1
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Yamamoto K, Estienne P, Bloch S. Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist? BRAIN, BEHAVIOR AND EVOLUTION 2024:1-18. [PMID: 38952102 DOI: 10.1159/000537746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Comparative neuroanatomists have long sought to determine which part of the pallium in nonmammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species have led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. SUMMARY The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex, and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. KEY MESSAGES We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Pierre Estienne
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Solal Bloch
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| |
Collapse
|
3
|
Anneser L, Satou C, Hotz HR, Friedrich RW. Molecular organization of neuronal cell types and neuromodulatory systems in the zebrafish telencephalon. Curr Biol 2024; 34:298-312.e4. [PMID: 38157860 PMCID: PMC10808507 DOI: 10.1016/j.cub.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The function of neuronal networks is determined not only by synaptic connectivity but also by neuromodulatory systems that broadcast information via distributed connections and volume transmission. To understand the molecular constraints that organize neuromodulatory signaling in the telencephalon of adult zebrafish, we used transcriptomics and additional approaches to delineate cell types, to determine their phylogenetic conservation, and to map the expression of marker genes at high granularity. The combinatorial expression of GPCRs and cell-type markers indicates that all neuronal cell types are subject to modulation by multiple monoaminergic systems and distinct combinations of neuropeptides. Individual cell types were associated with multiple (typically >30) neuromodulatory signaling networks but expressed only a few diagnostic GPCRs at high levels, suggesting that different neuromodulatory systems act in combination, albeit with unequal weights. These results provide a detailed map of cell types and brain areas in the zebrafish telencephalon, identify core components of neuromodulatory networks, highlight the cell-type specificity of neuropeptides and GPCRs, and begin to decipher the logic of combinatorial neuromodulation.
Collapse
Affiliation(s)
- Lukas Anneser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Chie Satou
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
4
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Reiner A. Could theropod dinosaurs have evolved to a human level of intelligence? J Comp Neurol 2023; 531:975-1006. [PMID: 37029483 PMCID: PMC10106414 DOI: 10.1002/cne.25458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 04/09/2023]
Abstract
Noting that some theropod dinosaurs had large brains, large grasping hands, and likely binocular vision, paleontologist Dale Russell suggested that a branch of these dinosaurs might have evolved to a human intelligence level, had dinosaurs not become extinct. I offer reasons why the likely pallial organization in dinosaurs would have made this improbable, based on four assumptions. First, it is assumed that achieving human intelligence requires evolving an equivalent of the about 200 functionally specialized cortical areas characteristic of humans. Second, it is assumed that dinosaurs had an avian nuclear type of pallial organization, in contrast to the mammalian cortical organization. Third, it is assumed that the interactions between the different neuron types making up an information processing unit within pallium are critical to its role in analyzing information. Finally, it is assumed that increasing axonal length between the neuron sets carrying out this operation impairs its efficacy. Based on these assumptions, I present two main reasons why dinosaur pallium might have been unable to add the equivalent of 200 efficiently functioning cortical areas. First, a nuclear pattern of pallial organization would require increasing distances between the neuron groups corresponding to the separate layers of any given mammalian cortical area, as more sets of nuclei equivalent to a cortical area are interposed between the existing sets, increasing axon length and thereby impairing processing efficiency. Second, because of its nuclear organization, dinosaur pallium could not reduce axon length by folding to bring adjacent areas closer together, as occurs in cerebral cortex.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Suryanarayana SM, Robertson B, Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200521. [PMID: 34957847 PMCID: PMC8710883 DOI: 10.1098/rstb.2020.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Shreyas M. Suryanarayana
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brita Robertson
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| |
Collapse
|
7
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
8
|
Puelles L. Current status of the hypothesis of a claustro-insular homolog in sauropsids. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:212-241. [PMID: 34753135 DOI: 10.1159/000520742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022]
Abstract
The author worked before on the wide problem of the evolution of the vertebrate pallium. He proposed various Bauplan models based in the definition of a set of pallial sectors with characteristic (topologically invariant) mutual relationships and distinct molecular profiles. Out of one of these models, known as the 'updated tetrapartite pallium model', a modified definition of the earlier lateral pallium sector (LPall) emerged, which characterized it in mammals as consisting of an unitary claustro-insular transitional (mesocortical) complex intercalated between neocortex or dorsal pallium (DPall) above and olfactory cortex or ventral pallium (VPall) underneath. A distinctive molecular marker of the early-born deep claustral component of the LPall was found to be the transcription factor Nr4a2, which is not expressed significantly in the overlying insular cortex or in adjoining cortical territories (Puelles 2014). Given that earlier comparative studies had identified molecularly and topologically comparable VPall, LPall and DPall sectors in the avian pallium, an avian Nr4a2 probe was applied aiming to identify the reportedly absent avian claustro-insular complex. An early-born superficial subpopulation of the avian LPall that expresses selectively this marker through development was indeed found. This was proposed to be a claustrum homolog, whereas the remaining Nr4a2-negative avian LPall cells were assumed to represent a possible insular homolog (Puelles et al. 2016a). This last notion was supported by comparable selective expression of the mouse insular marker Cyp26b, also found restricted to the avian LPall (Puelles 2017). Some published data suggested that similar molecular properties and structure apply at the reptilian LPall. This analysis was reviewed in Puelles et al. (2017). The present commentary discusses 3-4 years later some international publications accrued in the interval that touch on the claustro-insular homology hypothesis. Some of them are opposed to the hypothesis whereas others corroborate or support it. This raises a number of secondary issues of general interest.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, University of Murcia, Institute of Biomedical Research (IMIB-Arrixaca), El Palmar, Spain
