1
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
3
|
Hu J, Jiang Q, Mao W, Zhong S, Sun H, Mao K. STARD7 could be an immunological and prognostic biomarker: from pan-cancer analysis to hepatocellular carcinoma validation. Discov Oncol 2024; 15:543. [PMID: 39390226 PMCID: PMC11467145 DOI: 10.1007/s12672-024-01434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND As the emergence of technologies such as sequencing and gene mapping, significant advancements have been made in understanding the landscape of tumors. However, the effective treatment of tumors continues to pose a tremendous challenge in clinical practice, which highlights the importance of predicting tumor markers and studying drug resistance mechanisms. The prognosis and differential expression of STARD7 in human pan-cancer were investigated by bioinformatic methods and experimental verification. METHODS The expression, diagnostic, and prognostic significance of the STARD7 gene were comprehensive analyzed using bioinformatics techniques. Furthermore, we validated our projected outcomes in liver cancer through experimental methodologies, including the use of qRT-PCR, CCK8 and transwell assays. RESULTS The STARD7 gene exhibits differential expression in 25 tumors, with high expression observed in 22 tumors. These distinct expression patterns within different tumor types are closely associated with poor prognosis and diagnosis. Furthermore, the STARD7 gene plays a role in regulating the tumor immune microenvironment. Methylation levels of STARD7 vary among 20 types of tumors and are correlated with survival outcomes. Furthermore, the experiment results demonstrated that STARD7 is highly expressed in hepatocellular carcinoma cells. Suppression of STARD7 significantly impedes the proliferation, migration, and invasion of HepG-2 and SMMC-7721 cells. CONCLUSIONS STARD7 has the potential to function as a crucial prognostic biomarker and exhibit correlation with tumor immunity in various types of human cancers. The implications of our findings extend to informing cancer immune-therapy and promoting the advancement of precision immune-oncology.
Collapse
Affiliation(s)
- Jie Hu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Qiu Jiang
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Songyang Zhong
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Huayu Sun
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China.
| | - Kaili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Road, Kecheng District, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
4
|
Privitera AP, Scalisi S, Paternò G, Cerutti E, D'Amico M, Pelicci PG, Faretta M, Dellino GI, Diaspro A, Lanzanò L. Super-resolved analysis of colocalization between replication and transcription along the cell cycle in a model of oncogene activation. Commun Biol 2024; 7:1260. [PMID: 39367096 PMCID: PMC11452374 DOI: 10.1038/s42003-024-06972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
To understand how oncogenes affect genome organization, it is essential to visualize fundamental processes such as DNA replication and transcription at high resolution in intact cells. At the same time, it is important to determine the progression of the cell along the cell cycle, as cell cycle regulation is crucial for the control of cell proliferation and oncogenesis. Here, we present a super-resolution imaging-based method to analyze single cell nuclei sorted according to specific phases of the cell cycle. The sorting is based on the evaluation of the number and the intensity of pixels in the replication foci image and the colocalization analysis is based on image cross-correlation spectroscopy (ICCS). We evaluate the colocalization between replication and transcription, at different cell cycle phases, in a model of PML-RARα oncogene activation. We find that colocalization between replication and transcription is higher in cells in early S phase compared to cells in middle and late S phase. When we turn on the PML-RARα oncogene, this colocalization pattern is preserved but we detect an increase of colocalization between replication and transcription in the early S phase which points to an effect of the PML-RARα oncogene on the coordination between replication and transcription.
Collapse
Affiliation(s)
| | - Silvia Scalisi
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Pier Giuseppe Pelicci
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Gaetano Ivan Dellino
- European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy.
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
5
|
Stępień K, Enkhbaatar T, Kula-Maximenko M, Jurczyk Ł, Skoneczna A, Mołoń M. Restricting the level of the proteins essential for the regulation of the initiation step of replication extends the chronological lifespan and reproductive potential in budding yeast. Biogerontology 2024; 25:859-881. [PMID: 38844751 PMCID: PMC11374879 DOI: 10.1007/s10522-024-10113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024]
Abstract
Aging is defined as a progressive decline in physiological integrity, leading to impaired biological function, including fertility, and rising vulnerability to death. Disorders of DNA replication often lead to replication stress and are identified as factors influencing the aging rate. In this study, we aimed to reveal how the cells that lost strict control of the formation of crucial for replication initiation a pre-initiation complex impact the cells' physiology and aging. As strains with the lower pre-IC control (lowPICC) we used, Saccharomyces cerevisiae heterozygous strains having only one functional copy of genes, encoding essential replication proteins such as Cdc6, Dbf4, Sld3, Sld7, Sld2, and Mcm10. The lowPICC strains exhibited a significant reduction in the respective genes' mRNA levels, causing cell cycle aberrations and doubling time extensions. Additionally, the reduced expression of the lowPICC genes led to an aberrant DNA damage response, affected cellular and mitochondrial DNA content, extended the lifespan of post-mitotic cells, and increased the yeast's reproductive potential. Importantly, we also demonstrated a strong negative correlation between the content of cellular macromolecules (RNA, proteins, lipids, polysaccharides) and aging. The data presented here will likely contribute to the future development of therapies for treating various human diseases.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601, Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601, Rzeszów, Poland.
