1
|
Zhang C, Wu G. Recent advances in fluorescent probes for ATP imaging. Talanta 2024; 279:126622. [PMID: 39089081 DOI: 10.1016/j.talanta.2024.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Adenosine-5'-triphosphate (ATP) is a critical biological molecule that functions as the primary energy currency within cells. ATP synthesis occurs in the mitochondria, and variations in its concentration can significantly influence mitochondrial and cellular performance. Prior studies have established a link between ATP levels and a variety of diseases, such as cancer, neurodegenerative conditions, ischemia, and hypoglycemia. Consequently, researchers have developed many fluorescent probes for ATP detection, recognizing the importance of monitoring intracellular ATP levels to understand cellular processes. These probes have been effectively utilized for visualizing ATP in living cells and biological samples. In this comprehensive review, we categorize fluorescent sensors developed in the last five years for ATP detection. We base our classification on fluorophores, structure, multi-response channels, and application. We also evaluate the challenges and potential for advancing new generations of fluorescence imaging probes for monitoring ATP in living cells. We hope this summary motivates researchers to design innovative and effective probes tailored to ATP sensing. We foresee imminent progress in the development of highly sophisticated ATP probes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Guanzhao Wu
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| |
Collapse
|
2
|
Wang J, Wang J, Yu J, Chen D. Copper and Melanoma Risk: Results from NHANES 2007-2018 and Mendelian Randomization Analyses. Biol Trace Elem Res 2024; 202:4909-4922. [PMID: 38374330 DOI: 10.1007/s12011-024-04072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Copper is an essential trace element obtained from food. There is a paucity of observational or prospective studies that have investigated the relationship between copper and melanoma risk. Copper serves as a cofactor for pivotal enzymes involved in mitochondrial respiration, antioxidant defense, and neurotransmitter synthesis. Undoubtedly, copper plays an indispensable role in the initiation and progression of tumors, particularly melanoma; however, further investigations are warranted to elucidate the underlying mechanisms linking copper and melanoma risk. Given the availability of dietary copper and serum copper data in the NHANES database, we conducted an investigation into the association between dietary copper intake and serum copper levels with melanoma risk. We enrolled 26,401 individuals with dietary copper data in the 2007-2018 NHANES database. To mitigate confounding variables, a propensity score matching (PSM) was performed. To assess the association between dietary copper intake and melanoma risk, we employed a multivariate logistic regression analysis before and after PSM. The restricted cubic spline analysis was utilized to determine whether there is a non-linear relationship between dietary copper intake and melanoma risk, with subgroup analysis conducted to determine beneficiaries. Then, those with blood copper data from the enrolled population with dietary copper intake were screened out, and subsequently, multivariate logistic regression models were subsequently constructed to investigate the association between serum copper levels and melanoma risk after PSM. Mendelian analysis was further utilized to validate the results of the NHANES database using serum copper as the exposure factor and melanoma as the outcome variable. The study found that melanoma risk was associated with dietary copper intake before and after PSM, demonstrated by multiple logistic regression. The relationship between dietary copper intake and melanoma risk was non-linear, with a reduced risk observed above approximately 2.5 mg/day, as shown by the RCS. The evidence suggests that an increased intake of copper is linked to a decreased risk of melanoma. To clarify the mechanism behind the increased risk of melanoma due to higher dietary copper intake, we analyzed the population data from the NHANES database on serum copper and dietary copper intake. Our results indicated that there is no causal relationship between serum copper and melanoma risk. Mendelian randomization analysis of multi-database data sources confirmed the conclusion of the NHANES database analysis. Dietary copper is a protective factor against melanoma, and serum copper or blood copper is not associated with melanoma risk. This suggests that serum or blood copper is not responsible for the protective effect of dietary copper intake on melanoma risk, and the mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Jia Wang
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Juan Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jinming Yu
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
3
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
5
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
6
|
Xu X, Mo C, Qin J, Cai J, Liu Q, Tang X, Zhang H, Zhang Z. Association between Copper Exposure and Cognitive Function: A Cross-Sectional Study in a County, Guangxi, China. Biol Trace Elem Res 2024:10.1007/s12011-024-04296-0. [PMID: 38965167 DOI: 10.1007/s12011-024-04296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
There has been growing attention to the impact of copper exposure on cognitive function; however, current research on the specific information regarding urinary copper and cognitive function is limited, particularly detailed analyses in the Chinese adult population. This study aimed to explore the association between copper exposure and cognitive function in a cross-sectional design. A total of 2617 participants in a county, Guangxi Zhuang Autonomous Region (Guangxi), China, were included. The mini-mental state examination (MMSE) was used to assess cognitive function, and inductively coupled plasma mass spectrometry was used to measure urinary metal levels. Spearman's rank correlation was used to analyze the correlation between urinary copper levels and various cognitive function assessment indices. After adjusting for potential confounders, binary logistic regression was used to explore the association between urinary copper levels and the risk of cognitive impairment (CI) as revealed by MMSE, and restricted cubic spline regression was further used to explore the dose-response relationship. The results showed a negative correlation between urinary copper levels and orientation, attention and calculation, memory, language ability, and MMSE total scores (P < 0.05). Compared with the low copper exposure group, the high exposure group showed a 58.5% increased risk of CI (OR = 1.585, 95%CI: 1.125 to 2.235, P = 0.008). A significant linear dose-response relationship was observed between urinary copper levels and the risk of CI (P overall = 0.045, P nonlinearity = 0.081). Our findings suggest that higher copper exposure may be associated with CI in the population of a county, Guangxi, China.
Collapse
Affiliation(s)
- Xia Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Chunbao Mo
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Lequn Road 20, Guilin, 541001, Guangxi, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi, China
| | - Qiumei Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Xu Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China.
| | - Zhiyong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China.
- School of Public Health, Guilin Medical University, Lequn Road 20, Guilin, 541001, Guangxi, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
7
|
Bitzer AC, Fox J, Day PL, Pazdernik VK, Smith CY, Wermers M, Jannetto PJ, Bornhorst JA. Establishment of a Labile Bound Copper Reference Interval in a Healthy Population via an Inductively Coupled Plasma Mass Spectrometry Dual Filtration-Based Assay. Arch Pathol Lab Med 2024; 148:818-827. [PMID: 37870242 DOI: 10.5858/arpa.2023-0259-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/24/2023]
Abstract
CONTEXT.— Clinical testing for Wilson disease (WD) is potentially challenging. Measuring the fraction of labile bound copper (LBC) to total copper may be a promising alternative diagnostic tool with better sensitivity and specificity than some current biomarker approaches. A dual filtration-based inductively coupled mass spectrometry (ICP-MS) assay to measure LBC in serum was developed. OBJECTIVE.— To establish a reference interval for LBC and LBC to total copper (LBC fraction) in a healthy adult population, and to examine associations between total copper, LBC, and LBC fraction with age, sex, menopausal status, hormone replacement therapy, and supplement use. DESIGN.— Serum samples were collected from healthy male (n = 110) and female (n = 104) patients between the ages of 19 and 80 years. Total copper and LBC were analyzed using ICP-MS. Results were used to calculate the LBC fraction. Reference intervals were calculated for the 2.5th and 97.5th percentiles for both LBC and LBC fraction. RESULTS.— The reference intervals for LBC were determined to be 13 to 105 ng/mL and 12 to 107 ng/mL for female and male patients, respectively. The reference intervals for the LBC fraction were 1.0% to 8.1% and 1.2% to 10.5% for female and male patients, respectively. No significant associations were found regarding age, menopausal status, hormone replacement therapy, or vitamin and supplement use. CONCLUSIONS.— Sex-specific reference intervals have now been established for LBC and LBC fraction. These data in conjunction with further testing of WD populations can be used to assess the sensitivity and specificity of LBC fraction in screening, monitoring, and diagnosis.