| |
Collapse
|
9
|
Hubená P, Horký P, Slavík O. Fish self-awareness: limits of current knowledge and theoretical expectations. Anim Cogn 2021; 25:447-461. [PMID: 34655023 DOI: 10.1007/s10071-021-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Animal self-awareness is divided into three levels: bodily, social, and introspective self-awareness. Research has focused mainly on the introspection of so-called higher organisms such as mammals. Herein, we turn our attention to fish and provide opinions on their self-awareness based on a review of the scientific literature. Our specific aims are to discuss whether fish (A) could have a neural substrate supporting self-awareness and whether they display signs of (B) social and (C) introspective self-awareness. The present knowledge does not exclude the possibility that fish could have a simple neocortex or other structures that support certain higher cognitive processes, as the function of the primate cerebral cortex can be replaced by other neurological structures. Fish are known to display winner, loser, and audience effects, which could be interpreted as signs of social self-awareness. The audience effect may be explained not only by ethological cost and benefit theory but also by the concept of public self-awareness, which comes from human studies. The behavioural and neural manifestations of depression may be induced in fish under social subordination and may be viewed as certain awareness of a social status. The current findings on fish introspective self-awareness have been debated in the scientific community and, therefore, demand replication to provide more evidence. Further research is needed to verify the outlined ideas; however, the current knowledge indicates that fish are capable of certain higher cognitive processes, which raises questions and implications regarding ethics and welfare in fish-related research and husbandry.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| |
Collapse
|
10
|
Mallatt J, Feinberg TE. Multiple Routes to Animal Consciousness: Constrained Multiple Realizability Rather Than Modest Identity Theory. Front Psychol 2021; 12:732336. [PMID: 34630245 PMCID: PMC8497802 DOI: 10.3389/fpsyg.2021.732336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
The multiple realizability thesis (MRT) is an important philosophical and psychological concept. It says any mental state can be constructed by multiple realizability (MR), meaning in many distinct ways from different physical parts. The goal of our study is to find if the MRT applies to the mental state of consciousness among animals. Many things have been written about MRT but the ones most applicable to animal consciousness are by Shapiro in a 2004 book called The Mind Incarnate and by Polger and Shapiro in their 2016 work, The Multiple Realization Book. Standard, classical MRT has been around since 1967 and it says that a mental state can have very many different physical realizations, in a nearly unlimited manner. To the contrary, Shapiro's book reasoned that physical, physiological, and historical constraints force mental traits to evolve in just a few, limited directions, which is seen as convergent evolution of the associated neural traits in different animal lineages. This is his mental constraint thesis (MCT). We examined the evolution of consciousness in animals and found that it arose independently in just three animal clades-vertebrates, arthropods, and cephalopod mollusks-all of which share many consciousness-associated traits: elaborate sensory organs and brains, high capacity for memory, directed mobility, etc. These three constrained, convergently evolved routes to consciousness fit Shapiro's original MCT. More recently, Polger and Shapiro's book presented much the same thesis but changed its name from MCT to a "modest identity thesis." Furthermore, they argued against almost all the classically offered instances of MR in animal evolution, especially against the evidence of neural plasticity and the differently expanded cerebrums of mammals and birds. In contrast, we argue that some of these classical examples of MR are indeed valid and that Shapiro's original MCT correction of MRT is the better account of the evolution of consciousness in animal clades. And we still agree that constraints and convergence refute the standard, nearly unconstrained, MRT.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, United States
| | - Todd E Feinberg
- Department of Psychiatry and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. The Lamprey Forebrain - Evolutionary Implications. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:318-333. [PMID: 34192700 DOI: 10.1159/000517492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The forebrain plays a critical role in a broad range of neural processes encompassing sensory integration and initiation/selection of behaviour. The forebrain functions through an interaction between different cortical areas, the thalamus, the basal ganglia with the dopamine system, and the habenulae. The ambition here is to compare the mammalian forebrain with that of the lamprey representing the oldest now living group of vertebrates, by a review of earlier studies. We show that the lamprey dorsal pallium has a motor, a somatosensory, and a visual area with retinotopic representation. The lamprey pallium was previously thought to be largely olfactory. There is also a detailed similarity between the lamprey and mammals with regard to other forebrain structures like the basal ganglia in which the general organisation, connectivity, transmitters and their receptors, neuropeptides, and expression of ion channels are virtually identical. These initially unexpected results allow for the possibility that many aspects of the basic design of the vertebrate forebrain had evolved before the lamprey diverged from the evolutionary line leading to mammals. Based on a detailed comparison between the mammalian forebrain and that of the lamprey and with due consideration of data from other vertebrate groups, we propose a compelling account of a pan-vertebrate schema for basic forebrain structures, suggesting a common ancestry of over half a billion years of vertebrate evolution.
