1
|
Zhuang J, Jia L, Li C, Yang R, Wang J, Wang WA, Zhou H, Luo X. Recent advances in photothermal nanomaterials for ophthalmic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:195-215. [PMID: 39995756 PMCID: PMC11849557 DOI: 10.3762/bjnano.16.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The human eye, with its remarkable resolution of up to 576 million pixels, grants us the ability to perceive the world with astonishing accuracy. Despite this, over 2 billion people globally suffer from visual impairments or blindness, primarily because of the limitations of current ophthalmic treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure-activity relationship between the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on enhancing global visual health.
Collapse
Affiliation(s)
- Jiayuan Zhuang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Linhui Jia
- School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rui Yang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jiapeng Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-an Wang
- The first school of clinical medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiangxia Luo
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Gansu Provincial Hospital of TCM, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
3
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
4
|
Ehtesabi S, Richter M, Kupfer S, Gräfe S. Assessing plasmon-induced reactions by a combined quantum chemical-quantum/classical hybrid approach. NANOSCALE 2024; 16:15219-15229. [PMID: 39072363 PMCID: PMC11325215 DOI: 10.1039/d4nr02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
Collapse
Affiliation(s)
- Sadaf Ehtesabi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| |
Collapse
|
5
|
Wen X, Boyn JN, Martirez JMP, Zhao Q, Carter EA. Strategies to Obtain Reliable Energy Landscapes from Embedded Multireference Correlated Wavefunction Methods for Surface Reactions. J Chem Theory Comput 2024; 20:6037-6048. [PMID: 39004994 DOI: 10.1021/acs.jctc.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Embedded correlated wavefunction (ECW) theory is a powerful tool for studying ground- and excited-state reaction mechanisms and associated energetics in heterogeneous catalysis. Several factors are important to obtaining reliable ECW energies, critically the construction of consistent active spaces (ASs) along reaction pathways when using a multireference correlated wavefunction (CW) method that relies on a subset of orbital spaces in the configuration interaction expansion to account for static electron correlation, e.g., complete AS self-consistent field theory, in addition to the adequate partitioning of the system into a cluster and environment, as well as the choice of a suitable basis set and number of states included in excited-state simulations. Here, we conducted a series of systematic studies to develop best-practice guidelines for ground- and excited-state ECW theory simulations, utilizing the decomposition of NH3 on Pd(111) as an example. We determine that ECW theory results are relatively insensitive to cluster size, the aug-cc-pVDZ basis set provides an adequate compromise between computational complexity and accuracy, and that a fixed-clean-surface approximation holds well for the derivation of the embedding potential. Additionally, we demonstrate that a merging approach, which involves generating ASs from the molecular fragments at each configuration, is preferable to a creeping approach, which utilizes ASs from adjacent structures as an initial guess, for the generation of consistent potential energy curves involving open-d-shell metal surfaces, and, finally, we show that it is essential to include bands of excited states in their entirety when simulating excited-state reaction pathways.
Collapse
Affiliation(s)
- Xuelan Wen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P Martirez
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, United States
| | - Qing Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
6
|
Schirato A, Sanders SK, Proietti Zaccaria R, Nordlander P, Della Valle G, Alabastri A. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. ACS NANO 2024; 18:18933-18947. [PMID: 38990155 DOI: 10.1021/acsnano.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.
Collapse
Affiliation(s)
- Andrea Schirato
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Keith Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Giuseppe Della Valle
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Istituto di Fotonica e Nanotecnologie─Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Mokkath JH. The impact of a dopant atom on the distribution of hot electrons and holes in Au-doped Ag nano-clusters. Phys Chem Chem Phys 2024; 26:12168-12178. [PMID: 38591187 DOI: 10.1039/d4cp00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. In this study, we employ first principles real-time time-dependent density-functional theory (rt-TDDFT) calculations to elucidate the creation and distribution of HCs within Au-doped Ag nanoclusters: Ag11Cl3P7H21, Ag10AucoreCl3P7H21, and Ag10AusurfCl3P7H21 nanoclusters. Our findings indicate that adjustments in HC distribution are achievable through the Au dopant atom, and precise control of HC distribution is possible by manipulating the location of the Au dopant atom. When employing a Gaussian laser pulse tailored to match the LSPR frequency, a substantial accumulation of HCs in the Ag-P bond is observed. This finding suggests a weakening of the Ag-P bonds and, consequently, the initiation of bond stretching. We propose that these findings open up possibilities for tuning HCs in Au-doped chemically functionalized Ag nanoclusters.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- College of Integrative Studies, Abdullah Al Salem University (AASU), Block 3, Khaldiya, Kuwait
| |
Collapse
|
8
|
Fusco Z, Beck FJ. Advances in fundamentals and application of plasmon-assisted CO 2 photoreduction. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:387-417. [PMID: 39635649 PMCID: PMC11501834 DOI: 10.1515/nanoph-2023-0793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/23/2023] [Indexed: 12/07/2024]