| |
Collapse
|
6
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
7
|
He W, Demas DM, Kraikivski P, Shajahan-Haq AN, Baumann WT. WEE1 inhibition delays resistance to CDK4/6 inhibitor and antiestrogen treatment in estrogen receptor-positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613122. [PMID: 39345487 PMCID: PMC11429701 DOI: 10.1101/2024.09.15.613122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Although endocrine therapies and Cdk4/6 inhibitors have produced significantly improved outcomes for patients with estrogen receptor positive (ER+) breast cancer, continuous application of these drugs often results in resistance. We hypothesized that cancer cells acquiring drug resistance might increase their dependency on negative regulators of the cell cycle. Therefore, we investigated the effect of inhibiting WEE1 on delaying the development of resistance to palbociclib and fulvestrant. We treated ER+ MCF7 breast cancer cells with palbociclib alternating with a combination of fulvestrant and a WEE1 inhibitor AZD1775 for 12 months. We found that the alternating treatment prevented the development of drug resistance to palbociclib and fulvestrant compared to monotherapies. Furthermore, we developed a mathematical model that can simulate cell proliferation under monotherapy, combination or alternating drug treatments. Finally, we showed that the mathematical model can be used to minimize the number of fulvestrant plus AZD1775 treatment periods while maintaining its efficacy.
Collapse
Affiliation(s)
- Wei He
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Diane M Demas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Pavel Kraikivski
- Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William T Baumann
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Sun L, Shao W, Lin Z, Lin J, Zhao F, Yu J. Single-cell RNA sequencing explored potential therapeutic targets by revealing the tumor microenvironment of neuroblastoma and its expression in cell death. Discov Oncol 2024; 15:409. [PMID: 39235657 PMCID: PMC11377405 DOI: 10.1007/s12672-024-01286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and is closely related to the early development and differentiation of neuroendocrine (NE) cells. The disease is mainly represented by high-risk NB, which has the characteristics of high mortality and difficult treatment. The survival rate of high-risk NB patients is not ideal. In this article, we not only conducted a comprehensive study of NB through single-cell RNA sequencing (scRNA-seq) but also further analyzed cuproptosis, a new cell death pathway, in order to find clinical treatment targets from a new perspective. MATERIALS AND METHODS The Seurat software was employed to process the scRNA-seq data. This was followed by the utilization of GO enrichment analysis and GSEA to unveil pertinent enriched pathways. The inferCNV software package was harnessed to investigate chromosomal copy number variations. pseudotime analyses involved the use of Monocle 2, CytoTRACE, and Slingshot software. CellChat was employed to analyze the intercellular communication network for NB. Furthermore, PySCENIC was deployed to review the profile of transcription factors. RESULT Using scRNA-seq, we studied cells from patients with NB. NE cells exhibited superior specificity in contrast to other cell types. Among NE cells, C1 PCLAF + NE cells showed a close correlation with the genesis and advancement of NB. The key marker genes, cognate receptor pairing, developmental trajectories, metabolic pathways, transcription factors, and enrichment pathways in C1 PCLAF + NE cells, as well as the expression of cuproptosis in C1 PCLAF + NE cells, provided new ideas for exploring new therapeutic targets for NB. CONCLUSION The results revealed the specificity of malignant NE cells in NB, especially the key subset of C1 PCLAF + NE cells, which enhanced our understanding of the key role of the tumor microenvironment in the complexity of cancer progression. Of course, cell death played an important role in the progression of NB, which also promoted our research on new targets. The scrutiny of these findings proved advantageous in uncovering innovative therapeutic targets, thereby bolstering clinical interventions.
Collapse
Affiliation(s)
- Lei Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jingheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Juan Yu
- Pediatric Tuina Health Care Clinic, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
9
|
Reuter LM, Khadayate SP, Mossler A, Liebl K, Faull SV, Karimi MM, Speck C. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 2024; 15:7306. [PMID: 39181881 PMCID: PMC11344781 DOI: 10.1038/s41467-024-51538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.
Collapse
Affiliation(s)
- L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz, Germany.
| | | | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.
| |
Collapse
|
10
|
Curti L, Rohban S, Bianchi N, Croci O, Andronache A, Barozzi S, Mattioli M, Ricci F, Pastori E, Sberna S, Bellotti S, Accialini A, Ballarino R, Crosetto N, Wade M, Parazzoli D, Campaner S. CDK12 controls transcription at damaged genes and prevents MYC-induced transcription-replication conflicts. Nat Commun 2024; 15:7100. [PMID: 39155303 PMCID: PMC11330984 DOI: 10.1038/s41467-024-51229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Mattioli
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Fernanda Ricci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Elena Pastori
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Simone Bellotti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Anna Accialini
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
- Astex Pharmaceuticals, 436 Cambridge Science Park, CB4 0QA, Cambridge, UK
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
| |
Collapse
|
11
|
Bennett L, Vernon E, Thanendran V, Jones C, Gamble A, Staples C. MRNIP limits ssDNA gaps during replication stress. Nucleic Acids Res 2024; 52:8320-8331. [PMID: 38917325 PMCID: PMC11317133 DOI: 10.1093/nar/gkae546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.