Collapse
Affiliation(s)
- Shreyas M Suryanarayana
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Juan Pérez-Fernández
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Vigo, Spain
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
12
|
Nieder A, Wagener L, Rinnert P. A neural correlate of sensory consciousness
in a corvid bird. Science 2020; 369:1626-1629. [DOI: 10.1126/science.abb1447] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Subjective experiences that can be
consciously accessed and reported are associated
with the cerebral cortex. Whether sensory
consciousness can also arise from differently
organized brains that lack a layered cerebral
cortex, such as the bird brain, remains unknown.
We show that single-neuron responses in the
pallial endbrain of crows performing a visual
detection task correlate with the birds’
perception about stimulus presence or absence and
argue that this is an empirical marker of avian
consciousness. Neuronal activity follows a
temporal two-stage process in which the first
activity component mainly reflects physical
stimulus intensity, whereas the later component
predicts the crows’ perceptual reports. These
results suggest that the neural foundations that
allow sensory consciousness arose either before
the emergence of mammals or independently in at
least the avian lineage and do not necessarily
require a cerebral cortex.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology, Institute of
Neurobiology, University of Tübingen, Auf der
Morgenstelle 28, 72076 Tübingen,
Germany
| | - Lysann Wagener
- Animal Physiology, Institute of
Neurobiology, University of Tübingen, Auf der
Morgenstelle 28, 72076 Tübingen,
Germany
| | - Paul Rinnert
- Animal Physiology, Institute of
Neurobiology, University of Tübingen, Auf der
Morgenstelle 28, 72076 Tübingen,
Germany
| |
Collapse
|
13
|
Matsushima A, Graybiel AM. Combinatorial Developmental Controls on Striatonigral Circuits. Cell Rep 2020; 31:107778. [PMID: 32553154 PMCID: PMC7433760 DOI: 10.1016/j.celrep.2020.107778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Cortical pyramidal cells are generated locally, from pre-programmed progenitors, to form functionally distinct areas. By contrast, striatal projection neurons (SPNs) are generated remotely from a common source, undergo migration to form mosaics of striosomes and matrix, and become incorporated into functionally distinct sectors. Striatal circuits might thus have a unique logic of developmental organization, distinct from those of the neocortex. We explore this possibility in mice by mapping one set of SPNs, those in striosomes, with striatonigral projections to the dopamine-containing substantia nigra pars compacta (SNpc). Same-age SPNs exhibit topographic striatonigral projections, according to their resident sector. However, the different birth dates of resident SPNs within a given sector specify the destination of their axons within the SNpc. These findings highlight a logic intercalating birth date-dependent and birth date-independent factors in determining the trajectories of SPN axons and organizing specialized units of striatonigral circuitry that could influence behavioral expression and vulnerabilities to disease.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| |
Collapse
|
14
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
15
|
Schmidt M. Evolution of the Hypothalamus and Inferior Lobe in Ray-Finned Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:302-316. [PMID: 32203953 DOI: 10.1159/000505898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/12/2020] [Indexed: 11/19/2022]
Abstract
The inferior lobes are prominent bilateral brain areas in the hypothalamus of neopterygians among the ray-finned fishes. They are known as multisensory integration centers. As such, they should play a major role in fish evolution. In this study, a comparative morphometric analysis was performed. The morphology of the hypothalamus, where the inferior lobe is considered as fully developed first in Lepisosteus, was then re-examined. One hundred brains from different species of 60 families of ray-finned fishes were stained with cresyl violet and embedded in methacrylate. They were then cut on a microtome while conducting block-face imaging. The volumes were determined for the whole brain, brain areas, and nuclei. Since visual input represents a major sensory input for the inferior lobe, the nucleus glomerulosus, a visual-related nucleus in paracanthopterygian and acanthopterygian teleosts, and the tectum opticum were included in the investigations. The morphometric analysis revealed that the relative volume of the inferior lobes increases significantly from species of the Lepisosteiformes to the Tetraodontiformes. In addition, a positive correlation was detected between the relative volume of the inferior lobes and either the relative volume of the nucleus glomerulosus or the relative volume of the tectum opticum. These correlations, in combination with findings from previous hodological and behavioral studies, give rise to the speculation that the inferior lobes may be involved in higher cognitive processes and complex social interactions.