Collapse
Affiliation(s)
- Anna C Bitzer
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
| | - Jessica Fox
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
- Quest Diagnostics, Lewisville, Texas (Fox)
| | - Patrick L Day
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
| | - Vanessa K Pazdernik
- From the Departments of Laboratory Medicine and Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota(Pazdernik, Smith)
| | - Carin Y Smith
- From the Departments of Laboratory Medicine and Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota(Pazdernik, Smith)
| | - Michelle Wermers
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
| | - Paul J Jannetto
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
| | - Joshua A Bornhorst
- From the Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota(Bitzer, Fox, Day, Wermers, Jannetto, Bornhorst)
| |
Collapse
|
8
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
9
|
Zhu L, Kang X, Zhu S, Wang Y, Guo W, Zhu R. Cuproptosis-related DNA methylation signature predict prognosis and immune microenvironment in cutaneous melanoma. Discov Oncol 2024; 15:228. [PMID: 38874871 PMCID: PMC11178724 DOI: 10.1007/s12672-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The prognosis for Cutaneous Melanoma (CM), a skin malignant tumor that is extremely aggressive, is not good. A recently identified type of controlled cell death that is intimately related to immunotherapy and the development of cancer is called cuproptosis. Using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we developed and validated a DNA-methylation located in cuproptosis death-related gene prognostic signature (CRG-located DNA-methylation prognostic signature) to predict CM's prognosis. Kaplan-Meier analysis of our TCGA and GEO cohorts showed that high-risk patients had a shorter overall survival. The area under the curve (AUC) for the TCGA cohort was 0.742, while for the GEO cohort it was 0.733, according to the receiver operating characteristic (ROC) analysis. Furthermore, this signature was discovered as an independent prognostic indicator over CM patients based on Cox-regression analysis. Immunogenomic profiling indicated that majority immune-checkpoints got an opposite relationship with the signature, and patients in the group at low risk got higher immunophenoscore. Several immune pathways were enriched, according to functional enrichment analysis. In conclusion, a prognostic methylation signature for CM patients was established and confirmed. Because of its close relationship to the immune landscape, this signature may help clinicians make more accurate and individualized choices regarding therapy.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xudong Kang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanna Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Chen T, Liang L, Wang Y, Li X, Yang C. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism. Apoptosis 2024; 29:289-302. [PMID: 38095762 PMCID: PMC10873465 DOI: 10.1007/s10495-023-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 02/18/2024]
Abstract
Metal ions play an important role in living organisms and are involved in essential physiological activities. However, the overload state of ions can cause excess free radicals, cell damage, and even cell death. Ferroptosis and cuproptosis are specific forms of cell death that are distinct from apoptosis, necroptosis, and other regulated cell death. These unique modalities of cell death, dependent on iron and copper, are regulated by multiple cellular metabolic pathways, including steady-state metal redox treatment mitochondrial activity of lipid, amino acid and glucose metabolism, and various signaling pathways associated with disease. Although the mechanisms of ferroptosis and cuproptosis are not yet fully understood, there is no doubt that ion overload plays a crucial act in these metal-dependent cell deaths. In this review, we discussed the core roles of ion overload in ferroptosis and cuproptosis, the association between metabolism imbalance and ferroptosis and cuproptosis, the extract the diseases caused by ion overload and current treatment modalities.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
- Zhangjiang Institue of Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Ouyang Y, Lou Y, Zhu Y, Wang Y, Zhu S, Jing L, Yang T, Cui H, Deng H, Zuo Z, Fang J, Guo H. Molecular Regulatory Mechanism of Nano-Se Against Copper-Induced Spermatogenesis Disorder. Biol Trace Elem Res 2024:10.1007/s12011-024-04153-0. [PMID: 38528285 DOI: 10.1007/s12011-024-04153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.
Collapse
Affiliation(s)
- Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanbing Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lin Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tingting Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
12
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
13
|
Richa, Kumar V, Kataria R. Phenanthroline and Schiff Base associated Cu(II)-coordinated compounds containing N, O as donor atoms for potent anticancer activity. J Inorg Biochem 2024; 251:112440. [PMID: 38065049 DOI: 10.1016/j.jinorgbio.2023.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
14
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
15
|
Li X, Ling J, Hu Q, Fang C, Mei K, Wu Y, Huang J, Ling Q, Chen Y, Yu P, Liu X, Li J. Association of serum copper (Cu) with cardiovascular mortality and all-cause mortality in a general population: a prospective cohort study. BMC Public Health 2023; 23:2138. [PMID: 37915007 PMCID: PMC10621106 DOI: 10.1186/s12889-023-17018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Copper (Cu) homeostasis and Cu-induced cell death are gaining recognition as crucial processes in the pathogenesis of cardiovascular disease (CVD). Circulating Cu associated with CVD and mortality is yet to be fully elucidated. OBJECTIVE This national prospective cohort study is to estimate relationship between serum Cu and the risk of CVD and all-cause mortality. METHODS This study included participants from the National Health and Nutrition Examination Survey 2011-2016. Weighted Cox proportional hazards regression analysis and exposure-response curves were applied. RESULTS This included 5,412 adults, representing 76,479,702 individuals. During a mean of 5.85 years of follow-up (31,653 person-years), 96 CVD and 356 all-cause mortality events occurred. Age and sex-adjusted survival curves showed that individuals with higher levels of serum Cu experienced increased CVD and all-cause death rates (tertiles, p < 0.05). Compared with the participant in tertile 1 of serum Cu (< 16.31 mol/L), those in tertile 3 (≥ 19.84 mol/L) were significantly associated with CVD mortality (HR: 7.06, 95%CI: 1.85,26.96), and all-cause mortality (HR: 2.84, 95% CI: 1.66,4.87). The dose-response curve indicated a linear relationship between serum Cu and CVD mortality (p -nonlinear = 0.48) and all-cause (p -nonlinear = 0.62). A meta-analysis included additional three prospective cohorts with 13,189 patients confirmed the association between higher serum Cu and CVD (HR: 2.08, 95% CI: 1.63,2.65) and all-cause mortality (HR: 1.89, 95%CI: 1.58,2.25). CONCLUSION The present study suggests excessive serum Cu concentrations are associated with the risk of CVD and all-cause mortality in American adults. Our findings and the causal relationships require further investigation.
