1
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Yang Y, Badura ML, O'Leary PC, Delavan HM, Robinson TM, Egusa EA, Zhong X, Swinderman JT, Li H, Zhang M, Kim M, Ashworth A, Feng FY, Chou J, Yang L. Transcription and DNA replication collisions lead to large tandem duplications and expose targetable therapeutic vulnerabilities in cancer. NATURE CANCER 2024; 5:1885-1901. [PMID: 39558146 PMCID: PMC11671220 DOI: 10.1038/s43018-024-00848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/04/2024] [Indexed: 11/20/2024]
Abstract
Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. In the present study, we used 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detected transcription-dependent, replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs). Large TDs are abundant in female-enriched, upper gastrointestinal tract and prostate cancers. They are associated with poor patient survival and mutations in TP53, CDK12 and SPOP. Upon inactivating CDK12, cells display significantly more TRCs, R-loops and large TDs. Inhibition of WEE1, CHK1 and ATR selectively inhibits the growth of cells deficient in CDK12. Our data suggest that large TDs in cancer form as a result of TRCs and their presence can be used as a biomarker for prognosis and treatment.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michelle L Badura
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick C O'Leary
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Henry M Delavan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Troy M Robinson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Emily A Egusa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jason T Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Minkyu Kim
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 PMCID: PMC11567890 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
4
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Qiao X, Huang N, Meng W, Liu Y, Li J, Li C, Wang W, Lai Y, Zhao Y, Ma Z, Li J, Zhang X, Weng Z, Wu C, Li L, Li B. Beyond mitochondrial transfer, cell fusion rescues metabolic dysfunction and boosts malignancy in adenoid cystic carcinoma. Cell Rep 2024; 43:114652. [PMID: 39217612 DOI: 10.1016/j.celrep.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells with mitochondrial dysfunction can be rescued by cells in the tumor microenvironment. Using human adenoid cystic carcinoma cell lines and fibroblasts, we find that mitochondrial transfer occurs not only between human cells but also between human and mouse cells both in vitro and in vivo. Intriguingly, spontaneous cell fusion between cancer cells and fibroblasts could also emerge; specific chromosome loss might be essential for nucleus reorganization and the post-hybrid selection process. Both mitochondrial transfer through tunneling nanotubes (TNTs) and cell fusion "selectively" revive cancer cells, with mitochondrial dysfunction as a key motivator. Beyond mitochondrial transfer, cell fusion significantly enhances cancer malignancy and promotes epithelial-mesenchymal transition. Mechanistically, mitochondrial dysfunction in cancer cells causes L-lactate secretion to attract fibroblasts to extend TNTs and TMEM16F-mediated phosphatidylserine externalization, facilitating TNT formation and cell-membrane fusion. Our findings offer insights into mitochondrial transfer and cell fusion, highlighting potential cancer therapy targets.
Collapse
Affiliation(s)
- Xianghe Qiao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Nengwen Huang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunkun Liu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinjin Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenxuan Wang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Lai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjiang Zhao
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Zhengzhou 450052, China
| | - Zhongkai Ma
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingya Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuan Zhang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijie Weng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenzhou Wu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Rodrigues de Moura R, Patrizi S, Athanasakis E, Schleef J, Pederiva F, d'Adamo AP. Genomic instability in congenital lung malformations in children. Pediatr Surg Int 2024; 40:248. [PMID: 39237666 DOI: 10.1007/s00383-024-05835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To study the biological relationship between congenital lung malformations (CLMs) and malignancy. METHODS Biopsies of 12 CPAMs, 6 intralobar sequestrations and 2 extralobar sequestrations were analyzed through whole-genome sequencing. Blood samples from 10 patients were used to confirm or exclude somatic mosaicism. Putative somatic Single Nucleotide Variants (SNVs) were called for each malformed sample with a Panel of Normals built with control DNA samples extracted from blood. The variants were subsequently confirmed by Sanger sequencing and searched, whenever possible, in the blood samples of patients. RESULTS All CLMs but one presented a signature of genomic instability by means of multiple clusters of cells with gene mutations. Seven tumor transformation-related SNVs were detected in 6/20 congenital lung malformations. Four very rare in the general population SNVs were found in a region previously linked to lung cancer in 5p15.33, upstream of TERT oncogene. Furthermore, we identified missense genetic variants, whose tumorigenic role is well known, in the RET, FANCA and MET genes. CONCLUSIONS Genomic instability in 95% of CLMs and genetic variants linked to tumor development in 30% of them, regardless of histopathology, are predisposing factors to malignancy, that combined with exposure to carcinogens, might trigger the development of malignancy and explain the association between CLMs and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Jurgen Schleef
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Federica Pederiva
- Pediatric Surgery, "F. Del Ponte" Hospital, ASST Settelaghi, Via Filippo del Ponte 19, 21100, Varese, Italy.
| | - Adamo Pio d'Adamo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Omidvar S, Vahedian V, Sourani Z, Yari D, Asadi M, Jafari N, Khodavirdilou L, Bagherieh M, Shirzad M, Hosseini V. The molecular crosstalk between innate immunity and DNA damage repair/response: Interactions and effects in cancers. Pathol Res Pract 2024; 260:155405. [PMID: 38981346 DOI: 10.1016/j.prp.2024.155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
DNA damage can lead to erroneous alterations and mutations which in turn can result into wide range of disease condition including aging, severe inflammation, and, most importantly, cancer. Due to the constant exposure to high-risk factors such as exogenous and endogenous DNA-damaging agents, cells may experience DNA damage impairing stability and integrity of the genome. These perturbations in DNA structure can arise from several mutations in the genome. Therefore, DNA Damage Repair/Response (DDR) detects and then corrects these potentially tumorigenic problems by inducing processes such as DNA repair, cell cycle arrest, apoptosis, etc. Additionally, DDR can activate signaling pathways related to immune system as a protective mechanism against genome damage. These protective machineries are ignited and spread through a network of molecules including DNA damage sensors, transducers, kinases and downstream effectors. In this review, we are going to discuss the molecular crosstalk between innate immune system and DDR, as well as their potential effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Sahar Omidvar
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM-31), Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil.
| | - Zahra Sourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mehrdad Asadi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| | - Molood Bagherieh
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran.
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Hosseini
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran; Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
9
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
10
|
Xie Q, Liu S, Zhang S, Liao L, Xiao Z, Wang S, Zhang P. Research progress on the multi-omics and survival status of circulating tumor cells. Clin Exp Med 2024; 24:49. [PMID: 38427120 PMCID: PMC10907490 DOI: 10.1007/s10238-024-01309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.