Abstract
Artificial photosynthesis of hydrocarbons from carbon dioxide (CO2) has the potential to provide renewable fuels at the scale needed to meet global decarbonization targets. However, CO2 is a notoriously inert molecule and converting it to energy dense hydrocarbons is a complex, multistep process, which can proceed through several intermediates. Recently, the ability of plasmonic nanoparticles to steer the reaction down specific pathways and enhance both reaction rate and selectivity has garnered significant attention due to its potential for sustainable energy production and environmental mitigation. The plasmonic excitation of strong and confined optical near-fields, energetic hot carriers and localized heating can be harnessed to control or enhance chemical reaction pathways. However, despite many seminal contributions, the anticipated transformative impact of plasmonics in selective CO2 photocatalysis has yet to materialize in practical applications. This is due to the lack of a complete theoretical framework on the plasmonic action mechanisms, as well as the challenge of finding efficient materials with high scalability potential. In this review, we aim to provide a comprehensive and critical discussion on recent advancements in plasmon-enhanced CO2 photoreduction, highlighting emerging trends and challenges in this field. We delve into the fundamental principles of plasmonics, discussing the seminal works that led to ongoing debates on the reaction mechanism, and we introduce the most recent ab initio advances, which could help disentangle these effects. We then synthesize experimental advances and in situ measurements on plasmon CO2 photoreduction before concluding with our perspective and outlook on the field of plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Zelio Fusco
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| | - Fiona J. Beck
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
9
|
Coviello V, Badocco D, Pastore P, Fracchia M, Ghigna P, Martucci A, Forrer D, Amendola V. Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements. Nat Commun 2024; 15:834. [PMID: 38280888 PMCID: PMC10821890 DOI: 10.1038/s41467-024-45137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
The alloying process plays a pivotal role in the development of advanced multifunctional plasmonic materials within the realm of modern nanotechnology. However, accurate in silico predictions are only available for metal clusters of just a few nanometers, while the support of modelling is required to navigate the broad landscape of components, structures and stoichiometry of plasmonic nanoalloys regardless of their size. Here we report on the accurate calculation and conceptual understanding of the optical properties of metastable alloys of both plasmonic (Au) and magnetic (Co) elements obtained through a tailored laser synthesis procedure. The model is based on the density functional theory calculation of the dielectric function with the Hubbard-corrected local density approximation, the correction for intrinsic size effects and use of classical electrodynamics. This approach is built to manage critical aspects in modelling of real samples, as spin polarization effects due to magnetic elements, short-range order variability, and size heterogeneity. The method provides accurate results also for other magnetic-plasmonic (Au-Fe) and typical plasmonic (Au-Ag) nanoalloys, thus being available for the investigation of several other nanomaterials waiting for assessment and exploitation in fundamental sectors such as quantum optics, magneto-optics, magneto-plasmonics, metamaterials, chiral catalysis and plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Vito Coviello
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Martina Fracchia
- University of Pavia, Department of Chemistry, viale Taramelli 16, 27100, Pavia, Italy
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
| | - Paolo Ghigna
- University of Pavia, Department of Chemistry, viale Taramelli 16, 27100, Pavia, Italy
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
| | - Alessandro Martucci
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Daniel Forrer
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy.
- CNR - ICMATE, via Marzolo 1, 35131, Padova, Italy.
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy.
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy.
| |
Collapse
|
10
|
Li TE, Paenurk E, Hammes-Schiffer S. Squeezed Protons and Infrared Plasmonic Resonance Energy Transfer. J Phys Chem Lett 2024; 15:751-757. [PMID: 38226772 DOI: 10.1021/acs.jpclett.3c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Unusual nuclear quantum effects may emerge near noble metal nanostructures such as squeezed vibrational states in molecular junctions and plasmonic resonance energy transfer in the infrared domain. Herein, nuclear quantum effects near heavy metals are studied by nuclear-electronic orbital density functional theory (NEO-DFT) with an effective core potential. For a quantum proton sandwiched between a pair of gold tips modeled by two Au6 clusters, NEO-DFT calculations suggest that the quantum proton density can be squeezed as the tip distance decreases. For an HF molecule placed near a one-dimensional Au nanowire composed of up to 34 Au atoms, real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) shows that the infrared plasmonic motion within the Au nanowire may resonantly transfer electronic energy to the HF proton vibrational stretch mode. Overall, these calculations illustrate the advantages of the NEO approach for probing nuclear quantum effects, such as squeezed proton vibrational states and infrared plasmonic resonance energy transfer.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eno Paenurk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
11
|
