1
|
Kapusta L, Beer G, Rothschild E, Baruch G, Barkay G, Marom D, Grinshpun-Cohen Y, Raskind C, Constantini S, Toledano-Alhadef H. Cardiac screening in pediatric patients with neurofibromatosis type 1: similarities with Noonan syndrome? Int J Cardiovasc Imaging 2024; 40:1475-1482. [PMID: 38739321 PMCID: PMC11258153 DOI: 10.1007/s10554-024-03125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Both Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are RASopathies. Characteristic cardiac phenotypes of NS, including specific electrocardiographic changes, pulmonary valve stenosis and hypertrophic cardiomyopathy have not been completely studied in NF1. PURPOSE The aims of this study were to assess: (1) similarities in the prevalence and types of ECG and conventional echocardiographic findings described in NS in asymptomatic patients with NF1, and (2) the presence of discrete myocardial dysfunction in NF1 patients using myocardial strain imaging. METHODS Fifty-eight patients with NF1 (ages 0-18 years), and thirty-one age-matched healthy controls underwent cardiac assessment including blood pressure measurements, a 12-lead ECG, and detailed echocardiography. Quantification of cardiac chamber size, mass and function were measured using conventional echocardiography. Myocardial strain parameters were assessed using 2-Dimensional (2D) Speckle tracking echocardiography. RESULTS Asymptomatic patients with NF1 had normal electrocardiograms, none with the typical ECG patterns described in NS. However, patients with NF1 showed significantly decreased calculated Z scores of the left ventricular internal diameter in diastole and systole, reduced left ventricular mass index and a higher incidence of cardiac abnormal findings, mainly of the mitral valve, in contrast to the frequently described types of cardiac abnormalities in NS. Peak and end systolic global circumferential strain were the only significantly reduced speckle tracking derived myocardial strain parameter. CONCLUSIONS Children with NF1 demonstrated more dissimilarities than similarities in the prevalence and types of ECG and conventional echocardiographic findings described in NS. The role of the abnormal myocardial strain parameter needs to be explored.
Collapse
Affiliation(s)
- Livia Kapusta
- Pediatric Cardiology Unit, Faculty of Medicine, Dana-Dwek children's hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gil Beer
- Pediatric Cardiology Unit, Faculty of Medicine, Dana-Dwek children's hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Rothschild
- Department of Internal medicine, Tel-Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Baruch
- Department of Internal medicine, Tel-Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gili Barkay
- Gilbert Israeli and International Neurofibromatosis Center and the Child Neurology Institute and Child Development Center, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6 Weizmann Street, Tel Aviv, 6423906, Israel
| | - Daphna Marom
- Genetic Institute, Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Grinshpun-Cohen
- Gilbert Israeli and International Neurofibromatosis Center and the Child Neurology Institute and Child Development Center, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6 Weizmann Street, Tel Aviv, 6423906, Israel
- Genetic Institute, Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Craig Raskind
- Department of Neonatology, Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Constantini
- Gilbert Israeli and International Neurofibromatosis Center and the Child Neurology Institute and Child Development Center, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6 Weizmann Street, Tel Aviv, 6423906, Israel
- Department of Pediatric Neurosurgery, The Pediatric Brain Institute, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Toledano-Alhadef
- Gilbert Israeli and International Neurofibromatosis Center and the Child Neurology Institute and Child Development Center, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6 Weizmann Street, Tel Aviv, 6423906, Israel.
- Child Neurology Institute and Child development Center, Faculty of Medicine, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Attia S, Guirguis M, Le LQ, Chhabra A. Association of plexiform and diffuse neurofibromas with malignant peripheral nerve sheath tumor in NF I patients: a whole-body MRI assessment. Skeletal Radiol 2024; 53:769-777. [PMID: 37903998 DOI: 10.1007/s00256-023-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate neurofibromatosis type 1 (NF1) patients with whole-body MRI (WBMRI) to investigate the frequency of plexiform neurofibromas (pNFs), diffuse neurofibromas (dNFs), and malignant peripheral nerve sheath tumors (MPNSTs). MATERIALS AND METHODS In this retrospective cross-sectional study, between the years 2015 and 2023, 83 consecutive patients with known NF1 underwent a total of 110 WBMRI screenings for MPNST using a standardized institutional protocol. The lesions are categorized as discrete lesions, pNFs, dNFs, and MPNSTs. Histopathology served as the reference standard for all MPNSTs. RESULTS Among the 83 patients analyzed, 53 (64%) were women and 30 were men (36%) of ages 36.94±14.43 years (range, 15-66 years). Of the 83 patients, 33 have a positive family history of NF1 and positive genetic studies. Seven of 83 (8%) have only dNF, 20/83 (24%) have pNF, 28/83 (34%) have both dNF and pNF, and 28/83 (34%) have neither. Of the 83 patients, eight (9.6%) were diagnosed with nine total MPNSTs. Age range for patients with MPNSTs at time of diagnosis was 22-51, with an average age of 33.4 years. Only one MPNST (11%) developed from underlying pNF 4 years after WBMRI along the right bronchial tree. Three of eight (37.5%) patients with MPNST died within 5 years of pathologic diagnosis. CONCLUSION This study suggests the absence of a predisposition for development of MPNST from pNFs and dNFs in the setting of NF1. As such, these lesions may not need special surveillance compared to discrete peripheral nerve sheath tumors.
Collapse
Affiliation(s)
- Sarah Attia
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mina Guirguis
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
- UT Southwestern, Dallas, TX, 75390-9178, USA.
- Adjunct Faculty- Johns Hopkins University, Maryland, MD, USA.
- Adjunct Faculty-University of Dallas, Richardson, TX, USA.
- Walton Centre for Neuroscience, Liverpool, UK.
| |
Collapse
|
3
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
4
|
Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, Salvador H, Azizi AA, Mautner V, Röhl C, Peltonen S, Stivaros S, Legius E, Oostenbrink R. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine 2023; 56:101818. [PMID: 36684394 PMCID: PMC9845795 DOI: 10.1016/j.eclinm.2022.101818] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multisystem genetic disorder, predisposing development of benign and malignant tumours. Given the oncogenic potential, long-term surveillance is important in patients with NF1. Proposals for NF1 care and its specific manifestations have been developed, but lack integration within routine care. This guideline aims to assimilate available information on NF1 associated tumours (based on evidence and/or expert opinion) to assist healthcare professionals in undertaking tumour surveillance of NF1 individuals. METHODS By comprehensive literature review, performed March 18th 2020, guidelines were developed by a NF1 expert group and patient representatives, conversant with clinical care of the wide NF1 disease spectrum. We used a modified Delphi procedure to overcome issues of variability in recommendations for specific (national) health care settings, and to deal with recommendations based on indirect (scarce) evidence. FINDINGS We defined proposals for personalised and targeted tumour management in NF1, ensuring appropriate care for those in need, whilst reducing unnecessary intervention. We also incorporated the tumour-related psychosocial and quality of life impact of NF1. INTERPRETATION The guideline reflects the current care for NF1 in Europe. They are not meant to be prescriptive and may be adjusted to local available resources at the treating centre, both within and outside EU countries. FUNDING This guideline has been supported by the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS). ERN GENTURIS is funded by the European Union. DGE is supported by the Manchester NIHRBiomedical Research Centre (IS-BRC-1215-20007).