Collapse
Affiliation(s)
- Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Xiao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Pounraj S, Chen S, Ma L, Mazzieri R, Dolcetti R, Rehm BHA. Targeting Tumor Heterogeneity with Neoantigen-Based Cancer Vaccines. Cancer Res 2024; 84:353-363. [PMID: 38055891 DOI: 10.1158/0008-5472.can-23-2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Neoantigen-based cancer vaccines have emerged as a promising immunotherapeutic approach to treat cancer. Nevertheless, the high degree of heterogeneity in tumors poses a significant hurdle for developing a vaccine that targets the therapeutically relevant neoantigens capable of effectively stimulating an immune response as each tumor contains numerous unique putative neoantigens. Understanding the complexities of tumor heterogeneity is crucial for the development of personalized neoantigen-based vaccines, which hold the potential to revolutionize cancer treatment and improve patient outcomes. In this review, we discuss recent advancements in the design of neoantigen-based cancer vaccines emphasizing the identification, validation, formulation, and targeting of neoantigens while addressing the challenges posed by tumor heterogeneity. The review highlights the application of cutting-edge approaches, such as single-cell sequencing and artificial intelligence to identify immunogenic neoantigens, while outlining current limitations and proposing future research directions to develop effective neoantigen-based vaccines.
Collapse
Affiliation(s)
- Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Linlin Ma
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Queensland, Australia
| |
Collapse
|
12
|
Yang Y, Badura ML, O’Leary PC, Delavan HM, Robinson TM, Egusa EA, Zhong X, Swinderman JT, Li H, Zhang M, Kim M, Ashworth A, Feng FY, Chou J, Yang L. Large tandem duplications in cancer result from transcription and DNA replication collisions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.17.23290140. [PMID: 38260434 PMCID: PMC10802642 DOI: 10.1101/2023.05.17.23290140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. Here, we use 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detect transcription-dependent replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs). Large TDs are abundant in female-enriched, upper gastrointestinal tract and prostate cancers. They are associated with poor patient survival and mutations in TP53, CDK12, and SPOP. Upon inactivating CDK12, cells display significantly more TRCs, R-loops, and large TDs. Inhibition of G2/M checkpoint proteins, such as WEE1, CHK1, and ATR, selectively inhibits the growth of cells deficient in CDK12. Our data suggest that large TDs in cancer form due to TRCs, and their presence can be used as a biomarker for prognosis and treatment.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michelle L. Badura
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Henry M. Delavan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Troy M. Robinson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Emily A. Egusa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jason T. Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Minkyu Kim
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
13
|
Iourov IY, Vorsanova SG, Yurov YB. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol 2024; 2825:67-78. [PMID: 38913303 DOI: 10.1007/978-1-0716-3946-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
14
|
Caro GD, Lam ET, Bourdon D, Blankfard M, Dharajiya N, Slade M, Williams E, Zhang D, Wenstrup R, Schwartzberg L. A novel liquid biopsy assay for detection of ERBB2 (HER2) amplification in circulating tumor cells (CTCs). J Circ Biomark 2024; 13:27-35. [PMID: 39377016 PMCID: PMC11456801 DOI: 10.33393/jcb.2024.3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose Circulating tumor cell (CTC)-based ERBB2 (HER2) assay is a laboratory test developed by Epic Sciences using single-cell genomics to detect ERBB2 (HER2) amplification in CTCs found in the peripheral blood of metastatic breast cancer (MBC) patients. Patients and methods Peripheral blood was collected in Streck tubes and centrifugation was used to remove plasma and red blood cells. The remaining nucleated cells were deposited on glass slides, immunofluorescent-stained with proprietary antibodies, scanned by a high-definition digital scanner, and analyzed by a proprietary algorithm. In addition, single-cell genomics was performed on selected CTC. Analytical validation was performed using white blood cells from healthy donors and breast cancer cell lines with known levels of ERBB2 amplification. Clinical concordance was assessed on MBC patients whose blood was tested by the CTC ERBB2 (HER2) assay and those results are compared to results of matched metastatic tissue biopsy (immunohistochemistry [IHC] 3+ or IHC2+/in situ hybridization [ISH+]). Results Epic's ERBB2 (HER2) assay detected 2-fold ERBB2 amplification with 85% sensitivity and 94% specificity. In the clinical concordance study, among the 50% of the cases that had ERBB2 status results from CTCs found to be chromosomally-unstable, the CTC ERBB2 (HER2) assay showed sensitivity of 69% and specificity of 78% when compared to HER2 status by metastatic tissue biopsy. Conclusions The CTC ERBB2 (HER2) assay can consistently detect ERBB2 status in MBC cell lines and in the population of patients with MBC with detectable chromosomally unstable CTCs for whom tissue biopsy is not available or is infeasible.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhang
- Epic Sciences, San Diego, California - USA
| | | | | |
Collapse
|
15
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
16
|
Yun JK, Kim S, An H, Lee GD, Kim HR, Kim YH, Kim DK, Park SI, Choi S, Koh Y. Pre-operative clonal hematopoiesis is related to adverse outcome in lung cancer after adjuvant therapy. Genome Med 2023; 15:111. [PMID: 38087308 PMCID: PMC10714617 DOI: 10.1186/s13073-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Clonal hematopoiesis (CH) frequently progresses after chemotherapy or radiotherapy. We evaluated the clinical impact of preoperative CH on the survival outcomes of patients with non-small cell lung cancer (NSCLC) who underwent surgical resection followed by adjuvant therapy. METHODS A total of 415 consecutive patients with NSCLC who underwent surgery followed by adjuvant therapy from 2011 to 2017 were analyzed. CH status was evaluated using targeted deep sequencing of blood samples collected before surgery. To minimize the possible selection bias between the two groups according to CH status, a propensity score matching (PSM) was adopted. Early-stage patients were further analyzed with additional matched cohort of patients who did not receive adjuvant therapy. RESULTS CH was detected in 21% (86/415) of patients with NSCLC before adjuvant therapy. Patients with CH mutations had worse overall survival (OS) than those without (hazard ratio [95% confidence interval] = 1.56 [1.07-2.28], p = 0.020), which remained significant after the multivariable analysis (1.58 [1.08-2.32], p = 0.019). Of note, the presence of CH was associated with non-cancer mortality (p = 0.042) and mortality of unknown origin (p = 0.018). In patients with stage IIB NSCLC, there was a significant interaction on OS between CH and adjuvant therapy after the adjustment with several cofactors through the multivariable analysis (HR 1.19, 95% CI 1.00-1.1.41, p = 0.041). CONCLUSIONS In resected NSCLC, existence of preoperative CH might amplify CH-related adverse outcomes through adjuvant treatments, resulting in poor survival results.