Dall’Osto G, Marsili M, Vanzan M, Toffoli D, Stener M, Corni S, Coccia E. Peeking into the Femtosecond Hot-Carrier Dynamics Reveals Unexpected Mechanisms in Plasmonic Photocatalysis. J Am Chem Soc 2024; 146:2208-2218. [PMID: 38199967 PMCID: PMC10811681 DOI: 10.1021/jacs.3c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Plasmonic-driven photocatalysis may lead to reaction selectivity that cannot be otherwise achieved. A fundamental role is played by hot carriers, i.e., electrons and holes generated upon plasmonic decay within the metal nanostructure interacting with molecular species. Understanding the elusive microscopic mechanism behind such selectivity is a key step in the rational design of hot-carrier reactions. To accomplish that, we present state-of-the-art multiscale simulations, going beyond density functional theory, of hot-carrier injections for the rate-determining step of a photocatalytic reaction. We focus on carbon dioxide reduction, for which it was experimentally shown that the presence of a rhodium nanocube under illumination leads to the selective production of methane against carbon monoxide. We show that selectivity is due to a (predominantly) direct hole injection from rhodium to the reaction intermediate CHO. Unexpectedly, such an injection does not promote the selective reaction path by favoring proper bond breaking but rather by promoting bonding of the proper molecular fragment to the surface.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Margherita Marsili
- Dipartimento
di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mirko Vanzan
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Dipartimento
di Fisica, University of Milan, Via Giovanni Celoria 16, 20133 Milano, Italy
| | - Daniele Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mauro Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Stefano Corni
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Istituto
Nanoscienze-CNR, via
Campi 213/A, 41125 Modena, Italy
| | - Emanuele Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
12
|
Lei X, Canestraight A, Vlcek V. Exceptional Spatial Variation of Charge Injection Energies on Plasmonic Surfaces. J Phys Chem Lett 2023; 14:8470-8476. [PMID: 37721434 DOI: 10.1021/acs.jpclett.3c02223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Charge injection into a molecule on a metallic interface is a key step in many photoactivated reactions. We employ the many-body perturbation theory and compute the hole and electron injection energies for CO2 molecule on an Au nanoparticle with ∼3,000 electrons and compare it to results for idealized infinite surfaces. We demonstrate a surprisingly large variation of the injection energy barrier depending on the precise molecular position on the surface. Multiple "hot spots," characterized by low energy barriers, arise due to the competition between the plasmonic coupling and the degree of hybridization between the molecule and the substrate. The charge injection barrier to the adsorbate on the nanoparticle surface decreases from the facet edge to the facet center. This finding contrasts with the typical picture in which the electric field enhancement on the nanoparticle edges is considered the most critical factor.
Collapse
Affiliation(s)
- Xiaohe Lei
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Annabelle Canestraight
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Vojtech Vlcek
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Li TE, Hammes-Schiffer S. Nuclear-Electronic Orbital Quantum Dynamics of Plasmon-Driven H 2 Photodissociation. J Am Chem Soc 2023; 145:18210-18214. [PMID: 37555733 DOI: 10.1021/jacs.3c04927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Leveraging localized surface plasmon resonances of metal nanoparticles to trigger chemical reactions is a promising approach for heterogeneous catalysis. First-principles modeling of such processes is challenging due to the large number of electrons and electronic excited states as well as the significance of nuclear quantum effects when hydrogen is involved. Herein, the nonadiabatic nuclear-electronic quantum dynamics of plasmon-induced H2 photodissociation near an Al13- cluster is simulated with real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT). This approach propagates the nonequilibrium quantum dynamics of both electrons and protons. The plasmonic oscillations are shown to inject hot electrons into the antibonding orbital of H2, thereby inducing H2 dissociation. The quantum mechanical treatment of the hydrogen nuclei leads to faster H2 photodissociation and slightly larger isotope effects. Analysis of the nonequilibrium electronic density suggests that these findings stem from enhanced excited-state electronic coupling between the plasmonic mode and the H2 antibonding orbital due to proton delocalization or zero-point energy effects. Given the low computational overhead for including nuclear quantum effects with the RT-NEO-TDDFT approach, this work paves the way for simulating nonadiabatic nuclear-electronic quantum dynamics in other plasmonic systems.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
14
|
Herring C, Montemore MM. Recent Advances in Real-Time Time-Dependent Density Functional Theory Simulations of Plasmonic Nanostructures and Plasmonic Photocatalysis. ACS NANOSCIENCE AU 2023; 3:269-279. [PMID: 37601917 PMCID: PMC10436373 DOI: 10.1021/acsnanoscienceau.2c00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 08/22/2023]
Abstract
Plasmonic catalysis provides a possible means for driving chemical reactions under relatively mild conditions. Rational design of these systems is impeded by the difficulty in understanding the electron dynamics and their interplay with reactions. Real-time, time-dependent density functional theory (RT-TDDFT) can provide dynamic information on excited states in plasmonic systems, including those relevant to plasmonic catalysis, at time scales and length scales that are otherwise out of reach of many experimental techniques. Here, we discuss previous RT-TDDFT studies of plasmonic systems, focusing on recent work that gains insight into plasmonic catalysis. These studies provide insight into plasmon dynamics, including size effects and the role of specific electronic states. Further, these studies provide significant insight into mechanisms underlying plasmonic catalysis, showing the importance of charge transfer between metal and adsorbate states, as well as local field enhancement, in different systems.