Collapse
Affiliation(s)
- Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jitao Ling
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Changchang Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Kaibo Mei
- Department of Anesthesiology, The People's Hospital of Shanggrao, Shanggrao, Jiangxi, China
| | - Yifan Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingyi Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qin Ling
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China.
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, Guangdong, China.
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
16
|
Zhang D, Zhou X, Zhou W, Cui SW, Nie S. Intestinal organoids: A thriving and powerful tool for investigating dietary nutrients-intestinal homeostasis axis. Food Res Int 2023; 172:113109. [PMID: 37689878 DOI: 10.1016/j.foodres.2023.113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Dietary nutrients regulate intestinal homeostasis through a variety of complex mechanisms, to affect the host health. Nowadays, various models have been used to investigate the dietary nutrients-intestinal homeostasis axis. Different from the limited flux in animal experiments, limited intestinal cell types and distorted simulation of intestinal environment of 2D cells, intestinal organoid (IO) is a 3D culture system of mini-gut with various intestinal epithelial cells (IECs) and producibility of intestinal biology. Therefore, IOs is a powerful tool to evaluate dietary nutrients-intestinal homeostasis interaction. This review summarized the application of IOs in the investigation of mechanisms for macronutrients (carbohydrates, proteins and fats) and micronutrients (vitamins and minerals) affecting intestinal homeostasis directly or indirectly (polysaccharides-intestinal bacteria, proteins-amino acids). In addition, new perspectives of IOs in combination with advanced biological techniques and their applications in precise nutrition were proposed.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Wengan Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
17
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
18
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
19
|
Cui Y, Chen Y, Gan N, Li M, Liao W, Zhou Y, Xiang Q, Gong X, Guo Q, Hu P, Zheng XL, Shang D, Peng J, Tang Z. A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis. MOLECULAR BIOMEDICINE 2023; 4:21. [PMID: 37442861 DOI: 10.1186/s43556-023-00131-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor. Copper homeostasis is closely related to the occurrence and development of AS. Recently, a new cell death pathway called cuproptosis has been discovered, which is driven by intracellular copper excess. However, no previous studies have reported a relationship between cuproptosis and AS. In this study, we integrated bulk and single-cell sequencing data to screen and identify key cuproptosis-related genes in AS. We used correlation analysis, enrichment analysis, random forest, and other bioinformatics methods to reveal their relationships. Our findings report, for the first time, the involvement of cuproptosis-related genes FDX1, SLC31A1, and GLS in atherogenesis. FDX1 and SLC31A1 were upregulated, while GLS was downregulated in atherosclerotic plaque. Receiver operating characteristic curves demonstrate their potential diagnostic value for AS. Additionally, we confirm that GLS is mainly expressed in vascular smooth muscle cells, and SLC31A1 is mainly localized in macrophages of atherosclerotic lesions in experiments. These findings shed light on the cuproptosis landscape and potential diagnostic biomarkers for AS, providing further evidence about the vital role of cuproptosis in atherosclerosis progression.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanyu Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Man Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yating Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xi Gong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qianqian Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Desi Shang
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
20
|
Wei J, Huang B, Nong Y, Zhang Q, Liu W, Xie Y, Peng T, Wang W, Liang X, Li Q, Liu F. Identification of a Novel Cuproptosis-Related Gene Signature in Eutopic Endometrium of Women with Endometriosis. Reprod Sci 2023; 30:1841-1853. [PMID: 36474131 PMCID: PMC10229735 DOI: 10.1007/s43032-022-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Endometriosis (EMs) is a life-long endocrine disorder and a common cause for female infertility and pelvic pain. The key characteristics of eutopic endometrium of EMs patients are high proliferative and migratory potentials. Cuproptosis is a recently identified copper- and-mitochondrial-dependent regulated cell death. Regretfully, its role in EMs remains unclear. In this study, Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes (DEGs) indicated strong activation of the PI3K-Akt-mTOR pathway and biological process analysis reported positive regulation of kinase activity. Next, we screened 11 cuproptosis-related DEGs and found all of them were downregulated in the EMs group, which indicated the suppression of cuproptosis in EMs. One key cuproptosis-related gene, PDHA1, was selected via support vector machine, random forest algorithm and lasso regularization to build a risk-scoring model, which was tested in both internal and external validations. In conclusion, the downregulation and kinase activity of PDHA1 may function with the PI3K-Akt-mTOR pathway in some way, which could suppress the cuproptosis level and account for the cancer-like pathology in EMs.
Collapse
Affiliation(s)
- Jiahui Wei
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Baoyi Huang
- Guangzhou Medical University, Guangzhou, 511495, China
| | - Yingqi Nong
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Qianyu Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Wenjuan Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Yanni Xie
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Tong Peng
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Wei Wang
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Xiangping Liang
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Qiuyun Li
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Fenghua Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| |
Collapse
|
21
|
Ito F, Kato K, Yanatori I, Maeda Y, Murohara T, Toyokuni S. Matrigel-based organoid culture of malignant mesothelioma reproduces cisplatin sensitivity through CTR1. BMC Cancer 2023; 23:487. [PMID: 37254056 DOI: 10.1186/s12885-023-10966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.
Collapse
Affiliation(s)
- Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Izumi Yanatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
22
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Wang X, Zhou M, Liu Y, Si Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett 2023; 561:216157. [PMID: 37011869 DOI: 10.1016/j.canlet.2023.216157] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
Recent studies have established a strong link between copper and cancer biology, as copper is necessary for cancer growth and metastasis. Beyond the conventional concept of copper serving as a catalytic cofactor of metalloenzymes, emerging evidence demonstrates copper as a regulator for signaling transduction and gene expression, which are vital for tumorigenesis and cancer progression. Interestingly, strong redox-active properties make copper both beneficial and detrimental to cancer cells. Cuproplasia is copper-dependent cell growth and proliferation, whereas cuproptosis is copper-dependent cell death. Both mechanisms act in cancer cells, suggesting that copper depletion and copper supplementation may be viable approaches for developing novel anticancer therapies. In this review, we summarized the current understanding of copper's biological role and related molecular mechanisms in cancer proliferation, angiogenesis, metastasis, autophagy, immunosuppressive microenvironment development, and copper-mediated cancer cell death. We also highlighted copper-based strategies for cancer treatment. The current challenges of copper in cancer biology and therapy and their potential solutions were also discussed. Further investigation in this field will yield a more comprehensive molecular explanation for the causal relationship between copper and cancers. It will reveal a series of key regulators governing copper-dependent signaling pathways, thereby providing potential targets for developing copper-related anticancer drugs.
