1
|
Wang H, He Y, Tang J, Liu Y, Wu C, Li C, Sun H, Sun L. (2R, 6R)-hydroxynorketamine ameliorates PTSD-like behaviors during the reconsolidation phase of fear memory in rats by modulating the VGF/BDNF/GluA1 signaling pathway in the hippocampus. Behav Brain Res 2025; 476:115273. [PMID: 39326635 DOI: 10.1016/j.bbr.2024.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
RATIONALE Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown. OBJECTIVE This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored. METHODS SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF). RESULTS SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP. CONCLUSIONS (2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.
Collapse
Affiliation(s)
- Han Wang
- School of Mental Health, Jining Medical University, Jining, Shandong 272067, China; School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan He
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Jiahao Tang
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Hongwei Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| |
Collapse
|
2
|
Muhummed AM, Jibril MK, Yimam AA, Ali SY. Prevalence and correlates of post-traumatic stress disorder among internal displaced people in Qoloji Camps, Somali regional state, Eastern Ethiopia. Int J Psychiatry Med 2025; 60:17-32. [PMID: 38353137 DOI: 10.1177/00912174241232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
OBJECTIVES This study assessed the prevalence and correlates of post-traumatic stress disorder (PTSD) among internally displaced people (IDP) in the Qoloji Camp, Somali Regional State, Eastern Ethiopia. METHODS A community-based cross-sectional study was conducted from October 20 to November 5, 2021. The study utilized systematic random sampling to identify 410 IDP participants from the Qoloji Camp. PTSD was measured using the PTSD Check-list for DSM-5 (PCL-5). Bivariate analysis was performed to determine the crude odds ratio, and multivariate analysis was used to calculate adjusted odds ratios for associations between PTSD and independent variables. RESULTS A total of 404 participants were interviewed (98.5% response rate). The estimated prevalence of PTSD symptoms was 41.1%. In the multivariate logistic regression analysis, several factors were significantly associated with PTSD: being female (AOR = 2.5, 95% CI = 1.39-4.44), lack of food and water (AOR = 2.2, 95% CI = 1.17, 4.23), destruction of personal property (AOR = 3.1, 95% CI = 1.62-6.09), and experiencing torture or beatings (AOR = 1.8, 95% CI = 1.01-3.28). CONCLUSION This study found a high prevalence of PTSD symptoms among IDPs, with factors such as female sex, property destruction, deprivation of essential goods and services, and experiences of torture or beatings significantly associated with those symptoms. To address these findings, prioritizing the well-being of IDPs with a specific focus on women, on-site screening, and the establishment of a referral system to facilitate access to specialized care are essential to enhance the overall mental health of such persons.
Collapse
Affiliation(s)
- Abdi Mahamed Muhummed
- Kabridaher Health Science College, Department of Public Health and Program Coordinator of Alwafa- Development Chartable Organization, Kabridaher, Ethiopia
| | - Meka Kedir Jibril
- Department of Nursing, College of Medicine and Health Science, School of Nursing and Midwifery, Integrated Clinical and Community Mental Health, Jigjiga University, Jigjiga, Ethiopia
| | - Ahmed Adem Yimam
- Comprehensive Specialized Hospital and College of Medicine and Health Science, School of Medicine, Department of Internal Medicine, Jigjiga University, Jigjiga, Ethiopia
| | - Seid Yimam Ali
- College of Medicine and Health Science, School of Medicine, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
3
|
Peng L, Zhang J, Feng J, Ge J, Zou Y, Chen Y, Xu L, Zeng Y, Li JX, Liu J. Activation of trace amine-associated receptor 1 ameliorates PTSD-like symptoms. Biochem Pharmacol 2024; 228:116236. [PMID: 38670437 DOI: 10.1016/j.bcp.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.
Collapse
Affiliation(s)
- Linlin Peng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Zhang
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jialu Feng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Ge
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yu Zou
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yun Chen
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lang Xu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yan Zeng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| |
Collapse
|
4
|
Rhodes A, Wilson C, Zelenkov D, Adams K, Poyant JO, Han X, Faugno A, Montalvo C. "The Psychiatric Domain of Post-Intensive Care Syndrome: A Review for the Intensivist". J Intensive Care Med 2024:8850666241275582. [PMID: 39169853 DOI: 10.1177/08850666241275582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Post-intensive care syndrome (PICS) is a clinical syndrome characterized by new or worsening changes in mental health, cognition, or physical function that persist following critical illness. The psychiatric domain of PICS encompasses new or worsened psychiatric burdens following critical illness, including post-traumatic stress disorder (PTSD), depression, and anxiety. Many of the established predisposing and precipitating factors for the psychiatric domain of PICS are commonly found in the setting of critical illness, including mechanical ventilation (MV), exposure to sedating medications, and physical restraint. Importantly, previous psychiatric history is a strong risk factor for the development of the psychiatric domain of PICS and should be considered when screening patients to diagnose psychiatric impairment and interventions. Delirium has been associated with psychiatric symptoms following ICU admission, therefore prevention warrants careful consideration. Dexmedetomidine has been shown to have the lowest risk for development of delirium when compared to other sedatives and has been the only sedative studied in relation to the psychiatric domain of PICS. Nocturnal dexmedetomidine and intensive care unit (ICU) diaries have been associated with decreased psychiatric burden after ICU discharge. Studies evaluating the impact of other intra-ICU practices on the development of the psychiatric domain of PICS, including the ABCDEF bundle, depth of sedation, and daily spontaneous awakening trials, have been limited and inconclusive. The psychiatric domain of PICS is difficult to treat and may be less responsive to multidisciplinary post-discharge programs and targeted interventions than the cognitive and physical domains of PICS. Given the high morbidity associated with the psychiatric domain of PICS, intensivists should familiarize themselves with the risk factors and intra-ICU interventions that can mitigate this important and under-recognized condition.
Collapse
Affiliation(s)
- Allison Rhodes
- Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA
| | | | | | - Kathryne Adams
- Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA
| | | | - Xuan Han
- Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA
| | - Anthony Faugno
- Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA
| | - Cristina Montalvo
- Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA
| |
Collapse
|
5
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
6
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
7
|
Zhang Y, Peng Z, Tang N, Zhang Y, Liu N, Lv R, Meng Y, Cai M, Wang H. Efficacy of MRI-guided rTMS for post-traumatic stress disorder by modulating amygdala activity: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e081751. [PMID: 38960463 PMCID: PMC11227799 DOI: 10.1136/bmjopen-2023-081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) is a prevalent and severe psychiatric disorder. Repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex provides limited relief for symptoms of PTSD. This study will be conducted to validate the efficacy of MRI-guided rTMS in targeting the sites most closely associated with the amygdala for patients with PTSD. We hypothesise that the intervention will improve clinical symptoms by decreasing amygdala activity in patients. METHODS AND ANALYSIS A randomised, double-blind, sham-controlled trial will be conducted. Forty-eight eligible patients with PTSD will be randomly assigned to receive either active or sham MRI-guided rTMS for 10 consecutive days after the initial MRI scans. MRI scans will be recollected at the end of the intervention. Clinical assessments will be performed at baseline, treatment day 5, treatment day 10, and 2 weeks, 4 weeks, 8 weeks after completion of the intervention to monitor changes in clinical symptoms. The primary assessment outcome is the change in PTSD symptoms between baseline and treatment day 10, as measured by the PTSD Checklist for DSM-5. Repeated measures analysis of variance will be performed using statistical software SPSS V.26.0. The significance level will be set at 0.05. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Ethics Committee of Xijing Hospital in Xi'an, China (KY20222176-X-1), and the trial has been registered on ClinicalTrials.gov. The findings of this trial will be disseminated at academic conferences or published in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT05544110.
Collapse
Affiliation(s)
- Yaochi Zhang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Nailong Tang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Yuyu Zhang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Nian Liu
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Runxin Lv
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Yumeng Meng
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
| |
Collapse
|
8
|
Averill CL, Averill LA, Akiki TJ, Fouda S, Krystal JH, Abdallah CG. Findings of PTSD-specific deficits in default mode network strength following a mild experimental stressor. NPP-DIGITAL PSYCHIATRY AND NEUROSCIENCE 2024; 2:9. [PMID: 38919723 PMCID: PMC11197271 DOI: 10.1038/s44277-024-00011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Reductions in default mode (DMN) connectivity strength have been reported in posttraumatic stress disorder (PTSD). However, the specificity of DMN connectivity deficits in PTSD compared to major depressive disorder (MDD), and the sensitivity of these alterations to acute stressors are not yet known. 52 participants with a primary diagnosis of PTSD (n = 28) or MDD (n = 24) completed resting-state functional magnetic resonance imaging immediately before and after a mild affective stressor. A 2 × 2 design was conducted to determine the effects of group, stress, and group*stress on DMN connectivity strength. Exploratory analyses were completed to identify the brain region(s) underlying the DMN alterations. There was significant group*stress interaction (p = 0.03), reflecting stress-induced reduction in DMN strength in PTSD (p = 0.02), but not MDD (p = 0.50). Nodal exploration of connectivity strength in the DMN identified regions of the ventromedial prefrontal cortex and the precuneus potentially contributing to DMN connectivity deficits. The findings indicate the possibility of distinct, disease-specific, patterns of connectivity strength reduction in the DMN in PTSD, especially following an experimental stressor. The identified dynamic shift in functional connectivity, which was perhaps induced by the stressor task, underscores the potential utility of the DMN connectivity and raises the question whether these disruptions may be inversely affected by antidepressants known to treat both MDD and PTSD psychopathology.