Collapse
Affiliation(s)
- Connor
J. Herring
- Department of Chemical and Biomolecular
Engineering, Tulane University, New Orleans, Louisiana 70115, United States
| | - Matthew M. Montemore
- Department of Chemical and Biomolecular
Engineering, Tulane University, New Orleans, Louisiana 70115, United States
| |
Collapse
|
15
|
Domenis N, Grobas Illobre P, Marsili M, Stener M, Toffoli D, Coccia E. Time Evolution of Plasmonic Features in Pentagonal Ag Clusters. Molecules 2023; 28:5671. [PMID: 37570641 PMCID: PMC10420145 DOI: 10.3390/molecules28155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In the present work, we apply recently developed real-time descriptors to study the time evolution of plasmonic features of pentagonal Ag clusters. The method is based on the propagation of the time-dependent Schrödinger equation within a singly excited TDDFT ansatz. We use transition contribution maps (TCMs) and induced density to characterize the optical longitudinal and transverse response of such clusters, when interacting with pulses resonant with the low-energy (around 2-3 eV, A1) size-dependent or the high-energy (around 4 eV, E1) size-independent peak. TCMs plots on the analyzed clusters, Ag25+ and Ag43+ show off-diagonal peaks consistent with a plasmonic response when a longitudinal pulse resonant at A1 frequency is applied, and dominant diagonal spots, typical of a molecular transition, when a transverse E1 pulse is employed. Induced densities confirm this behavior, with a dipole-like charge distribution in the first case. The optical features show a time delay with respect to the evolution of the external pulse, consistent with those found in the literature for real-time TDDFT calculations on metal clusters.
Collapse
Affiliation(s)
- Nicola Domenis
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | | | - Margherita Marsili
- Dipartimento di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
16
|
Gargiulo J, Herran M, Violi IL, Sousa-Castillo A, Martinez LP, Ezendam S, Barella M, Giesler H, Grzeschik R, Schlücker S, Maier SA, Stefani FD, Cortés E. Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry. Nat Commun 2023; 14:3813. [PMID: 37369657 DOI: 10.1038/s41467-023-38982-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis. Bimetallic nanoparticles combining plasmonic with catalytic metals are raising increasing interest in artificial photosynthesis and the production of solar fuels. Here, we perform single-particle thermometry measurements to investigate the link between morphology and light-to-heat conversion of colloidal Au/Pd nanoparticles with two different configurations: core-shell and core-satellite. It is observed that the inclusion of Pd as a shell strongly reduces the photothermal response in comparison to the bare cores, while the inclusion of Pd as satellites keeps photothermal properties almost unaffected. These results contribute to a better understanding of energy conversion processes in plasmon-assisted catalysis.
Collapse
Affiliation(s)
- Julian Gargiulo
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Nanosistemas, Universidad Nacional de San Martín, B1650, Buenos Aires, Argentina.
| | - Matias Herran
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Ianina L Violi
- Instituto de Nanosistemas, Universidad Nacional de San Martín, B1650, Buenos Aires, Argentina
| | - Ana Sousa-Castillo
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Simone Ezendam
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Mariano Barella
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Department of Physics, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Helene Giesler
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Roland Grzeschik
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Stefan A Maier
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, 3800, Clayton, Australia
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| |
Collapse
|
17
|
Lomonosov V, Wayman TMR, Hopper ER, Ivanov YP, Divitini G, Ringe E. Plasmonic magnesium nanoparticles decorated with palladium catalyze thermal and light-driven hydrogenation of acetylene. NANOSCALE 2023; 15:7420-7429. [PMID: 36988987 PMCID: PMC10134437 DOI: 10.1039/d3nr00745f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Bimetallic Pd-Mg nanoparticles were synthesized by partial galvanic replacement of plasmonic Mg nanoparticles, and their catalytic and photocatalytic properties in selective hydrogenation of acetylene have been investigated. Electron probe studies confirm that the Mg-Pd structures mainly consist of metallic Mg and sustain several localized plasmon resonances across a broad wavelength range. We demonstrate that, even without light excitation, the Pd-Mg nanostructures exhibit an excellent catalytic activity with selectivity to ethylene of 55% at 100% acetylene conversion achieved at 60 °C. With laser excitation at room temperature over a range of intensities and wavelengths, the initial reaction rate increased up to 40 times with respect to dark conditions and a 2-fold decrease of the apparent activation energy was observed. A significant wavelength-dependent change in hydrogenation kinetics strongly supports a catalytic behavior affected by plasmon excitation. This report of coupling between Mg's plasmonic and Pd's catalytic properties paves the way for sustainable catalytic structures for challenging, industrially relevant selective hydrogenation processes.