Collapse
Affiliation(s)
- Xidi Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China; Department of Pathology, Health Science Center, Ningbo University, Ningbo, Ningbo, PR China.
| | - Miao Zhou
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China
| | - Zizhen Si
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China.
| |
Collapse
|
24
|
Zhang B, Burke R. Copper homeostasis and the ubiquitin proteasome system. Metallomics 2023; 15:7055959. [PMID: 36822629 PMCID: PMC10022722 DOI: 10.1093/mtomcs/mfad010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.
Collapse
Affiliation(s)
- Bichao Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
25
|
Penning LC, Berenguer M, Czlonkowska A, Double KL, Dusek P, Espinós C, Lutsenko S, Medici V, Papenthin W, Stremmel W, Willemse J, Weiskirchen R. A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11020420. [PMID: 36830958 PMCID: PMC9953205 DOI: 10.3390/biomedicines11020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.
Collapse
Affiliation(s)
- Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Correspondence: (L.C.P.); (R.W.)
| | - Marina Berenguer
- Digestive Medicine Department, Ciberehd & IISLaFe, Hospital U. i P. La Fe, University of Valencia, 46010 Valenci, Spain
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Petr Dusek
- Department of Radiology, Charles University and General University Hospital, 128 08 Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Svetlana Lutsenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 59817, USA
| | - Wiebke Papenthin
- German Society for Wilson disease Patients (Morbus Wilson e.V.), Zehlendorfer Damm 119, D-14532 Kleinnachnow, Germany
| | - Wolfgang Stremmel
- Private Practice for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany
| | - Jose Willemse
- Dutch Society for Liver Disease Patients (Nederlandse Leverpatienten Vereniging), 3828 NS Hoogland, The Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, D-52074 Aachen, Germany
- Correspondence: (L.C.P.); (R.W.)
| |
Collapse
|
26
|
Zhao Q, Qi T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol 2023; 13:1117164. [PMID: 36925927 PMCID: PMC10011146 DOI: 10.3389/fonc.2023.1117164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Currently, cancer has become one of the major public health problems worldwide. Apoptosis is an important anti-cancer defense mechanism, which is used in the development of targeted drugs. Because cancer cells have endogenous resistance to apoptosis,the clinical efficacy of related drugs is not ideal. Therefore, non-apoptotic regulatory cell death may bring new therapeutic strategies for cancer treatment. Cuproptosis is a novel form of regulatory cell death which is copper-dependent, regulated and distinct from other known cell death regulatory mechanisms. FDX1,LIAS,and DLAT named cuproptosis-related genes play an essential role in regulating cuproptosis. Meanwhile, abnormal accumulation of copper can be observed in various malignant tumors. The correlation has been established between elevated copper levels in serum and tissues and the progression of several cancers. Copper transporters, CTR1 and Copper-transporting ATPases(ATP7A and ATP7B), are mainly involved in regulating the dynamic balance of copper concentration to maintain copper homeostasis. Thus,cuproptosis-related genes and copper transporters will be the focus of cancer research in future. This review elaborated the basic functions of cuproptosis-related genes and copper transporters by retrievalling PubMed. And then we analyzed their potential relationship with cancer aiming to provide theoretical support and reference in cancer progression, diagnosis and treatment for future study.
Collapse
Affiliation(s)
- Qianwen Zhao
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Identification of Cuproptosis-Related Genes in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9245667. [PMID: 36865349 PMCID: PMC9974253 DOI: 10.1155/2023/9245667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent hepatic pathology worldwide. However, the precise molecular mechanisms for NAFLD are still not sufficiently explained. Recently, a new mode of cell death (cuproptosis) is found. However, the relationship between NAFLD and cuproptosis remains unclear. We analyzed three public datasets (GSE89632, GSE130970, and GSE135251) to identify cuproptosis-related genes stably expressed in NAFLD. Then, we performed a series of bioinformatics analyses to explore the relationship between NAFLD and cuproptosis-related genes. Finally, 6 high-fat diet- (HFD-) induced NAFLD C57BL/6J mouse models were established to carry out transcriptome analysis. The results of gene set variation analysis (GSVA) revealed that the cuproptosis pathway was abnormally activated to a certain degree (p = 0.035 in GSE89632, p = 0.016 in GSE130970, p = 0.22 in GSE135251), and the principal component analysis (PCA) of the cuproptosis-related genes showed that the NAFLD group separated from the control group, with the first two principal components accounting for 58.63%-74.88% of the variation. Among three datasets, two cuproptosis-related genes (DLD and PDHB, p < 0.01 or 0.001) were stably upregulated in NAFLD. Additionally, both DLD (AUC = 0.786-0.856) and PDHB (AUC = 0.771-0.836) had favorable diagnostic properties, and the multivariate logistics regression model further improved the diagnostic properties (AUC = 0.839-0.889). NADH, flavin adenine dinucleotide, and glycine targeted DLD, and pyruvic acid and NADH targeted PDHB in the DrugBank database. The DLD and PDHB were also associated with clinical pathology, especially with steatosis (DLD, p = 0.0013-0.025; PDHB, p = 0.002-0.0026) and NAFLD activity score (DLD, p = 0.004-0.02; PDHB, p = 0.003-0.031). What is more, DLD and PDHB were correlated with stromal score (DLD, R = 0.38, p < 0.001; PDHB, R = 0.31, p < 0.001) and immune score (DLD, R = 0.26, p < 0.001; PDHB, R = 0.27, p < 0.001) in NAFLD. Furthermore, Dld and Pdhb were also significantly upregulated in the NAFLD mouse model. In conclusion, cuproptosis pathways, especially DLD and PDHB, could be potential candidate genes for NAFLD diagnostic and therapeutic options.
Collapse
|
28
|
Mhaske A, Sharma S, Shukla R. Nanotheranostic: The futuristic therapy for copper mediated neurological sequelae. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Dogan B, Coldur F, Caglar B, Ozdemir AO, Guner EK, Ozdokur KV. Construction of a novel Cu(II)-selective electrode with long life span based on 8-aminoquinoline functionalized bentonite. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
The Role of Copper Homeostasis in Brain Disease. Int J Mol Sci 2022; 23:ijms232213850. [PMID: 36430330 PMCID: PMC9698384 DOI: 10.3390/ijms232213850] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the human body, copper is an important trace element and is a cofactor for several important enzymes involved in energy production, iron metabolism, neuropeptide activation, connective tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons, and efficient synaptic transmission in the central nervous system. Copper is naturally present in some foods and is available as a dietary supplement. Only small amounts of copper are typically stored in the body and a large amount of copper is excreted through bile and urine. Given the critical role of copper in a breadth of cellular processes, local concentrations of copper and the cellular distribution of copper transporter proteins in the brain are important to maintain the steady state of the internal environment. The dysfunction of copper metabolism or regulatory pathways results in an imbalance in copper homeostasis in the brain, which can lead to a myriad of acute and chronic pathological effects on neurological function. It suggests a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the relationship between impaired copper homeostasis and neuropathophysiological progress in brain diseases.