Collapse
Affiliation(s)
- Laura G Bennett
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Ellen G Vernon
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Vithursha Thanendran
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Caryl M Jones
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Amelia Gamble
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Christopher J Staples
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| |
Collapse
|
12
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
13
|
Marlin R, Loger JS, Joachim C, Ebring C, Robert-Siegwald G, Pennont S, Rose M, Raguette K, Suez-Panama V, Ulric-Gervaise S, Lusbec S, Bera O, Vallard A, Aline-Fardin A, Colomba E, Jean-Laurent M. Copy number signatures and CCNE1 amplification reveal the involvement of replication stress in high-grade endometrial tumors oncogenesis. Cell Oncol (Dordr) 2024; 47:1441-1457. [PMID: 38564163 PMCID: PMC11322381 DOI: 10.1007/s13402-024-00942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Managing high-grade endometrial cancer in Martinique poses significant challenges. The diversity of copy number alterations in high-grade endometrial tumors, often associated with a TP53 mutation, is a key factor complicating treatment. Due to the high incidence of high-grade tumors with poor prognosis, our study aimed to characterize the molecular signature of these tumors within a cohort of 25 high-grade endometrial cases. METHODS We conducted a comprehensive pangenomic analysis to categorize the copy number alterations involved in these tumors. Whole-Exome Sequencing (WES) and Homologous Recombination (HR) analysis were performed. The alterations obtained from the WES were classified into various signatures using the Copy Number Signatures tool available in COSMIC. RESULTS We identified several signatures that correlated with tumor stage and disctinct prognoses. These signatures all seem to be linked to replication stress, with CCNE1 amplification identified as the primary driver of oncogenesis in over 70% of tumors analyzed. CONCLUSION The identification of CCNE1 amplification, which is currently being explored as a therapeutic target in clinical trials, suggests new treatment strategies for high-grade endometrial cancer. This finding holds particular significance for Martinique, where access to care is challenging.
Collapse
Affiliation(s)
- Regine Marlin
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique.
| | - Jean-Samuel Loger
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Clarisse Joachim
- General Cancer Registry of Martinique, University Hospital of Martinique, Fort-de-France, Martinique
| | - Coralie Ebring
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| | - Guillaume Robert-Siegwald
- MitoVasc Unit, SFR ICAT, Mitolab Team, UMR CNRS 6015 INSERM U1083, University of Angers, Angers, France
| | - Sabrina Pennont
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Mickaelle Rose
- Martinique Regional Oncology Platform, University Hospital of Martinique, Fort-de-France, Martinique
| | - Kevin Raguette
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Valerie Suez-Panama
- Biological Resource Center, University Hospital of Martinique, Fort-de-France, Martinique
| | - Sylviane Ulric-Gervaise
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Sylvie Lusbec
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| | - Odile Bera
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Alexis Vallard
- Department of Oncology Hematology Urology, University Hospital of Martinique, Fort-de-France, Martinique
| | | | - Emeline Colomba
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Gif-sur-Yvette, France
| | - Mehdi Jean-Laurent
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| |
Collapse
|
14
|
Gu W, Zeng D, Zhang C. Discovering the effect of combination of celecoxib and sorafenib on hepatocellular carcinoma. Discov Oncol 2024; 15:321. [PMID: 39083127 PMCID: PMC11291820 DOI: 10.1007/s12672-024-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common and fatal cancer, and its molecular mechanisms are still not fully understood. This study aimed to explore the potential molecular mechanisms and immune infiltration characteristics of celecoxib combined with sorafenib in the treatment of HCC by analyzing the differentially expressed genes (DEGs) from the GSE45340 dataset in the GEO database and identifying key genes. METHODS The GSE45340 dataset was downloaded from the GEO database, and DEGs were screened using GEO2R, and visualization and statistical analysis were performed. Metascape was used to perform functional annotation and protein-protein interaction network analysis of DEGs. The immune infiltration was analyzed using the TIMER database, and the expression of key genes and their relationship with patient survival were analyzed and verified using the UALCAN database. RESULTS A total of 2181 DEGs were screened through GEO2R analysis, and heat maps were drawn for the 50 genes with the highest expression. Metascape was used for enrichment analysis, and the enrichment results of KEGG and GO and the PPI network were obtained, and 44 core genes were screened. Analysis of the TIMER database found that 12 genes were closely related to tumor immune infiltration. UALCAN analysis further verified the differential expression of these genes in HCC and was closely related to the overall survival of patients. CONCLUSIONS Through comprehensive bioinformatics analysis, this study identified a group of key genes related to the treatment of HCC with celecoxib combined with sorafenib. These genes play an important role in tumor immune infiltration and patient survival, providing important clues for further studying the molecular mechanism of HCC and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Wang Gu
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China
| | - Dongyun Zeng
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Chao Zhang
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China.
| |
Collapse
|
15
|
Huang CY, Chung YH, Wu SY, Wang HY, Lin CY, Yang TJ, Fang JM, Hu CM, Chang ZF. Glutathione determines chronic myeloid leukemia vulnerability to an inhibitor of CMPK and TMPK. Commun Biol 2024; 7:843. [PMID: 38987326 PMCID: PMC11237035 DOI: 10.1038/s42003-024-06547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Bcr-Abl transformation leads to chronic myeloid leukemia (CML). The acquirement of T315I mutation causes tyrosine kinase inhibitors (TKI) resistance. This study develops a compound, JMF4073, inhibiting thymidylate (TMP) and cytidylate (CMP) kinases, aiming for a new therapy against TKI-resistant CML. In vitro and in vivo treatment of JMF4073 eliminates WT-Bcr-Abl-32D CML cells. However, T315I-Bcr-Abl-32D cells are less vulnerable to JMF4073. Evidence is presented that ATF4-mediated upregulation of GSH causes T315I-Bcr-Abl-32D cells to be less sensitive to JMF4073. Reducing GSH biosynthesis generates replication stress in T315I-Bcr-Abl-32D cells that require dTTP/dCTP synthesis for survival, thus enabling JMF4073 susceptibility. It further shows that the levels of ATF4 and GSH in several human CML blast-crisis cell lines are inversely correlated with JMF4073 sensitivity, and the combinatory treatment of JMF4073 with GSH reducing agent leads to synthetic lethality in these CML blast-crisis lines. Altogether, the investigation indicates an alternative option in CML therapy.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Glutathione/metabolism
- Humans
- Animals
- Mice
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
Collapse
Affiliation(s)
- Chang-Yu Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsuan Chung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Yang Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yen Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsung-Jung Yang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jim-Min Fang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
van den Berg J, van Batenburg V, Geisenberger C, Tjeerdsma RB, de Jaime-Soguero A, Acebrón SP, van Vugt MATM, van Oudenaarden A. Quantifying DNA replication speeds in single cells by scEdU-seq. Nat Methods 2024; 21:1175-1184. [PMID: 38886577 PMCID: PMC11239516 DOI: 10.1038/s41592-024-02308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In a human cell, thousands of replication forks simultaneously coordinate duplication of the entire genome. The rate at which this process occurs might depend on the epigenetic state of the genome and vary between, or even within, cell types. To accurately measure DNA replication speeds, we developed single-cell 5-ethynyl-2'-deoxyuridine sequencing to detect nascent replicated DNA. We observed that the DNA replication speed is not constant but increases during S phase of the cell cycle. Using genetic and pharmacological perturbations we were able to alter this acceleration of replication and conclude that DNA damage inflicted by the process of transcription limits the speed of replication during early S phase. In late S phase, during which less-transcribed regions replicate, replication accelerates and approaches its maximum speed.