Collapse
Affiliation(s)
- Vladimir Lomonosov
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Thomas M R Wayman
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth R Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
18
|
Kolwas K. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1801. [PMID: 36902918 PMCID: PMC10004181 DOI: 10.3390/ma16051801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticles have attracted attention in recent years due to a number of their exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces the electromagnetic description of inherent properties of spherical nanoparticles, which enable resonant excitation of Localized Surface Plasmons (defined as collective excitations of free electrons), and the complementary model in which plasmonic nanoparticles are treated as quantum quasi-particles with discrete electronic energy levels. A quantum picture including plasmon damping processes due to the irreversible coupling to the environment enables us to distinguish between the dephasing of coherent electron motion and the decay of populations of electronic states. Using the link between classical EM and the quantum picture, the explicit dependence of the population and coherence damping rates as a function of NP size is given. Contrary to the usual expectations, such dependence for Au and Ag NPs is not a monotonically growing function, which provides a new perspective for tailoring plasmonic properties in larger-sized nanoparticles, which are still hardly available experimentally. The practical tools for comparing the plasmonic performance of gold and silver nanoparticles of the same radii in an extensive range of sizes are also given.
Collapse
Affiliation(s)
- Krystyna Kolwas
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
19
|
Votkina D, Petunin P, Miliutina E, Trelin A, Lyutakov O, Svorcik V, Audran G, Havot J, Valiev R, Valiulina LI, Joly JP, Yamauchi Y, Mokkath JH, Henzie J, Guselnikova O, Marque SRA, Postnikov P. Uncovering the Role of Chemical and Electronic Structures in Plasmonic Catalysis: The Case of Homolysis of Alkoxyamines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Darya Votkina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Pavel Petunin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Elena Miliutina
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Vaclav Svorcik
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Jeffrey Havot
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Rashid Valiev
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | | | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Yusuke Yamauchi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 Brisbane, QLD, Australia
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O.
Box 27235, Safat 13058, Kuwait
City, Kuwait
| | - Joel Henzie
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| |
Collapse
|
20
|
Masson JF, Biggins JS, Ringe E. Machine learning for nanoplasmonics. NATURE NANOTECHNOLOGY 2023; 18:111-123. [PMID: 36702956 DOI: 10.1038/s41565-022-01284-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/27/2022] [Indexed: 06/18/2023]
Abstract
Plasmonic nanomaterials have outstanding optoelectronic properties potentially enabling the next generation of catalysts, sensors, lasers and photothermal devices. Owing to optical and electron techniques, modern nanoplasmonics research generates large datasets characterizing features across length scales. Furthermore, optimizing syntheses leading to specific nanostructures requires time-consuming multiparametric approaches. These complex datasets and trial-and-error practices make nanoplasmonics research ripe for the application of machine learning (ML) and advanced data processing methods. ML algorithms capture relationships between synthesis, structure and performance in a way that far exceeds conventional simulation and theory approaches, enabling effective performance optimization. For example, neural networks can tailor the nanostructure morphology to target desired properties, identify synthetic conditions and extract quantitative information from complex data. Here we discuss the nascent field of ML for nanoplasmonics, describe the opportunities and limitations of ML in nanoplasmonic research, and conclude that ML is potentially transformative, especially if the community curates and shares its big data.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département de chimie, Quebec Center for Advanced Materials, Regroupement québécois sur les matériaux de pointe, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, Quebec, Canada.
| | - John S Biggins
- Engineering Department, University of Cambridge, Cambridge, UK.
| | - Emilie Ringe
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge, UK.
- Department of Earth Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Vazhappilly T, Kilin DS, Micha DA. Photoabsorbance of supported metal clusters: ab initio density matrix and model studies of large Ag clusters on Si surfaces. Phys Chem Chem Phys 2023; 25:14757-14765. [PMID: 36602101 DOI: 10.1039/d2cp04922h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal clusters with 10 to 100 atoms supported by a solid surface show electronic structure typical of molecules and require ab initio treatments starting from their atomic structure, and they also can display collective electronic phenomena similar to plasmons in metal solids. We have employed ab initio electronic structure results from two different density functionals (PBE and the hybrid HSE06) and a reduced density matrix treatment of the dissipative photodynamics to calculate light absorbance by the large Ag clusters AgN, N = 33, 37(open shell) and N = 32, 34 (closed shell), adsorbed at the Si(111) surface of a slab, and forming nanostructured surfaces. Results on light absorption are quite different for the two functionals, and are presented here for light absorbances using orbitals and energies from the hybrid functional giving correct energy band gaps. Absorption of Ag clusters on Si increases light absorbance versus photon energy by large percentages, with peak increases found in regions of photon energies corresponding to localized plasmons. The present metal clusters are large enough to allow for modelling with continuum dielectric treatments of their medium. A mesoscopic Drude-Lorentz model is presented in a version suitable for the present structures, and provides an interpretation of our results. The calculated range of plasmon energies overlaps with the range of solar photon energies, making the present structures and properties relevant to applications to solar photoabsorption and photocatalysis.