Collapse
Affiliation(s)
- Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sugyeong Kim
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Hongyul An
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Dong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Seung-Il Park
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sehoon Choi
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea.
| | - Youngil Koh
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Li S, Wang W, Yu H, Zhang S, Bi W, Sun S, Hong B, Fang Z, Chen X. Characterization of genomic instability-related genes predicts survival and therapeutic response in lung adenocarcinoma. BMC Cancer 2023; 23:1115. [PMID: 37974107 PMCID: PMC10655275 DOI: 10.1186/s12885-023-11580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and is the leading cause of cancer death worldwide. Its progression is characterized by genomic instability. In turn, the level of genomic instability affects the prognosis and immune status of patients with LUAD. However, the impact of molecular features associated with genomic instability on the tumor microenvironment (TME) has not been well characterized. In addition, the effect of the genes related to genomic instability in LUAD on individualized treatment of LUAD is unknown. METHODS The RNA-Sequencing, somatic mutation, and clinical data of LUAD patients were downloaded from publicly available databases. A genetic signature associated with genomic instability (GSAGI) was constructed by univariate Cox regression, Lasso regression, and multivariate Cox regression analysis. Bioinformatics analysis investigated the differences in prognosis, immune characteristics, and the most appropriate treatment strategy among different subtypes of LUAD patients. CCK-8 and colony formation verified the various effects of Etoposide on different subtypes of LUAD cell lines. Cell-to-cell communication analysis was performed using the "CellChat" R package. The expression of the risk factors in the GSAGI was verified using real-time quantitative PCR (qRT-PCR) and Immunohistochemistry (IHC). RESULTS We constructed and validated the GSAGI, consisting of five genes: ANLN, RHOV, KRT6A, SIGLEC6, and KLRG2. The GSAGI was an independent prognostic factor for LUAD patients. Patients in the high-risk group distinguished by the GSAGI are more suitable for chemotherapy. More immune cells are infiltrating the tumor microenvironment of patients in the low-risk group, especially B cells. Low-risk group patients are more suitable for receiving immunotherapy. The single-cell level analysis confirmed the influence of the GSAGI on TME and revealed the Mode of action between tumor cells and other types of cells. qRT-PCR and IHC showed increased ANLN, RHOV, and KRT6A expression in the LUAD cells and tumor tissues. CONCLUSION This study confirms that genes related to genomic instability can affect the prognosis and immune status of LUAD patients. The GSAGI we identified has the potential to guide clinicians in predicting clinical outcomes, assessing immunological status, and even developing personalized treatment plans for LUAD patients.
Collapse
Affiliation(s)
- Shuyang Li
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wei Wang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Huihan Yu
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Siyu Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Bo Hong
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| | - Xueran Chen
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
18
|
Li J, Stenberg S, Yue JX, Mikhalev E, Thompson D, Warringer J, Liti G. Genome instability footprint under rapamycin and hydroxyurea treatments. PLoS Genet 2023; 19:e1011012. [PMID: 37931001 PMCID: PMC10653606 DOI: 10.1371/journal.pgen.1011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The mutational processes dictating the accumulation of mutations in genomes are shaped by genetic background, environment and their interactions. Accurate quantification of mutation rates and spectra under drugs has important implications in disease treatment. Here, we used whole-genome sequencing and time-resolved growth phenotyping of yeast mutation accumulation lines to give a detailed view of the mutagenic effects of rapamycin and hydroxyurea on the genome and cell growth. Mutation rates depended on the genetic backgrounds but were only marginally affected by rapamycin. As a remarkable exception, rapamycin treatment was associated with frequent chromosome XII amplifications, which compensated for rapamycin induced rDNA repeat contraction on this chromosome and served to maintain rDNA content homeostasis and fitness. In hydroxyurea, a wide range of mutation rates were elevated regardless of the genetic backgrounds, with a particularly high occurrence of aneuploidy that associated with dramatic fitness loss. Hydroxyurea also induced a high T-to-G and low C-to-A transversion rate that reversed the common G/C-to-A/T bias in yeast and gave rise to a broad range of structural variants, including mtDNA deletions. The hydroxyurea mutation footprint was consistent with the activation of error-prone DNA polymerase activities and non-homologues end joining repair pathways. Taken together, our study provides an in-depth view of mutation rates and signatures in rapamycin and hydroxyurea and their impact on cell fitness, which brings insights for assessing their chronic effects on genome integrity.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Dawn Thompson
- Ginkgo Bioworks, Boston, Massachusetts, United States of America
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| |
Collapse
|
19
|
Yang Y, Yang L. Somatic structural variation signatures in pediatric brain tumors. Cell Rep 2023; 42:113276. [PMID: 37851574 PMCID: PMC10748741 DOI: 10.1016/j.celrep.2023.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Brain cancer is the leading cause of cancer-related death in children. Somatic structural variations (SVs), large-scale alterations in DNA, remain poorly understood in pediatric brain tumors. Here, we detect a total of 13,199 high-confidence somatic SVs in 744 whole-genome sequences of pediatric brain tumors from the Pediatric Brain Tumor Atlas. The somatic SV occurrences have tremendous diversity among the cohort and across different tumor types. We decompose mutational signatures of clustered complex SVs, non-clustered complex SVs, and simple SVs separately to infer their mutational mechanisms. Our finding of many tumor types carrying unique sets of SV signatures suggests that distinct molecular mechanisms shape genome instability in different tumor types. The patterns of somatic SV signatures in pediatric brain tumors are substantially different from those in adult cancers. The convergence of multiple SV signatures on several major cancer driver genes implies vital roles of somatic SVs in disease progression.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
21
|
Yang Y, Yang L. Somatic structural variation signatures in pediatric brain tumors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290139. [PMID: 37292789 PMCID: PMC10246126 DOI: 10.1101/2023.05.18.23290139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain cancer is the leading cause of cancer-related death in children. Somatic structural variations (SVs), large scale alterations in DNA, remain poorly understood in pediatric brain tumors. Here, we detect a total of 13,199 high confidence somatic SVs in 744 whole-genome-sequenced pediatric brain tumors from Pediatric Brain Tumor Atlas. The somatic SV occurrences have tremendous diversity among the cohort and across different tumor types. We decompose mutational signatures of clustered complex SVs, non-clustered complex SVs, and simple SVs separately to infer the mutational mechanisms of SV formation. Our finding of many tumor types carrying unique sets of SV signatures suggests that distinct molecular mechanisms are active in different tumor types to shape genome instability. The patterns of somatic SV signatures in pediatric brain tumors are substantially different from those in adult cancers. The convergence of multiple signatures to alter several major cancer driver genes suggesting the functional importance of somatic SVs in disease progression.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
22
|
Comprehensive pan-cancer analysis identifies centromere associated protein E as a novel prognostic and immunological biomarker in human tumors. Biochim Biophys Acta Gen Subj 2023; 1867:130346. [PMID: 36931353 DOI: 10.1016/j.bbagen.2023.130346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Centromere-associated protein E (CENP-E), a core component of the kinetochore, mediates chromosome congression and spindle microtubule capture during mitosis. Partial experimental evidence has illustrated the carcinogenic effects of CENPE in tumors, but the corresponding pan-cancer analysis of CENPE still lacking. Based on public databases, including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA), we take an array of bioinformatics methods to investigate the potential oncogenic roles of CENPE. Then, we validated CENPE, cell cycle-related proteins, and immune checkpoint molecule findings expression in clinical colon cancer samples by western blot. Our results showed that CENPE was up-regulated in almost all tumors, and the expression level of CENPE was associated with worse overall survival (OS) and disease-specific survival (DSS) in patients. The strong relationship between CENPE with gene mutation and MMR has also been validated. Moreover, CENPE gene expression was positively correlated with immune checkpoint molecular, and reversely correlated with infiltration levels of most immune cells. In the human colon cancer tissues, the expression of CENPE, cell cycle-related proteins, and immune checkpoint molecules were significantly higher than in the adjacent normal tissues. Our results indicated that CENPE can function as an oncogene in various cancers, and may be regarded as a promising prognostic and diagnostic biomarker in cancer treatment.
