
|
40
|
The sensory origin of the sense of effort is context-dependent. Exp Brain Res 2018; 236:1997-2008. [DOI: 10.1007/s00221-018-5280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
|
41
|
Lorentzen J, Willerslev-Olsen M, Hüche Larsen H, Svane C, Forman C, Frisk R, Farmer SF, Kersting U, Nielsen JB. Feedforward neural control of toe walking in humans. J Physiol 2018; 596:2159-2172. [PMID: 29572934 DOI: 10.1113/jp275539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. ABSTRACT Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h-1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Maria Willerslev-Olsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | | | - Christian Svane
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Christian Forman
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Frisk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Simon Francis Farmer
- Sobell Department of Motor Neuroscience & Movement Disorders, Institute of Neurology, University College London & Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Uwe Kersting
- Department of sensory-motor interaction, Aalborg university, Aalborg, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
42
|
Abstract
The phenomenon of agonist-antagonist muscle coactivation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of coactivation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Furthermore, coactivation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle coactivation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist coactivation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by covaried adjustments in spaces of control variables. This hypothesis is able to account for higher levels of coactivation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
43
|
Yavuz UŞ, Negro F, Diedrichs R, Farina D. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans. J Neurophysiol 2018; 119:1699-1706. [PMID: 29384455 DOI: 10.1152/jn.00424.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.
Collapse
Affiliation(s)
- Utku Ş Yavuz
- Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen , Göttingen , Germany
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia , Brescia , Italy
| | - Robin Diedrichs
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London , London , United Kingdom
| |
Collapse
|
44
|
Yang Y, Dewald JPA, van der Helm FCT, Schouten AC. Unveiling neural coupling within the sensorimotor system: directionality and nonlinearity. Eur J Neurosci 2017; 48:2407-2415. [PMID: 28887885 PMCID: PMC6221113 DOI: 10.1111/ejn.13692] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending somatosensory feedback and descending motor commands. However, corticomuscular coherence cannot separate this bidirectionality. Furthermore, the sensorimotor system is nonlinear, resulting in cross‐frequency coupling. Cross‐frequency oscillations cannot be assessed nor exploited by linear measures. Here, we emphasise the need of novel coupling measures, which provide directionality and acknowledge nonlinearity, to unveil neural coupling in the sensorimotor system. We highlight recent advances in the field and argue that assessing directionality and nonlinearity of neural coupling will break new ground in the study of the control of movement in healthy and neurologically impaired individuals.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick school of Engineering, Northwestern University, Evanston, IL, USA
| | - Frans C T van der Helm
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
45
|
Yang Y, Guliyev B, Schouten AC. Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations. Front Neurosci 2017; 11:518. [PMID: 28955197 PMCID: PMC5601387 DOI: 10.3389/fnins.2017.00518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms) are thought be involved in the "rapid" transcortical reaction to the perturbation while the late cortical responses (>100 ms) are related to the "slow" transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a "ramp-and-hold" mechanical perturbation, in both the early (<100 ms) and late (>100 ms) periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG). We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, United States
| | - Bekir Guliyev
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands.,Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschede, Netherlands
| |
Collapse
|
46
|
Action observation effects reflect the modular organization of the human motor system. Cortex 2017; 95:104-118. [PMID: 28866300 DOI: 10.1016/j.cortex.2017.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
Action observation, similarly to action execution, facilitates the observer's motor system and Transcranial Magnetic Stimulation (TMS) has been instrumental in exploring the nature of these motor activities. However, contradictory findings question some of the fundamental assumptions regarding the neural computations run by the Action Observation Network (AON). To better understand this issue, we delivered TMS over the observers' motor cortex at two timings of two reaching-grasping actions (precision vs power grip) and we recorded Motor-Evoked Potentials (4 hand/arm muscles; MEPs). At the same time, we also recorded whole-hand TMS Evoked Kinematics (8 hand elevation angles; MEKs) that capture the global functional motor output, as opposed to the limited view offered by recording few muscles. By repeating the same protocol twice, and a third time after continuous theta burst stimulation (cTBS) over the motor cortex, we observe significant time-dependent grip-specific MEPs and MEKs modulations, that disappeared after cTBS. MEKs, differently from MEPs, exhibit a consistent significant modulation across pre-cTBS sessions. Beside clear methodological implications, the multidimensionality of MEKs opens a window on muscle synergies needed to overcome system redundancy. By providing better access to the AON computations, our results strengthen the idea that action observation shares key organizational similarities with action execution.
Collapse
|
47
|
Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions. Exp Brain Res 2017; 235:3023-3031. [DOI: 10.1007/s00221-017-5035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
48
|
Intrathecal baclofen bolus reduces exaggerated extensor coactivation during pre-swing and early-swing of gait after acquired brain injury. Clin Neurophysiol 2017; 128:725-733. [DOI: 10.1016/j.clinph.2017.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023]
|