1
|
Bi J, Wang Y, Wang K, Sun Y, Ye F, Wang X, Pan J. FGF1 attenuates sepsis-induced coagulation dysfunction and hepatic injury via IL6/STAT3 pathway inhibition. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167281. [PMID: 38870868 DOI: 10.1016/j.bbadis.2024.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND & AIMS Sepsis, a globally prevalent and highly lethal condition, remains a critical medical challenge. This investigation aims to assess the relevance of FGF1 as a potential therapeutic target for sepsis. METHODS Sepsis was induced in C57BL/6 mice through LPS administration to establish an in vivo animal model. Various in vitro assays were conducted using human umbilical vein endothelial cells to elucidate the role of FGF1 in the disruption of the coagulation system and liver injury associated with sepsis, as well as to explore its underlying molecular mechanisms. RESULTS In in vivo experiments, FGF1 ameliorated coagulation system disruption in septic mice by reducing the levels of pro-inflammatory and coagulation-related factors in the bloodstream. FGF1 also enhanced liver function in septic mice, mitigating liver inflammation and cell apoptosis, fostering liver vascular regeneration, increasing liver blood perfusion, and improving mouse survival. In vitro experiments demonstrated that FGF1 could inhibit LPS-induced inflammatory responses and apoptosis in endothelial cells, fortify endothelial cell barrier function, decrease endothelial cell permeability, promote endothelial cell proliferation, and restore endothelial cell tube-forming ability. Both in vivo and in vitro experiments substantiated that FGF1 improved sepsis by inhibiting the IL-6/STAT3 signaling pathway. CONCLUSION In summary, our study indicates that FGF1 mitigates excessive inflammatory responses in sepsis by suppressing the IL-6/STAT3 signaling pathway, thereby improving systemic blood circulation and ameliorating liver damage in septic organisms. Consequently, this research identifies FGF1 as a potential clinical target for the treatment of human sepsis.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Yanjing Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kaicheng Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Yuanyuan Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Fanrong Ye
- Departments of Nuclear Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China.
| |
Collapse
|
2
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Mankame AR, Sanders KE, Cardenas JC. TIME-DEPENDENT CHANGES IN PROINFLAMMATORY MEDIATORS ARE ASSOCIATED WITH TRAUMA-RELATED VENOUS THROMBOEMBOLISM. Shock 2023; 60:637-645. [PMID: 37647085 PMCID: PMC10841201 DOI: 10.1097/shk.0000000000002216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Background: Tissue trauma and hemorrhage result in pronounced activation of the innate immune system. Given known crosstalk between inflammation and coagulation, soluble inflammatory mediators could be associated with venous thromboembolisms (VTEs) after major trauma. Objectives : This study aimed to identify plasma inflammatory mediators that are independent predictors of VTE risk in trauma patients. Methods: We performed a secondary analysis of the Pragmatic Randomized Optimal Platelets and Plasma Ratios (PROPPR) study. Plasma levels of 27 cytokines/chemokines were measured by Bio-Plex at admission and 2, 4, 6, 12, 24, 48, and 72 h later. Patients who died from exsanguination or within 24 h were excluded. Mann-Whitney tests were performed to assess no-VTE and VTE groups at each time point. Multivariable logistic regression was used to determine the adjusted effects of inflammatory mediators on VTE risk. Results: Eighty-six of the 575 patients (15%) included developed VTE. Interleukin (IL)-1ra, IL-6, IL-8, IL-10, eotaxin, granulocyte colony-stimulating factor, interferon-γ-inducible protein, monocyte chemoattractant protein 1 (MCP-1), and chemokine ligand 5 (regulated on activation, normal T cell expressed and secreted) were all significantly increased among VTE patients. Multivariable analyses demonstrated that IL-6, IL-8, interferon-γ-inducible protein, and MCP-1 were independently associated with VTE. Cox proportional hazards modeling identified IL-6, IL-8, and MCP-1 as independent predictors of accelerated VTE development. We identified significant correlations between inflammation and markers of coagulation and endothelial activation. Conclusion: Sustained systemic inflammation is a key driver of VTE risk after major trauma. Therapeutics targeting innate immune activation should be considered for development of future multimodal strategies to augment current VTE prophylaxis.