Collapse
Affiliation(s)
- Jeroen van den Berg
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Vincent van Batenburg
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Geisenberger
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
- Pathologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Bessho T. Up-Regulation of Non-Homologous End-Joining by MUC1. Genes (Basel) 2024; 15:808. [PMID: 38927743 PMCID: PMC11203369 DOI: 10.3390/genes15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.
Collapse
Affiliation(s)
- Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Zong Y, Zhu A, Liu P, Fu P, Li Y, Chen S, Gao X. Pan-cancer analysis of the disulfidptosis-related gene RPN1 and its potential biological function and prognostic significance in gliomas. Heliyon 2024; 10:e31875. [PMID: 38845861 PMCID: PMC11154626 DOI: 10.1016/j.heliyon.2024.e31875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Numerous studies have shown a strong correlation between disulfidptosis and various cancers. However, the expression and function of RPN1, a crucial gene in disulfidptosis, remain unclear in the context of cancer. Methods Gene expression and clinical information on lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. RPN1 expression was analyzed using the Timer2.0 and the Human Protein Atlas (HPA) databases. Prognostic significance was assessed using Cox regression analysis and Kaplan-Meier curves. Genetic mutations and methylation levels were examined using the cBioPortal and UALCAN platforms, respectively. The relationship between RPN1 and tumor mutation burden (TMB) and microsatellite instability (MSI) across different cancer types was analyzed using the Spearman correlation coefficient. The relationship between RPN1 and immune cell infiltration was analyzed using the Timer2.0 database, whereas variations in drug sensitivity were explored using the CellMiner database. Receiver operating characteristic curves validated RPN1's diagnostic potential in glioma, and its correlation with immune checkpoint inhibitors (ICIs) was assessed using Spearman's correlation coefficient. Single-sample gene set enrichment analysis elucidated a link between RPN1 and immune cells and pathways. In addition, a nomogram based on RPN1 was developed to predict patient prognosis. The functional impact of RPN1 on glioma cells was confirmed using scratch and Transwell assays. Result RPN1 was aberrantly expressed in various cancers and affected patient prognosis. The main mutation type of RPN1 in the cancer was amplified. RPN1 exhibited a positive correlation with myeloid-derived suppressor cells, neutrophils, and macrophages, and a negative correlation with CD8+ T cells and hematopoietic stem cells. RPN1 expression was associated with TMB and MSI in various cancers. The expression of RPN1 affected drug sensitivity in cancer cells. RPN1 was positively correlated with multiple ICIs in gliomas. RPN1 also affected immune cell infiltration into the tumor microenvironment. RPN1 was an independent prognostic factor for gliomas, and the nomogram demonstrated excellent predictive performance. Interference with RPN1 expression reduces the migratory and invasive ability of glioma cells. Conclusion RPN1 exerts multifaceted effects on different stages of cancer, including immune infiltration, prognosis, and treatment outcomes. RPN1 expression affects the prognosis and immune microenvironment infiltration in patients with glioma, making RPN1 a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Yan Zong
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ankang Zhu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Anhui BioX-Vision Biological Technology Co., Ltd., Anhui, China
| | - Peiji Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yinuo Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xingcai Gao
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Saxena S, Nabel CS, Seay TW, Patel PS, Kawale AS, Crosby CR, Tigro H, Oh E, Vander Heiden MG, Hata AN, Suo Z, Zou L. Unprocessed genomic uracil as a source of DNA replication stress in cancer cells. Mol Cell 2024; 84:2036-2052.e7. [PMID: 38688279 PMCID: PMC11162326 DOI: 10.1016/j.molcel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
Collapse
Affiliation(s)
- Sneha Saxena
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christopher S Nabel
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Turner W Seay
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Parasvi S Patel
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Ajinkya S Kawale
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Caroline R Crosby
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helene Tigro
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Eugene Oh
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Aaron N Hata
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Lee Zou
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Prasad CB, Oo A, Liu Y, Qiu Z, Zhong Y, Li N, Singh D, Xin X, Cho YJ, Li Z, Zhang X, Yan C, Zheng Q, Wang QE, Guo D, Kim B, Zhang J. The thioredoxin system determines CHK1 inhibitor sensitivity via redox-mediated regulation of ribonucleotide reductase activity. Nat Commun 2024; 15:4667. [PMID: 38821952 PMCID: PMC11143221 DOI: 10.1038/s41467-024-48076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.