Collapse
|
31
|
Reznik N, Gallo AD, Rush KW, Javitt G, Fridmann-Sirkis Y, Ilani T, Nairner NA, Fishilevich S, Gokhman D, Chacón KN, Franz KJ, Fass D. Intestinal mucin is a chaperone of multivalent copper. Cell 2022; 185:4206-4215.e11. [PMID: 36206754 DOI: 10.1016/j.cell.2022.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 09/09/2022] [Indexed: 01/26/2023]
Abstract
Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.
Collapse
Affiliation(s)
- Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annastassia D Gallo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Katherine W Rush
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States; Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Fridmann-Sirkis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa A Nairner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Gokhman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kelly N Chacón
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
32
|
Wang J, Li T, Fang J, Tang S, Zhang Y, Deng F, Shen C, Shi W, Liu Y, Chen C, Sun Q, Wang Y, Du Y, Dong H, Shi X. Associations between Individual Exposure to Fine Particulate Matter Elemental Constituent Mixtures and Blood Lipid Profiles: A Panel Study in Chinese People Aged 60-69 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13160-13168. [PMID: 36043295 DOI: 10.1021/acs.est.2c01568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dyslipidemia may be a potential mechanism linking fine particulate matter (PM2.5) to adverse cardiovascular outcomes. However, inconsistent associations between PM2.5 and blood lipids have resulted from the existing research, and the joint effect of PM2.5 elemental constituents on blood lipid profiles remains unclear. We aimed to explore the overall associations between PM2.5 elemental constituents and blood lipid profiles and to identify the significant PM2.5 elemental constituents in this association. Sixty-nine elderly people were recruited between September 2018 and January 2019. Each participant completed a survey questionnaire, 3 days of individual exposure monitoring, health examination, and biological sample collection at each follow-up visit. Bayesian kernel machine regression (BKMR) models were used to identify the joint effects of the 17 elemental constituents on blood lipid profiles. Total cholesterol, low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels were significantly increased in older adults when exposed to the mixture of PM2.5 elemental constituents. Copper and titanium had higher posterior inclusion probabilities than other constituents, ranging from 0.76 to 0.90 (Cu) and 0.74 to 0.94 (Ti). Copper and titanium in the PM2.5 elemental constituent mixture played an essential role in changes to blood lipid levels. This study highlights the importance of identifying critical hazardous PM2.5 constituents that may cause adverse cardiovascular outcomes in the future.
Collapse
Affiliation(s)
- Jiaonan Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Shen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
33
|
Batzios S, Tal G, DiStasio AT, Peng Y, Charalambous C, Nicolaides P, Kamsteeg EJ, Korman SH, Mandel H, Steinbach PJ, Yi L, Fair SR, Hester ME, Drousiotou A, Kaler SG. Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum Mol Genet 2022; 31:4121-4130. [PMID: 35913762 PMCID: PMC9759326 DOI: 10.1093/hmg/ddac156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/21/2023] Open
Abstract
The high-affinity copper transporter CTR1 is encoded by CTR1 (SLC31A1), a gene locus for which no detailed genotype-phenotype correlations have previously been reported. We describe identical twin male infants homozygous for a novel missense variant NM_001859.4:c.284 G > A (p.Arg95His) in CTR1 with a distinctive autosomal recessive syndrome of infantile seizures and neurodegeneration, consistent with profound central nervous system copper deficiency. We used clinical, biochemical and molecular methods to delineate the first recognized examples of human CTR1 deficiency. These included clinical phenotyping, brain imaging, assays for copper, cytochrome c oxidase (CCO), and mitochondrial respiration, western blotting, cell transfection experiments, confocal and electron microscopy, protein structure modeling and fetal brain and cerebral organoid CTR1 transcriptome analyses. Comparison with two other critical mediators of cellular copper homeostasis, ATP7A and ATP7B, genes associated with Menkes disease and Wilson disease, respectively, revealed that expression of CTR1 was highest. Transcriptome analyses identified excitatory neurons and radial glia as brain cell types particularly enriched for copper transporter transcripts. We also assessed the effects of Copper Histidinate in the patients' cultured cells and in the patients, under a formal clinical protocol. Treatment normalized CCO activity and enhanced mitochondrial respiration in vitro, and was associated with modest clinical improvements. In combination with present and prior studies, these infants' clinical, biochemical and molecular phenotypes establish the impact of this novel variant on copper metabolism and cellular homeostasis and illuminate a crucial role for CTR1 in human brain development. CTR1 deficiency represents a newly defined inherited disorder of brain copper metabolism.
Collapse
Affiliation(s)
| | | | - Andrew T DiStasio
- Center for Gene Therapy, Nationwide Children’s Hospital, Abigail Wexner Research Institute, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Yanyan Peng
- Center for Gene Therapy, Nationwide Children’s Hospital, Abigail Wexner Research Institute, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Christiana Charalambous
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 1683, Cyprus
| | - Paola Nicolaides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 1683, Cyprus
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre,Nijmegen 6525 GA, The Netherlands
| | - Stanley H Korman
- Department of Pediatrics B, Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel,Medical Genetics Institute, Wilf Children's Hospital, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Hanna Mandel
- Department of Genetics, Western Galilee Medical Center, Nahariya 2210001, Israel
| | - Peter J Steinbach
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling Yi
- Section on Translational Neuroscience, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Summer R Fair
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark E Hester
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anthi Drousiotou
- Department of Biochemical Genetics, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus
| | - Stephen G Kaler
- To whom correspondence should be addressed at: Center for Gene Therapy, Abigail Wexner Research Institute; Room WA3021, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205-2664. Tel: +1 6147225964; Fax: +1 6147223273;
| |
Collapse
|
34
|