Collapse
Affiliation(s)
- Tijo Vazhappilly
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - David A Micha
- Departments of Chemistry and of Physics, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
22
|
Schirato A, Maiuri M, Cerullo G, Della Valle G. Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1-28. [PMID: 39633632 PMCID: PMC11502081 DOI: 10.1515/nanoph-2022-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/20/2022] [Indexed: 12/07/2024]
Abstract
Metallic nanostructures exhibit localized surface plasmons (LSPs), which offer unprecedented opportunities for advanced photonic materials and devices. Following resonant photoexcitation, LSPs quickly dephase, giving rise to a distribution of energetic 'hot' electrons in the metal. These out-of-equilibrium carriers undergo ultrafast internal relaxation processes, nowadays pivotal in a variety of applications, from photodetection and sensing to the driving of photochemical reactions and ultrafast all-optical modulation of light. Despite the intense research activity, exploitation of hot carriers for real-world nanophotonic devices remains extremely challenging. This is due to the complexity inherent to hot carrier relaxation phenomena at the nanoscale, involving short-lived out-of-equilibrium electronic states over a very broad range of energies, in interaction with thermal electronic and phononic baths. These issues call for a comprehensive understanding of ultrafast hot electron dynamics in plasmonic nanostructures. This paper aims to review our contribution to the field: starting from the fundamental physics of plasmonic nanostructures, we first describe the experimental techniques used to probe hot electrons; we then introduce a numerical model of ultrafast nanoscale relaxation processes, and present examples in which experiments and modelling are combined, with the aim of designing novel optical functionalities enabled by ultrafast hot-electron dynamics.
Collapse
Affiliation(s)
- Andrea Schirato
- Dipartimento di Fisica – Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica – Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
- Istituto di Fotonica e Nanotecnologie – Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica – Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
- Istituto di Fotonica e Nanotecnologie – Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
| | - Giuseppe Della Valle
- Dipartimento di Fisica – Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
- Istituto di Fotonica e Nanotecnologie – Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, 20133Milan, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria, 16, 20133Milan, Italy
| |
Collapse
|
23
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
24
|
Awada C. Plasmonic Enhanced SERS in Ag/TiO 2 Nanostructured Film: An Experimental and Theoretical Study. MICROMACHINES 2022; 13:mi13101595. [PMID: 36295948 PMCID: PMC9610157 DOI: 10.3390/mi13101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/30/2023]
Abstract
In this work, we present a new study on the electromagnetic (EM) enhancement properties generated by Ag/TiO2 toward the finger print of methylene blue (MB) molecules deposited on the surface of Ag nanostructures. SERS intensity generated by MB molecules reflects the interaction between the local electric field and their bonds. A power-dependent SERS study in order to reveal the magnitude effect of a local electric field on the vibration behavior of molecular bonds of MB was performed. A theoretical study using finite element (COMSOL Multiphysics) was performed in order to understand the effect of interparticle distance of Ag nanoparticles on the enhancement properties.
Collapse
Affiliation(s)
- Chawki Awada
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
25
|
Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study. Catalysts 2022. [DOI: 10.3390/catal12070771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.
Collapse
|
26
|
Lorber K, Djinović P. Accelerating photo-thermal CO 2 reduction to CO, CH 4 or methanol over metal/oxide semiconductor catalysts. iScience 2022; 25:104107. [PMID: 35378856 PMCID: PMC8976152 DOI: 10.1016/j.isci.2022.104107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Photo-thermal reduction of atmospheric carbon dioxide into methane, methanol, and carbon monoxide under mild conditions over suitable (photo)catalysts is a feasible pathway for the production of fuels and platform chemicals with minimal involvement of fossil fuels. In this perspective, we showcase transition metal nanoparticles (Ni, Cu, and Ru) dispersed over oxide semiconductors and their ability to act as photo catalysts in reverse water gas shift reaction (RWGS), methane dry reforming, methanol synthesis, and Sabatier reactions. By using a combination of light and thermal energy for activation, reactions can be sustained at much lower temperatures compared to thermally driven reactions and light can be used to leverage reaction selectivity between methanol, methane, and CO. In addition to influencing the reaction mechanism and decreasing the apparent activation energies, accelerating reaction rates and boosting selectivity beyond thermodynamic limitations is possible. We also provide future directions for research to advance the current state of the art in photo-thermal CO2 conversion.
Collapse
Affiliation(s)
- Kristijan Lorber
- Department of Inorganic Chemistry and Technology, Laboratory for Catalysts, National Institute of Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Petar Djinović
- Department of Inorganic Chemistry and Technology, Laboratory for Catalysts, National Institute of Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
27
|
Ezendam S, Herran M, Nan L, Gruber C, Kang Y, Gröbmeyer F, Lin R, Gargiulo J, Sousa-Castillo A, Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS ENERGY LETTERS 2022; 7:778-815. [PMID: 35178471 PMCID: PMC8845048 DOI: 10.1021/acsenergylett.1c02241] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
The successful development of artificial photosynthesis requires finding new materials able to efficiently harvest sunlight and catalyze hydrogen generation and carbon dioxide reduction reactions. Plasmonic nanoparticles are promising candidates for these tasks, due to their ability to confine solar energy into molecular regions. Here, we review recent developments in hybrid plasmonic photocatalysis, including the combination of plasmonic nanomaterials with catalytic metals, semiconductors, perovskites, 2D materials, metal-organic frameworks, and electrochemical cells. We perform a quantitative comparison of the demonstrated activity and selectivity of these materials for solar fuel generation in the liquid phase. In this way, we critically assess the state-of-the-art of hybrid plasmonic photocatalysts for solar fuel production, allowing its benchmarking against other existing heterogeneous catalysts. Our analysis allows the identification of the best performing plasmonic systems, useful to design a new generation of plasmonic catalysts.