Collapse
Affiliation(s)
- Christopher L. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX USA
| | - Lynnette A. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Teddy J. Akiki
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Department of Psychiatry, Stanford University, Stanford, CA USA
| | - Samar Fouda
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Chadi G. Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
9
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
10
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
11
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
12
|
Borgogna NC, Owen T, Vaughn J, Johnson DAL, Aita SL, Hill BD. So how special is special K? A systematic review and meta-analysis of ketamine for PTSD RCTs. Eur J Psychotraumatol 2024; 15:2299124. [PMID: 38224070 PMCID: PMC10791091 DOI: 10.1080/20008066.2023.2299124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background: PTSD is a significant mental health problem worldwide. Current evidence-based interventions suffer various limitations. Ketamine is a novel agent that is hoped to be incrementally better than extant interventions.Objective: Several randomized control trials (RCTs) of ketamine interventions for PTSD have now been published. We sought to systematically review and meta-analyse results from these trials to evaluate preliminary evidence for ketamine's incremental benefit above-and-beyond control interventions in PTSD treatment.Results: Omnibus findings from 52 effect sizes extracted across six studies (n = 221) yielded a small advantage for ketamine over control conditions at reducing PTSD symptoms (g = 0.27, 95% CI = 0.03, 0.51). However, bias-correction estimates attenuated this effect (adjusted g = 0.20, 95%, CI = -0.08, 0.48). Bias estimates indicated smaller studies reported larger effect sizes favouring ketamine. The only consistent timepoint assessed across RCTs was 24-hours post-initial infusion. Effects at 24-hours post-initial infusion suggest ketamine has a small relative advantage over controls (g = 0.35, 95% CI = 0.06, 0.64). Post-hoc analyses at 24-hours post-initial infusion indicated that ketamine was significantly better than passive controls (g = 0.44, 95% CI = 0.03, 0.85), but not active controls (g = 0.24, 95% CI = -0.30, 0.78). Comparisons one-week into intervention suggested no meaningful group differences (g = 0.24, 95% CI = 0.00, 0.48). No significant differences were evident for RCTs that examined effects two-weeks post initial infusion (g = 0.17, 95% CI = -0.10, 0.44).Conclusions: Altogether, ketamine-for-PTSD RCTs reveal a nominal initial therapeutic advantage relative to controls. However, bias and heterogeneity appear problematic. While rapid acting effects were observed, all control agents (including saline) also evidenced rapid acting effects. We argue blind penetration to be a serious concern, and that placebo is the likely mechanism behind reported therapeutic effects.
Collapse
Affiliation(s)
| | - Tyler Owen
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jacob Vaughn
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - David A. L. Johnson
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
13
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
14
|
Lappas AS, Polyzopoulou ZA, Christodoulou N, Bozikas VP, Samara MT. Effects of Antidepressants on Sleep in Post-traumatic Stress Disorder: An Overview of Reviews. Curr Neuropharmacol 2024; 22:749-805. [PMID: 37533247 PMCID: PMC10845105 DOI: 10.2174/1570159x21666230801144328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Antidepressants are a commonly used, easily accessible, and overall safe treatment option for post-traumatic stress disorder (PTSD). The present review aims to evaluate the efficacy and safety of antidepressants in treating sleep disturbances in patients with PTSD. PubMed and the Cochrane Library were searched (July 2022) for systematic reviews and meta-analyses on the treatment of PTSD. Moreover, PubMed and ClinicalTrials.gov were searched for individual trials investigating the antidepressant treatment of PTSD (up to September 2022), and reference lists of all possibly relevant identified studies were screened. Sleep-related outcomes, i.e., total sleep time, sleep quality, dreams/ nightmares, insomnia, and somnolence, were extracted independently by at least two reviewers. Metaanalytic evaluations were performed wherever possible. 39 randomised controlled trials (RCTs) were identified; data from pooled analyses, reviews, and observational studies were used for antidepressants with a weak evidence base or when their findings were deemed important. Overall, scarce data exist on the effects of antidepressants on sleep outcomes among patients with PTSD. Some evidence may support the use of amitriptyline, nefazodone, paroxetine, and sertraline for improving sleep in patients with PTSD. Τhere was a meta-analytical trend indicating improvement of nightmares with fluoxetine, less insomnia with amitriptyline and more with brofaromine, as well as more somnolence with paroxetine vs. placebo, respectively. However, data from more than 1 RCT with a considerable number of patients were only available for paroxetine. Evidence is insufficient to draw safe conclusions. More and better-designed RCTs, with consistent reporting of sleep-related outcomes, are needed.
Collapse
Affiliation(s)
- Andreas S. Lappas
- Department of Psychiatry, Medical School, General University Hospital of Larissa, University of Thessaly, Larissa, Greece
- Department of Geriatric Liaison Psychiatry, Royal Gwent Hospital, Newport, United Kingdom
| | - Zoi A. Polyzopoulou
- Department of Psychology, University of Western Macedonia, Florina, 53100, Greece
| | - Nikos Christodoulou
- Department of Psychiatry, Medical School, General University Hospital of Larissa, University of Thessaly, Larissa, Greece
- School of Medicine, University of Nottingham, Nottingham, England, United Kingdom
| | - Vasilios-Panteleimon Bozikas
- II Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Lagkada Str. 196, 56430Thessaloniki, Greece
| | - Myrto T. Samara
- Department of Psychiatry, Medical School, General University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|
15
|
Ravaglia IC, Jasodanand V, Bhatnagar S, Grafe LA. Sex differences in body temperature and neural power spectra in response to repeated restraint stress. Stress 2024; 27:2320780. [PMID: 38414377 PMCID: PMC10989713 DOI: 10.1080/10253890.2024.2320780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Repeated stress is associated with an increased risk of developing psychiatric illnesses such as post-traumatic stress disorder (PTSD), which is more common in women, yet the neurobiology behind this sex difference is unknown. Habituation to repeated stress is impaired in PTSD, and recent preclinical studies have shown that female rats do not habituate as fully as male rats to repeated stress, which leads to impairments in cognition and sleep. Further research should examine sex differences after repeated stress in other relevant measures, such as body temperature and neural activity. In this study, we analyzed core body temperature and EEG power spectra in adult male and female rats during restraint, as well as during sleep transitions following stress. We found that core body temperature of male rats habituated to repeated restraint more fully than female rats. Additionally, we found that females had a higher average beta band power than males on both days of restraint, indicating higher levels of arousal. Lastly, we observed that females had lower delta band power than males during sleep transitions on Day 1 of restraint, however, females demonstrated higher delta band power than males by Day 5 of restraint. This suggests that it may take females longer to initiate sleep recovery compared with males. These findings indicate that there are differences in the physiological and neural processes of males and females after repeated stress. Understanding the way that the stress response is regulated in both sexes can provide insight into individualized treatment for stress-related disorders.
Collapse
Affiliation(s)
- IC Ravaglia
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - V Jasodanand
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - S Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LA Grafe
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| |
Collapse
|
16
|
Abstract
Post-traumatic stress disorder (PTSD) develops after trauma exposure and involves symptoms of avoidance, intrusive re-experiencing, mood and cognitive dysfunction, and hypervigilance. PTSD is often comorbid with Gulf War Illness (GWI), a neurological condition involving widespread pain, cognitive dysfunction, digestive problems, and other symptoms, in Gulf War veterans. PTSD tends to be more severe when comorbid with GWI. Low cortisol and elevated homocysteine levels have been found in PTSD, making them potential PTSD biomarkers. The low-glutamate diet, which aims to reduce excitotoxicity by eliminating the consumption of free glutamate and aspartate, has been shown to significantly reduce GWI and PTSD symptoms. This study examined whether changes in serum cortisol and homocysteine are associated with reduced PTSD severity in veterans with GWI after one month on the low-glutamate diet, and whether reducing the consumption of dietary excitotoxins was associated changes in PTSD and serum biomarkers. Data were analyzed for 33 veterans. No serum biomarkers significantly changed post-diet; however, cortisol increased as dietary excitotoxin consumption decreased, which held in a multivariable linear regression after adjustment for sex. Reduced dietary excitotoxin consumption was also associated with reduced hyperarousal symptoms, which held in a multivariable linear regression after adjustment for sex. Cortisol increase was associated with reduced avoidance symptoms after adjustment for change in BMI, and was marginally associated with overall PTSD reduction. Change in homocysteine was not significantly related to dietary adherence nor change in PTSD. Results suggest that reducing the consumption of dietary excitotoxins may normalize cortisol levels, which has been associated with alleviating PTSD.