Collapse
Affiliation(s)
- Charlotte Carton
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ignacio Blanco
- Clinical Genetics Department, Hospital Germans Trias I Pujol, Barcelona, Spain
| | | | - Rosalie E. Ferner
- Neurofibromatosis Centre, Department of Neurology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | - Hector Salvador
- Sant Joan de Déu, Barcelona Children's Hospital, Barcelona, Spain
| | - Amedeo A. Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Victor Mautner
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sirkku Peltonen
- University of Turku and Turku University Hospital, Turku, Finland
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric Legius
- University Hospital Leuven, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - Rianne Oostenbrink
- ENCORE-NF1 Expertise Center, ErasmusMC-Sophia, Rotterdam, the Netherlands
- Corresponding author. Department General Pediatrics, ErasmusMC-Sophia, Room Sp 1549, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | | |
Collapse
|
5
|
Virtual Reality Water Maze Navigation in Children with Neurofibromatosis Type 1 and Reading Disability: an Exploratory Study. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2022. [DOI: 10.1007/s40817-022-00132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
7
|
Forde C, Burkitt-Wright E, Turnpenny PD, Haan E, Ealing J, Mansour S, Holder M, Lahiri N, Dixit A, Procter A, Pacot L, Vidaud D, Capri Y, Gerard M, Dollfus H, Schaefer E, Quelin C, Sigaudy S, Busa T, Vera G, Damaj L, Messiaen L, Stevenson DA, Davies P, Palmer-Smith S, Callaway A, Wolkenstein P, Pasmant E, Upadhyaya M. Natural history of NF1 c.2970_2972del p.(Met992del): confirmation of a low risk of complications in a longitudinal study. Eur J Hum Genet 2021; 30:291-297. [PMID: 34897289 PMCID: PMC8904810 DOI: 10.1038/s41431-021-01015-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals with the three base pair deletion NM_000267.3(NF1):c.2970_2972del p.(Met992del) have been recognised to present with a milder neurofibromatosis type 1 (NF1) phenotype characterised by café-au-lait macules (CALs) and intertriginous freckling, as well as a lack of cutaneous, subcutaneous and plexiform neurofibromas and other NF1-associated complications. Examining large cohorts of patients over time with this specific genotype is important to confirm the presentation and associated risks of this variant across the lifespan. Forty-one individuals with the in-frame NF1 deletion p.Met992del were identified from 31 families. Clinicians completed a standardised clinical questionnaire for each patient and the resulting data were collated and compared to published cohorts. Thirteen patients have been previously reported, and updated clinical information has been obtained for these individuals. Both CALs and intertriginous freckling were present in the majority of individuals (26/41, 63%) and the only confirmed features in 11 (27%). 34/41 (83%) of the cohort met NIH diagnostic criteria. There was a notable absence of all NF1-associated tumour types (neurofibroma and glioma). Neurofibroma were observed in only one individual—a subcutaneous lesion (confirmed histologically). Nineteen individuals were described as having a learning disability (46%). This study confirms that individuals with p.Met992del display a mild tumoural phenotype compared to those with ‘classical’, clinically diagnosed NF1, and this appears to be the case longitudinally through time as well as at presentation. Learning difficulties, however, appear to affect a significant proportion of NF1 subjects with this phenotype. Knowledge of this genotype–phenotype association is fundamental to accurate prognostication for families and caregivers.
Collapse
Affiliation(s)
- Claire Forde
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Eric Haan
- South Australia Clinical Genetics Services, North Adelaide, SA, Australia
| | - John Ealing
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sahar Mansour
- Department Of Clinical Genetics, St George's University NHS Foundation Trust, London, UK
| | - Muriel Holder
- Genetics Service, South East Thames Regional Genetics Service, London, UK
| | - Nayana Lahiri
- Department Of Clinical Genetics, St George's University NHS Foundation Trust, London, UK
| | - Abhijit Dixit
- Clinical Genetics Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Laurence Pacot
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP.Centre-Université de Paris, Paris, France and Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, CARPEM, Paris, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP.Centre-Université de Paris, Paris, France and Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, CARPEM, Paris, France
| | - Yline Capri
- Department of Clinical Genetics, Robert-Debré Hospital, AP-HP and University of Paris-Diderot, Paris, France
| | - Marion Gerard
- Service de Génétique Médicale, CHU Caen, Caen, France
| | - Hélène Dollfus
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg; Medical Genetics Laboratory, INSERM U1112, Institute of Medical Genetics of Alsace, Strasbourg Medical School, University of Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Chloé Quelin
- Service de génétique clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, Rennes, France
| | - Sabine Sigaudy
- Department of Medical Genetics, Children's Hospital La Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Children's Hospital La Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Gabriella Vera
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Lena Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes University Hospital, Rennes, France
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama at Birmingham, Alabama, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Paediatrics, Stanford University, Stanford, USA
| | | | | | - Alison Callaway
- Molecular Genetics, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Pierre Wolkenstein
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, Créteil, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP.Centre-Université de Paris, Paris, France and Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, CARPEM, Paris, France
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Jin P, Yan K, Ye S, Qian Y, Wu Z, Wang M, Xu Y, Xu Y, Dong M. Case Report: A Synonymous Mutation in NF1 Located at the Non-canonical Splicing Site Leading to Exon 45 Skipping. Front Genet 2021; 12:772958. [PMID: 34868260 PMCID: PMC8640503 DOI: 10.3389/fgene.2021.772958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 01/14/2023] Open
Abstract
Synonymous mutations are generally considered non-pathogenic because it did not alter the amino acids of the encoded protein. Publications of the associations between synonymous mutations and abnormal splicing have increased recently, however, not much observations available described the synonymous mutations at the non-canonical splicing sites leading to abnormal splicing. In this pedigree, the proband was diagnosed Neurofibromatosis type I due to the presence of typical cafe’ au lait macules and pectus carinatum. Whole-exome sequencing identified a synonymous mutation c.6795C > T (p.N2265N) of the NF1 gene which was located at the non-canonical splicing sites. Reverse transcription polymerase chain reaction followed by Sanger sequencing was carried out, and the skipping of exon 45 was observed. Therefore, the pathogenicity of the synonymous mutation c.6795C > T was confirmed. Our finding expanded the spectrum of pathogenic mutations in Neurofibromatosis type I and provided information for genetic counseling.