Collapse
|
23
|
Black JA, Reis-Cunha JL, Cruz AK, Tosi LR. Life in plastic, it's fantastic! How Leishmania exploit genome instability to shape gene expression. Front Cell Infect Microbiol 2023; 13:1102462. [PMID: 36779182 PMCID: PMC9910336 DOI: 10.3389/fcimb.2023.1102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.
Collapse
Affiliation(s)
- Jennifer A. Black
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,The Wellcome Centre for Integrative Parasitology, School of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| | | | - Angela. K. Cruz
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz. R.O. Tosi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| |
Collapse
|
24
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
25
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
26
|
Nanjangud G. Conventional and Spectral Karyotyping of Murine Cerebellar Granule Neuron Progenitors. Methods Mol Biol 2023; 2583:25-45. [PMID: 36418723 DOI: 10.1007/978-1-0716-2752-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Karyotyping remains an invaluable tool to researchers exploring the cause and consequence of genomic instability in biologic systems. It allows investigators to survey the entire chromosome complement in individual cells and in a single experiment, visualize, and measure different forms or features of instability such as aneuploidy, ongoing chromosomal instability, DNA damage/mis-repair, telomere erosion, chromosome mis-segregation, or defects in cell cycle progression. This chapter describes the combined use of conventional (DAPI-banding) and spectral karyotyping (SKY) to characterize genomic instability in murine cerebellar granule neuron progenitors (CGNPs), using CGNPs with conditional deletion of Atr as a positive control for chromosomal rearrangements. Protocols for preparing slides (metaphase spreads) from fixed cell suspension, DAPI-banding, and spectral karyotyping (SKY) are included. Pertinent aspects of image acquisition and analysis are detailed. These protocols can likely be adapted to other tissue types (murine or human).
Collapse
|
27
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
28
|
Nie L, Zhang Y, You Y, Lin C, Li Q, Deng W, Ma J, Luo W, He H. The signature based on seven genomic instability-related genes could predict the prognosis of acute myeloid leukemia patients. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:840-848. [PMID: 35924822 DOI: 10.1080/16078454.2022.2107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common acute blood malignancy in adults. The complicated and dynamic genomic instability (GI) is the most prominent feature of AML. Our study aimed to explore the prognostic value of GI-related genes in AML patients. METHODS The mRNA data and mutation data were downloaded from the TCGA and GEO databases. Differential expression analyses were completed in limma package. GO and KEGG functional enrichment was conducted using clusterProfiler function of R. Univariate Cox and LASSO Cox regression analyses were performed to screen key genes for Risk score model construction. Nomogram was built with rms package. RESULTS We identified 114 DEGs between high TMB patients and low TMB AML patients, which were significantly enriched in 429 GO terms and 13 KEGG pathways. Based on the univariate Cox and LASSO Cox regression analyses, seven optimal genes were finally applied for Risk score model construction, including SELE, LGALS1, ITGAX, TMEM200A, SLC25A21, S100A4 and CRIP1. The Risk score could reliably predict the prognosis of AML patients. Age and Risk score were both independent prognostic indicators for AML, and the Nomogram based on them could also reliably predict the OS of AML patients. CONCLUSIONS A prognostic signature based on seven GI-related genes and a predictive Nomogram for AML patients are finally successfully constructed.
Collapse
Affiliation(s)
- Lirong Nie
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yuming Zhang
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yuchan You
- Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Changmei Lin
- Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Qinghua Li
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wenbo Deng
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jingzhi Ma
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wenying Luo
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Honghua He
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
29
|
Goupil A, Heinen JP, Salame R, Rossi F, Reina J, Pennetier C, Simon A, Skorski P, Louzao A, Bardin AJ, Basto R, Gonzalez C. Illuminati: a form of gene expression plasticity in Drosophila neural stem cells. Development 2022; 149:282932. [PMID: 36399062 PMCID: PMC9845751 DOI: 10.1242/dev.200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
Abstract
While testing for genome instability in Drosophila as reported by unscheduled upregulation of UAS-GFP in cells that co-express GAL80 and GAL4, we noticed that, as expected, background levels were low in most developing tissues. However, GFP-positive clones were frequent in the larval brain. Most of these clones originated from central brain neural stem cells. Using imaging-based approaches and genome sequencing, we show that these unscheduled clones do not result from chromosome loss or mutations in GAL80. We have named this phenomenon 'Illuminati'. Illuminati is strongly enhanced in brat tumors and is also sensitive to environmental conditions such as food content and temperature. Illuminati is suppressed by Su(var)2-10, but it is not significantly affected by several modifiers of position effect variegation or Gal4::UAS variegation. We conclude that Illuminati identifies a previously unknown type of functional instability that may have important implications in development and disease.
Collapse
Affiliation(s)
- Alix Goupil
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Riham Salame
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Fabrizio Rossi
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Carole Pennetier
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Anthony Simon
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Patricia Skorski
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75005 Paris, France
| | - Anxela Louzao
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Allison J. Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75005 Paris, France
| | - Renata Basto
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France,Authors for correspondence (; )
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain,Authors for correspondence (; )
| |
Collapse
|
30
|
Li X, He Y, Wu J, Qiu J, Li J, Wang Q, Jiang Y, Han J. A novel pathway mutation perturbation score predicts the clinical outcomes of immunotherapy. Brief Bioinform 2022; 23:6691915. [PMID: 36063561 DOI: 10.1093/bib/bbac360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
The link between tumor genetic variations and immunotherapy benefits has been widely recognized. Recent studies suggested that the key biological pathways activated by accumulated genetic mutations may act as an effective biomarker for predicting the efficacy of immune checkpoint inhibitor (ICI) therapy. Here, we developed a novel individual Pathway Mutation Perturbation (iPMP) method that measures the pathway mutation perturbation level by combining evidence of the cumulative effect of mutated genes with the position of mutated genes in the pathways. In iPMP, somatic mutations on a single sample were first mapped to genes in a single pathway to infer the pathway mutation perturbation score (PMPscore), and then, an integrated PMPscore profile was produced, which can be used in place of the original mutation dataset to identify associations with clinical outcomes. To illustrate the effect of iPMP, we applied it to a melanoma cohort treated with ICIs and identified seven significant perturbation pathways, which jointly constructed a pathway-based signature. With the signature, patients were classified into two subgroups with significant distinctive overall survival and objective response rate to immunotherapy. Moreover, the pathway-based signature was consistently validated in two independent melanoma cohorts. We further applied iPMP to two non-small cell lung cancer cohorts and also obtained good performance. Altogether, the iPMP method could be used to identify the significant mutation perturbation pathways for constructing the pathway-based biomarker to predict the clinical outcomes of immunotherapy. The iPMP method has been implemented as a freely available R-based package (https://CRAN.R-project.org/package=PMAPscore).