Collapse
Affiliation(s)
- Sidney L Murray
- Department of Neuroscience, American University, Washington, DC, USA
| | - Kathleen F Holton
- Department of Neuroscience, American University, Washington, DC, USA
- Department of Health Studies, American University, Washington, DC, USA
- Center for Neuroscience and Behaviour, American University, Washington, DC, USA
| |
Collapse
|
17
|
Yu Y, Wu K, Yang X, Long J, Chang C. Terahertz Photons Improve Cognitive Functions in Posttraumatic Stress Disorder. RESEARCH (WASHINGTON, D.C.) 2023; 6:0278. [PMID: 38111677 PMCID: PMC10726292 DOI: 10.34133/research.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a serious psychosis leading to cognitive impairment. To restore cognitive functions for patients, the main treatments are based on medication or rehabilitation training but with limited effectiveness and strong side effects. Here, we demonstrate a new treatment approach for PTSD by using terahertz (THz) photons stimulating the hippocampal CA3 subregion. We verified that this method can nonthermally restore cognitive function in PTSD rats in vivo. After THz photon irradiation, the PTSD rats' recognitive index improved by about 10% in a novel object recognition test, the PTSD rats' accuracy improved by about 100% in a shuttler box test, the PTSD rats' numbers to identify target box was about 5 times lower in a Barnes maze test, and the rate of staying in new arm increased by approximately 40% in a Y-maze test. Further experimental studies found that THz photon (34.5 THz) irradiation could improve the expression of NR2B (increased by nearly 40%) and phosphorylated NR2B (increased by about 50%). In addition, molecular dynamics simulations showed that THz photons at a frequency of 34.5 THz are mainly absorbed by the pocket of glutamate receptors rather than by glutamate molecules. Moreover, the binding between glutamate receptors and glutamate molecules was increased by THz photons. This study offers a nondrug, nonthermal approach to regulate the binding between the excitatory neurotransmitter (glutamate) and NR2B. By increasing synaptic plasticity, it effectively improves the cognitive function of animals with PTSD, providing a promising treatment strategy for NR2B-related cognitive disorders.
Collapse
Affiliation(s)
- Yun Yu
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jiangang Long
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics,
Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Nickson D, Singmann H, Meyer C, Toro C, Walasek L. Replicability and reproducibility of predictive models for diagnosis of depression among young adults using Electronic Health Records. Diagn Progn Res 2023; 7:25. [PMID: 38049919 PMCID: PMC10696659 DOI: 10.1186/s41512-023-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Recent advances in machine learning combined with the growing availability of digitized health records offer new opportunities for improving early diagnosis of depression. An emerging body of research shows that Electronic Health Records can be used to accurately predict cases of depression on the basis of individual's primary care records. The successes of these studies are undeniable, but there is a growing concern that their results may not be replicable, which could cast doubt on their clinical usefulness. METHODS To address this issue in the present paper, we set out to reproduce and replicate the work by Nichols et al. (2018), who trained predictive models of depression among young adults using Electronic Healthcare Records. Our contribution consists of three parts. First, we attempt to replicate the methodology used by the original authors, acquiring a more up-to-date set of primary health care records to the same specification and reproducing their data processing and analysis. Second, we test models presented in the original paper on our own data, thus providing out-of-sample prediction of the predictive models. Third, we extend past work by considering several novel machine-learning approaches in an attempt to improve the predictive accuracy achieved in the original work. RESULTS In summary, our results demonstrate that the work of Nichols et al. is largely reproducible and replicable. This was the case both for the replication of the original model and the out-of-sample replication applying NRCBM coefficients to our new EHRs data. Although alternative predictive models did not improve model performance over standard logistic regression, our results indicate that stepwise variable selection is not stable even in the case of large data sets. CONCLUSION We discuss the challenges associated with the research on mental health and Electronic Health Records, including the need to produce interpretable and robust models. We demonstrated some potential issues associated with the reliance on EHRs, including changes in the regulations and guidelines (such as the QOF guidelines in the UK) and reliance on visits to GP as a predictor of specific disorders.
Collapse
Affiliation(s)
| | - Henrik Singmann
- Department of Experimental Psychology, University College London, London, UK
| | - Caroline Meyer
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Carla Toro
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Walasek
- Department of Psychology, University of Warwick, Coventry, UK
| |
Collapse
|
19
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
20
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
21
|
Kim K, Kang S, Nam CM, Stewart R, Tsai AC, Jung SJ. A marginal structural model to estimate the effect of antidepressant medication treatment on major cardiovascular events among people with post-traumatic stress disorder. Psychol Med 2023; 53:7837-7846. [PMID: 37485701 PMCID: PMC10755244 DOI: 10.1017/s0033291723001873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Previous evidence on antidepressant medication and cardiovascular disease (CVD) among patients with posttraumatic stress disorder (PTSD) has been inconclusive. We estimated the association between antidepressant medication and CVD by applying a marginal structural model. METHODS We analyzed medical utilization records of 27 170 people with PTSD without prior major cardiovascular events in the Korean National Health Insurance Database (NHID). PTSD and CVD were defined in accordance with the recorded ICD-10 diagnostic codes. We acquired information on antidepressant use from the NHID and categorized them by medication type. A composite major adverse cardiovascular events (MACE) outcome was defined as coronary artery disease with revascularization, ischaemic stroke, and/or haemorrhagic stroke. We used inverse probability of treatment weighting to estimate the parameters of a marginal structural discrete-time survival analysis regression model, comparing the resulting estimates to those derived from traditional time-fixed and time-varying Cox proportional hazards regression. We calculated cumulative daily defined doses to test for a dose-response relationship. RESULTS People exposed to antidepressants showed a higher hazard of MACE [hazard ratio (HR) 1.34, 95% confidence interval (CI) 1.18-1.53]. The estimated effects were strongest for selective serotonin reuptake inhibitors (HR 1.24, 95% CI 1.08-1.44) and TCAs (HR 1.33, 95% CI 1.13-1.56). Exposure to serotonin-norepinephrine reuptake inhibitors did not appear to increase the risk of MACE. People exposed to higher doses of antidepressants showed higher risk of MACE. CONCLUSIONS In a national cohort of people with PTSD, exposure to antidepressant medications increased the risk of MACE in a dose-response fashion.
Collapse
Affiliation(s)
- Kwanghyun Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sunghyuk Kang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
| | - Robert Stewart
- King's College London (Institute of Psychiatry, Psychology and Neuroscience), London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Alexander C. Tsai
- Center for Global Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard Center for Population and Development Studies, Cambridge, Massachusetts, USA
| | - Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
- Center for Global Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Center for Population and Development Studies, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Nickson D, Meyer C, Walasek L, Toro C. Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review. BMC Med Inform Decis Mak 2023; 23:271. [PMID: 38012655 PMCID: PMC10680172 DOI: 10.1186/s12911-023-02341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Depression is one of the most significant health conditions in personal, social, and economic impact. The aim of this review is to summarize existing literature in which machine learning methods have been used in combination with Electronic Health Records for prediction of depression. METHODS Systematic literature searches were conducted within arXiv, PubMed, PsycINFO, Science Direct, SCOPUS and Web of Science electronic databases. Searches were restricted to information published after 2010 (from 1st January 2011 onwards) and were updated prior to the final synthesis of data (27th January 2022). RESULTS Following the PRISMA process, the initial 744 studies were reduced to 19 eligible for detailed evaluation. Data extraction identified machine learning methods used, types of predictors used, the definition of depression, classification performance achieved, sample size, and benchmarks used. Area Under the Curve (AUC) values more than 0.9 were claimed, though the average was around 0.8. Regression methods proved as effective as more developed machine learning techniques. LIMITATIONS The categorization, definition, and identification of the numbers of predictors used within models was sometimes difficult to establish, Studies were largely Western Educated Industrialised, Rich, Democratic (WEIRD) in demography. CONCLUSION This review supports the potential use of machine learning techniques with Electronic Health Records for the prediction of depression. All the selected studies used clinically based, though sometimes broad, definitions of depression as their classification criteria. The reported performance of the studies was comparable to or even better than that found in primary care. There are concerns with generalizability and interpretability.