Collapse
|
16
|
The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat Ecol Evol 2020; 4:639-651. [DOI: 10.1038/s41559-020-1137-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
17
|
Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O, Ströckens F. A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 2020; 225:683-703. [PMID: 32009190 DOI: 10.1007/s00429-020-02028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The phylogenetic position of crocodilians in relation to birds and mammals makes them an interesting animal model for investigating the evolution of the nervous system in amniote vertebrates. A few neuroanatomical atlases are available for reptiles, but with a growing interest in these animals within the comparative neurosciences, a need for these anatomical reference templates is becoming apparent. With the advent of MRI being used more frequently in comparative neuroscience, the aim of this study was to create a three-dimensional MRI-based atlas of the Nile crocodile (Crocodylus niloticus) brain to provide a common reference template for the interpretation of the crocodilian, and more broadly reptilian, brain. Ex vivo MRI acquisitions in combination with histological data were used to delineate crocodilian brain areas at telencephalic, diencephalic, mesencephalic, and rhombencephalic levels. A total of 50 anatomical structures were successfully identified and outlined to create a 3-D model of the Nile crocodile brain. The majority of structures were more readily discerned within the forebrain of the crocodile with the methods used to produce this atlas. The anatomy outlined herein corresponds with both classical and recent crocodilian anatomical analyses, barring a few areas of contention predominantly related to a lack of functional data and conflicting nomenclature.
Collapse
Affiliation(s)
- Brendon K Billings
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.,Faculty of Health Sciences, Department of Human Biology, Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
18
|
Fujita T, Aoki N, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. The chick pallium displays divergent expression patterns of chick orthologues of mammalian neocortical deep layer-specific genes. Sci Rep 2019; 9:20400. [PMID: 31892722 PMCID: PMC6938507 DOI: 10.1038/s41598-019-56960-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The avian pallium is organised into clusters of neurons and does not have layered structures such as those seen in the mammalian neocortex. The evolutionary relationship between sub-regions of avian pallium and layers of mammalian neocortex remains unclear. One hypothesis, based on the similarities in neural connections of the motor output neurons that project to sub-pallial targets, proposed the cell-type homology between brainstem projection neurons in neocortex layers 5 or 6 (L5/6) and those in the avian arcopallium. Recent studies have suggested that gene expression patterns are associated with neural connection patterns, which supports the cell-type homology hypothesis. However, a limited number of genes were used in these studies. Here, we showed that chick orthologues of mammalian L5/6-specific genes, nuclear receptor subfamily 4 group A member 2 and connective tissue growth factor, were strongly expressed in the arcopallium. However, other chick orthologues of L5/6-specific genes were primarily expressed in regions other than the arcopallium. Our results do not fully support the cell-type homology hypothesis. This suggests that the cell types of brainstem projection neurons are not conserved between the avian arcopallium and the mammalian neocortex L5/6. Our findings may help understand the evolution of pallium between birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoya Aoki
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Eiko Fujita
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| | - Koichi J Homma
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinji Yamaguchi
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
19
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Fernández M, Morales C, Durán E, Fernández‐Colleman S, Sentis E, Mpodozis J, Karten HJ, Marín GJ. Parallel organization of the avian sensorimotor arcopallium: Tectofugal visual pathway in the pigeon (
Columba livia
). J Comp Neurol 2019; 528:597-623. [DOI: 10.1002/cne.24775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Ernesto Durán
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | | | - Elisa Sentis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Harvey J. Karten
- Department of Neurosciences, School of MedicineUniversity of California San Diego California
| | - Gonzalo J. Marín
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
- Facultad de MedicinaUniversidad Finis Terrae Santiago Chile
| |
Collapse
|
21
|
Belekhova MG, Kenigfest NB, Vasilyev DS, Chudinova TV. Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Briscoe SD. Field Homology: Still a Meaningless Concept. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:1-3. [PMID: 31203269 DOI: 10.1159/000500770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany,
| |
Collapse