Collapse
Affiliation(s)
- Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
31
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
32
|
Jiao Y, Li S, Wang X, Yi M, Wei H, Rong S, Zheng K, Zhang L. A genomic instability-related lncRNA model for predicting prognosis and immune checkpoint inhibitor efficacy in breast cancer. Front Immunol 2022; 13:929846. [PMID: 35990656 PMCID: PMC9389369 DOI: 10.3389/fimmu.2022.929846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has overtaken lung cancer as the most frequently diagnosed cancer type and is the leading cause of death for women worldwide. It has been demonstrated in published studies that long non-coding RNAs (lncRNAs) involved in genomic stability are closely associated with the progression of breast cancer, and remarkably, genomic stability has been shown to predict the response to immune checkpoint inhibitors (ICIs) in cancer therapy, especially colorectal cancer. Therefore, it is of interest to explore somatic mutator-derived lncRNAs in predicting the prognosis and ICI efficacy in breast cancer patients. In this study, the lncRNA expression data and somatic mutation data of breast cancer patients from The Cancer Genome Atlas (TCGA) were downloaded and analyzed thoroughly. Univariate and multivariate Cox proportional hazards analyses were used to generate the genomic instability-related lncRNAs in a training set, which was subsequently used to analyze a testing set and combination of the two sets. The qRT-PCR was conducted in both normal mammary and breast cancer cell lines. Furthermore, the Kaplan–Meier and receiver operating characteristic (ROC) curves were applied to validate the predictive effect in the three sets. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the association between genomic instability-related lncRNAs and immune checkpoints. As a result, a six-genomic instability-related lncRNA signature (U62317.4, MAPT-AS1, AC115837.2, EGOT, SEMA3B-AS1, and HOTAIR) was identified as the independent prognostic risk model for breast cancer patients. Compared with the normal mammary cells, the qRT-PCR showed that HOTAIR was upregulated while MAPT-AS1, EGOT, and SEMA3B-AS1 were downregulated in breast cancer cells. The areas under the ROC curves at 3 and 5 years were 0.711 and 0.723, respectively. Moreover, the patients classified in the high-risk group by the prognostic model had abundant negative immune checkpoint molecules. In summary, this study suggested that the prognostic model comprising six genomic instability-related lncRNAs may provide survival prediction. It is necessary to identify patients who are suitable for ICIs to avoid severe immune-related adverse effects, especially autoimmune diseases. This model may predict the ICI efficacy, facilitating the identification of patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqu Wei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanjie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Zhang,
| |
Collapse
|
33
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
35
|
Betlej G, Ząbek T, Lewińska A, Błoniarz D, Rzeszutek I, Wnuk M. RNA 5-methylcytosine status is associated with DNMT2/TRDMT1 nuclear localization in osteosarcoma cell lines. J Bone Oncol 2022; 36:100448. [PMID: 35942470 PMCID: PMC9356272 DOI: 10.1016/j.jbo.2022.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Selected phenotypic features of three osteosarcoma (OS) cell lines were evaluated. Redox disequilibrium promoted sustained AKT and ERK1/2 activation. Redox imbalance modulated cell death pathways in OS cells. Nuclear levels of TRDMT1 methyltransferase were associated with RNA methylation. A novel marker for predicting therapy response in OS patients is proposed.
Osteosarcoma (OS) is a pediatric malignant bone tumor with unsatisfying improvements in survival rates due to limited understanding of OS biology and potentially druggable targets. The present study aims to better characterize osteosarcoma U-2 OS, SaOS-2, and MG-63 cell lines that are commonly used as in vitro models of OS. We focused on evaluating the differences in cell death pathways, redox equilibrium, the activity of proliferation-related signaling pathways, DNA damage response, telomere maintenance, DNMT2/TRDMT1-based responses and RNA 5-methylcytosine status. SaOS-2 cells were characterized by higher levels of superoxide and nitric oxide that promoted AKT and ERK1/2 activation thus modulating cell death pathways. OS cell lines also differed in the levels and localization of DNA repair regulator DNMT2/TRDMT1. SaOS-2 cells possessed the lowest levels of total, cytoplasmic and nuclear DNMT2/TRDMT1, whereas in MG-63 cells, the highest levels of nuclear DNMT2/TRDMT1 were associated with the most pronounced status of RNA 5-methylcytosine. In silico analysis revealed potential phosphorylation sites at DNMT2/TRDMT1 that may be related to the regulation of DNMT2/TRDMT1 localization. We postulate that redox homeostasis, proliferation-related pathways and DNMT2/TRDMT1-based effects can be modulated as a part of anti-osteosarcoma strategy reflecting diverse phenotypic features of OS cells.
Collapse
Affiliation(s)
- Gabriela Betlej
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Tomasz Ząbek
- Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, Balice 32-083, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Iwona Rzeszutek
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
- Corresponding authors.
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
- Corresponding authors.
| |
Collapse
|
36
|
Zeng H, Tong F, Bin Y, Peng L, Gao X, Xia X, Yi X, Dong X. The Predictive Value of PAK7 Mutation for Immune Checkpoint Inhibitors Therapy in Non-Small Cell Cancer. Front Immunol 2022; 13:834142. [PMID: 35242138 PMCID: PMC8886445 DOI: 10.3389/fimmu.2022.834142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background To date, immunotherapy has improved the 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) from 4% to 15%. However, only 30%-50% of the NSCLC patients respond to immune checkpoint inhibitors (ICIs) immunotherapy. Therefore, screening patients for potential benefit with precise biomarkers may be of great value. Methods First, an immunotherapy NSCLC cohort was analyzed to identify the gene mutations associated with the prognosis of ICI treatment. Further analyses were conducted using NSCLC cohort in The Cancer Genome Atlas (TCGA) project to validate the correlations between the specific gene mutations and tumor immunogenicity, antitumor immunity, and alterations in the tumor-related pathways using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Gene set enrichment analysis (GSEA). Results In the immunotherapy NSCLC cohort (n = 266), significantly longer overall survival (OS) rates were observed in the PAK7-mutant type (PAK7-MT) group (n = 13) than the PAK7-wild type (PAK7-WT) group (n = 253) (P = 0.049, HR = 0.43, 95%CI = 0.23-0.79). In the TCGA cohort, PAK7 mutations were correlated with the higher tumor mutation burden (TMB) (14.18 vs. 7.13, P <0.001), increased neoantigen load (NAL) (7.52 vs. 4.30, P <0.001), lower copy number variation (CNV), and higher mutation rate in the DNA damage response (DDR)-related pathways. In addition, PAK7 mutations were also positively correlated with immune-related genes expressions and infiltrating CD8+ T cells (0.079 vs. 0.054, P = 0.005). GSEA results showed that several tumor-related pathways varied in the PAK7-MT group, suggesting the potential mechanisms that regulate the tumor immune-microenvironment. Conclusions This study suggested that the PAK7 mutations might be a potential biomarker to predict the efficacy of immunotherapy for NSCLC patients. Considering the heterogeneity among the patients and other confounding factors, a prospective clinical trial is proposed to further validate the impact of PAK7 mutation on the immunotherapy outcomes in NSCLC.