Collapse
Affiliation(s)
- Simone Ezendam
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Matias Herran
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Lin Nan
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Christoph Gruber
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Yicui Kang
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Franz Gröbmeyer
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Rui Lin
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Julian Gargiulo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Ana Sousa-Castillo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Emiliano Cortés
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
28
|
Le T, Wang B. First-Principles Study of Interaction between Molecules and Lewis Acid Zeolites Manipulated by Injection of Energized Charge Carriers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tien Le
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
29
|
Göbel A, Rubio A, Lischner J. Light-Induced Charge Transfer from Transition-Metal-Doped Aluminum Clusters to Carbon Dioxide. J Phys Chem A 2021; 125:5878-5885. [PMID: 34190565 DOI: 10.1021/acs.jpca.1c02621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge transfer between molecules and catalysts plays a critical role in determining the efficiency and yield of photochemical catalytic processes. In this paper, we study light-induced electron transfer between transition-metal-doped aluminum clusters and CO2 molecules using first-principles time-dependent density-functional theory. Specifically, we carry out calculations for a range of dopants (Zr, Mn, Fe, Ru, Co, Ni, and Cu) and find that the resulting systems fall into two categories: Cu- and Fe-doped clusters exhibit no ground-state charge transfer, weak CO2 adsorption, and light-induced electron transfer into the CO2. In all other systems, we observe ground-state electron transfer into the CO2 resulting in strong adsorption and predominantly light-induced electron back-transfer from the CO2 into the cluster. These findings pave the way toward a rational design of atomically precise aluminum photocatalysts.
Collapse
Affiliation(s)
- Alexandra Göbel
- Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Angel Rubio
- Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany.,Nano-Bio Spectroscopy Group and European Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain.,Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York 10010, New York, United States
| | - Johannes Lischner
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.,The Thomas Young Centre for Theory and Simulation of Materials, London SW7 2AZ, U.K
| |
Collapse
|
30
|
Martirez JMP, Carter EA. Projector-Free Capped-Fragment Scheme within Density Functional Embedding Theory for Covalent and Ionic Compounds. J Chem Theory Comput 2021; 17:4105-4121. [DOI: 10.1021/acs.jctc.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John Mark P. Martirez
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Martirez JMP, Carter EA. Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO 2 Cluster from Embedded Multiconfigurational Excited-State Theory. J Phys Chem A 2021; 125:4998-5013. [PMID: 34077662 DOI: 10.1021/acs.jpca.1c02628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding optical properties of the dye molecule in dye-sensitized solar cells (DSSCs) from first-principles quantum mechanics can contribute to improving the efficiency of such devices. While density functional theory (DFT) and time-dependent DFT have been pivotal in simulating optoelectronic properties of photoanodes used in DSSCs at the atomic scale, questions remain regarding DFT's adequacy and accuracy to furnish critical information needed to understand the various excited-state processes involved. Here, we simulate the absorption spectra of a dye-sensitized solar cell analogue, comprised of a Ru-bipyridine (Ru-bpy) dye molecule and a small TiO2 cluster via DFT and via an accurate embedded correlated wavefunction (CW) theory. We generated CW spectra for the adsorbed Ru-bpy dye via a recently introduced capped density functional embedding theory or capped-DFET (to generate the embedding potential that accounts for the interaction of the molecule and the TiO2 cluster). We then combined capped-DFET with the accurate but expensive multiconfigurational complete active space second-order perturbation theory (CASPT2)-embedded CASPT2. Because the CW theory is conducted on only a portion of the total system in the presence of an embedding potential that describes that portion's interaction with its environment, we efficiently obtain CW-quality predictions that reflect local properties of the entire system. Specifically, for example, with capped-DFET and embedded CW theory, we can simulate accurately a plethora of metal-to-ligand charge-transfer excited properties at a manageable computational cost. Here, we predict detailed electronic spectra within the visible region, featuring the lowest three singlet and triplet excited states, along with predictions of the singlets' lifetimes. We illustrated these results using a Jablonski diagram that show the relative energy position of the singlet and longer-lived triplet excited states and analyzed and proposed relaxation paths for the excited state corresponding to the most intense but short-lived absorption (interconversion, intersystem crossing, fluorescence, and phosphorescence) that may lead to longer-lived excited states necessary for efficient charge separation required to generate current in solar cells.