Collapse
Affiliation(s)
- Chandra Bhushan Prasad
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Adrian Oo
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yujie Liu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Na Li
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deepika Singh
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiwen Xin
- The Ohio State University, Columbus, OH, 43210, USA
| | - Young-Jae Cho
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Junran Zhang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Hill BR, Ozgencil M, Buckley-Benbow L, Skingsley SLP, Tomlinson D, Eizmendi CO, Agnarelli A, Bellelli R. Loss of POLE3-POLE4 unleashes replicative gap accumulation upon treatment with PARP inhibitors. Cell Rep 2024; 43:114205. [PMID: 38753485 DOI: 10.1016/j.celrep.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.
Collapse
Affiliation(s)
- Bethany Rebekah Hill
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Meryem Ozgencil
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Lauryn Buckley-Benbow
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Sophie Louise Pamela Skingsley
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Danielle Tomlinson
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Carmen Ortueta Eizmendi
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Alessandro Agnarelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Roberto Bellelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK.
| |
Collapse
|
22
|
Batenburg NL, Sowa DJ, Walker JR, Andres SN, Zhu XD. CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells. Nucleic Acids Res 2024; 52:5067-5087. [PMID: 38416570 PMCID: PMC11109976 DOI: 10.1093/nar/gkae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.
Collapse
Affiliation(s)
- Nicole L Batenburg
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Dana J Sowa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Sara N Andres
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
23
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Cui J, Liu X, Shang Q, Sun S, Chen S, Dong J, Zhu Y, Liu L, Xia Y, Wang Y, Xiang L, Fan B, Zhan J, Zhou Y, Chen P, Zhao R, Liu X, Xing N, Wu D, Shi B, Zou Y. Deubiquitination of CDC6 by OTUD6A promotes tumour progression and chemoresistance. Mol Cancer 2024; 23:86. [PMID: 38685067 PMCID: PMC11057083 DOI: 10.1186/s12943-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Dong
- Department of Urology, Shouguang People's Hospital, Weifang, Shandong, 262750, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaofei Liu
- Departement of Breast and Thyroid Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Cui Z, Li G, Shi Y, Zhao X, Wang J, Hu S, Chen C, Li G. A prognostic signature established based on genes related to tumor microenvironment for patients with hepatocellular carcinoma. Aging (Albany NY) 2024; 16:6537-6549. [PMID: 38579170 PMCID: PMC11042935 DOI: 10.18632/aging.205722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. METHODS Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). RESULTS HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. CONCLUSION This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.
Collapse
Affiliation(s)
- Zhongfeng Cui
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Ge Li
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Yanbin Shi
- Department of Radiology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Xiaoli Zhao
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Juan Wang
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Shanlei Hu
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Chunguang Chen
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Guangming Li
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| |
Collapse
|
26
|
Jurkovic CM, Boisvert FM. Evolution of techniques and tools for replication fork proteome and protein interaction studies. Biochem Cell Biol 2024; 102:135-144. [PMID: 38113480 DOI: 10.1139/bcb-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Understanding the complex network of protein-protein interactions (PPI) that govern cellular functions is essential for unraveling the molecular basis of biological processes and diseases. Mass spectrometry (MS) has emerged as a powerful tool for studying protein dynamics, enabling comprehensive analysis of protein function, structure, post-translational modifications, interactions, and localization. This article provides an overview of MS techniques and their applications in proteomics studies, with a focus on the replication fork proteome. The replication fork is a multi-protein assembly involved in DNA replication, and its proper functioning is crucial for maintaining genomic integrity. By combining quantitative MS labeling techniques with various data acquisition methods, researchers have made significant strides in elucidating the complex processes and molecular mechanisms at the replication fork. Overall, MS has revolutionized our understanding of protein dynamics, offering valuable insights into cellular processes and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Carla-Marie Jurkovic
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Chen S, Pan C, Huang J, Liu T. ATR limits Rad18-mediated PCNA monoubiquitination to preserve replication fork and telomerase-independent telomere stability. EMBO J 2024; 43:1301-1324. [PMID: 38467834 PMCID: PMC10987609 DOI: 10.1038/s44318-024-00066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Upon replication fork stalling, the RPA-coated single-stranded DNA (ssDNA) formed behind the fork activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase, concomitantly initiating Rad18-dependent monoubiquitination of PCNA. However, whether crosstalk exists between these two events and the underlying physiological implications of this interplay remain elusive. In this study, we demonstrate that during replication stress, ATR phosphorylates human Rad18 at Ser403, an adjacent residue to a previously unidentified PIP motif (PCNA-interacting peptide) within Rad18. This phosphorylation event disrupts the interaction between Rad18 and PCNA, thereby restricting the extent of Rad18-mediated PCNA monoubiquitination. Consequently, excessive accumulation of the tumor suppressor protein SLX4, now characterized as a novel reader of ubiquitinated PCNA, at stalled forks is prevented, contributing to the prevention of stalled fork collapse. We further establish that ATR preserves telomere stability in alternative lengthening of telomere (ALT) cells by restricting Rad18-mediated PCNA monoubiquitination and excessive SLX4 accumulation at telomeres. These findings shed light on the complex interplay between ATR activation, Rad18-dependent PCNA monoubiquitination, and SLX4-associated stalled fork processing, emphasizing the critical role of ATR in preserving replication fork stability and facilitating telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Siyuan Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chen Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China.