Collapse
Affiliation(s)
- Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Yan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Shaofen Ye
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zaigui Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaomiao Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Habulieti X, Sun L, Liu J, Guo K, Yang X, Wang R, Ma D, Zhang X. Phenotypic and genetic characterization of novel variant in the NF1 gene underlying neurofibromatosis type 1 in five Chinese families. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2206-2209. [PMID: 33999308 DOI: 10.1007/s11427-020-1922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- The First Affiliated Hospital of XinJiang Medical University, Wulumuqi, 830001, China
| | - Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiawei Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100072, China
| | - Kexin Guo
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Donglai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100072, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
10
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
11
|
Liu Y, Zeng X, Ding Y, Xu Y, Duan D. Hyaline fibromatosis syndrome: a case presenting with gingival enlargement as the only clinical manifestation and a report of two new mutations in the ANTXR2 gene. BMC Oral Health 2021; 21:508. [PMID: 34627224 PMCID: PMC8501544 DOI: 10.1186/s12903-021-01840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hyaline fibromatosis syndrome (HFS) is a rare autosomal recessive disorder caused by mutations in the gene for anthrax toxin receptor-2 (ANTXR2). The clinical features of HFS include skin thickening with nodules, papules and plaques, gingival enlargement, joint stiffness and contractures, and systemic manifestations. Notably, in all patients with HFS reported in the literature, gingival enlargement has never occurred alone. CASE PRESENTATION A case of a child with gingival enlargement as the only clinical manifestation, who was later diagnosed with HFS, is described. In this case, the absence of skin and joint lesions and other characteristic clinical presentations gave rise to a diagnostic problem. This uncommon condition was clinically indistinguishable from other diseases or conditions that presented with diffuse gingival enlargement. A definitive diagnosis of HFS was reached through genetic analysis. Trio whole exome sequencing revealed compound heterozygous mutations of ANTXR2 in this patient and two new mutations were reported. CONCLUSIONS The findings of this case serve as an important reminder to clinicians. When dental practitioners encounter gingival manifestations of HFS without accompanied skin or joint involvement, there is a need to pay attention to the differential diagnosis and increase awareness of HFS.
Collapse
Affiliation(s)
- Yiying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Dingyu Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
12
|
Copley-Merriman C, Yang X, Juniper M, Amin S, Yoo HK, Sen SS. Natural History and Disease Burden of Neurofibromatosis Type 1 with Plexiform Neurofibromas: A Systematic Literature Review. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2021; 12:55-66. [PMID: 34040477 PMCID: PMC8141405 DOI: 10.2147/ahmt.s303456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an incurable genetic condition that frequently includes the development of plexiform neurofibromas (PNs) in patients. A systematic literature review was conducted to identify data on the natural history, disease burden, and treatment patterns among patients diagnosed with NF1 and PN, as well as to identify evidence gaps in these areas. MEDLINE and MEDLINE In-Process, Embase, and Cochrane Library Searches were searched using predefined terms. Potential references underwent two phases of screening by two independent researchers. A total of 39 references focusing on populations of patients with both NF1 and PN were included in this review. The wide range of PN-related complications creates a substantial quality-of-life (QOL) burden for patients, including pain, social functioning, physical function impact, stigma, and emotional distress. The severe burden of NF1 with PN on the QOL of patients demonstrates the high unmet need for an effective treatment option that can reduce tumor burden and improve QOL. The heterogeneity of measurement tools used to evaluate QOL and the gap in data evaluating the health economic burden of PN should be the focus of future research.
Collapse
|
13
|
Osum SH, Watson AL, Largaespada DA. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:1954. [PMID: 33669386 PMCID: PMC7920315 DOI: 10.3390/ijms22041954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
14
|
Weiss BD, Wolters PL, Plotkin SR, Widemann BC, Tonsgard JH, Blakeley J, Allen JC, Schorry E, Korf B, Robison NJ, Goldman S, Vinks AA, Emoto C, Fukuda T, Robinson CT, Cutter G, Edwards L, Dombi E, Ratner N, Packer R, Fisher MJ. NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in Adolescents and Adults With NF1-Related Plexiform Neurofibromas. J Clin Oncol 2021; 39:797-806. [PMID: 33507822 PMCID: PMC8078274 DOI: 10.1200/jco.20.02220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) frequently develop plexiform neurofibromas (PNs), which can cause significant morbidity. We performed a phase II trial of the MAPK/ERK kinase inhibitor, mirdametinib (PD-0325901), in patients with NF1 and inoperable PNs. The primary objective was response rate based on volumetric magnetic resonance imaging analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bruce Korf
- University of Alabama-Birmingham, Birmingham, AL
| | | | | | | | - Chie Emoto
- Cincinnati Children's Hospital, Cincinnati, OH
| | | | | | - Gary Cutter
- University of Alabama-Birmingham, Birmingham, AL
| | | | - Eva Dombi
- NCI, Center for Cancer Research, Bethesda, MD
| | | | | | | |
Collapse
|
15
|
Accogli A, Geraldo AF, Piccolo G, Riva A, Scala M, Balagura G, Salpietro V, Madia F, Maghnie M, Zara F, Striano P, Tortora D, Severino M, Capra V. Diagnostic Approach to Macrocephaly in Children. Front Pediatr 2021; 9:794069. [PMID: 35096710 PMCID: PMC8795981 DOI: 10.3389/fped.2021.794069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2023] Open
Abstract
Macrocephaly affects up to 5% of the pediatric population and is defined as an abnormally large head with an occipitofrontal circumference (OFC) >2 standard deviations (SD) above the mean for a given age and sex. Taking into account that about 2-3% of the healthy population has an OFC between 2 and 3 SD, macrocephaly is considered as "clinically relevant" when OFC is above 3 SD. This implies the urgent need for a diagnostic workflow to use in the clinical setting to dissect the several causes of increased OFC, from the benign form of familial macrocephaly and the Benign enlargement of subarachnoid spaces (BESS) to many pathological conditions, including genetic disorders. Moreover, macrocephaly should be differentiated by megalencephaly (MEG), which refers exclusively to brain overgrowth, exceeding twice the SD (3SD-"clinically relevant" megalencephaly). While macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, megalencephaly is most likely due to a genetic cause. Apart from the head size evaluation, a detailed family and personal history, neuroimaging, and a careful clinical evaluation are crucial to reach the correct diagnosis. In this review, we seek to underline the clinical aspects of macrocephaly and megalencephaly, emphasizing the main differential diagnosis with a major focus on common genetic disorders. We thus provide a clinico-radiological algorithm to guide pediatricians in the assessment of children with macrocephaly.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Madia
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
16
|