Liu L, Chen J, Liu C, Luo Y, Chen J, Fu Y, Xu Y, Wu H, Li X, Wang H. Relationships Between Biological Heavy Metals and Breast Cancer: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9:838762. [PMID: 35782923 PMCID: PMC9245072 DOI: 10.3389/fnut.2022.838762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Heavy metals were classified as essential, probably essential, and potentially toxic in the general population. Until now, it has been reported inconsistently on the association between heavy metals and BC. In this meta-analysis, we aimed to assess the association between heavy metals and BC and review the potential mechanisms systematically. Methods We searched for epidemiological studies in English about the association between heavy metals and BC published before September 2020 in PubMed, Web of Science, and Embase databases. In total 36 studies, comprising 4,151 individuals from five continents around the world were identified and included. Results In all biological specimens, Cu, Cd, and Pb concentrations were higher, but Zn and Mn concentrations were lower in patients with BC than in non-BC participants [SMD (95% CIs): 0.62 (0.12, 1.12); 1.64 (0.76, 2.52); 2.03 (0.11, 3.95); −1.40 (−1.96, −0.85); −2.26 (−3.39, −1.13); p = 0.01, 0.0003, 0.04, <0.0001, <0.0001]. Specifically, higher plasma or serum Cu and Cd, as well as lower Zn and Mn, were found in cases [SMD (95% CIs): 0.98 (0.36, 1.60); 2.55 (1.16, 3.94); −1.53 (−2.28, −0.78); −2.40 (−3.69, −1.10); p = 0.002, 0.0003, <0.0001, 0.0003]; in hair, only lower Zn was observed [SMD (95% CIs): −2.12 (−3.55, −0.68); p = 0.0004]. Furthermore, the status of trace elements probably needs to be re-explored, particularly in BC. More prospective studies, randomized clinical trials, and specific pathogenic studies are needed to prevent BC. The main mechanisms underlying above-mentioned findings are comprehensively reviewed. Conclusion For BC, this review identified the current knowledge gaps which we currently have in understanding the impact of different heavy metals on BC. Systematic Review Registration www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020176934, identifier: CRD42020176934.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Luo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haili Wu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang
| |
Collapse
|
35
|
Yin L, Li J, Zhang Y, Yang Q, Yang C, Yi Z, Yin Y, Wang Q, Li J, Ding N, Zhang Z, Yang H, Yin Y. Changes in progenitors and differentiated epithelial cells of neonatal piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:265-276. [PMID: 34988308 PMCID: PMC8693152 DOI: 10.1016/j.aninu.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
This study aimed to assess the changes of small intestinal morphology, progenitors, differentiated epithelial cells, and potential mechanisms in neonatal piglets. Hematoxylin and eosin staining of samples from 36 piglets suggested that dramatic changes were observed in the jejunum crypts depth and crypt fission index of neonatal piglets (P < 0.001). The number of intestinal stem cells (ISC) tended to increase (P < 0.10), and a decreased number of enteroendocrine cells appeared in the jejunal crypt on d 7 (P < 0.05). Furthermore, the mRNA expression of jejunal chromogranin A (ChgA) was down-regulated in d 7 piglets (P < 0.05). There was an up-regulation of the adult ISC marker gene of SPARC related modular calcium binding 2 (Smoc2), and Wnt/β-catenin target genes on d 7 (P < 0.05). These results were further verified in vitro enteroid culture experiments. A mass of hollow spheroids was cultured from the fetal intestine of 0-d-old piglets (P < 0.001), whereas substantial organoids with budding and branching structures were cultured from the intestine of 7-d-old piglets (P < 0.001). The difference was reflected by the organoid budding efficiency, crypt domains per organoid, and the surface area of the organoid. Furthermore, spheroids on d 0 had more Ki67-positive cells and enteroendocrine cells (P < 0.05) and showed a decreasing trend in the ISC and goblet cells (P < 0.10). Moreover, the mRNA expression of spheroids differed markedly from that of organoids, with low expression of intestinal differentiation gene (Lysozyme; P < 0.05), epithelial-specific markers (Villin, E-cadherin; P < 0.05), and adult ISC markers (leucine-rich repeat-containing G protein-coupled receptor 5 [Lgr5], Smoc2; P < 0.001), and up-regulation of fetal marker (connexin 43 [Cnx43]; P < 0.05). The mRNA expression of relevant genes was up-regulated, and involved in Wnt/β-catenin, epidermal growth factor (EGF), Notch, and bone morphogenetic protein (BMP) signaling on d 7 organoids (P < 0.05). Spheroids displayed low differentiated phenotype and high proliferation, while organoids exhibited strong differentiation potential. These results indicated that the conversion from the fetal progenitors (spheroids) to adult ISC (normal organoids) might largely be responsible for the fast development of intestinal epithelial cells in neonatal piglets.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qing Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Cuiyan Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhenfeng Yi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
36
|
Guo H, Ouyang Y, Yin H, Cui H, Deng H, Liu H, Jian Z, Fang J, Zuo Z, Wang X, Zhao L, Zhu Y, Geng Y, Ouyang P. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol 2022; 49:102227. [PMID: 34979450 PMCID: PMC8728583 DOI: 10.1016/j.redox.2021.102227] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Copper (Cu) is a necessary micronutrient at lower concentration, while excessive Cu exposure or Cu homeostasis disorders can lead to toxicity. The mechanism of male reproductive toxicity induced by Cu is still unknown. This study aims to investigate whether autophagy plays an important role in copper-induced spermatogenesis disorder in vivo and vitro. The present study showed that copper sulfate (CuSO4) might significantly promote autophagy level in the testis and mouse-derived spermatogonia cell line GC-1 spg cells. Concurrently, CuSO4 could induce autophagy via AMPK-mTOR pathway that downregulated p-mTOR/mTOR and subsequently upregulated p-AMPKα/AMPKα as well as p-ULK1/ULK1. In the meanwhile, CuSO4 treatment could also increase expression levels of the autophagy-related proteins. Then, the role of oxidative stress in CuSO4-induced autophagy was investigated. The findings demonstrated that oxidative stress inhibitor (NAC) attenuated CuSO4-induced autophagy in vivo and vitro, reversing the activation for AMPK-mTOR pathway. Additionally, the study also investigated how autophagy worked under the spermatogenesis disorder induced by CuSO4. Inhibition of autophagy could decrease cell viability, and enhance the ROS accumulation and apoptosis in the GC-1 cells, meanwhile, the spermatogenesis disorder, oxidative stress and histopathological changes were increased in the testis. Furthermore, co-treatment with the apoptosis inhibitor (Z-VAD-FMK) could decrease the spermatogenesis disorder but not influence autophagy. Besides, the crosslink between autophagy and ferroptosis were also measured, the data showed that inhibition of autophagy could suppress CuSO4-induced ferroptosis in in vivo and vitro. Altogether, abovementioned results indicated that CuSO4 induced autophagy via oxidative stress-dependent AMPK-mTOR pathway in the GC-1 cells and testis, and autophagy activation possibly led to the generation of protection mechanism through oxidative damage and apoptosis inhibition, however, autophagy also aggravate CuSO4 toxicology through promoting ferroptosis. Overall, autophagy plays a positive role for attenuating CuSO4-induced testicular damage and spermatogenesis disorder. Our study provides a possible targeted therapy for Cu overload-induced reproduction toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
37
|