Collapse
Affiliation(s)
- Hao Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yawen Bin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Peng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research and Development Department, GenePlus- Shenzhen Clinical Laboratory, ShenZhen, China
| | - Xuefeng Xia
- Research and Development Department, Geneplus-Beijing Clinical Laboratory, Beijing, China
| | - Xin Yi
- Research and Development Department, Geneplus-Beijing Clinical Laboratory, Beijing, China
| | - Xiaorong Dong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zou XL, Li XB, Ke H, Zhang GY, Tang Q, Yuan J, Zhou CJ, Zhang JL, Zhang R, Chen WY. Prognostic Value of Neoantigen Load in Immune Checkpoint Inhibitor Therapy for Cancer. Front Immunol 2022; 12:689076. [PMID: 34992591 PMCID: PMC8724026 DOI: 10.3389/fimmu.2021.689076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have made great progress in the field of tumors and have become a promising direction of tumor treatment. With advancements in genomics and bioinformatics technology, it is possible to individually analyze the neoantigens produced by somatic mutations of each patient. Neoantigen load (NAL), a promising biomarker for predicting the efficacy of ICIs, has been extensively studied. This article reviews the research progress on NAL as a biomarker for predicting the anti-tumor effects of ICI. First, we provide a definition of NAL, and summarize the detection methods, and their relationship with tumor mutation burden. In addition, we describe the common genomic sources of NAL. Finally, we review the predictive value of NAL as a tumor prediction marker based on various clinical studies. This review focuses on the predictive ability of NAL’s ICI efficacy against tumors. In melanoma, lung cancer, and gynecological tumors, NAL can be considered a predictor of treatment efficacy. In contrast, the use of NAL for urinary system and liver tumors requires further research. When NAL alone is insufficient to predict efficacy, its combination with other indicators can improve prediction efficiency. Evaluating the response of predictive biomarkers before the treatment initiation is essential for guiding the clinical treatment of cancer. The predictive power of NAL has great potential; however, it needs to be based on more accurate sequencing platforms and technologies.
Collapse
Affiliation(s)
- Xue-Lin Zou
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiao-Bo Li
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Hua Ke
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Guang-Yan Zhang
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Qing Tang
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Jiao Yuan
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Chen-Jiao Zhou
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Ji-Liang Zhang
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Rui Zhang
- Department of Thoracic Surgery, Chengdu Seventh People's Hospital, Chengdu, China
| | - Wei-Yong Chen
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| |
Collapse
|
38
|
Liu S, Wang X, Ding N, Liu Y, Li N, Ma Y, Zhao J, Wang Z, Li X, Fu X, Li L. Nucleotide Sequence Variation in Long-Term Tissue Cultures of Chinese Ginseng ( Panax ginseng C. A. Mey.). PLANTS (BASEL, SWITZERLAND) 2021; 11:79. [PMID: 35009083 PMCID: PMC8747682 DOI: 10.3390/plants11010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
Abstract
Plants have the salient biological property of totipotency, i.e., the capacity to regenerate a whole plant from virtually any kind of fully differentiated somatic cells after a process of dedifferentiation. This property has been well-documented by successful plant regeneration from tissue cultures of diverse plant species. However, the accumulation of somaclonal variation, especially karyotype alteration, during the tissue culture process compromises cell totipotency. In this respect, Chinese ginseng (Panax ginseng C. A. Mey.) is an exception in that it shows little decline in cell totipotency accompanied by remarkable chromosomal stability even after prolonged tissue cultures. However, it remains unclear whether chromosomal level stability necessarily couples with molecular genetic stability at the nucleotide sequence level, given that the two types of stabilities are generated by largely distinct mechanisms. Here, we addressed this issue by genome-wide comparisons at the single-base resolution of long-term tissue culture-regenerated P. ginseng plants. We identified abundant single nucleotide polymorphisms (SNPs) that have accumulated in cultured ginseng callus and are retained in the process of plant regeneration. These SNPs did not occur at random but showed differences among chromosomes and biased regional aggregation along a given chromosome. In addition, our results demonstrate that, compared with the overall genes, genes related to processes of cell totipotency and chromosomal stability possess lower mutation rates at both coding and flanking regions. In addition, collectively, the mutated genes exhibited higher expression levels than non-mutated genes and are significantly enriched in fundamental biological processes, including cellular component organization, development, and reproduction. These attributes suggest that the precipitated molecular level genetic variations during the process of regeneration in P. ginseng are likely under selection to fortify normal development. As such, they likely did not undermine chromosomal stability and totipotency of the long-term ginseng cultures.
Collapse
Affiliation(s)
- Sitong Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xinfeng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (X.W.); (N.D.)
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (X.W.); (N.D.)
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Y.L.); (N.L.); (J.Z.); (X.L.)
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Y.L.); (N.L.); (J.Z.); (X.L.)
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Sciences, Changchun 130033, China;
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Y.L.); (N.L.); (J.Z.); (X.L.)
| | - Zhenhui Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Xiaomeng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (Y.L.); (N.L.); (J.Z.); (X.L.)
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (X.W.); (N.D.)
| |
Collapse
|
39
|
Wang J, Zhang Y, Liu X, Liu H. Is the Fixed Periodic Treatment Effective for the Tumor System without Complete Information? Cancer Manag Res 2021; 13:8915-8928. [PMID: 34876854 PMCID: PMC8643150 DOI: 10.2147/cmar.s339787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The treatment plans designed with the guidance of the mathematical model and adaptive strategy can trap tumor subpopulations in a periodic and controllable loop. But this process requires detailed information about the tumor system, which is difficult to obtain. Therefore, we wondered whether the fixed periodic treatment plans designed with the typical values of population parameters could be applied to a similar tumor system without complete information. Methods A binary tumor system constructed by an EGFR-mutant and a KRAS-mutant cell line was used to explore the applicability of the fixed periodic treatment plans. The dynamics of this system were described by combining the Lotka-Volterra model with the framework of the nonlinear mixed-effects model. The typical values of population parameters were used to design the plans, and the robust plans were screened through parameter variation. These screened plans were examined their applicability in animal experiments and simulations. Results In animal experiments where system parameters vary from -30% to 30%, the "osimertinib administration, withdrawal, FK866 administration and withdrawal" plan can trap subpopulations of the system in periodic cycles. In simulation, when there was an unknown resistant subpopulation, the screened fixed periodic treatment plans can still delay the evolution of resistance. The median outcomes of screened plans were better than conventional sequential treatment in most cases. There was no significant difference between the outcomes of the screened plan with median stability and the optimal therapy. The evolutionary trajectories of these two plans were similar. Conclusion According to the results, these fixed periodic plans should be tried in treatment even the information of the tumor system was incomplete.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yixuan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaoquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haochen Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
40
|
Mutations in DNA damage response pathways as a potential biomarker for immune checkpoint blockade efficacy: evidence from a seven-cancer immunotherapy cohort. Aging (Albany NY) 2021; 13:24136-24154. [PMID: 34747718 PMCID: PMC8610133 DOI: 10.18632/aging.203670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Recently several studies have demonstrated the implications of mutations in DNA damage response (DDR) pathways for immune checkpoint blockade (ICB) treatment. However, smaller sample sizes, lesser cancer types, and the lack of multivariate-adjusted analyses may produce unreliable results. From the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort, we curated 1363 ICB-treated patients to evaluate the association of DDR mutations with immunotherapy prognosis. Besides, 4286 ICB-treated-naive patients from the Cancer Genome Atlas (TCGA) cohort were used to explore the intrinsic prognosis of DDR mutations. Factors in the microenvironment regarding DDR mutations were also assessed. We found that patients with DDR mutations exhibited a significantly prolonged immunotherapy overall survival via multivariate Cox model in the MSKCC cohort (HR: 0.70, P < 0.001). Specific cancer analyses revealed that patients with DDR mutations could obtain the better ICB prognosis in bladder cancer and colorectal cancer (HR: 0.59 [P = 0.034] and 0.33 [P = 0.006]). Stratified analyses showed that age >60, male gender, high mutation burden, and PD-1/PD-L1 treatment were the positive conditions for ICB survival benefits of DDR mutations (all P < 0.01). Mutations of 4 DDR genes, including MRE11A, MSH2, ATM, and POLE could predict favorable ICB prognoses (all P < 0.01). A better immune microenvironment was observed in DDR mutated patients. Mutations in DDR pathways or single DDR genes were associated with preferable ICB efficacy in specific cancers or subpopulations. Findings from our study would provide clues for tailing clinical trials and immunotherapy strategies.