Baudou E, Nemmi F, Biotteau M, Maziero S, Assaiante C, Cignetti F, Vaugoyeau M, Audic F, Peran P, Chaix Y. Are morphological and structural MRI characteristics related to specific cognitive impairments in neurofibromatosis type 1 (NF1) children? Eur J Paediatr Neurol 2020; 28:89-100. [PMID: 32893091 DOI: 10.1016/j.ejpn.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION NF1 children have cognitive disorders, especially in executive functions, visuospatial, and language domains, the pathophysiological mechanisms of which are still poorly understood. MATERIALS AND METHODS A correlation study was performed from neuropsychological assessments and brain MRIs of 38 NF1 patients and 42 controls, all right-handed, aged 8-12 years and matched in age and gender. The most discriminating neuropsychological tests were selected to assess their visuospatial, metaphonological and visuospatial working memory abilities. The MRI analyses focused on the presence and location of Unidentified Bright Objects (UBOs) (1), volume analysis (2) and diffusion analysis (fractional anisotropy and mean diffusivity) (3) of the regions of interest including subcortical structures and posterior fossa, as well as shape analysis of subcortical structures (4). The level of attention, intelligence quotient, age and gender of the patients were taken into account in the statistical analysis. Then, we studied how diffusion and volumes parameters were associated with neuropsychological characteristics in NF1 children. RESULTS NF1 children present different brain imaging characteristics compared to the control such as (1) UBOs in 68%, (2) enlarged total intracranial volume, involving all subcortical structures, especially thalamus, (3) increased MD and decreased FA in thalamus, corpus callosum and hippocampus. These alterations are diffuse, without shape involvement. In NF1 group, brain microstructure is all the more altered that volumes are enlarged. However, we fail to find a link between these brain characteristics and neurocognitive scores. CONCLUSION While NF1 patients have obvious pathological brain characteristics, the neuronal substrates of their cognitive deficits are still not fully understood, perhaps due to complex and multiple pathophysiological mechanisms underlying this disorder, as suggested by the heterogeneity observed in our study. However, our results are compatible with an interpretation of NF1 as a diffuse white matter disease.
Collapse
Affiliation(s)
- Eloïse Baudou
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France.
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Maëlle Biotteau
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Christine Assaiante
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France
| | - Fabien Cignetti
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France; CNRS, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Marianne Vaugoyeau
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France
| | - Frederique Audic
- Service de Neurologie Pédiatrique, CHU, Timone-Enfants, Marseille, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Yves Chaix
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| |
Collapse
|
17
|
Varni JW, Nutakki K, Swigonski NL. Cognitive functioning and pain interference mediate pain predictive effects on health-related quality of life in pediatric patients with Neurofibromatosis Type 1. Eur J Paediatr Neurol 2020; 28:64-69. [PMID: 32847704 DOI: 10.1016/j.ejpn.2020.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The objective was to investigate the serial mediating effects of perceived cognitive functioning and pain interference in daily living in the relationship between perceived pain and overall generic health-related quality of life (HRQOL) in children, adolescents, and young adults with Neurofibromatosis Type 1 (NF1). METHODS The Pain, Cognitive Functioning, and Pain Impact Scales from the PedsQL Neurofibromatosis Type 1 Module and the PedsQL 4.0 Generic Core Scales were completed in a multi-site national study by 323 patients ages 5-25 and 335 parents. A serial multiple mediator model analysis was conducted to test the hypothesized sequential mediating effects of cognitive functioning and pain interference as intervening variables in the association between pain as a predictor variable and overall generic HRQOL. RESULTS Pain predictive effects on overall generic HRQOL were serially mediated by cognitive functioning and pain interference. In predictive analytics models utilizing hierarchical multiple regression analyses with age and gender demographic covariates, pain, cognitive functioning and pain interference accounted for 66% of the variance in patient-reported generic HRQOL and 57% of the variance in parent proxy-reported generic HRQOL (P < 0.001), reflecting large effect sizes. CONCLUSIONS Cognitive functioning and pain interference explain in part the mechanism of pain predictive effects on overall generic HRQOL in pediatric patients with NF1. Identifying NF1-specific pain, cognitive functioning, and pain interference as salient predictors of overall generic HRQOL from the patient and parent perspective facilitates a family-centered orientation to the comprehensive care of children, adolescents, and young adults with NF1.
Collapse
Affiliation(s)
- James W Varni
- Department of Pediatrics, College of Medicine, Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, USA.
| | - Kavitha Nutakki
- Children's Health Services Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy L Swigonski
- Children's Health Services Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
18
|
Pavone P, Polizzi A, Marino SD, Corsello G, Falsaperla R, Marino S, Ruggieri M. West syndrome: a comprehensive review. Neurol Sci 2020; 41:3547-3562. [PMID: 32827285 PMCID: PMC7655587 DOI: 10.1007/s10072-020-04600-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Since its first clinical description (on his son) by William James West (1793–1848) in 1841, and the definition of the classical triad of (1) infantile spasms; (2) hypsarrhythmia, and (3) developmental arrest or regression as “West syndrome”, new and relevant advances have been recorded in this uncommon disorder. New approaches include terminology of clinical spasms (e.g., infantile (IS) vs. epileptic spasms (ES)), variety of clinical and electroencephalographic (EEG) features (e.g., typical ictal phenomena without EEG abnormalities), burden of developmental delay, spectrum of associated genetic abnormalities, pathogenesis, treatment options, and related outcome and prognosis. Aside the classical manifestations, IS or ES may present with atypical electroclinical phenotypes (e.g., subtle spasms; modified hypsarrhythmia) and may have their onset outside infancy. An increasing number of genes, proteins, and signaling pathways play crucial roles in the pathogenesis. This condition is currently regarded as a spectrum of disorders: the so-called infantile spasm syndrome (ISs), in association with other causal factors, including structural, infectious, metabolic, syndromic, and immunologic events, all acting on a genetic predisposing background. Hormonal therapy and ketogenic diet are widely used also in combination with (classical and recent) pharmacological drugs. Biologically targeted and gene therapies are increasingly studied. The present narrative review searched in seven electronic databases (primary MeSH terms/keywords included West syndrome, infantile spasms and infantile spasms syndrome and were coupled to 25 secondary clinical, EEG, therapeutic, outcomes, and associated conditions terms) including MEDLINE, Embase, Cochrane Central, Web of Sciences, Pubmed, Scopus, and OMIM to highlight the past knowledge and more recent advances.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical Pediatrics, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Giovanni Corsello
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Silvia Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico", PO "G. Rodolico", Via S. Sofia, 87, 95128, Catania, Italy.