Collapse
Affiliation(s)
| | - Caroline Meyer
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Walasek
- Department of Psychology, University of Warwick, Coventry, UK
| | - Carla Toro
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Li WW, Wang J, Wu HB, Qiu ZK. Exploring the potential mechanism of Kaixinsan powder for the same pathogenesis of PTSD and anxiety based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e35869. [PMID: 37986356 PMCID: PMC10659655 DOI: 10.1097/md.0000000000035869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and anxiety are common mental illnesses and there are many similar pathogenesis and clinical manifestations between PTSD and anxiety. Kaixinsan powder (KXS), a commonly used prescription in traditional Chinese medicine, has been widely used to treat PTSD and anxiety. This study aims to explore the potential mechanisms of KXS for the same pathogenesis of PTSD and anxiety using a network pharmacology approach. METHODS The bioactive components and relevant target genes of KXS were obtained from the database about Traditional Chinese Medicine. The key genes of PTSD and anxiety were derived from disease databases. Subsequently, the network of protein-protein interaction and a network of "drug-components-disease-targets" was constructed. In order to treat PTSD and anxiety, gene ontology enrichment and signaling pathway enrichment were analyzed by using R language and components-core targets associated were validated by molecular docking. RESULTS One hundred three targets of KXS in treating PTSD and anxiety were identified. The results of protein-protein interaction analysis and molecular docking indicated that AKT1 and IL-6 were crucial targets. Moreover, KEGG analysis has shown that neuroactive ligand-receptor interaction, calcium signaling pathway, and cAMP signaling pathway may play crucial roles in treating PTSD and anxiety. Ten biological process, 10 molecular function, and 10 cellular component were revealed via gene ontology analysis. CONCLUSIONS The network pharmacology study and molecular docking indicated that KXS treated anxiety and PTSD by multiple components, targets, and signaling pathways. These results provide an important reference for subsequent basic research on PTSD and anxiety.
Collapse
Affiliation(s)
- Wen-Wei Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia Wang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
24
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
25
|
Mansour M, Joseph GR, Joy GK, Khanal S, Dasireddy RR, Menon A, Barrie Mason I, Kataria J, Patel T, Modi S. Post-traumatic Stress Disorder: A Narrative Review of Pharmacological and Psychotherapeutic Interventions. Cureus 2023; 15:e44905. [PMID: 37814755 PMCID: PMC10560516 DOI: 10.7759/cureus.44905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental health condition affecting individuals exposed to traumatic events. This paper is a narrative review of the existing literature on pharmacological and psychotherapeutic interventions for PTSD. Treatment includes selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and alpha-1 adrenergic receptor antagonists. By exploring the outcomes of these interventions, the review seeks to provide valuable insights into their potential as PTSD treatment options. The paper also highlights the importance of tailoring treatment plans to individual needs and discusses emerging treatments, such as mindfulness-based therapies, virtual reality therapy, and neurostimulation techniques. By integrating findings from various studies, it aims to offer valuable information to optimize treatment strategies and enhance outcomes for individuals suffering from PTSD. The goal is to support informed decision-making, ultimately leading to more effective and tailored approaches to address the challenges posed by this debilitating condition.
Collapse
Affiliation(s)
- Mohammad Mansour
- General Medicine, University of Debrecen, Debrecen, HUN
- General Medicine, Jordan University Hospital, Amman, JOR
| | | | - Golda K Joy
- General Practice, St. John's Medical College, Bengaluru, IND
| | | | | | - Aardra Menon
- General Practice, PK Das Institute of Medical Sciences, Kerala, IND
| | - Iyesatu Barrie Mason
- General Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Janvi Kataria
- School of Medicine, D.Y. Patil University, Mumbai, IND
| | - Tirath Patel
- School of Medicine, American University of Antigua, St. John's, ATG
| | - Shivani Modi
- Internal Medicine, Einstein Healthcare Network, Philadelphia, USA
| |
Collapse
|
26
|
Dong Q, Yang Y, Ma M, Ou W, Lv G, Huang M, Li Y, Lu Y, Fan A, Ju Y, Zhang Y. Posttraumatic stress symptoms in healthcare workers during the COVID-19 pandemic: A four-wave longitudinal study. Psychiatry Res 2023; 327:115406. [PMID: 37591109 DOI: 10.1016/j.psychres.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Posttraumatic stress symptoms of healthcare workers have become a significant public concern in the healthcare system that have long COVID-19. It is less known how the pandemic impacts the HCWs' PTSS longitudinally and long-term risk factors for it. METHODS Four consecutive surveys were conducted among healthcare workers in China from 2019 to 2023 COVID-19 outbreaks. Multilevel mixed-effect models were used to examine longitudinal changes and risk factors. Network analysis was utilized to explore network centrality changes in PTSS symptoms. RESULTS HCWs' PTSS symptoms were increased over time during the COVID-19 pandemic. Being female, being nurse, working in the emergency department, working longer hours, less frequently going back home and having COVID-19 infection are risk factors of PTSS for HCWs; unmarried is the protective factor. Significant interaction between symptom changes and profession exists. PTSS networks showed that Avoidance of thoughts, Emotional-cue activity, Exaggerated startle response and Hypervigilance were the central symptoms during four waves. The global strength of the PTSS network grows over time, and nodal strength of Avoidance of thoughts, Loss of interest and Negative beliefs increased by COVID-19. CONCLUSION The pandemic's impacts on healthcare workers vary by professions. PTSS symptoms exacerbate, reinforce each other, and persists with recurring waves.
Collapse
Affiliation(s)
- Qiangli Dong
- Department of Psychiatry, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumeng Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Wenwen Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Guanyi Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Mei Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Yunjing Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Yimei Lu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Ajiao Fan
- Department of Psychiatry, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Novel Mechanisms and Interventions for PTSD. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:286-287. [PMID: 37404964 PMCID: PMC10316218 DOI: 10.1176/appi.focus.23021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
|
28
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
29
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
30
|
Petrucci E, Cofini V, Pizzi B, Sollecchia G, Cascella M, Stefano N, Vittori A, Marinangeli F. Health Status Perception and Psychological Sequelae in Buried Victims: An Observational Study on Survivors of the Earthquake in Amatrice (Italy), Three Years Later. Prehosp Disaster Med 2023; 38:193-198. [PMID: 36803525 DOI: 10.1017/s1049023x23000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION The extrication from rubble is particularly critical for the survival of the victims of an earthquake. Early repeated infusion of sedative agents (SAs) in the acute trauma phase may interfere with neural processes leading to posttraumatic stress disorder (PTSD). STUDY OBJECTIVE This study aimed to analyze the psychological status reported by the buried victims of the earthquake in Amatrice (August 24, 2016; Italy) by considering type of the SAs administered during the extrication maneuvers. METHODS This was an observational study on data from 51 patients directly rescued under the rubble during the earthquake in Amatrice. During extrication maneuvers, a moderate sedation was administered by titrating ketamine (0.3-0.5mg/kg) or morphine (0.1-0.15mg/kg) with respect to the Richmond Agitation and Sedation Scale (RASS; between -2 and -3) in buried victims.Three years following the rescue, the survivors were interviewed on their perceived health status and stress using a questionnaire which consisted of 17 items: the standard four-item set of healthy days core questions (CDC HRQOL-4); the 12-item General Health Questionnaire (GHQ-12); and in addition, survivors were asked if they had a diagnosis for anxiety, depression, or for PTSD. RESULTS The study analyzed data from the complete clinical documentation of 51 survivors; 30 were males and 21 females, with an average age of 52 years. Twenty-six (26) subjects were treated with ketamine, while 25 were treated with morphine, during the extrication procedures. Concerning the quality-of-life analysis, only 10 survivors out of 51 perceived their health status as good; the others reported psychological disorders. The GHQ-12 scores showed that all survivors had psychological distress with a mean total score of 22.2 (SD = 3.5). Eighteen (18) victims declared to have had a diagnosis of generalized anxiety (35%), while 29 were treated for depression (57%) and PTSD (57%) by a specialist. With regards to the perceived distress level and the anxiety disorder, this analysis showed significant associations with SAs used during extrication, with a better performance for ketamine than for morphine. CONCLUSION These findings suggest investigating whether early sedation with ketamine directly in the disaster setting may promote the prophylaxis and reduce the risk of developing trauma-related disorders (TRDs) on the buried victims of major natural disasters in future studies.