Collapse
|
41
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
42
|
Genomic instability in lower-grade glioma: Prediction of prognosis based on lncRNA and immune infiltration. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:431-443. [PMID: 34553030 PMCID: PMC8430277 DOI: 10.1016/j.omto.2021.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Glioma is the most common type of primary malignant tumor in the central nervous system. Tumor recurrence and progression are common in lower-grade glioma (LGG). Immune checkpoint blockade (ICB), as an emerging immunotherapy, is expected to improve the prognosis of patients undergoing conventional treatment, but it currently performs poorly in glioma. We divided patients into genome-stable and -unstable groups according to the somatic mutation count and then found that the expression of CDC20 was positively correlated with genomic instability. We compared the differences in long non-coding RNA (lncRNA) expression and immune infiltration between the two groups. Five lncRNAs and three immune cell types were identified to construct risk models and a nomogram combing clinical features. Through internal and external validation, the models exhibited sufficient ability to predict the prognosis and the possible response to ICB therapy of patients. This study provided a potential predictive approach for the precise application of ICB and support for improving the prognosis of LGG patients.
Collapse
|
43
|
Tenan MR, Nicolle A, Moralli D, Verbouwe E, Jankowska JD, Durin MA, Green CM, Mandriota SJ, Sappino AP. Aluminum Enters Mammalian Cells and Destabilizes Chromosome Structure and Number. Int J Mol Sci 2021; 22:ijms22179515. [PMID: 34502420 PMCID: PMC8431747 DOI: 10.3390/ijms22179515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Chromosome instability (CIN) consists of high rates of structural and numerical chromosome abnormalities and is a well-known hallmark of cancer. Aluminum is added to many industrial products of frequent use. Yet, it has no known physiological role and is a suspected human carcinogen. Here, we show that V79 cells, a well-established model for the evaluation of candidate chemical carcinogens in regulatory toxicology, when cultured in presence of aluminum—in the form of aluminum chloride (AlCl3) and at concentrations in the range of those measured in human tissues—incorporate the metal in a dose-dependent manner, predominantly accumulating it in the perinuclear region. Intracellular aluminum accumulation rapidly leads to a dose-dependent increase in DNA double strand breaks (DSB), in chromosome numerical abnormalities (aneuploidy) and to proliferation arrest in the G2/M phase of the cell cycle. During mitosis, V79 cells exposed to aluminum assemble abnormal multipolar mitotic spindles and appear to cluster supernumerary centrosomes, possibly explaining why they accumulate chromosome segregation errors and damage. We postulate that chronic aluminum absorption favors CIN in mammalian cells, thus promoting carcinogenesis.
Collapse
Affiliation(s)
- Mirna R. Tenan
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
- Correspondence: ; Tel.: +41-22-3050480
| | - Adeline Nicolle
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Emeline Verbouwe
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - Julia D. Jankowska
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Mary-Anne Durin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Catherine M. Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Stefano J. Mandriota
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - André-Pascal Sappino
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| |
Collapse
|
44
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
45
|
Torabi Dalivandan S, Plummer J, Gayther SA. Risks and Function of Breast Cancer Susceptibility Alleles. Cancers (Basel) 2021; 13:3953. [PMID: 34439109 PMCID: PMC8393346 DOI: 10.3390/cancers13163953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/22/2022] Open
Abstract
Family history remains one of the strongest risk factors for breast cancer. It is well established that women with a first-degree relative affected by breast cancer are twice as likely to develop the disease themselves. Twins studies indicate that this is most likely due to shared genetics rather than shared epidemiological/lifestyle risk factors. Linkage and targeted sequencing studies have shown that rare high- and moderate-penetrance germline variants in genes involved in the DNA damage response (DDR) including BRCA1, BRCA2, PALB2, ATM, and TP53 are responsible for a proportion of breast cancer cases. However, breast cancer is a heterogeneous disease, and there is now strong evidence that different risk alleles can predispose to different subtypes of breast cancer. Here, we review the associations between the different genes and subtype-specificity of breast cancer based on the most comprehensive genetic studies published. Genome-wide association studies (GWAS) have also been used to identify an additional hereditary component of breast cancer, and have identified hundreds of common, low-penetrance susceptibility alleles. The combination of these low penetrance risk variants, summed as a polygenic risk score (PRS), can identify individuals across the spectrum of disease risk. However, there remains a substantial bottleneck between the discovery of GWAS-risk variants and their contribution to tumorigenesis mainly because the majority of these variants map to the non-protein coding genome. A range of functional genomic approaches are needed to identify the causal risk variants and target susceptibility genes and establish their underlying role in disease biology. We discuss how the application of these multidisciplinary approaches to understand genetic risk for breast cancer can be used to identify individuals in the population that may benefit from clinical interventions including screening for early detection and prevention, and treatment strategies to reduce breast cancer-related mortalities.
Collapse
Affiliation(s)
| | | | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.D.); (J.P.)
| |
Collapse
|
46
|
Graber M, Barta H, Wood R, Pappula A, Vo M, Petreaca RC, Escorcia W. Comprehensive Genetic Analysis of DGAT2 Mutations and Gene Expression Patterns in Human Cancers. BIOLOGY 2021; 10:714. [PMID: 34439946 PMCID: PMC8389207 DOI: 10.3390/biology10080714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
DGAT2 is a transmembrane protein encoded by the DGAT2 gene that functions in lipid metabolism, triacylglycerol synthesis, and lipid droplet regulation. Cancer cells exhibit altered lipid metabolism and mutations in DGAT2 may contribute to this state. Using data from the Catalogue of Somatic Mutations in Cancer (COSMIC), we analyzed all cancer genetic DGAT2 alterations, including mutations, copy number variations and gene expression. We find that several DGAT2 mutations fall within the catalytic site of the enzyme. Using the Variant Effect Scoring Tool (VEST), we identify multiple mutations with a high likelihood of contributing to cellular transformation. We also found that D222V is a mutation hotspot neighboring a previously discovered Y223H mutation that causes Axonal Charcot-Marie-Tooth disease. Remarkably, Y223H has not been detected in cancers, suggesting that it is inhibitory to cancer progression. We also identify several single nucleotide polymorphisms (SNP) with high VEST scores, indicating that certain alleles in human populations have a pathogenic predisposition. Most mutations do not correlate with a change in gene expression, nor is gene expression dependent on high allele copy number. However, we did identify eight alleles with high expression levels, suggesting that at least in certain cases, the excess DGAT2 gene product is not inhibitory to cellular proliferation. This work uncovers unknown functions of DGAT2 in cancers and suggests that its role may be more complex than previously appreciated.