| |
Collapse
|
19
|
Edris Sharif Rahmani, Azarpara H, Abazari MF, Mohajeri MR, Nasimi M, Ghorbani R, Azizpour A, Rahimi H. Novel Mutation C.7348C>T in NF1 Gene Identified by Whole-Exome Sequencing in Patient with Overlapping Clinical Symptoms of Neurofibromatosis Type 1 and Bannayan–Riley–Ruvalcaba Syndrome. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Santoro C, Picariello S, Palladino F, Spennato P, Melis D, Roth J, Cirillo M, Quaglietta L, D’Amico A, Gaudino G, Meucci MC, Ferrara U, Constantini S, Perrotta S, Cinalli G. Retrospective Multicentric Study on Non-Optic CNS Tumors in Children and Adolescents with Neurofibromatosis Type 1. Cancers (Basel) 2020; 12:E1426. [PMID: 32486389 PMCID: PMC7353051 DOI: 10.3390/cancers12061426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023] Open
Abstract
s: The natural history of non-optic central nervous system (CNS) tumors in neurofibromatosis type 1 (NF1) is largely unknown. Here, we describe prevalence, clinical presentation, treatment, and outcome of 49 non-optic CNS tumors observed in 35 pediatric patients (0-18 years). Patient- and tumor-related data were recorded. Overall survival (OS) and progression-free survival (PFS) were evaluated. Eighteen patients (51%) harbored an optic pathway glioma (OPG) and eight (23%) had multiple non-optic CNS lesions. The majority of lesions (37/49) were managed with a wait-and-see strategy, with one regression and five reductions observed. Twenty-one lesions (42.9%) required surgical treatment. Five-year OS was 85.3%. Twenty-four patients progressed with a 5-year PFS of 41.4%. Patients with multiple low-grade gliomas progressed earlier and had a lower 5-year PFS than those with one lesion only (14.3% vs. 57.9%), irrespective of OPG co-presence. Non-optic CNS tumors are common in young patients with NF1. Neither age and symptoms at diagnosis nor tumor location influenced time to progression in our series. Patients with multiple lesions tended to have a lower age at onset and to progress earlier, but with a good OS.
Collapse
Affiliation(s)
- Claudia Santoro
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental and Physical Health, and Preventive Medicine, “Luigi Vanvitelli” University of Campania, Largo Madonna delle Grazie 1, 80138 Naples, Italy
| | - Stefania Picariello
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Federica Palladino
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Via Salvador Allende, Baronissi, 84081 Salerno, Italy;
| | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (J.R.); (S.C.)
| | - Mario Cirillo
- Department of Medicine, Surgery, Neurology, Metabolism and Geriatrics, “Luigi Vanvitelli” University of Campania, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy;
| | - Alessandra D’Amico
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, Via Sergio Pansini 5, 80100 Naples, Italy;
| | - Giuseppina Gaudino
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Maria Chiara Meucci
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| | - Ursula Ferrara
- Section of Pediatrics, Department of Translational Medical Science, “Federico II” University of Naples, Via Sergio Pansini 5, 80100 Naples, Italy;
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (J.R.); (S.C.)
| | - Silverio Perrotta
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| |
Collapse
|
21
|
Giampietro PF. 50 Years Ago in TheJournalofPediatrics: Neurofibromatosis in Childhood. J Pediatr 2020; 218:27. [PMID: 32089186 DOI: 10.1016/j.jpeds.2019.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Philip F Giampietro
- Division of Clinical Genetics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
22
|
Gross AM, Singh G, Akshintala S, Baldwin A, Dombi E, Ukwuani S, Goodwin A, Liewehr DJ, Steinberg SM, Widemann BC. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro Oncol 2019; 20:1643-1651. [PMID: 29718344 DOI: 10.1093/neuonc/noy067] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Plexiform neurofibromas (PN) in neurofibromatosis 1 (NF1) can cause substantial morbidities. Clinical trials targeting PN have recently described decreases in PN volumes. However, no previous study has assessed the association between changes in PN volumes and PN-related morbidities. Our objective was to assess if increasing PN volume in NF1 is associated with increasing PN-related morbidity. Methods This is a retrospective review of patients enrolled on the NCI NF1 natural history study with ≥7 years of data available. Morbidities including pain, motor dysfunction, vision loss, and PN-related surgery were assessed at time of baseline PN MRI with volumetric analysis and time of MRI with maximum PN volume. Results Forty-one patients (median age at baseline 8 y) with 57 PN were included. At baseline, 40 PN had at least 1 PN-associated morbidity. During the observation period, 27 PN required increasing pain medication, and these PN grew faster per year (median difference 8.3%; 95% CI: 2.4, 13.8%) than those PN which did not. PN resulting in motor impairment at baseline (n = 11) had larger volumes compared with those that did not (median difference 461 mL; 95% CI: 66.9, 820). Conclusions Many NF1 PN were associated with clinically significant morbidity at baseline, highlighting the need for longitudinal morbidity evaluations starting at an early age to capture changes in PN-associated morbidities. Prospective evaluation of standardized patient reported and functional outcomes in clinical trials are ongoing and may allow further characterization of the association of PN volume increase or decrease and clinical changes.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Gurbani Singh
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Andrea Baldwin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Somto Ukwuani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - Anne Goodwin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| | - David J Liewehr
- Center for Cancer Research, National Cancer Institute (NCI) of the National Institutes of Health, Bethesda, Maryland
| | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute (NCI) of the National Institutes of Health, Bethesda, Maryland
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
23
|
Diverse Behavior in 18F-Fluorocholine PET/CT of Brain Tumors in Patients With Neurofibromatosis Type 1. Clin Nucl Med 2019; 44:e472-e476. [PMID: 31274626 DOI: 10.1097/rlu.0000000000002636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that causes CNS tumors in around 20% of patients, being pilocytic astrocytomas (PA), and particularly optic pathway gliomas (OPG), the most common. We present three cases of NF1 patients referred for F-fluorocholine PET/CT because of suspected glioma in the setting of ongoing FUMEGA (Functional and Metabolic Glioma Analysis) trial. One case turned out to be a WHO grade I ganglioglioma; the second was a high grade glioma; and the last one (negative in PET) a probable low-grade glioma.