Collapse
Affiliation(s)
- Emiliano Petrucci
- Department of Anesthesia and Intensive Care Unit, San Salvatore Academic Hospital of L'Aquila, L'Aquila, Italy
| | - Vincenza Cofini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Barbara Pizzi
- Department of Anesthesia and Intensive Care Unit, SS Filippo and Nicola Academic Hospital of Avezzano, L'Aquila, Italy
| | - Giacomo Sollecchia
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Cascella
- Department of Anesthesia and Critical Care, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Naples, Italy
| | - Necozione Stefano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Franco Marinangeli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
31
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
32
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
33
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
34
|
Asadi Aghajari M, Hashemzadeh E, Fazlizade S, Ojaghloo M, Ghanbari-Afra L, Ghahremani Z, Abdi M. Post-Traumatic Stress Disorder among Emergency Medical Technicians and its Relationship with Occupational Stress and Depression: Post-Corona Screening, Zanjan, 2022. Bull Emerg Trauma 2023; 11:138-145. [PMID: 37525656 PMCID: PMC10387340 DOI: 10.30476/beat.2023.98245.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023] Open
Abstract
Objective Emergency medical technicians (EMTs) are at risk of developing post-traumatic stress disorder (PTSD) as a result of seeing painful events involving suspected COVID-19 patients and being concerned about potentially infecting themselves and their families. Therefore, screening for these disorders is essential in the post-Corona era. This study aimed to investigate the prevalence of PTSD among EMTs and its relationship with occupational stress and depression when dealing with patients with suspected COVID-19. Methods This cross-sectional study was conducted on EMTs at Zanjan University of Medical Sciences using a convenience sampling method. Data were collected using a demographic information questionnaire, PTSD checklist, occupational stress questionnaire, and the Goldberg depression scale. The data were analyzed using SPSS software. Statistical tests such as Pearson correlation and logistic regression analysis were used to evaluate the data. Result 205 EMTs participated in this cross-sectional study. The mean and standard deviation of PTSD was 37.13±12.93 (17-85), and according to the cut-off (45), the prevalence of PTSD was 30.7%. There was a direct and significant association between the total PTSD and depression scores (r=0.435, p=0.001). Some occupational stress domains, such as demand (r=0.306, p=0.001), colleague support (r=0.149, p=0.033), and communication (r=0.293, p=0.001) had a significant association with PTSD. The domains of sadness in depression (OR=1.074, p=0.027) and demands in occupational stress (OR=1.872, p=0.029) were the most important predictors of PTSD. Among demographic variables, employment status was the most important protective factor for PTSD (OR=0.378, p=0.038). Conclusion PTSD affected one-third of EMTs, and it had a significant relationship with various dimensions of depression and occupational stress. Due to the chronic nature of these diseases, policymakers are advised to prioritize psychological screening of EMTs as part of the post-Corona policy.
Collapse
Affiliation(s)
| | - Elnaz Hashemzadeh
- Department of Nursing, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Sevda Fazlizade
- MSc of Psychiatric Nursing, Tehran Azad Medical University, Tehran, Iran
| | - Mansour Ojaghloo
- Research Development Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Ghanbari-Afra
- Trauma Nursing Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Ghahremani
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Zanjan University of Medical Sciences, Iran
| | - Mohammad Abdi
- Department of Emergency and Critical Care, School of Nursing, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
35
|
Ragnhildstveit A, Roscoe J, Bass LC, Averill CL, Abdallah CG, Averill LA. The potential of ketamine for posttraumatic stress disorder: a review of clinical evidence. Ther Adv Psychopharmacol 2023; 13:20451253231154125. [PMID: 36895431 PMCID: PMC9989422 DOI: 10.1177/20451253231154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 03/08/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a devastating condition, for which there are few pharmacological agents, often with a delayed onset of action and poor efficacy. Trauma-focused psychotherapies are further limited by few trained providers and low patient engagement. This frequently results in disease chronicity as well as psychiatric and medical comorbidity, with considerable negative impact on quality of life. As such, off-label interventions are commonly used for PTSD, particularly in chronic refractory cases. Ketamine, an N-methyl-D-aspartate (NDMA) receptor antagonist, has recently been indicated for major depression, exhibiting rapid and robust antidepressant effects. It also shows transdiagnostic potential for an array of psychiatric disorders. Here, we synthesize clinical evidence on ketamine in PTSD, spanning case reports, chart reviews, open-label studies, and randomized trials. Overall, there is high heterogeneity in clinical presentation and pharmacological approach, yet encouraging signals of therapeutic safety, efficacy, and durability. Avenues for future research are discussed.
Collapse
Affiliation(s)
- Anya Ragnhildstveit
- Integrated Research Literacy Group, Draper, UT, USA.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jeremy Roscoe
- Integrated Research Literacy Group, Draper, UT, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lisa C Bass
- Integrated Research Literacy Group, Draper, UT, USA.,Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher L Averill
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Yale School of Medicine, New Haven, CT, USA.,National Center for PTSD, West Haven, CT, USA
| | - Chadi G Abdallah
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Yale School of Medicine, New Haven, CT, USA.,National Center for PTSD, West Haven, CT, USA
| | - Lynnette A Averill
- Baylor College of Medicine, 1977 Butler Avenue, 4-E-187, Houston, TX 77030, USA.,Yale School of Medicine, New Haven, CT, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,National Center for PTSD, West Haven, CT, USA
| |
Collapse
|
36
|
Holmes SE, Abdallah C, Esterlis I. Imaging synaptic density in depression. Neuropsychopharmacology 2023; 48:186-190. [PMID: 35768568 PMCID: PMC9700860 DOI: 10.1038/s41386-022-01368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Major depressive disorder is a prevalent and heterogeneous disorder with treatment resistance in at least 50% of individuals. Most of the initial studies focused on the monoamine system; however, recently other mechanisms have come under investigation. Specific to the current issue, studies show synaptic involvement in depression. Other articles in this issue report on reductions in synaptic density, dendritic spines, boutons and glia associated with stress and depression. Importantly, it appears that some drugs (e.g., ketamine) may lead to rapid synaptic restoration or synaptogenesis. Direct evidence for this comes from preclinical work. However, neuroimaging studies, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have become useful in assessing these changes in vivo. Here, we describe the use of neuroimaging techniques in the evaluation of synaptic alterations associated with depression in humans, as well as measurement of synaptic restoration after administration of ketamine. Although more research is desired, use of these techniques widen our understanding of depression and move us further along the path to targeted and effective treatment for depression.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chadi Abdallah
- Baylor College of Medicine, Houston, TX, USA
- National Center for PTSD, Houston, TX, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- National Center for PTSD, Houston, TX, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
37
|
Guan P, Huang C, Lan Q, Huang S, Zhou P, Zhang C. Activation of ventral tegmental area dopaminergic neurons ameliorates anxiety-like behaviors in single prolonged stress-induced PTSD model rats. Neurochem Int 2022; 161:105424. [PMID: 36228742 DOI: 10.1016/j.neuint.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that arises after extremely traumatic events, with clinically significant and lasting impacts on both physical and psychological health. The present study examined the role of ventral tegmental area (VTA) dopaminergic signaling in anxiety-like behaviors and the underlying mechanisms in PTSD model rats. Chemogenetic technology was employed to specifically activate VTA dopamine (DA) neurons in rats subjected to single prolonged stress (SPS), and open field and elevated plus maze tests were applied to evaluate the anxiety-like manifestations. Subsequently, in vivo extracellular electrophysiological analyses were used to examine alterations in the firing characteristics of VTA DA neurons. Chemogenetic activation enhanced the firing and burst rates of VTA DA neurons in SPS-induced PTSD model rats and concomitantly mitigated the anxiety-like behavioral phenotypes. Collectively, these findings reveal a direct association between PTSD-relevant anxiety behaviors and VTA dopaminergic activity, and further suggest that interventions designed to enhance VTA dopaminergic activity may be a potential strategy for PTSD treatment.
Collapse
Affiliation(s)
- Peiqing Guan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Chunzheng Huang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qinghui Lan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Shile Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Peiling Zhou
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China.
| | - Changzheng Zhang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
38
|
Pace-Schott EF, Seo J, Bottary R. The influence of sleep on fear extinction in trauma-related disorders. Neurobiol Stress 2022; 22:100500. [PMID: 36545012 PMCID: PMC9761387 DOI: 10.1016/j.ynstr.2022.100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
In Posttraumatic Stress Disorder (PTSD), fear and anxiety become dysregulated following psychologically traumatic events. Regulation of fear and anxiety involves both high-level cognitive processes such as cognitive reattribution and low-level, partially automatic memory processes such as fear extinction, safety learning and habituation. These latter processes are believed to be deficient in PTSD. While insomnia and nightmares are characteristic symptoms of existing PTSD, abundant recent evidence suggests that sleep disruption prior to and acute sleep disturbance following traumatic events both can predispose an individual to develop PTSD. Sleep promotes consolidation in multiple memory systems and is believed to also do so for low-level emotion-regulatory memory processes. Consequently sleep disruption may contribute to the etiology of PTSD by interfering with consolidation in low-level emotion-regulatory memory systems. During the first weeks following a traumatic event, when in the course of everyday life resilient individuals begin to acquire and consolidate these low-level emotion-regulatory memories, those who will develop PTSD symptoms may fail to do so. This deficit may, in part, result from alterations of sleep that interfere with their consolidation, such as REM fragmentation, that have also been found to presage later PTSD symptoms. Here, sleep disruption in PTSD as well as fear extinction, safety learning and habituation and their known alterations in PTSD are first briefly reviewed. Then neural processes that occur during the early post-trauma period that might impede low-level emotion regulatory processes through alterations of sleep quality and physiology will be considered. Lastly, recent neuroimaging evidence from a fear conditioning and extinction paradigm in patient groups and their controls will be considered along with one possible neural process that may contribute to a vulnerability to PTSD following trauma.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Corresponding author. Harvard Medical School, Massachusetts General Hospital - East, CNY 149 13th Street, Charlestown, MA, 02129, USA.