Collapse
Affiliation(s)
- John Mark P Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| | - Emily A Carter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States.,Office of the Chancellor, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, United States.,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
32
|
Zhou L, Lou M, Bao JL, Zhang C, Liu JG, Martirez JMP, Tian S, Yuan L, Swearer DF, Robatjazi H, Carter EA, Nordlander P, Halas NJ. Hot carrier multiplication in plasmonic photocatalysis. Proc Natl Acad Sci U S A 2021; 118:e2022109118. [PMID: 33972426 PMCID: PMC8157927 DOI: 10.1073/pnas.2022109118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Light-induced hot carriers derived from the surface plasmons of metal nanostructures have been shown to be highly promising agents for photocatalysis. While both nonthermal and thermalized hot carriers can potentially contribute to this process, their specific role in any given chemical reaction has generally not been identified. Here, we report the observation that the H2-D2 exchange reaction photocatalyzed by Cu nanoparticles is driven primarily by thermalized hot carriers. The external quantum yield shows an intriguing S-shaped intensity dependence and exceeds 100% for high light intensities, suggesting that hot carrier multiplication plays a role. A simplified model for the quantum yield of thermalized hot carriers reproduces the observed kinetic features of the reaction, validating our hypothesis of a thermalized hot carrier mechanism. A quantum mechanical study reveals that vibrational excitations of the surface Cu-H bond is the likely activation mechanism, further supporting the effectiveness of low-energy thermalized hot carriers in photocatalyzing this reaction.
Collapse
Affiliation(s)
- Linan Zhou
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Minhan Lou
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Junwei Lucas Bao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467
| | - Chao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Jun G Liu
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
| | - John Mark P Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| | - Shu Tian
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Lin Yuan
- Department of Chemistry, Rice University, Houston, TX 77005
| | | | - Hossein Robatjazi
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544;
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Office of the Chancellor, University of California, Los Angeles, CA 90095
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005;
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, TX 77005;
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
| |
Collapse
|
33
|
Zhao Q, Martirez JMP, Carter EA. Revisiting Understanding of Electrochemical CO 2 Reduction on Cu(111): Competing Proton-Coupled Electron Transfer Reaction Mechanisms Revealed by Embedded Correlated Wavefunction Theory. J Am Chem Soc 2021; 143:6152-6164. [PMID: 33851840 DOI: 10.1021/jacs.1c00880] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper (Cu) electrodes, as the most efficacious of CO2 reduction reaction (CO2RR) electrocatalysts, serve as prototypes for determining and validating reaction mechanisms associated with electrochemical CO2 reduction to hydrocarbons. As in situ electrochemical mechanism determination by experiments is still out of reach, such mechanistic analysis typically is conducted using density functional theory (DFT). The semilocal exchange-correlation (XC) approximations most often used to model such catalysis unfortunately engender a basic error: predicting the wrong adsorption site for CO (a key CO2RR intermediate) on the most ubiquitous facet of Cu, namely, Cu(111). This longstanding inconsistency casts lingering doubt on previous DFT predictions of the attendant CO2RR kinetics. Here, we apply embedded correlated wavefunction (ECW) theory, which corrects XC functional error, to study the CO2RR on Cu(111) via both surface hydride (*H) transfer and proton-coupled electron transfer (PCET). We predict that adsorbed CO (*CO) reduces almost equally to two intermediates, namely, hydroxymethylidyne (*COH) and formyl (*CHO) at -0.9 V vs the RHE. In contrast, semilocal DFT approximations predict a strong preference for *COH. With increasing applied potential, the dominance of *COH (formed via potential-independent surface *H transfer) diminishes, switching to the competitive formation of both *CHO and *COH (both formed via potential-dependent PCET). Our results also demonstrate the importance of including explicitly modeled solvent molecules in predicting electron-transfer barriers and reveal the pitfalls of overreliance on simple surface *H transfer models of reduction reactions.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States.,Office of the Chancellor, Box 951405, University of California, Los Angeles, Los Angeles, California 90095-1405, United States
| |
Collapse
|
34
|
Guadagnini A, Agnoli S, Badocco D, Pastore P, Pilot R, Ravelle-Chapuis R, van Raap MBF, Amendola V. Kinetically Stable Nonequilibrium Gold-Cobalt Alloy Nanoparticles with Magnetic and Plasmonic Properties Obtained by Laser Ablation in Liquid. Chemphyschem 2021; 22:657-664. [PMID: 33559943 DOI: 10.1002/cphc.202100021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au-Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level. The NPs are obtained as a polycrystalline solid solution stable in air and water, although surface cobalt atoms undergo oxidation to Co(II). Since gold is a renowned plasmonic material and metallic cobalt is ferromagnetic at room temperature, these properties are both found in the NPs. Besides, surface conjugation with thiolated molecules is possible and it was exploited to obtain colloidally stable solutions in water. Taking advantage of these features, an array of magnetic-plasmonic dots was obtained and used for surface-enhanced Raman scattering experiments. Overall, this study confirms that LASiS is an effective method for the formation of kinetically stable nonequilibrium nanoalloys and shows that Au-Co alloy NPs are appealing magnetically responsive plasmonic building blocks for several nanotechnological applications.
Collapse
Affiliation(s)
- Andrea Guadagnini
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy.,Consorzio INSTM, UdR Padova, Italy
| | | | - Marcela B Fernández van Raap
- Physics Institute of La Plata (IFLP-CONICET), Physics Department Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|