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
28
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Yan J, Zhou Y, Wang Y, Liu Y. PARG Promotes Esophagus Cancer Cell Metastasis by Activation of the Wnt/β-Catenin Pathway. Biochem Genet 2024; 62:761-774. [PMID: 37429965 DOI: 10.1007/s10528-023-10434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Esophagus cancer (EC) is a highly malignant and metastatic cancer. Poly(ADP-ribose) glycohydrolase (PARG), a DNA replication and repair regulator, inhibits cancer cell replication defects. This study aimed to explore the role of PARG in EC. The biological behaviors were analyzed using MTT assay, Transwell assay, scratch test, cell adhesion assay, and western blot. PARG expression was detected using quantitative PCR and immunohistochemical assay. The regulation of the Wnt/β-catenin pathway was assessed using western blot. The results showed that PARG was highly expressed in EC tissues and cells. Knockdown of PARG suppressed cell viability, invasion, migration, adhesion, and epithelial-mesenchymal transition. Conversely, overexpression of PARG promoted the biological behaviors mentioned above. Moreover, overexpression of PARG promoted the activation of the Wnt/β-catenin pathway rather than the STAT and Notch pathways. XAV939, the Wnt/β-catenin pathway inhibitor, partly abolished the biological behaviors mediated by PARG overexpression. In conclusion, PARG promoted the malignant advancement of EC via activating the Wnt/β-catenin pathway. These findings suggested that PARG might be a new therapeutic target for EC.
Collapse
Affiliation(s)
- Jiaxin Yan
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yalan Wang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chengdu City, China
| | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China.
| |
Collapse
|
30
|
Huang L, Shao J, Lai W, Gu H, Yang J, Shi S, Wufoyrwoth S, Song Z, Zou Y, Xu Y, Zhu Q. Discovery of the first ataxia telangiectasia and Rad3-related (ATR) degraders for cancer treatment. Eur J Med Chem 2024; 267:116159. [PMID: 38325007 DOI: 10.1016/j.ejmech.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The first examples of ataxia telangiectasia and Rad3-related (ATR) PROTACs were designed and synthesized. Among them, the most potent degrader, ZS-7, demonstrated selective and effective ATR degradation in ATM-deficient LoVo cells, with a DC50 value of 0.53 μM. Proteasome-mediated ATR degradation by ZS-7 lasted approximately 12 h after washout in the LoVo cell lines. Notably, ZS-7 demonstrated reasonable PK profiles and, as a single agent or in combination with cisplatin, showed improved antitumor activity and safety profiles compared with the parent inhibitor AZD6738 in a xenograft mouse model of LoVo human colorectal cancer cells upon intraperitoneal (i.p.) administration.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Jialu Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenwen Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jieping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shi Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shepherd Wufoyrwoth
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhe Song
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
31
|
Yates M, Marois I, St-Hilaire E, Ronato DA, Djerir B, Brochu C, Morin T, Hammond-Martel I, Gezzar-Dandashi S, Casimir L, Drobetsky E, Cappadocia L, Masson JY, Wurtele H, Maréchal A. SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability. PLoS Biol 2024; 22:e3002552. [PMID: 38502677 PMCID: PMC10950228 DOI: 10.1371/journal.pbio.3002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.
Collapse
Affiliation(s)
- Maïlyn Yates
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Isabelle Marois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Edlie St-Hilaire
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | - Daryl A. Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Canada
| | - Billel Djerir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Chloé Brochu
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Théo Morin
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | | | | | - Lisa Casimir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| | - Elliot Drobetsky
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | - Laurent Cappadocia
- Faculty of Sciences, Department of Chemistry, Université du Québec à Montréal, Montréal, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Canada
| | - Hugo Wurtele
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
- CHUS Research Center and Cancer Research Institute, Sherbrooke, Canada
| |
Collapse
|
32
|
Zhao X, Singhal A, Park S, Kong J, Bachelder R, Ideker T. Cancer Mutations Converge on a Collection of Protein Assemblies to Predict Resistance to Replication Stress. Cancer Discov 2024; 14:508-523. [PMID: 38236062 PMCID: PMC10905674 DOI: 10.1158/2159-8290.cd-23-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Rapid proliferation is a hallmark of cancer associated with sensitivity to therapeutics that cause DNA replication stress (RS). Many tumors exhibit drug resistance, however, via molecular pathways that are incompletely understood. Here, we develop an ensemble of predictive models that elucidate how cancer mutations impact the response to common RS-inducing (RSi) agents. The models implement recent advances in deep learning to facilitate multidrug prediction and mechanistic interpretation. Initial studies in tumor cells identify 41 molecular assemblies that integrate alterations in hundreds of genes for accurate drug response prediction. These cover roles in transcription, repair, cell-cycle checkpoints, and growth signaling, of which 30 are shown by loss-of-function genetic screens to regulate drug sensitivity or replication restart. The model translates to cisplatin-treated cervical cancer patients, highlighting an RTK-JAK-STAT assembly governing resistance. This study defines a compendium of mechanisms by which mutations affect therapeutic responses, with implications for precision medicine. SIGNIFICANCE Zhao and colleagues use recent advances in machine learning to study the effects of tumor mutations on the response to common therapeutics that cause RS. The resulting predictive models integrate numerous genetic alterations distributed across a constellation of molecular assemblies, facilitating a quantitative and interpretable assessment of drug response. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Akshat Singhal
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California
| | - Sungjoon Park
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - JungHo Kong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California