|
24
|
Alfano C, Gladwyn-Ng I, Couderc T, Lecuit M, Nguyen L. The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly. Front Cell Neurosci 2019; 13:94. [PMID: 30971894 PMCID: PMC6445045 DOI: 10.3389/fncel.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that belongs to the Flaviviridae family, together with dengue, yellow fever, and West Nile viruses. In the wake of its emergence in the French Polynesia and in the Americas, ZIKV has been shown to cause congenital microcephaly. It is the first arbovirus which has been proven to be teratogenic and sexually transmissible. Confronted with this major public health challenge, the scientific and medical communities teamed up to precisely characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. This review focuses on the critical impact of the unfolded protein response (UPR) on ZIKV-associated congenital microcephaly. ZIKV infection of cortical neuron progenitors leads to high endoplasmic reticulum (ER) stress. This results in both the stalling of indirect neurogenesis, and UPR-dependent neuronal apoptotic death, and leads to cortical microcephaly. In line with these results, the administration of molecules inhibiting UPR prevents ZIKV-induced cortical microcephaly. The discovery of the link between ZIKV infection and UPR activation has a broader relevance, since this pathway plays a crucial role in many distinct cellular processes and its induction by ZIKV may account for several reported ZIKV-associated defects.
Collapse
Affiliation(s)
- Christian Alfano
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, Institut Imagine, Sorbonne Paris Cité, Paris, France
| | - Laurent Nguyen
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Abstract
The six-layered neocortex of the mammalian pallium has no clear homolog in birds or non-avian reptiles. Recent research indicates that although these extant amniotes possess a variety of divergent and nonhomologous pallial structures, they share a conserved set of neuronal cell types and circuitries. These findings suggest a principle of brain evolution: that natural selection preferentially preserves the integrity of information-processing pathways, whereas other levels of biological organization, such as the three-dimensional architectures of neuronal assemblies, are less constrained. We review the similarities of pallial neuronal cell types in amniotes, delineate candidate gene regulatory networks for their cellular identities, and propose a model of developmental evolution for the divergence of amniote pallial structures.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Cárdenas A, Villalba A, de Juan Romero C, Picó E, Kyrousi C, Tzika AC, Tessier-Lavigne M, Ma L, Drukker M, Cappello S, Borrell V. Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels. Cell 2018; 174:590-606.e21. [PMID: 29961574 PMCID: PMC6063992 DOI: 10.1016/j.cell.2018.06.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Abstract
Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Picó
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Athanasia C Tzika
- Department Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | | | - Le Ma
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain.
| |
Collapse
|
27
|
Nieder A. Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0514. [PMID: 29292361 DOI: 10.1098/rstb.2016.0514] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/29/2023] Open
Abstract
Brains that are capable of representing numerosity, the number of items in a set, have arisen repeatedly and independently in different animal taxa. This review compares the cognitive and physiological mechanisms found in a nonhuman primate, the rhesus macaque, and a corvid songbird, the carrion crow, in order to elucidate the evolutionary adaptations underlying numerical competence. Monkeys and corvids are known for their advanced cognitive competence, despite them both having independently and distinctly evolved endbrains that resulted from a long history of parallel evolution. In both species, numerosity is represented as an analogue magnitude by an approximate number system that obeys the Weber-Fechner Law. In addition, the activity of numerosity-selective neurons in the fronto-parietal association cortex of monkeys and the telencephalic associative area nidopallium caudolaterale of crows mirrors the animals' performance. In both species' brains, neuronal activity is tuned to a preferred numerosity, encodes the numerical value in an approximate fashion, and is best represented on a logarithmic scale. Collectively, the data show an impressive correspondence of the cognitive and neuronal mechanisms for numerosity representations across monkeys and crows. This suggests that remotely related vertebrates with distinctly developed endbrains adopted similar physiological solutions to common computational problems in numerosity processing.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Krauzlis RJ, Bogadhi AR, Herman JP, Bollimunta A. Selective attention without a neocortex. Cortex 2018; 102:161-175. [PMID: 28958417 PMCID: PMC5832524 DOI: 10.1016/j.cortex.2017.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.