Collapse
|
24
|
Brekelmans C, Hollants S, De Groote C, Sohier N, Maréchal M, Geris L, Luyten FP, Ginckels L, Sciot R, de Ravel T, De Smet L, Lammens J, Legius E, Brems H. Neurofibromatosis type 1-related pseudarthrosis: Beyond the pseudarthrosis site. Hum Mutat 2019; 40:1760-1767. [PMID: 31066482 DOI: 10.1002/humu.23783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder affecting approximately 1 in 2,000 newborns. Up to 5% of NF1 patients suffer from pseudarthrosis of a long bone (NF1-PA). Current treatments are often unsatisfactory, potentially leading to amputation. To gain more insight into the pathogenesis we cultured cells from PA tissue and normal-appearing periosteum of the affected bone for NF1 mutation analysis. PA cells were available from 13 individuals with NF1. Biallelic NF1 inactivation was identified in all investigated PA cells obtained during the first surgery. Three of five cases sampled during a later intervention showed biallelic NF1 inactivation. Also, in three individuals, we examined periosteum-derived cells from normal-appearing periosteum proximal and distal to the PA. We identified the same biallelic NF1 inactivation in the periosteal cells outside the PA region. These results indicate that NF1 inactivation is required but not sufficient for the development of NF1-PA. We observed that late-onset NF1-PA occurs and is not always preceded by congenital bowing. Furthermore, the failure to identify biallelic inactivation in two of five later interventions and one reintervention with a known somatic mutation indicates that NF1-PA can persist after the removal of most NF1 negative cells.
Collapse
Affiliation(s)
- Carlijn Brekelmans
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Silke Hollants
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Caroline De Groote
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Natalie Sohier
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Marina Maréchal
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Liesbet Geris
- Department of Mechanical Engineering, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,GIGA In Silico Medicine, University of Liège, Liège, Belgium
| | - Frank P Luyten
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Rheumatology, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Lieve Ginckels
- Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Pathology, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Luc De Smet
- Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Johan Lammens
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Varni JW, Nutakki K, Swigonski NL. Speech difficulties and patient health communication mediating effects on worry and health-related quality of life in children, adolescents, and young adults with Neurofibromatosis Type 1. Am J Med Genet A 2019; 179:1476-1482. [PMID: 31081992 DOI: 10.1002/ajmg.a.61197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/17/2019] [Accepted: 04/27/2019] [Indexed: 02/04/2023]
Abstract
The objective was to investigate the serial mediating effects of speech difficulties, patient health communication, and disease-specific worry in the relationship between neurofibromatosis (NF) symptoms (pain and skin symptoms) and total generic health-related quality of life (HRQOL) in children, adolescents, and young adults with NF Type 1 (NF1) from the patient perspective. The Speech, Communication, Worry, Pain, Skin Itch Bother, and Skin Sensations Scales from the Pediatric Quality of Life Inventory (PedsQL) NF1 Module and the PedsQL 4.0 Generic Core Scales were completed in a multi-site national study by 305 patients ages 5-25 years. A serial multiple mediator model analysis was conducted to test the hypothesized sequential mediating effects of speech difficulties, health communication, and worry as intervening variables in the association between NF1 symptoms and HRQOL. Symptoms predictive effects on total generic HRQOL were serially mediated by speech difficulties, patient health communication, and worry. In predictive analytics models utilizing hierarchical multiple regression analyses with age and gender demographic covariates, the pain, skin itch bother, and skin sensations multiple mediator models accounted for 61%, 59%, and 56% of the variance in generic HRQOL (p < .001), reflecting large effect sizes. Speech difficulties, patient health communication, and disease-specific worry explain in part the mechanism of symptoms predictive effects on total generic HRQOL in pediatric patients with NF1. Identifying NF1-specific predictors and serial mediators of total generic HRQOL in pediatric patients with NF1 from the patient perspective enables a patient-centered comprehensive care approach for children, adolescents, and young adults with NF1.
Collapse
Affiliation(s)
- James W Varni
- Department of Pediatrics, College of Medicine, Texas A&M University, Texas.,Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, Texas
| | - Kavitha Nutakki
- Department of Pediatrics, Children's Health Services Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nancy L Swigonski
- Department of Pediatrics, Children's Health Services Research, Indiana University School of Medicine, Indianapolis, Indiana.,Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| |
Collapse
|
26
|
Pain, skin sensations symptoms, and cognitive functioning predictors of health-related quality of life in pediatric patients with Neurofibromatosis Type 1. Qual Life Res 2018; 28:1047-1052. [DOI: 10.1007/s11136-018-2055-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
27
|
Confocal Microscopy Predicts the Risk of Recurrence and Malignant Transformation of Mucocutaneous Neurofibromas in NF-1: An Observational Study. Dermatol Res Pract 2018; 2018:6938130. [PMID: 30271432 PMCID: PMC6151241 DOI: 10.1155/2018/6938130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
From 2005 to 2010, 20 consecutive patients with fully manifested neurofibromatosis type 1 (NF1) underwent elective neurofibroma resection at our institution (Departments of Plastic Surgery and of Odontostomatology). Specimens were photographed under optical microscope and confocal laser scanning microscopy (CLSM) with ultra-high accuracy of detail, including depth of field. Patients were followed up for a minimum of 4 years and up to a maximum of 12 years, postsurgery. While all nonrecurring lesions showed intense fluorescence, six of the seven lesions with absence of fluorescence under CLSM recurred at a mean of 5.5 years after surgical excision. Among the re-excised lesions, 3 were diagnosed as malignant at the subsequent removal. Despite the limitation of a small cohort, CLSM appears to be a simple and low-cost technique to differentiate forms of neurofibromas with low and high risk of recurrence and malignant degeneration.
Collapse
|
28
|
Mao B, Chen S, Chen X, Yu X, Zhai X, Yang T, Li L, Wang Z, Zhao X, Zhang X. Clinical characteristics and spectrum of NF1 mutations in 12 unrelated Chinese families with neurofibromatosis type 1. BMC MEDICAL GENETICS 2018; 19:101. [PMID: 29914388 PMCID: PMC6006597 DOI: 10.1186/s12881-018-0615-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder caused by a heterozygous germline mutation in the tumor suppressor gene NF1. Because of the existence of highly homologous pseudogenes, the large size of the gene, and the heterogeneity of mutation types and positions, the detection of variations in NF1 is more difficult than that for an ordinary gene. METHODS In this study, we collected samples from 23 patients among 46 study participants from 12 unrelated Chinese families with NF1. We used a combination of Sanger sequencing, targeted next-generation sequencing, and multiplex ligation-dependent probe amplification to identify potential mutations of different types. RESULTS Seven recurrent mutations and four novel mutations were identified with the aforementioned methods, which were subsequently confirmed by either restriction fragment length polymorphism analysis or Sanger sequencing. Truncating mutations accounted for 73% (8/11) of all mutations identified. We also exhaustively investigated the clinical manifestations of NF1 in patients via acquired pathography, photographs and follow-up. However, no clear genotype-phenotype correlation has been found to date. CONCLUSION In conclusion, the novel mutations identified broaden the spectrum of NF1 mutations in Chinese; however, obvious correlations between genotype and phenotype were not observed in this study.