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 2021; 134:272704. [PMID: 34734631 DOI: 10.1242/jcs.240523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Copper (Cu) homeostasis is essential for the development and function of many organisms. In humans, Cu misbalance causes serious pathologies and has been observed in a growing number of diseases. This Review focuses on mammalian Cu(I) transporters and highlights recent studies on regulation of intracellular Cu fluxes. Cu is used by essential metabolic enzymes for their activity. These enzymes are located in various intracellular compartments and outside cells. When cells differentiate, or their metabolic state is otherwise altered, the need for Cu in different cell compartments change, and Cu has to be redistributed to accommodate these changes. The Cu transporters SLC31A1 (CTR1), SLC31A2 (CTR2), ATP7A and ATP7B regulate Cu content in cellular compartments and maintain Cu homeostasis. Increasing numbers of regulatory proteins have been shown to contribute to multifaceted regulation of these Cu transporters. It is becoming abundantly clear that the Cu transport networks are dynamic and cell specific. The comparison of the Cu transport machinery in the liver and intestine illustrates the distinct composition and dissimilar regulatory response of their Cu transporters to changing Cu levels.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Johns Hopkins Medical Institutes, Department of Physiology, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Rodrigues DB, Failla ML. Intestinal cell models for investigating the uptake, metabolism and absorption of dietary nutrients and bioactive compounds. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Wu M, Ke L, Zhi M, Qin Y, Han J. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice. Food Sci Nutr 2021; 9:5174-5182. [PMID: 34532026 PMCID: PMC8441336 DOI: 10.1002/fsn3.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Speciation can provide knowledge about absorption, reactivity to binding sites, bioavailability, toxicity, and excretion of elements. In this study, the speciation of copper in different model solutions under the influence of gastrointestinal (GI) pH was studied by ion selective electrode (ISE) and inductively coupled plasma optical emission spectrometry (ICP OES). It was found that the electrode response (mV) against Cu2+ decreased with the increase in pH and dropped to the lowest point at pH 7.5 in all model solutions. When amino acids and organic acids were present, the ratio of filtered copper (0.45 μm, pH 7.5) was more than 90%. When casein was present, whey protein, pancreatin, and starch were added, and the ratio of filtered copper was 85.6 ± 0.3, 56.7 ± 8.8, 38.5 ± 5.1, and 1.0 ± 0.3%, respectively. When there is not enough organic ligand, excessive copper will form copper hydroxide precipitation with the increase in pH, but it got the highest electrode response (mV) against Cu2+. From this study, it can be concluded that the speciation of copper in GI tract is strongly influenced by the pH and the composition of food. When there are few ligands coexisting in the GI tract, the concentration of copper ion may be relatively high.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Leqin Ke
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Mingyu Zhi
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Yumei Qin
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
40
|
Yin L, Yang Q, Zhang Y, Wan D, Yin Y, Wang Q, Huang J, Li J, Yang H, Yin Y. Dietary Copper Improves Intestinal Morphology via Modulating Intestinal Stem Cell Activity in Pigs. Animals (Basel) 2021; 11:2513. [PMID: 34573479 PMCID: PMC8471658 DOI: 10.3390/ani11092513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu) is an essential micronutrient for animals. Many studies have been conducted on the effects of dietary Cu on growth performance, intestinal morphology, and function of piglets. However, the underlying mechanism remains to be explored. Intestinal stem cells (ISC) drive the development and constant renewal of intestinal epithelium. Therefore, we hypothesized that dietary Cu affects piglets' intestinal development via modulating ISC activity. A total of eighty-five 21-day-old piglets were randomly assigned to five groups, where 25, 50, 75, 100, and 125 mg CuSO4/kg on a dry matter basis were supplemented to the basal diet at phase 1 (day 0 to 21). Increasing the dietary Cu concentration decreased (p < 0.05) villus width but increased (p < 0.001) the number of Ki67-positive cells. At phase 2 (day 22 to 163), the other 45 pigs were offered the same diets. Villus height in the 125 mg/kg Cu group was greater (p < 0.001) than in the other groups. Moreover, the effects of Cu on ISC activity in vitro were tested to explore the underlying mechanism. Compared to the control group, 10 μmol/L CuSO4·5H2O increased (p < 0.001) the organoid budding efficiency, crypt depth, and crypts per organoid. Dietary Cu improved the intestinal morphology of finishing pigs via promoting cell proliferation and modulating ISC activity.
Collapse
Affiliation(s)
- Lanmei Yin
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Qing Yang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Yiming Zhang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Dan Wan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Qiye Wang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Jing Huang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| |
Collapse
|
41
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
42
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
43
|
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:311-364. [PMID: 34112357 DOI: 10.1016/bs.afnr.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity. Recent studies further associate copper with disruption of lipid homeostasis, as is frequently seen in, for example, non-alcoholic fatty liver disease (NAFLD). Moreover, continuing investigation of copper chaperones has revealed new roles for these intracellular copper-binding proteins. Despite these (and many other) significant advances, many questions related to copper biology remain unanswered. For example, what are the most sensitive and specific biomarkers of copper status, and which ones are useful in marginal (or "sub-clinical" copper deficiency)? Further research on this topic is required to inform future investigations of copper metabolism in humans (so the copper status of study participants can be fully appreciated). Also, are current recommendations for copper intake adequate? Recent studies suggest that overt copper deficiency is more common than once thought, and further, some have suggested that the copper RDAs for adults may be too low. Additional human balance and interventional studies are necessary and could provide the impetus for reconsidering the copper RDAs in the future. These and myriad other unresolved aspects of copper nutrition will undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
44
|
Frączyk T. Cu(II)-Binding N-Terminal Sequences of Human Proteins. Chem Biodivers 2021; 18:e2100043. [PMID: 33617675 DOI: 10.1002/cbdv.202100043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Proteins anchor copper(II) ions mainly by imidazole from histidine residues located in different positions in the primary protein structures. However, the motifs with histidine in the first three N-terminal positions (His1 , His2 , and His3 ) show unique Cu(II)-binding properties, such as availability from the surface of the protein, high flexibility, and high Cu(II) exchangeability with other ligands. It makes such sequences beneficial for the fast exchange of Cu(II) between ligands. Furthermore, sequences with His1 and His2 , thus, non-saturating the Cu(II) coordination sphere, are redox-active and may play a role in Cu(II) reduction to Cu(I). All human protein sequences deposited in UniProt Knowledgebase were browsed for those containing His1 , His2 , or His3 . Proteolytically modified sequences (with the removal of a propeptide or Met residue) were taken for the analysis. Finally, the sequences were sorted out according to the subcellular localization of the proteins to match the respective sequences with the probability of interaction with divalent copper.