| | | | - James P Herman
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| |
Collapse
|
29
|
Abstract
The evolutionary relationships of the mammalian neocortex and avian dorsal telencephalon (DT) nuclei have been debated for more than a century. Despite their central importance to this debate, nonavian reptiles remain underexplored with modern molecular techniques. Reptile studies harbor great potential for understanding the changes in DT organization that occurred in the early evolution of amniotes. They may also help clarify the specializations in the avian DT, which comprises a massive, cell-dense dorsal ventricular ridge (DVR) and a nuclear dorsal-most structure, the Wulst. Crocodilians are phylogenetically and anatomically attractive for DT comparative studies: they are the closest living relatives of birds and have a strikingly bird-like DVR, but they also possess a highly differentiated reptile cerebral cortex. We studied the DT of the American alligator, Alligator mississippiensis, at late embryonic stages with a panel of molecular marker genes. Gene expression and cytoarchitectonic analyses identified clear homologs of all major avian DVR subdivisions including a mesopallium, an extensive nidopallium with primary sensory input territories, and an arcopallium. The alligator medial cortex is divided into three components that resemble the mammalian dentate gyrus, CA fields, and subiculum in gene expression and topography. The alligator dorsal cortex contains putative homologs of neocortical input, output, and intratelencephalic projection neurons and, most notably, these are organized into sublayers similar to mammalian neocortical layers. Our findings on the molecular anatomy of the crocodilian DT are summarized in an atlas of the alligator telencephalon.
Collapse
Affiliation(s)
- Steven D Briscoe
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois
| | - Clifton W Ragsdale
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois.,Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Belekhova MG, Vasilyev DS, Kenigfest NB, Chudinova TV. Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Pigeon Entopallium: A Comparative Analysis of Interspecies Variability as Related to the Discussion on Avian Entopallium Homology. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Briscoe SD, Albertin CB, Rowell JJ, Ragsdale CW. Neocortical Association Cell Types in the Forebrain of Birds and Alligators. Curr Biol 2018; 28:686-696.e6. [PMID: 29456143 PMCID: PMC11098552 DOI: 10.1016/j.cub.2018.01.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 01/17/2023]
Abstract
The avian dorsal telencephalon has two vast territories, the nidopallium and the mesopallium, both of which have been shown to contribute substantially to higher cognitive functions. From their connections, these territories have been proposed as equivalent to mammalian neocortical layers 2 and 3, various neocortical association areas, or the amygdala, but whether these are analogies or homologies by descent is unknown. We investigated the molecular profiles of the mesopallium and the nidopallium with RNA-seq. Gene expression experiments established that the mesopallium, but not the nidopallium, shares a transcription factor network with the intratelencephalic class of neocortical neurons, which are found in neocortical layers 2, 3, 5, and 6. Experiments in alligators demonstrated that these neurons are also abundant in the crocodilian cortex and form a large mesopallium-like structure in the dorsal ventricular ridge. Together with previous work, these molecular findings indicate a homology by descent for neuronal cell types of the avian dorsal telencephalon with the major excitatory cell types of mammalian neocortical circuits: the layer 4 input neurons, the deep layer output neurons, and the multi-layer intratelencephalic association neurons. These data raise the interesting possibility that avian and primate lineages evolved higher cognitive abilities independently through parallel expansions of homologous cell populations.
Collapse
Affiliation(s)
- Steven D Briscoe
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Caroline B Albertin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA; Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Joanna J Rowell
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Clifton W Ragsdale
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA; Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Chen AN, Meliza CD. Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. J Neurophysiol 2017; 119:1127-1139. [PMID: 29212920 DOI: 10.1152/jn.00694.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal mesopallium (CM) is a cortical-level area in the songbird auditory pathway where selective, invariant responses to familiar songs emerge. To characterize the cell types that perform this computation, we made whole cell recordings from brain slices in juvenile zebra finches ( Taeniopygia guttata) of both sexes. We found three groups of putatively excitatory neurons with distinct firing patterns. Tonic cells produced sustained responses to depolarizing step currents, phasic cells produced only a few spikes at the onset, and an intermediate group was also phasic but responded for up to a few hundred milliseconds. Phasic cells had smaller dendritic fields, higher resting potentials, and strong low-threshold outward rectification. Pharmacological treatment with voltage-gated potassium channel antagonists 4-aminopyridine and α-dendrotoxin converted phasic to tonic firing. When stimulated with broadband currents, phasic cells fired coherently with frequencies up to 20-30 Hz, whereas tonic neurons were more responsive to frequencies around 0-10 Hz. The distribution of peak coherence frequencies was similar to the distribution of temporal modulation rates in zebra finch song. We reproduced these observations in a single-compartment biophysical model by varying cell size and the magnitude of a slowly inactivating, low-threshold potassium current ( ILT). These data suggest that intrinsic dynamics in CM are matched to the temporal statistics of conspecific song. NEW & NOTEWORTHY In songbirds, the caudal mesopallium is a key brain area involved in recognizing the songs of other individuals. This study identifies three cell types in this area with distinct firing patterns (tonic, phasic, and intermediate) that reflect differences in cell size and a low-threshold potassium current. The phasic-firing neurons, which do not have a counterpart in mammalian auditory cortex, are better able to follow rapid modulations at the frequencies found in song.