Collapse
Affiliation(s)
- Bin Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Siyu Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiumei Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, 075061, China
| | - Xiaojia Zhai
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Lulu Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zheng Wang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
29
|
Liao CP, Booker RC, Brosseau JP, Chen Z, Mo J, Tchegnon E, Wang Y, Clapp DW, Le LQ. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest 2018; 128:2848-2861. [PMID: 29596064 DOI: 10.1172/jci99424] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 associates with multiple neoplasms, and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration, which is recruited by chemoattractant stem cell factor (SCF) and has been suggested to sustain neurofibroma tumorigenesis. In the present study, we use new, genetically engineered Scf mice to decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting the main SCF source only slightly affects neurofibroma progression. Other inflammation signatures show that all neurofibromas are associated with high levels of macrophages regardless of Scf status. These findings suggest an active inflammation in neurofibromas and partly explain why mast cell removal alone is not sufficient to relieve tumor burden in this experimental neurofibroma model. Furthermore, we show that plexiform neurofibromas are highly associated with injury-prone spinal nerves that are close to flexible vertebras. In summary, our study details the role of inflammation in neurofibromagenesis. Our data indicate that prevention of inflammation and possibly also nerve injury at the observed tumor locations are therapeutic approaches for neurofibroma prophylaxis and that such treatment should be explored.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Reid C Booker
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edem Tchegnon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurofibromatosis Clinic.,Simmons Comprehensive Cancer Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Harigai R, Sakai S, Nobusue H, Hirose C, Sampetrean O, Minami N, Hata Y, Kasama T, Hirose T, Takenouchi T, Kosaki K, Kishi K, Saya H, Arima Y. Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells. Sci Rep 2018; 8:6069. [PMID: 29666462 PMCID: PMC5904101 DOI: 10.1038/s41598-018-24484-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by germline mutations in the NF1 gene and is characterized by café au lait spots and benign tumours known as neurofibromas. NF1 encodes the tumour suppressor protein neurofibromin, which negatively regulates the small GTPase Ras, with the constitutive activation of Ras signalling resulting from NF1 mutations being thought to underlie neurofibroma development. We previously showed that knockdown of neurofibromin triggers epithelial-mesenchymal transition (EMT) signalling and that such signalling is activated in NF1-associated neurofibromas. With the use of a cell-based drug screening assay, we have now identified the antiallergy drug tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) as an inhibitor of EMT and found that it attenuated the expression of mesenchymal markers and angiogenesis-related genes in NF1-mutated sNF96.2 cells and in neurofibroma cells from NF1 patients. Tranilast also suppressed the proliferation of neurofibromin-deficient cells in vitro more effectively than it did that of intact cells. In addition, tranilast inhibited sNF96.2 cell migration and proliferation in vivo. Knockdown of type III collagen (COL3A1) also suppressed the proliferation of neurofibroma cells, whereas expression of COL3A1 and SOX2 was increased in tranilast-resistant cells, suggesting that COL3A1 and the transcription factor SOX2 might contribute to the development of tranilast resistance.
Collapse
Affiliation(s)
- Ritsuko Harigai
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chikako Hirose
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noriaki Minami
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Neurosurgery, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Yukie Hata
- Department of Biomedical Research & Development, Link Genomics Inc, Tokyo, 103-0024, Japan
| | - Takashi Kasama
- Department of Biomedical Research & Development, Link Genomics Inc, Tokyo, 103-0024, Japan
| | - Takanori Hirose
- Department of Pathology for Regional Communication, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Toshiki Takenouchi
- Department of Paediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
31
|
Yang F, Xu S, Liu R, Shi T, Li X, Li X, Chen G, Liu H, Zhou Q, Chen J. The investigation for potential modifier genes in patients with neurofibromatosis type 1 based on next-generation sequencing. Onco Targets Ther 2018; 11:919-932. [PMID: 29503567 PMCID: PMC5826295 DOI: 10.2147/ott.s156998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Neurofibromatosis type 1 (NF1) is a common Mendelian multi-system disorder that is characterized by café-au-lait spots (CLS), axillary freckling, optic glioma and plexiform neurofibroma. Various mutations of the NF1 gene are widely accepted to be the main cause of this disease, while whether there are still certain other modifier genes that could influence the phenotypes of NF1 is our concern. Patients and Methods One proband and his father are involved, who are characterized by plexiform neurofibroma and cutaneous neurofibroma, respectively. Enhanced Computed tomography (CT) and Positron emission tomography-CT (PET-CT) were taken to collect the radiographic data, and the specimens of this neurofibroma as well as the blood samples from the father and son were sent for panel mutation screening of 295 tumor-related genes based on next-generation screening. Furthermore, the NF1 gene mutations were referred with Canis lupus familiaris, Rattus norvegicus, Gallus gallus, Danio rerio, and Drosophila melanogaster NF1 sequencing for evolutionary conservativeness and then analyzed in Condel databases for pathogenicity prediction. Results The radiography indicated that the benign plexiform neurofibroma only occurred in the son. Also, TP53, FANCA, BCL6, PIK3C2G, RNF43, FGFR4, FLT3, ERBB2, PAK7, NSD1, MEN1 and TSC1 were uniquely found mutated in the son, which could be candidates as new modifier genes; besides, RNF43 was also mutated in public neurofibroma seuquencing data. By KEGG pathway annotation, phosphoinositide-3-kinase-Akt pathway was altered in both the public plexiform neurofibroma sample and in our proband patient. Conclusion This study reexamined the background germline mutations and suggested their potential value as modifier genes that may influence the phenotype heterogenity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Lung Cancer Surgery.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | - Song Xu
- Department of Lung Cancer Surgery.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | - Renwang Liu
- Department of Lung Cancer Surgery.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | - Tao Shi
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | | | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | | | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | - Qinghua Zhou
- Department of Lung Cancer Surgery.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| | - Jun Chen
- Department of Lung Cancer Surgery.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute
| |
Collapse
|
32
|
Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 2018; 138:183-190. [PMID: 29427150 DOI: 10.1007/s11060-018-2788-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors targeting programmed cell death 1 (PD-1) or its ligand (PD-L1) have been shown to be effective in treating patients with a variety of cancers. Biomarker studies have found positive associations between clinical response rates and PD-L1 expression on tumor cells, as well as the presence of tumor infiltrating lymphocytes (TILs). It is currently unknown whether tumors associated with neurofibromatosis types 1 and 2 (NF1 and NF2) express PD-L1. We performed immunohistochemistry for PD-L1 (clones SP142 and E1L3N), CD3, CD20, CD8, and CD68 in NF1-related tumors (ten dermal and six plexiform neurofibromas) and NF2-related tumors (ten meningiomas and ten schwannomas) using archival formalin-fixed paraffin-embedded tissues. Expression of PD-L1 was considered positive in cases with > 5% membranous staining of tumor cells, in accordance with previously published biomarker studies. PD-L1 expression in tumor cells (using the SP142 and E1L3N clones, respectively) was assessed as positive in plexiform neurofibromas (6/6 and 5/6) dermal neurofibromas (8/10 and 6/10), schwannomas (7/10 and 10/10), and meningiomas (4/10 and 2/10). Sparse to moderate presence of CD68, CD3, or CD8 positive TILs was found in 36 (100%) of tumor specimens. Our findings indicate that adaptive resistance to cell-mediated immunity may play a major role in the tumor immune microenvironment of NF1 and NF2-associated tumors. Expression of PD-L1 on tumor cells and the presence of TILs suggest that these tumors might be responsive to immunotherapy with immune checkpoint inhibitors, which should be explored in clinical trials for NF patients.