| | - Jeehye Seo
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, South Korea
| | - Ryan Bottary
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
39
|
Kéri S. Trauma and Remembering: From Neuronal Circuits to Molecules. Life (Basel) 2022; 12:1707. [PMID: 36362862 PMCID: PMC9699199 DOI: 10.3390/life12111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
Individuals with posttraumatic stress disorder (PTSD) experience intrusions of vivid traumatic memories, heightened arousal, and display avoidance behavior. Disorders in identity, emotion regulation, and interpersonal relationships are also common. The cornerstone of PTSD is altered learning, memory, and remembering, regulated by a complex neuronal and molecular network. We propose that the essential feature of successful treatment is the modification of engrams in their unstable state during retrieval. During psychedelic psychotherapy, engrams may show a pronounced instability, which enhances modification. In this narrative review, we outline the clinical characteristics of PTSD, its multifaceted neuroanatomy, and the molecular pathways that regulate memory destabilization and reconsolidation. We propose that psychedelics, acting by serotonin-glutamate interactions, destabilize trauma-related engrams and open the door to change them during psychotherapy.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Cognitive Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary; ; Tel.: +36-1463-1273
- National Institute of Mental Health, Neurology, and Neurosurgery, 1145 Budapest, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
40
|
Swanberg KM, Campos L, Abdallah CG, Juchem C. Proton Magnetic Resonance Spectroscopy in Post-Traumatic Stress Disorder-Updated Systematic Review and Meta-Analysis. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221128004. [PMID: 36237981 PMCID: PMC9551353 DOI: 10.1177/24705470221128004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A stressor-related disorder wherein traumatic experience precipitates protracted
disruptions to mood and cognition, post-traumatic stress disorder (PTSD) is
associated with wide-ranging abnormalities across the body. While various
methods have investigated these deviations, only proton magnetic resonance
spectroscopy (1H MRS) enables noninvasive measurement of
small-molecule metabolites in the living human. 1H MRS has
correspondingly been employed to test hypotheses about the composition and
function of multiple brain regions putatively involved in PTSD. Here we
systematically review methodological considerations and reported findings, both
positive and negative, of the current 1H-MRS literature in PTSD
(N = 32 studies) to communicate the brain regional metabolite alterations
heretofore observed, providing random-effects model meta-analyses for those most
extensively studied. Our review suggests significant PTSD-associated decreases
in N-acetyl aspartate in bilateral hippocampus and anterior cingulate cortex
with less evident effect in other metabolites and regions. Model heterogeneities
diverged widely by analysis (I2 < 0.01% to 90.1%) and suggested
regional dependence on quantification reference (creatine or otherwise). While
observed variabilities in methods and reported findings suggest that
1H-MRS explorations of PTSD could benefit from methodological
standardization, informing this standardization by quantitative assessment of
the existing literature is currently hampered by its small size and limited
scope.
Collapse
Affiliation(s)
- Kelley M. Swanberg
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
- Kelley M. Swanberg, Department of
Biomedical Engineering, Columbia University Fu Foundation School of Engineering
and Applied Science, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York,
NY 10027, USA.
| | - Leonardo Campos
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Clinical Neuroscience Division, Department of Veterans Affairs
National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
- Psychiatry and Behavioral Sciences,
Baylor College
of Medicine, Houston, TX, USA
| | - Christoph Juchem
- Department of Biomedical Engineering,
Columbia
University Fu Foundation School of Engineering and Applied
Science, New York, NY, USA
- Department of Radiology, Columbia University College of Physicians and
Surgeons, New York, NY, USA
| |
Collapse
|
41
|
Phelps A, Lawrence-Wood E, Couineau AL, Hinton M, Dolan P, Smith P, Notarianni M, Forbes D, Hosseiny F. Mental Health Reform: Design and Implementation of a System to Optimize Outcomes for Veterans and Their Families. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12681. [PMID: 36231981 PMCID: PMC9565186 DOI: 10.3390/ijerph191912681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The social, health, and economic burden of mental health problems in the veteran community is heavy. Internationally, the array of services and support available to veterans and their families are extensive but vary in quality, are often disconnected, complex to navigate, and lack clear coordination. This paper describes a conceptual framework to guide the design and implementation of a system of services and supports to optimize the mental health and wellbeing of all veterans and their families. The framework recognizes the diversity of veterans across intersecting identities that uniquely shape experiences of posttraumatic mental health and wellbeing. It brings together several strands of research: the values and principles that should underpin the system; the needs of diverse veterans and their families; challenges in the current services and supports; evidence-based interventions; and principles of effective implementation. Central to the future system design is a next generation stepped model of care that organizes best and next practice interventions in a coherent system, matches service provision to level of need and addresses access and navigation. Practical guidance on implementation provides an aspirational and flexible structure for system evolution, and a template for all stakeholders-individuals, groups, agencies and organizations-to effect system change.
Collapse
Affiliation(s)
- Andrea Phelps
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Ellie Lawrence-Wood
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Anne-Laure Couineau
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Mark Hinton
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Paul Dolan
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Patrick Smith
- Atlas Institute for Veterans and Families, Ottawa, ON K1Z 7K4, Canada
| | | | - David Forbes
- Phoenix Australia—Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Melbourne 3053, Australia
| | - Fardous Hosseiny
- Atlas Institute for Veterans and Families, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
42
|
Terock J, Hannemann A, Klinger-König J, Janowitz D, Grabe HJ, Murck H. The neurobiology of childhood trauma-aldosterone and blood pressure changes in a community sample. World J Biol Psychiatry 2022; 23:622-630. [PMID: 34906037 DOI: 10.1080/15622975.2021.2018724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Childhood trauma is an important risk factor for the onset and course of psychiatric disorders and particularly major depression. Recently, the renin-angiotensin-aldosterone system, one of the core stress hormone systems, has been demonstrated to be modified by childhood trauma. METHODS Childhood trauma was obtained using the Childhood Trauma Questionnaire (CTQ) in a community-dwelling sample (N = 2038). Plasma concentrations of renin and aldosterone were measured in subjects with childhood trauma (CT; N = 385) vs. subjects without this experience (NoCT; N = 1653). Multivariable linear regression models were calculated to assess the associations between CTQ, systolic and diastolic blood pressure, renin and aldosterone concentrations, and the ratio of aldosterone and systolic blood pressure (A/SBP). RESULTS CT subjects demonstrated higher plasma aldosterone (A) concentrations, a lower systolic and diastolic blood pressure, and a higher A/SBP. In addition, both aldosterone concentrations, as well as A/SBP, correlated with the severity of childhood trauma. These findings could not be attributed to differences in concomitant medication. CONCLUSIONS In conclusion, childhood trauma was associated with neurobiological markers, which may impact the risk for psychiatric disorders, primarily major depression. The altered A/SBP ratio points to a desensitisation of peripheral mineralocorticoid receptor function, which may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| | - Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Murck-Neuroscience LLC, Westfield, NJ, USA
| |
Collapse
|
43
|
Cheung EYW, Chau ACM, Shea YF, Chiu PKC, Kwan JSK, Mak HKF. Level of Amyloid-β (Aβ) Binding Leading to Differential Effects on Resting State Functional Connectivity in Major Brain Networks. Biomedicines 2022; 10:biomedicines10092321. [PMID: 36140422 PMCID: PMC9496530 DOI: 10.3390/biomedicines10092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction: Amyloid-β protein (Aβ) is one of the biomarkers for Alzheimer’s disease (AD). The recent application of interhemispheric functional connectivity (IFC) in resting-state fMRI has been used as a non-invasive diagnostic tool for early dementia. In this study, we focused on the level of Aβ accumulated and its effects on the major functional networks, including default mode network (DMN), central executive network (CEN), salience network (SN), self-referential network (SRN) and sensory motor network (SMN). Methods: 58 participants (27 Hi Aβ (HiAmy) and 31 low Aβ (LowAmy)) and 25 healthy controls (HC) were recruited. [18F]flutemetamol PET/CT was performed for diseased groups, and MRI scanning was done for all participants. Voxel-by-voxel correlation analysis was done for both groups in all networks. Results: In HiAmy, IFC was reduced in all networks except SN. A negative correlation in DMN, CEN, SRN and SMN suggests high Aβ related to IFC reduction; However, a positive correlation in SN suggests high Aβ related to an increase in IFC. In LowAmy, IFC increased in CEN, SMN, SN and SRN. Positive correlation in all major brain networks. Conclusion: The level of Aβ accumulated demonstrated differential effects on IFC in various brain networks. As the treatment to reduce Aβ plaque deposition is available in the market, it may be an option for the HiAmy group to improve their IFC in major brain networks.