Collapse
Affiliation(s)
- Andrew N Chen
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia
| | - C Daniel Meliza
- Neuroscience Graduate Program, University of Virginia , Charlottesville, Virginia.,Department of Psychology, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
33
|
Furlan G, Cuccioli V, Vuillemin N, Dirian L, Muntasell AJ, Coolen M, Dray N, Bedu S, Houart C, Beaurepaire E, Foucher I, Bally-Cuif L. Life-Long Neurogenic Activity of Individual Neural Stem Cells and Continuous Growth Establish an Outside-In Architecture in the Teleost Pallium. Curr Biol 2017; 27:3288-3301.e3. [PMID: 29107546 PMCID: PMC5678050 DOI: 10.1016/j.cub.2017.09.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023]
Abstract
Spatiotemporal variations of neurogenesis are thought to account for the evolution of brain shape. In the dorsal telencephalon (pallium) of vertebrates, it remains unresolved which ancestral neurogenesis mode prefigures the highly divergent cytoarchitectures that are seen in extant species. To gain insight into this question, we developed genetic tools to generate here the first 4-dimensional (3D + birthdating time) map of pallium construction in the adult teleost zebrafish. Using a Tet-On-based genetic birthdating strategy, we identify a “sequential stacking” construction mode where neurons derived from the zebrafish pallial germinal zone arrange in outside-in, age-related layers from a central core generated during embryogenesis. We obtained no evidence for overt radial or tangential neuronal migrations. Cre-lox-mediated tracing, which included following Brainbow clones, further demonstrates that this process is sustained by the persistent neurogenic activity of individual pallial neural stem cells (NSCs) from embryo to adult. Together, these data demonstrate that the spatiotemporal control of NSC activity is an important driver of the macroarchitecture of the zebrafish adult pallium. This simple mode of pallium construction shares distinct traits with pallial genesis in mammals and non-mammalian amniotes such as birds or reptiles, suggesting that it may exemplify the basal layout from which vertebrate pallial architectures were elaborated. Neurons of the teleost pallium are arranged in concentric age-dependent layers Neurons of the central pallial domain, Dc, are born during embryogenesis Most pallial neurons are generated from ventricular her4-positive radial glia The majority of individual pallial radial glia are neurogenic throughout life
Collapse
Affiliation(s)
- Giacomo Furlan
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Valentina Cuccioli
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Nelly Vuillemin
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS UMR 7645 and INSERM U1182, 91128 Palaiseau, France
| | - Lara Dirian
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Anna Janue Muntasell
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London SE1 1UL, UK
| | - Marion Coolen
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Nicolas Dray
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Sébastien Bedu
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London SE1 1UL, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS UMR 7645 and INSERM U1182, 91128 Palaiseau, France
| | - Isabelle Foucher
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France.
| | - Laure Bally-Cuif
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
34
|
Suryanarayana SM, Robertson B, Wallén P, Grillner S. The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex. Curr Biol 2017; 27:3264-3277.e5. [PMID: 29056451 DOI: 10.1016/j.cub.2017.09.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022]
Abstract
The basic architecture of the mammalian neocortex is remarkably similar across species. Pallial structures in the reptilian brain are considered amniote precursors of mammalian neocortex, whereas pallia of anamniotes ("lower" vertebrates) have been deemed largely insignificant with respect to homology. Here, we examine the cytoarchitecture of the lateral pallium in the lamprey, the phylogenetically oldest group of extant vertebrates. We reveal a three-layered structure with similar excitatory cell types as in the mammalian cortex and GABAergic interneurons. The ventral parts are sensory areas receiving monosynaptic thalamic input that can be activated from the optic nerve, whereas the dorsal parts contain motor areas with efferent projections to the brainstem, receiving oligosynaptic thalamic input. Both regions receive monosynaptic olfactory input. This three-layered "primordial" lamprey lateral pallium has evolved most features of the three-layered reptilian cortices and is thereby a precursor of the six-layered "neo" cortex with a long-standing evolutionary precedent (some 500 million years ago).