| | - Robin Bachelder
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California
- Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
33
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
34
|
Li Y, Zhang Y, Shah SB, Chang CY, Wang H, Wu X. MutSβ protects common fragile sites by facilitating homology-directed repair at DNA double-strand breaks with secondary structures. Nucleic Acids Res 2024; 52:1120-1135. [PMID: 38038265 PMCID: PMC10853791 DOI: 10.1093/nar/gkad1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Common fragile sites (CFSs) are regions prone to chromosomal rearrangements, thereby contributing to tumorigenesis. Under replication stress (RS), CFSs often harbor under-replicated DNA regions at the onset of mitosis, triggering homology-directed repair known as mitotic DNA synthesis (MiDAS) to complete DNA replication. In this study, we identified an important role of DNA mismatch repair protein MutSβ (MSH2/MSH3) in facilitating MiDAS and maintaining CFS stability. Specifically, we demonstrated that MutSβ is required for the increased mitotic recombination induced by RS or FANCM loss at CFS-derived AT-rich and structure-prone sequences (CFS-ATs). We also found that MSH3 exhibits synthetic lethality with FANCM. Mechanistically, MutSβ is required for homologous recombination (HR) especially when DNA double-strand break (DSB) ends contain secondary structures. We also showed that upon RS, MutSβ is recruited to Flex1, a specific CFS-AT, in a PCNA-dependent but MUS81-independent manner. Furthermore, MutSβ interacts with RAD52 and promotes RAD52 recruitment to Flex1 following MUS81-dependent fork cleavage. RAD52, in turn, recruits XPF/ERCC1 to remove DNA secondary structures at DSB ends, enabling HR/break-induced replication (BIR) at CFS-ATs. We propose that the specific requirement of MutSβ in processing DNA secondary structures at CFS-ATs underlies its crucial role in promoting MiDAS and maintaining CFS integrity.
Collapse
Affiliation(s)
- Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yunkun Zhang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Sameer Bikram Shah
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chia-Yu Chang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Wei J, Wang J, Chen X, Zhang L, Peng M. Novel application of the ferroptosis-related genes risk model associated with disulfidptosis in hepatocellular carcinoma prognosis and immune infiltration. PeerJ 2024; 12:e16819. [PMID: 38317842 PMCID: PMC10840499 DOI: 10.7717/peerj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer and continues to pose a formidable challenge to human well-being and longevity, owing to its elevated incidence and mortality rates. Nevertheless, the quest for reliable predictive biomarkers for HCC remains ongoing. Recent research has demonstrated a close correlation between ferroptosis and disulfidptosis, two cellular processes, and cancer prognosis, suggesting their potential as predictive factors for HCC. In this study, we employed a combination of bioinformatics algorithms and machine learning techniques, leveraging RNA sequencing data, mutation profiles, and clinical data from HCC samples in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) databases, to develop a risk prognosis model based on genes associated with ferroptosis and disulfidptosis. We conducted an unsupervised clustering analysis, calculating a risk score (RS) to predict the prognosis of HCC using these genes. Clustering analysis revealed two distinct HCC clusters, each characterized by significantly different prognostic and immune features. The median RS stratified HCC samples in the TCGA, GEO, and ICGC cohorts into high-and low-risk groups. Importantly, RS emerged as an independent prognostic factor in all three cohorts, with the high-risk group demonstrating poorer prognosis and a more active immunosuppressive microenvironment. Additionally, the high-risk group exhibited higher expression levels of tumor mutation burden (TMB), immune checkpoints (ICs), and human leukocyte antigen (HLA), suggesting a heightened responsiveness to immunotherapy. A cancer stem cell infiltration analysis revealed a higher similarity between tumor cells and stem cells in the high-risk group. Furthermore, drug sensitivity analysis highlighted significant differences in response to antitumor drugs between the two risk groups. In summary, our risk prognostic model, constructed based on ferroptosis-related genes associated with disulfidptosis, effectively predicts HCC prognosis. These findings hold potential implications for patient stratification and clinical decision-making, offering valuable theoretical insights in this field.
Collapse
Affiliation(s)
- Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- Basic Medical Sciences, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
37
|
Han Y, Li B, Cheng J, Zhou D, Yuan X, Zhao W, Zhang D, Zhang J. Construction of methylation driver gene-related prognostic signature and development of a new prognostic stratification strategy in neuroblastoma. Genes Genomics 2024; 46:171-185. [PMID: 38180715 DOI: 10.1007/s13258-023-01483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Aberrant DNA methylation is one of the major epigenetic alterations in neuroblastoma. OBJECTIVE Exploring the prognostic significance of methylation driver genes in neuroblastoma could help to comprehensively assess patient prognosis. METHODS After identifying methylation driver genes (MDGs), we used the LASSO algorithm and stepwise Cox regression to construct methylation driver gene-related risk score (MDGRS), and evaluated its predictive performance by multiple methods. By combining risk grouping and MDGRS grouping, we developed a new prognostic stratification strategy and explored the intrinsic differences between the different groupings. RESULTS We identified 44 stably expressed MDGs in neuroblastoma. MDGRS showed superior predictive performance in both internal and external cohorts and was strongly correlated with immune-related scores. MDGRS can be an independent prognostic factor for neuroblastoma, and we constructed the nomogram to facilitate clinical application. Based on the new prognostic stratification strategy, we divided the patients into three groups and found significant differences in overall prognosis, clinical characteristics, and immune infiltration between the different subgroups. CONCLUSION MDGRS was an accurate and promising tool to facilitate comprehensive pre-treatment assessment. And the new prognostic stratification strategy could be helpful for clinical decision making.