Collapse
Affiliation(s)
- Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
45
|
Jiao L, Dai T, Zhong S, Jin M, Sun P, Zhou Q. Vibrio parahaemolyticus Infection Influenced Trace Element Homeostasis, Impaired Antioxidant Function, and Induced Inflammation Response in Litopenaeus vannamei. Biol Trace Elem Res 2021; 199:329-337. [PMID: 32198646 DOI: 10.1007/s12011-020-02120-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) caused huge diseases and economic losses in shrimp aquaculture. Understanding the infection mechanism might help develop new strategies for controlling pathogen outbreak. Redistribution of trace element homeostasis, accompanied by impairment of antioxidant status and immune response, was observed during various infections. Accordingly, we hypothesized that V. parahaemolyticus infection might influence trace element homeostasis, impair antioxidant function, and induce inflammation response in shrimp. In the present study, the aim of this study was to investigate the influence of V. parahaemolyticus infection on trace element homeostasis, antioxidant status, and inflammation response in Litopenaeus vannamei (L. vannamei). The results showed that compared with the control group, V. parahaemolyticus infection significantly increased (P < 0.05) intestinal V. parahaemolyticus number, serum copper (Cu) concentration at 24, 48, and 72 h and significantly increased (P < 0.05) serum zinc (Zn), iron (Fe), and manganese (Mn) concentrations at 24 h but decreased (P < 0.05) at 72 h. The intestinal gene expressions of metal transporters ZIP13, CTR1, and MT1 were significantly decreased at 24, 48, and 72 h, and DMT1 was significantly decreased at 48 h and 72 h in the infection group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were suppressed at 48 h and 72 h, and the malondialdehyde (MDA) content was increased at 24, 48, and 72 h in the infection group; the pro-inflammatory genes including necrosis factor-α (TNF-α), lipopolysaccharide-induced TNF-α factor (LITAF), and Ras-related protein Rab6A (RAB6A) were significantly upregulated at 48 and 72 h in the infection group. These results suggest that V. parahaemolyticus infection influenced trace element homeostasis, impaired antioxidant function, and induced inflammation response in L. vannamei, which might help understand the infection mechanism. The results provide a better understanding of the L. vannamei and V. parahaemolyticus interactions and may deliver the basis for further research in preventing the bacterial diseases.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Sunqian Zhong
- Ningbo Economic Technical Development Area Bolun Marine Surveyors Office, Ningbo, 315800, People's Republic of China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
46
|
Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118893. [PMID: 33091507 DOI: 10.1016/j.bbamcr.2020.118893] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The last 25 years have witnessed tremendous progress in identifying and characterizing proteins that regulate the uptake, intracellular trafficking and export of copper. Although dietary copper is required in trace amounts, sufficient quantities of this metal are needed to sustain growth and development in humans and other mammals. However, copper is also a rate-limiting nutrient for the growth and proliferation of cancer cells. Oral copper chelators taken with food have been shown to confer anti-neoplastic and anti-metastatic benefits in animals and humans. Recent studies have begun to identify specific roles for copper in pathways of oncogenic signaling and resistance to anti-neoplastic drugs. Here, we review the general mechanisms of cellular copper homeostasis and discuss roles of copper in cancer progression, highlighting metabolic vulnerabilities that may be targetable in the development of anticancer therapies.
Collapse
Affiliation(s)
- Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Nikita Gudekar
- Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Kimberly Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Christos Papageorgiou
- Department of Medicine, University of Missouri, Columbia, MO 65211, United States of America
| | - Kamal Singh
- The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States of America
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; Department of Ophthalmology, University of Missouri, Columbia, MO 65211, United States of America; Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
47
|
The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 2020; 472:1415-1429. [PMID: 32506322 DOI: 10.1007/s00424-020-02412-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.
Collapse
|
48
|
Gudekar N, Shanbhag V, Wang Y, Ralle M, Weisman GA, Petris MJ. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci Rep 2020; 10:7856. [PMID: 32398691 PMCID: PMC7217913 DOI: 10.1038/s41598-020-64521-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Copper (Cu) is an essential, yet potentially toxic nutrient, as illustrated by inherited diseases of copper deficiency and excess. Elevated expression of the ATP7A Cu exporter is known to confer copper tolerance, however, the contribution of metal-binding metallothioneins is less clear. In this study, we investigated the relative contributions of ATP7A and the metallothioneins MT-I and MT-II to cell viability under conditions of Cu excess or deficiency. Although the loss of ATP7A increased sensitivity to low Cu concentrations, the absence of MTs did not significantly affect Cu tolerance. However, the absence of all three proteins caused a synthetic lethal phenotype due to extreme Cu sensitivity, indicating that MTs are critical for Cu tolerance only in the absence of ATP7A. A lack of MTs resulted in the trafficking of ATP7A from the trans-Golgi complex in a Cu-dependent manner, suggesting that MTs regulate the delivery of Cu to ATP7A. Under Cu deficiency conditions, the absence of MTs and / or ATP7A enhanced cell proliferation compared to wild type cells, suggesting that these proteins compete with essential Cu-dependent pathways when Cu is scarce. These studies reveal new roles for ATP7A and metallothioneins under both Cu deficiency and excess.
Collapse
Affiliation(s)
- Nikita Gudekar
- The Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vinit Shanbhag
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Yanfang Wang
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Martina Ralle
- The Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Gary A Weisman
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Michael J Petris
- The Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- The Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
49
|
Selamoglu N, Önder Ö, Öztürk Y, Khalfaoui-Hassani B, Blaby-Haas CE, Garcia BA, Koch HG, Daldal F. Comparative differential cuproproteomes of Rhodobacter capsulatus reveal novel copper homeostasis related proteins. Metallomics 2020; 12:572-591. [PMID: 32149296 PMCID: PMC7192791 DOI: 10.1039/c9mt00314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential, but toxic, micronutrient for living organisms and cells have developed sophisticated response mechanisms towards both the lack and the excess of Cu in their environments. In this study, we achieved a global view of Cu-responsive changes in the prokaryotic model organism Rhodobacter capsulatus using label-free quantitative differential proteomics. Semi-aerobically grown cells under heterotrophic conditions in minimal medium (∼0.3 μM Cu) were compared with cells supplemented with either 5 μM Cu or with 5 mM of the Cu-chelator bathocuproine sulfonate. Mass spectrometry based bottom-up proteomics of unfractionated cell lysates identified 2430 of the 3632 putative proteins encoded by the genome, producing a robust proteome dataset for R. capsulatus. Use of biological and technical replicates for each growth condition yielded high reproducibility and reliable quantification for 1926 of the identified proteins. Comparison of cells grown under Cu-excess or Cu-depleted conditions to those grown under minimal Cu-sufficient conditions revealed that 75 proteins exhibited statistically significant (p < 0.05) abundance changes, ranging from 2- to 300-fold. A subset of the highly Cu-responsive proteins was orthogonally probed using molecular genetics, validating that several of them were indeed involved in cellular Cu homeostasis.
Collapse
Affiliation(s)
- Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Monestier M, Pujol AM, Lamboux A, Cuillel M, Pignot-Paintrand I, Cassio D, Charbonnier P, Um K, Harel A, Bohic S, Gateau C, Balter V, Brun V, Delangle P, Mintz E. A liver-targeting Cu(i) chelator relocates Cu in hepatocytes and promotes Cu excretion in a murine model of Wilson's disease. Metallomics 2020; 12:1000-1008. [DOI: 10.1039/d0mt00069h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A hepatocyte-targeting chelator promotes Cu biliary excretion, hence restoring the physiological Cu detoxification pathway in a murine Wilson's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | - Doris Cassio
- INSERM
- Univ. Paris Sud
- UMR U 1174
- F-91405 Orsay
- France
| | | | | | | | - Sylvain Bohic
- Inserm
- UA7
- Synchrotron Radiation for Biomedicine (STROBE)
- Grenoble
- France
| | | | | | | | | | | |
Collapse
|