Collapse
Affiliation(s)
- Eva Y. W. Cheung
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- School of Medical Health and Sciences, Tung Wah College, 19/F, 31 Wylie Road, Ho Man Tin, Hong Kong
- Correspondence: (E.Y.W.C.); (H.K.F.M.)
| | - Anson C. M. Chau
- Medical Radiation Science, Allied Health and Human Performance Unit, University of South Australia, City East Campus, Bonython Jubilee Building, 1-26, Adelaide, SA 5001, Australia
| | - Yat-Fung Shea
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong
| | - Patrick K. C. Chiu
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong
| | - Joseph S. K. Kwan
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Henry K. F. Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong
- Correspondence: (E.Y.W.C.); (H.K.F.M.)
| |
Collapse
|
44
|
Gasparyan A, Navarro D, Navarrete F, Manzanares J. Pharmacological strategies for post-traumatic stress disorder (PTSD): From animal to clinical studies. Neuropharmacology 2022; 218:109211. [PMID: 35973598 DOI: 10.1016/j.neuropharm.2022.109211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition with a critical familiar, personal, and social impact. Patients diagnosed with PTSD show various symptoms, including anxiety, depression, psychotic episodes, and sleep disturbances, complicating their therapeutic management. Only sertraline and paroxetine, two selective serotonin reuptake inhibitors, are approved by different international agencies to treat PTSD. In addition, these drugs are generally combined with psychotherapy to achieve positive results. However, these pharmacological strategies present limited efficacy. Nearly half of the PTSD patients do not experience remission of symptoms, possibly due to the high prevalence of psychiatric comorbidities. Therefore, in clinical practice, other off-label medications are common, even though the effectiveness of these drugs needs to be further investigated. In this line, antipsychotics, antiepileptics, adrenergic blockers, benzodiazepines, and other emerging pharmacological agents have aroused interest as potential therapeutic tools to improve some specific symptoms of PTSD. Thus, this review is focused on the most widely used drugs for the pharmacological treatment of PTSD with a translational approach, including clinical and preclinical studies, to emphasize the need to develop safer and more effective medications.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550, Alicante, Spain; Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
45
|
Gonda X, Dome P, Erdelyi-Hamza B, Krause S, Elek LP, Sharma SR, Tarazi FI. Invisible wounds: Suturing the gap between the neurobiology, conventional and emerging therapies for posttraumatic stress disorder. Eur Neuropsychopharmacol 2022; 61:17-29. [PMID: 35716404 DOI: 10.1016/j.euroneuro.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in the prevalence of neuropsychiatric disorders, including major depression, anxiety, substance use disorders and posttraumatic stress disorder (PTSD) has occurred due to the traumatic nature of the persisting COVID-19 global pandemic. PTSD is estimated to occur in up to 25% of individuals following exposure to acute or chronic trauma, and the pandemic has inflicted both forms of trauma on much of the population through both direct physiological attack as well as an inherent upheaval to our sense of safety. However, despite significant advances in our ability to define and apprehend the effects of traumatic events, the neurobiology and neuroanatomical circuitry of PTSD, one of the most severe consequences of traumatic exposure, remains poorly understood. Furthermore, the current psychotherapies or pharmacological options for treatment have limited efficacy, durability, and low adherence rates. Consequently, there is a great need to better understand the neurobiology and neuroanatomy of PTSD and develop novel therapies that extend beyond the current limited treatments. This review summarizes the neurobiological and neuroanatomical underpinnings of PTSD and discusses the conventional and emerging psychotherapies, pharmacological and combined psychopharmacological therapies, including the use of psychedelic-assisted psychotherapies and neuromodulatory interventions, for the improved treatment of PTSD and the potential for their wider applications in other neuropsychiatric disorders resulting from traumatic exposure.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Hungary; International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Russia.
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary
| | - Berta Erdelyi-Hamza
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary
| | - Sandor Krause
- National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary; Department of Pharmacodynamics, Semmelweis University, Hungary
| | - Livia Priyanka Elek
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Department of Clinical Psychology, Semmelweis University, Hungary
| | - Samata R Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
46
|
Abdallah CG, Roache JD, Gueorguieva R, Averill LA, Young-McCaughan S, Shiroma PR, Purohit P, Brundige A, Murff W, Ahn KH, Sherif MA, Baltutis EJ, Ranganathan M, D’Souza D, Martini B, Southwick SM, Petrakis IL, Burson RR, Guthmiller KB, López-Roca AL, Lautenschlager KA, McCallin JP, Hoch MB, Timchenko A, Souza SE, Bryant CE, Mintz J, Litz BT, Williamson DE, Keane TM, Peterson AL, Krystal JH. Dose-related effects of ketamine for antidepressant-resistant symptoms of posttraumatic stress disorder in veterans and active duty military: a double-blind, randomized, placebo-controlled multi-center clinical trial. Neuropsychopharmacology 2022; 47:1574-1581. [PMID: 35046508 PMCID: PMC8767037 DOI: 10.1038/s41386-022-01266-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023]
Abstract
This study tested the efficacy of repeated intravenous ketamine doses to reduce symptoms of posttraumatic stress disorder (PTSD). Veterans and service members with PTSD (n = 158) who failed previous antidepressant treatment were randomized to 8 infusions administered twice weekly of intravenous placebo (n = 54), low dose (0.2 mg/kg; n = 53) or standard dose (0.5 mg/kg; n = 51) ketamine. Participants were assessed at baseline, during treatment, and for 4 weeks after their last infusion. Primary analyses used mixed effects models. The primary outcome measure was the self-report PTSD Checklist for DSM-5 (PCL-5), and secondary outcome measures were the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) and the Montgomery Åsberg Depression Rating Scale (MADRS). There were no significant group-by-time interactions for PTSD symptoms measured by the PCL-5 or CAPS-5. The standard ketamine dose ameliorated depression measured by the MADRS significantly more than placebo. Ketamine produced dose-related dissociative and psychotomimetic effects, which returned to baseline within 2 h and were less pronounced with repeated administration. There was no evidence of differential treatment discontinuation by ketamine dose, consistent with good tolerability. This clinical trial failed to find a significant dose-related effect of ketamine on PTSD symptoms. Secondary analyses suggested that the standard dose exerted rapid antidepressant effects. Further studies are needed to determine the role of ketamine in PTSD treatment. ClinicalTrials.gov identifier: NCT02655692.
Collapse
Affiliation(s)
- Chadi G. Abdallah
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,grid.413890.70000 0004 0420 5521Michael E. DeBakey VA Medical Center, Houston, TX USA ,grid.39382.330000 0001 2160 926XMenninger Department of Psychiatry, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XCore for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX USA
| | - John D. Roache
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.280682.60000 0004 0420 5695Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX USA
| | - Ralitza Gueorguieva
- grid.47100.320000000419368710Department of Biostatistics, School of Public Health, Yale University School of Medicine, New Haven, CT USA
| | - Lynnette A. Averill
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,grid.413890.70000 0004 0420 5521Michael E. DeBakey VA Medical Center, Houston, TX USA ,grid.39382.330000 0001 2160 926XMenninger Department of Psychiatry, Baylor College of Medicine, Houston, TX USA
| | - Stacey Young-McCaughan
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.280682.60000 0004 0420 5695Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX USA
| | - Paulo R. Shiroma
- grid.491585.4Minneapolis VA Medical Center and the Department of Psychiatry University of Minnesota, Minneapolis, MN USA
| | - Prerana Purohit
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Antoinette Brundige
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.280682.60000 0004 0420 5695Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX USA
| | - William Murff
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Kyung-Heup Ahn
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Mohamed A. Sherif
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, and Carney Institute, Brown University; and Lifespan Physician Group, Providence, RI USA
| | - Eric J. Baltutis
- grid.491585.4Minneapolis VA Medical Center and the Department of Psychiatry University of Minnesota, Minneapolis, MN USA
| | - Mohini Ranganathan
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Deepak D’Souza
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Brenda Martini
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Steven M. Southwick
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Ismene L. Petrakis
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Rebecca R. Burson
- grid.416653.30000 0004 0450 5663Department of Behavioral Health, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Kevin B. Guthmiller
- grid.416653.30000 0004 0450 5663Department of Pain Management, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA ,grid.42505.360000 0001 2156 6853Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Argelio L. López-Roca
- grid.416653.30000 0004 0450 5663Department of Behavioral Health, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Karl A. Lautenschlager
- grid.416653.30000 0004 0450 5663Department of Pain Management, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - John P. McCallin
- grid.416653.30000 0004 0450 5663Department of Rehabilitation, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Matthew B. Hoch
- grid.416653.30000 0004 0450 5663Department of Rehabilitation, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Alexandar Timchenko
- grid.416653.30000 0004 0450 5663Department of Rehabilitation, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Sergio E. Souza
- grid.416653.30000 0004 0450 5663Department of Rehabilitation, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Charles E. Bryant
- grid.416653.30000 0004 0450 5663Department of Rehabilitation, Brooke Army Medical Center, Joint Base San Antonio – Fort Sam Houston, Houston, TX USA
| | - Jim Mintz
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.280682.60000 0004 0420 5695Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX USA
| | - Brett T. Litz
- grid.410370.10000 0004 4657 1992Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Douglas E. Williamson
- grid.412100.60000 0001 0667 3730Department of Psychiatry and Behavioral Sciences, Duke Health, Durham, NC USA ,grid.512153.1Durham VA Health Care System, Durham, NC USA
| | - Terence M. Keane
- grid.189504.10000 0004 1936 7558Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.410370.10000 0004 4657 1992National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA USA
| | - Alan L. Peterson
- grid.267309.90000 0001 0629 5880Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.280682.60000 0004 0420 5695Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX USA ,grid.215352.20000000121845633Department of Psychology, University of Texas at San Antonio, San Antonio, TX USA
| | - John H. Krystal
- grid.418356.d0000 0004 0478 7015National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA ,grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
47
|
Pharmacological Management of Nightmares Associated with Posttraumatic Stress Disorder. CNS Drugs 2022; 36:721-737. [PMID: 35688992 DOI: 10.1007/s40263-022-00929-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
Posttraumatic stress disorder (PTSD) can be a chronic and disabling condition. Post-traumatic nightmares (PTNs) form a core component of PTSD and are highly prevalent in this patient population. Nightmares in PTSD have been associated with significant distress, functional impairment, poor health outcomes, and decreased quality of life. Nightmares in PTSD are also an independent risk factor for suicide. Nightmare cessation can lead to improved quality of life, fewer hospital admissions, lower healthcare costs, and reduced all-cause mortality. Effective treatment of nightmares is critical and often leads to improvement of other PTSD symptomatology. However, approved pharmacological agents for the treatment of PTSD have modest effects on sleep and nightmares, and may cause adverse effects. No pharmacological agent has been approved specifically for the treatment of PTNs, but multiple agents have been studied. This current narrative review aimed to critically appraise proven as well as novel pharmacological agents used in the treatment of PTNs. Evidence of varying quality exists for the use of prazosin, doxazosin, clonidine, tricyclic antidepressants, trazodone, mirtazapine, atypical antipsychotics (especially risperidone, olanzapine and quetiapine), gabapentin, topiramate, and cyproheptadine. Evidence does not support the use of venlafaxine, β-blockers, benzodiazepines, or sedative hypnotics. Novel agents such as ramelteon, cannabinoids, ketamine, psychedelic agents, and trihexyphenidyl have shown promising results. Large randomized controlled trials (RCTs) are needed to evaluate the use of these novel agents. Future research directions are identified to optimize the treatment of nightmares in patients with PTSD.