Collapse
Affiliation(s)
- Yahui Han
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Biyun Li
- Department of Pediatric Hematology Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Cheng
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Diming Zhou
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiafei Yuan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhao
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
38
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
39
|
Lim PX, Zaman M, Feng W, Jasin M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol Cell 2024; 84:447-462.e10. [PMID: 38244544 PMCID: PMC11188060 DOI: 10.1016/j.molcel.2023.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.
Collapse
Affiliation(s)
- Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mahdia Zaman
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
41
|
Yang Y, Badura ML, O’Leary PC, Delavan HM, Robinson TM, Egusa EA, Zhong X, Swinderman JT, Li H, Zhang M, Kim M, Ashworth A, Feng FY, Chou J, Yang L. Large tandem duplications in cancer result from transcription and DNA replication collisions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.17.23290140. [PMID: 38260434 PMCID: PMC10802642 DOI: 10.1101/2023.05.17.23290140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. Here, we use 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detect transcription-dependent replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs). Large TDs are abundant in female-enriched, upper gastrointestinal tract and prostate cancers. They are associated with poor patient survival and mutations in TP53, CDK12, and SPOP. Upon inactivating CDK12, cells display significantly more TRCs, R-loops, and large TDs. Inhibition of G2/M checkpoint proteins, such as WEE1, CHK1, and ATR, selectively inhibits the growth of cells deficient in CDK12. Our data suggest that large TDs in cancer form due to TRCs, and their presence can be used as a biomarker for prognosis and treatment.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michelle L. Badura
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Henry M. Delavan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Troy M. Robinson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Emily A. Egusa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jason T. Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Minkyu Kim
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
42
|
Stites EC. The Abundance of KRAS and RAS Gene Mutations in Cancer. Methods Mol Biol 2024; 2797:13-22. [PMID: 38570449 DOI: 10.1007/978-1-0716-3822-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Mutant forms of the RAS genes KRAS, NRAS, and HRAS are important and common drivers of cancer. Recently, two independent teams that integrated cancer genomics with cancer epidemiology estimated that approximately 15-20% of all human cancers harbor a mutation in one of these three RAS genes. These groups also estimate KRAS mutations occur in 11-14% of all human cancers. Although these estimates are lower than many commonly encountered values, these estimates continue to rank KRAS and the ensemble of RAS oncogenes among the most common genetic drivers of cancer across all forms of malignancy.
Collapse
Affiliation(s)
- Edward C Stites
- Department of Laboratory Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
43
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Zheng J, Wang Q, Yan L, Pan Q, Chen X, Chen Q. The Biological Behavior and Clinical Application Prospects of Deoxythymidine Kinase Gene in Tumors. Technol Cancer Res Treat 2024; 23:15330338241265396. [PMID: 39420855 PMCID: PMC11497513 DOI: 10.1177/15330338241265396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant tumors have become a significant risk factor for human mortality. Although there have been notable advancements in the treatment of tumors, patient prognosis remains poor. In recent years, gene diagnosis and gene therapy have brought great benefits to patients. Deoxythymidine kinase (DTYMK) is a highly promising biomarker, has been studied by many scholars, and plays a crucial role in the occurrence and development of various types of cancer. The abnormal expression of DTYMK is involved in tumor occurrence and development, and may also serve as a biomarker for tumor diagnosis, treatment, and prognosis. Several experimental studies have shown that DTYMK can impact tumor progression by regulating mechanisms such as cell cycle, tumor microenvironment, immune infiltration, and signaling pathways. Therefore, this article focuses on clarifying the mechanism of DTYMK in tumors and exploring its clinical application value to help patients prolong their survival cycle and improve their quality of life.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxu Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
45
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
46
|
Li Y, Dobrolecki LE, Sallas C, Zhang X, Kerr TD, Bisht D, Wang Y, Awasthi S, Kaundal B, Wu S, Peng W, Mendillo ML, Lu Y, Jeter CR, Peng G, Liu J, Westin SN, Sood AK, Lewis MT, Das J, Yi SS, Bedford MT, McGrail DJ, Sahni N. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition. Cell Rep Med 2023; 4:101326. [PMID: 38118413 PMCID: PMC10772459 DOI: 10.1016/j.xcrm.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.
Collapse
Affiliation(s)
- Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis D Kerr
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqi Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
47
|
Wang S, Chen S, Li H, Ben S, Zhao T, Zheng R, Wang M, Gu D, Liu L. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS. J Biomed Res 2023; 38:37-50. [PMID: 38111199 PMCID: PMC10818172 DOI: 10.7555/jbr.37.20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/20/2023] Open
Abstract
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tingyu Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Lingxiang Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
48
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
49
|
Xu L, Ma X, Zhang X, Zhang C, Zhang Y, Gong S, Wu N, Zhang P, Feng X, Guo J, Zhao M, Ren Z, Zhang P. hsa_circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to enhance the DNA damage response and promote gemcitabine resistance in pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:195. [PMID: 38044421 PMCID: PMC10694898 DOI: 10.1186/s12943-023-01887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. METHODS RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. RESULTS We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. CONCLUSIONS Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Shangqiu Municipal Hospital, Shangqiu, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
50
|
Jaiswal RK, Lei KH, Chastain M, Wang Y, Shiva O, Li S, You Z, Chi P, Chai W. CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection. Nat Commun 2023; 14:7882. [PMID: 38036565 PMCID: PMC10689503 DOI: 10.1038/s41467-023-43685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Olga Shiva
- Office of Research, Washington State University, Spokane, WA, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|