Collapse
Affiliation(s)
- Meghan Graber
- Biology Department, Xavier University, Cincinnati, OH 45207, USA; (M.G.); (H.B.); (R.W.); (M.V.)
| | - Hayley Barta
- Biology Department, Xavier University, Cincinnati, OH 45207, USA; (M.G.); (H.B.); (R.W.); (M.V.)
| | - Ryan Wood
- Biology Department, Xavier University, Cincinnati, OH 45207, USA; (M.G.); (H.B.); (R.W.); (M.V.)
| | - Amrit Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Martin Vo
- Biology Department, Xavier University, Cincinnati, OH 45207, USA; (M.G.); (H.B.); (R.W.); (M.V.)
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Wilber Escorcia
- Biology Department, Xavier University, Cincinnati, OH 45207, USA; (M.G.); (H.B.); (R.W.); (M.V.)
| |
Collapse
|
47
|
Li Y, He X, Zhang X, Xu Y, Chen W, Liu X, Xu X. RMI2 is a prognostic biomarker and promotes tumor growth in hepatocellular carcinoma. Clin Exp Med 2021; 22:229-243. [PMID: 34275027 DOI: 10.1007/s10238-021-00742-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023]
Abstract
Genomic instability is a hallmark of all cancers. RMI2 is a crucial component of the BLM-TopoIIIa-RMI1-RMI2 complex that maintains genome stability. It has been shown to accelerate tumor progression in lung cancer, cervical cancer, and prostate cancer. However, its expression and function in hepatocellular carcinoma (HCC) remain poorly defined. In this study, gene expression data and corresponding clinical information of HCC were downloaded from the TCGA, ICGC, and GEO databases. The expression level and clinical significance of RMI2 in HCC were then analyzed. In addition, cellular and molecular biology experiments were conducted to explore the effects of silencing and overexpression of RMI2 on human liver cancer cells and the associated mechanisms. The results showed that RMI2 expression was elevated in HCC tissues. High expression of RMI2 was correlated with shorter survival and poor prognosis of patients. The results of CCK-8, Edu, and clonogenic assays confirmed that RMI2 overexpression promoted the proliferation of HCC cells. Flow cytometric analysis demonstrated that RMI2 overexpression enhanced G1-S phase transition and decreased apoptosis. Moreover, the protein expression of key effector molecules in the p53 signaling pathway was reduced following RMI2 overexpression. In summary, these results indicate that RMI2 promotes the growth of HCC cells and suppresses their apoptosis by inhibiting the p53 signaling pathway. This study provides new insights into the mechanisms driving HCC tumorigenesis and new therapeutic targets.
Collapse
Affiliation(s)
- Yue Li
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
48
|
MEKK1-dependent activation of the CRL4 complex is important for DNA damage-induced degradation of p21 and DDB2 and cell survival. Mol Cell Biol 2021; 41:e0008121. [PMID: 34251884 PMCID: PMC8462458 DOI: 10.1128/mcb.00081-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes including the global genome nucleotide excision repair (GG-NER) pathway. Here we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the Caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger auto-ubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation and cell survival. These data might have also implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide-derivatives.
Collapse
|
49
|
Zhao Y, Kong W, Wang P, Song G, Song ZL, Yang Y, Wang Y, Yin B, Rong P, Huan S, Zhang XB. Tumor-Specific Multipath Nucleic Acid Damages Strategy by Symbiosed Nanozyme@Enzyme with Synergistic Self-Cyclic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100766. [PMID: 34110695 DOI: 10.1002/smll.202100766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The high proliferation efficiency, redox imbalance, and elevated nucleic acid repair capabilities of tumor cells severely restrict the theranostic efficacy. Selectively interference chaotic tumors with devastating nucleic acid damages (NUDs) properties are expected to overcome theranostic barriers. Here, an exquisite catalytic-based strategy with comprehensive NUDs mechanisms is demonstrated. In this regard, enzyme (glucose oxidase, GOD) symbioses nanozyme Cu3+x (PO4 )2 through biomineralization (abbreviated as Cu@GOD), GOD can disorder the metabolism by consuming glucose, thereby inhibiting the nutrition supply for nucleic acid repair. GOD-catalyzed H2 O2 guarantees the self-cyclic glutathione depletion and reactive oxygen species generation caused by Cu3+x (PO4 )2 , resulted the reduced antioxidation defense and enhanced oxidation assault, ensures an indiscriminate NUDs ability. Moreover, the high photothermal effect of Cu3+x (PO4 )2 induces effective tumor inhibition. Consequently, this substantial multipath NUDs strategy, with potentials of suppressing the cytoprotective mechanisms, amplifying the cellular oxidative stress, and disrupting the redox balance to ensure substantial irreversible NUDs, completely breaks the obstacle of chaotic tumors, providing new conceptual thinking for tumor proliferation inhibition.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Weiheng Kong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Peng Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yue Yang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Baoli Yin
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Shuangyan Huan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
50
|
3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat Commun 2021; 12:3708. [PMID: 34140506 PMCID: PMC8211852 DOI: 10.1038/s41467-021-24044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
3D genome alternations can dysregulate gene expression by rewiring enhancer-promoter interactions and lead to diseases. We report integrated analyses of 3D genome alterations and differential gene expressions in 18 newly diagnosed T-lineage acute lymphoblastic leukemia (T-ALL) patients and 4 healthy controls. 3D genome organizations at the levels of compartment, topologically associated domains and loop could hierarchically classify different subtypes of T-ALL according to T cell differentiation trajectory, similar to gene expressions-based classification. Thirty-four previously unrecognized translocations and 44 translocation-mediated neo-loops are mapped by Hi-C analysis. We find that neo-loops formed in the non-coding region of the genome could potentially regulate ectopic expressions of TLX3, TAL2 and HOXA transcription factors via enhancer hijacking. Importantly, both translocation-mediated neo-loops and NUP98-related fusions are associated with HOXA13 ectopic expressions. Patients with HOXA11-A13 expressions, but not other genes in the HOXA cluster, have immature immunophenotype and poor outcomes. Here, we highlight the potentially important roles of 3D genome alterations in the etiology and prognosis of T-ALL. The non-coding genome of T-ALL has not been extensively studied. Here, the authors conduct RNA-seq, ATAC-seq and Hi-C seq analyses and find that T-ALL associated neo-loops may regulate key transcription factors including HOXA13; the aberrant expression of which is associated with poor prognosis.
Collapse
|