Collapse
|
33
|
Mostovenko E, Végvári Á, Rezeli M, Lichti CF, Fenyö D, Wang Q, Lang FF, Sulman EP, Sahlin KB, Marko-Varga G, Nilsson CL. Large Scale Identification of Variant Proteins in Glioma Stem Cells. ACS Chem Neurosci 2018; 9:73-79. [PMID: 29254333 PMCID: PMC6008157 DOI: 10.1021/acschemneuro.7b00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM), the most malignant of primary brain tumors, is a devastating and deadly disease, with a median survival of 14 months from diagnosis, despite standard regimens of radical brain tumor surgery, maximal safe radiation, and concomitant chemotherapy. GBM tumors nearly always re-emerge after initial treatment and frequently display resistance to current treatments. One theory that may explain GBM re-emergence is the existence of glioma stemlike cells (GSCs). We sought to identify variant protein features expressed in low passage GSCs derived from patient tumors. To this end, we developed a proteomic database that reflected variant and nonvariant sequences in the human proteome, and applied a novel retrograde proteomic workflow, to identify and validate the expression of 126 protein variants in 33 glioma stem cell strains. These newly identified proteins may harbor a subset of novel protein targets for future development of GBM therapy.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1217 E. Marshall St., Richmond, VA 23284
| | - Ákos Végvári
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Cheryl F. Lichti
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1217 E. Marshall St., Richmond, VA 23284
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri, 63110
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology and Institute for Systems Genetics, New York University School of Medicine, New York City, New York 10016, United States
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erik P. Sulman
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
- Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - K. Barbara Sahlin
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Carol L. Nilsson
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Klinikgatan 32, Lund, SE-221 84 Sweden
| |
Collapse
|
34
|
Oh WH. A Case of Moyamoya Syndrome Diagnosed by Ophthalmic Examination in a Patient with Moyamoya Disease. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.1.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Won Hyuk Oh
- Department of Ophthalmology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
PedsQL Neurofibromatosis Type 1 Module for children, adolescents and young adults: feasibility, reliability, and validity. J Neurooncol 2017; 137:337-347. [PMID: 29273891 DOI: 10.1007/s11060-017-2723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The objective of the present study was to report on the measurement properties of the Pediatric Quality of Life Inventory (PedsQL) Neurofibromatosis Type 1 Module for pediatric patients ages 5-25 from the perspectives of patients and parents. The 104-item PedsQL NF1 Module and 23-item PedsQL Generic Core Scales were completed in a multi-site national study by 323 patients and 335 parents (343 families). Patients were diagnosed with NF1 using the National Institutes of Health diagnostic criteria. In addition to a Total Scale Score, 18 unidimensional scales were derived measuring skin itch bother, skin sensations, pain, pain impact, pain management, cognitive functioning, speech, fine motor, balance, vision, perceived physical appearance, communication, worry, treatment anxiety, medicines, stomach discomfort, constipation, and diarrhea. The PedsQL NF1 Module Scales evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.98; parent proxy-report α = 0.98), and good to excellent reliability for the 18 individual scales (patient self-report α = 0.71-0.96; parent proxy-report α = 0.73-0.98). Intercorrelations with the Generic Core Scales supported construct validity. Factor analysis supported the unidimensionality of the 18 individual scales. The PedsQL NF1 Module Scales demonstrated acceptable to excellent measurement properties, and may be utilized as standardized metrics to assess NF1-specific symptoms and problems in clinical research and practice in children, adolescents, and young adults.
Collapse
|
36
|
Synergistic Interplay between Curcumin and Polyphenol-Rich Foods in the Mediterranean Diet: Therapeutic Prospects for Neurofibromatosis 1 Patients. Nutrients 2017; 9:nu9070783. [PMID: 28754004 PMCID: PMC5537897 DOI: 10.3390/nu9070783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023] Open
Abstract
Neurofibromas are the hallmark lesions in Neurofibromatosis 1 (NF1); these tumors are classified as cutaneous, subcutaneous and plexiform. In contrast to cutaneous and subcutaneous neurofibromas, plexiform neurofibromas can grow quickly and progress to malignancy. Curcumin, a turmeric-derived polyphenol, has been shown to interact with several molecular targets implicated in carcinogenesis. Here, we describe the impact of different dietary patterns, namely Mediterranean diet (MedDiet) compared to the Western diet (WesDiet), both with or without curcumin, on NF1 patients’ health. After six months, patients adopting a traditional MedDiet enriched with 1200 mg curcumin per day (MedDietCurcumin) presented a significant reduction in the number and volume of cutaneous neurofibromas; these results were confirmed in subsequent evaluations. Notably, in one patient, a large cranial plexiform neurofibroma exhibited a reduction in volume (28%) confirmed by Magnetic Resonance Imaging. Conversely, neither unenriched MedDiet nor WesDiet enriched with curcumin exhibited any significant positive effect. We hypothesize that the combination of a polyphenol-rich Mediterranean diet and curcumin was responsible for the beneficial effect observed on NF1. This is, to the best of our knowledge, the first experience with curcumin supplementation in NF1 patients. Our report suggests that an integrated nutritional approach may effectively aid in the management of NF1.
Collapse
|