Collapse
Affiliation(s)
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Wallén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
35
|
Abstract
Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes. Therefore, the comparison of gene expression can help reconstructing circuit evolution, as demonstrated by several examples in sensory systems. Functional constraints on neural circuit evolution suggest that in nervous systems developmental and genetic variants do not appear randomly, and that the evolution of neuroanatomy might be biased. Sensory systems, in particular, seem to evolve along trajectories that enhance their evolvability, ensuring adaptation to different environments.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Yamamoto K, Bloch S, Vernier P. New perspective on the regionalization of the anterior forebrain in Osteichthyes. Dev Growth Differ 2017; 59:175-187. [PMID: 28470718 PMCID: PMC11520958 DOI: 10.1111/dgd.12348] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/19/2023]
Abstract
In the current model, the most anterior part of the forebrain (secondary prosencephalon) is subdivided into the telencephalon dorsally and the hypothalamus ventrally. Our recent study identified a new morphogenetic unit named the optic recess region (ORR) between the telencephalon and the hypothalamus. This modification of the forebrain regionalization based on the ventricular organization resolved some previously unexplained inconsistency about regional identification in different vertebrate groups. The ventricular-based comparison also revealed a large diversity within the subregions (notably in the hypothalamus and telencephalon) among different vertebrate groups. In tetrapods there is only one hypothalamic recess, while in teleosts there are two recesses. Most notably, the mammalian and teleost hypothalami are two extreme cases: the former has lost the cerebrospinal fluid-contacting (CSF-c) neurons, while the latter has increased them. Thus, one to one homology of hypothalamic subregions in mammals and teleosts requires careful verification. In the telencephalon, different developmental processes between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish) have already been described: the evagination and the eversion. Although pallial homology has been long discussed based on the assumption that the medial-lateral organization of the pallium in Actinopterygii is inverted from that in Sarcopterygii, recent developmental data contradict this assumption. Current models of the brain organization are largely based on a mammalian-centric point of view, but our comparative analyses shed new light on the brain organization of Osteichthyes.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| | - Solal Bloch
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| | - Philippe Vernier
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| |
Collapse
|
37
|
Hou PS, Kumamoto T, Hanashima C. A Sensitive and Versatile In Situ Hybridization Protocol for Gene Expression Analysis in Developing Amniote Brains. Methods Mol Biol 2017; 1650:319-334. [PMID: 28809032 DOI: 10.1007/978-1-4939-7216-6_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of specific RNA molecules in embryonic tissues has wide research applications including studying gene expression dynamics in brain development and evolution. Recent advances in sequencing technologies have introduced new animal models to explore the molecular principles underlying the assembly and diversification of brain circuits between different amniote species. Here, we provide a step-by-step protocol for a versatile in situ hybridization method that is immediately applicable to a range of amniote embryos including zebra finch and Madagascar ground gecko, two new model organisms that have rapidly emerged for comparative brain studies over recent years. The sensitive detection of transcripts from low to high abundance expression range using the same platform enables direct comparison of gene of interest among different amniotes, providing high-resolution spatiotemporal information of gene expression to dissect the molecular principles underlying brain evolution.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
38
|
Karten HJ. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0060. [PMID: 26554047 DOI: 10.1098/rstb.2015.0060] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated 'cortical' manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple 'subcortical' groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as 'evolutionary connectomics', revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian 'neocortex', hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial 'columns' in the mammalian sensory and motor cortices. The molecular properties of these 'nuclei' in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae.
Collapse
Affiliation(s)
- Harvey J Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
39
|
Abstract
Humans and non-human primates share an elemental quantification system that resides in a dedicated neural network in the parietal and frontal lobes. In this cortical network, 'number neurons' encode the number of elements in a set, its cardinality or numerosity, irrespective of stimulus appearance across sensory motor systems, and from both spatial and temporal presentation arrays. After numbers have been extracted from sensory input, they need to be processed to support goal-directed behaviour. Studying number neurons provides insights into how information is maintained in working memory and transformed in tasks that require rule-based decisions. Beyond an understanding of how cardinal numbers are encoded, number processing provides a window into the neuronal mechanisms of high-level brain functions.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Brunjes PC, Osterberg SK. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex. PLoS One 2015; 10:e0138541. [PMID: 26407299 PMCID: PMC4583488 DOI: 10.1371/journal.pone.0138541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022] Open
Abstract
Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions.
Collapse
Affiliation(s)
- Peter C. Brunjes
- Department Psychology, University of Virginia, Charlottesville, Virginia, 22904, United States of America
- * E-mail:
| | - Stephen K. Osterberg
- Department Psychology, University of Virginia, Charlottesville, Virginia, 22904, United States of America
| |
Collapse
|