Collapse
|
48
|
Sterina E, Michopoulos V, Linnstaedt SD, Neylan TC, Clifford GD, Ethun KF, Lori A, Wingo AP, Rothbaum BO, Ressler KJ, Stevens JS. Time of trauma prospectively affects PTSD symptom severity: The impact of circadian rhythms and cortisol. Psychoneuroendocrinology 2022; 141:105729. [PMID: 35413575 PMCID: PMC9250148 DOI: 10.1016/j.psyneuen.2022.105729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
A key feature of posttraumatic stress disorder (PTSD) is a disruption of hypothalamic-pituitary-adrenal (HPA) axis feedback sensitivity and cortisol levels. Despite known diurnal rhythmicity of cortisol, there has been little exploration of the circadian timing of the index trauma and consequent cortisol release. Stress-related glucocorticoid pulses have been shown to shift clocks in peripheral organs but not the suprachiasmatic nucleus, uncoupling the central and peripheral clocks. A sample of 425 participants was recruited in the Emergency Department following a DSM-IV-TR Criterion A trauma. The Zeitgeber time of the trauma was indexed in minutes since sunrise, which was hypothesized to covary with circadian blood cortisol levels (high around sunrise and decreasing over the day). Blood samples were collected M(SD)= 4.0(4.0) hours post-trauma. PTSD symptoms six months post-trauma were found to be negatively correlated with trauma time since sunrise (r(233) = -0.15, p = 0.02). The effect remained when adjusting for sex, age, race, clinician-rated severity, education, pre-trauma PTSD symptoms, and time of the blood draw (β = -0.21, p = 0.00057). Cortisol levels did not correlate with blood draw time, consistent with a masking effect of the acute stress response obscuring the underlying circadian rhythm. Interactions between trauma time and expression of NPAS2 (punadjusted=0.042) and TIMELESS (punadjusted=0.029) predicted six-month PTSD symptoms. The interaction of trauma time and cortisol concentration was significantly correlated with the expression of PER1 (padjusted=0.029). The differential effect of time of day on future symptom severity suggests a role of circadian effects in PTSD development, potentially through peripheral clock disruption.
Collapse
Affiliation(s)
- Evelina Sterina
- Emory University School of Medicine, 100 Woodruff Circle, Suite 231, Atlanta, GA 30329, USA.
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, Institute of Trauma Recovery, UNC School of Medicine, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly F Ethun
- Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Veterans Affairs Atlanta Health Care System, Decatur, GA USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
49
|
Fan BF, Hao B, Dai YD, Xue L, Shi YW, Liu L, Xuan SM, Yang N, Wang XG, Zhao H. Deficiency of Tet3 in nucleus accumbens enhances fear generalization and anxiety-like behaviors in mice. Brain Pathol 2022; 32:e13080. [PMID: 35612904 PMCID: PMC9616092 DOI: 10.1111/bpa.13080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Stress‐induced neuroepigenetic programming gains growing more and more interest in the studies of the etiology of posttraumatic stress disorder (PTSD). However, seldom attention is focused on DNA demethylation in fear memory generalization, which is the core characteristic of PTSD. Here, we show that ten‐eleven translocation protein 3 (TET3), the most abundant DNA demethylation enzyme of the TET family in neurons, senses environmental stress and bridges neuroplasticity with behavioral adaptation during fear generalization. Foot shock strength dependently induces fear generalization and TET3 expression in nucleus accumbens (NAc) in mice. Inhibition of DNA demethylation by infusing demethyltransferase inhibitors or AAV‐Tet3‐shRNA virus in NAc enhances the fear generalization and anxiety‐like behavior. Furthermore, TET3 knockdown impairs the dendritic spine density, PSD length, and thickness of neurons, decreases DNA hydroxymethylation (5hmC), reduces the expression of synaptic plasticity‐related genes including Homer1, Cdkn1a, Cdh8, Vamp8, Reln, Bdnf, while surprisingly increases immune‐related genes Stat1, B2m, H2‐Q7, H2‐M2, C3, Cd68 shown by RNA‐seq. Notably, knockdown of TET3 in NAc activates microglia and CD39‐P2Y12R signaling pathway, and inhibition of CD39 reverses the effects of TET3 knockdown on the fear memory generalization and anxiety. Overexpression of TET3 by Crispr‐dSaCas9 virus delivery to activate endogenous Tet3 in NAc increases dendritic spine density of neurons in NAc and reverses fear memory generalization and anxiety‐like behavior in mice. These results suggest that TET3 modulates fear generalization and anxiety via regulating synaptic plasticity and CD39 signaling pathway.
Collapse
Affiliation(s)
- Bu-Fang Fan
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Hao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun-Da Dai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xue
- Department of Psychology, School of Public Medicine, Southern Medical University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Liu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shou-Min Xuan
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ning Yang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Elsouri KN, Kalhori S, Colunge D, Grabarczyk G, Hanna G, Carrasco C, Aleman Espino A, Francisco A, Borosky B, Bekheit B, Ighanifard M, Astudillo AA, Demory Beckler M. Psychoactive Drugs in the Management of Post Traumatic Stress Disorder: A Promising New Horizon. Cureus 2022; 14:e25235. [PMID: 35747039 PMCID: PMC9214830 DOI: 10.7759/cureus.25235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/22/2022] [Indexed: 11/06/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder that often presents after exposure to a traumatic, life-threatening event. Experiencing a traumatic event is not rare, with inciting incidents ranging from being burglarized to politically motivated genocide. While traditional psychopharmacology and psychotherapy are the mainstays of the treatment of PTSD currently, psychoactive drugs (otherwise known as psychedelics) are being explored for their novel role in the treatment of PTSD patients. Psychoactive drugs such as MDMA, ketamine, and psilocybin have been shown to specifically target and decrease fear and anxiety pathways in the brain. These unique properties hold the potential to be utilized in addressing symptoms of trauma in those with refractory or treatment-resistant PTSD. Historically, federal and state laws have restricted research into how psychoactive drugs can be used to treat mental illness due to the widespread belief that these drugs present more harm than benefit. However, the current shift in public opinion on psychedelics has propelled research to look into the benefits of these drugs for patients with mental illness. This article aims to discuss the mechanisms of how MDMA, ketamine, and psilocybin work in the PTSD brain, as well as their beneficial role in treatment.
Collapse
|