Collapse
Affiliation(s)
- Atharwa R. Mankame
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Kelly E. Sanders
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Jessica C. Cardenas
- Department of Surgery, Center for Translational Injury Research, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Yu J, Yang J, He Q, Zhang Z, Xu G. Comprehensive bioinformatics analysis reveals the crosstalk genes and immune relationship between the systemic lupus erythematosus and venous thromboembolism. Front Immunol 2023; 14:1196064. [PMID: 37465678 PMCID: PMC10350530 DOI: 10.3389/fimmu.2023.1196064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Background It is well known that patients with systemic lupus erythematosus (SLE) had a high risk of venous thromboembolism (VTE). This study aimed to identify the crosstalk genes between SLE and VTE and explored their clinical value and molecular mechanism initially. Methods We downloaded microarray datasets of SLE and VTE from the Gene Expression Omnibus (GEO) dataset. Differential expression analysis was applied to identify the crosstalk genes (CGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the shared genes. The shared diagnostic biomarkers of the two diseases were further screened from CGs using least absolute shrinkage and selection operator (Lasso) regression. Two risk scores for SLE and VTE were constructed separately to predict the likelihood of illness according to the diagnostic biomarkers using a logical regression algorithm. The immune infiltration levels of SEL and VTE were estimated via the CIBERSORT algorithm and the relationship of CGs with immune cell infiltration was investigated. Finally, we explored potential phenotype subgroups in SLE and VTE based on the expression level of CGs through the consensus clustering method and studied immune cell infiltration in different subtypes. Result A total of 171 CGs were obtained by the intersection of differentially expressed genes (DEGs) between SLE and VTE cohorts. The functional enrichment shown these CGs were mainly related to immune pathways. After screening by lasso regression, we found that three hub CGs (RSAD2, HSP90AB1, and FPR2) were the optimal shared diagnostic biomarkers for SLE and VTE. Based on the expression level of RSAD2 and HSP90AB1, two risk prediction models for SLE and VTE were built by multifactor logistic regression and systemically validated in internal and external validation datasets. The immune infiltration results revealed that CGs were highly correlated with multiple infiltrated immunocytes. Consensus clustering was used to respectively regroup SLE and VTE patients into C1 and C2 clusters based on the CGs expression profile. The levels of immune cell infiltration and immune activation were higher in C1 than in C2 subtypes. Conclusion In our study, we further screen out diagnostic biomarkers from crosstalk genes SLE and VTE and built two risk scores. Our findings reveal a close relationship between CGs and the immune microenvironment of diseases. This provides clues for further exploring the common mechanism and interaction between the two diseases.
Collapse
Affiliation(s)
- Jingfan Yu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qifan He
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhixuan Zhang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Guoxiong Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang Q, Ul Ain Q, Schulz C, Pircher J. Role of antimicrobial peptide cathelicidin in thrombosis and thromboinflammation. Front Immunol 2023; 14:1151926. [PMID: 37090695 PMCID: PMC10114025 DOI: 10.3389/fimmu.2023.1151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.
Collapse
Affiliation(s)
- Qing Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
- *Correspondence: Joachim Pircher,
| |
Collapse
|
6
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
7
|
Pizzato SB, Terraciano PB, Zanon P, Kuhl CP, Alves Garcez TN, Passos EP, Tirloni L, Berger M. Estrogen depletion modulates aortic prothrombotic signaling in normotensive and spontaneously hypertensive female rats. Mol Cell Endocrinol 2023; 561:111827. [PMID: 36494014 PMCID: PMC9812894 DOI: 10.1016/j.mce.2022.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
AIM In this study, we investigated how platelets and aorta contribute to the creation and maintenance of a prothrombotic state in an experimental model of postmenopausal hypertension in ovariectomized rats. METHODS Bilateral ovariectomy was performed in both 14-week-old female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The animals were kept in phytoestrogen free diet. Vascular parameters, platelet, coagulation and aortic prothrombotic functions and mechanisms were assessed. RESULTS Exacerbated platelet aggregation was observed in both SHR and WKY animals after ovariectomy. The mechanism was related to aortic COX2 downregulation and reduction in AMP, ADP, and ATP hydrolysis in serum and platelets. A procoagulant potential was observed in plasma from ovariectomized rats and this was confirmed by kallikrein and factor Xa generation in aortic rings. Aortic rings derived from ovariectomized SHR presented a greater thrombin generation capacity compared to equivalent rings from WKY animals. The mechanism involved tissue factor and PAR-1 upregulation as well as an increase in extrinsic coagulation and fibrinolysis markers in aorta and platelets. Aortic smooth muscle cells pre-treated with a plasma pool derived from estrogen-depleted animals developed a procoagulant profile with tissue factor upregulation. This procoagulant profile was dependent on inflammatory signalling, since NFκB inhibition attenuated the procoagulant activity and tissue factor expression. CONCLUSIONS A prothrombotic phenotype was observed in both WKY and SHR ovariectomized rats being associated with platelet hyperreactivity and tissue factor upregulation in aorta and platelets. The mechanism involves proinflammatory signalling that supports greater thrombin generation in aorta and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Sabrina Beal Pizzato
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
8
|
A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci 2023; 24:ijms24043169. [PMID: 36834580 PMCID: PMC9964264 DOI: 10.3390/ijms24043169] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is the third most common cause of death worldwide. The incidence of VTE varies according to different countries, ranging from 1-2 per 1000 person-years in Western Countries, while it is lower in Eastern Countries (<1 per 1000 person-years). Many risk factors have been identified in patients developing VTE, but the relative contribution of each risk factor to thrombotic risk, as well as pathogenetic mechanisms, have not been fully described. Herewith, we provide a comprehensive review of the most common risk factors for VTE, including male sex, diabetes, obesity, smoking, Factor V Leiden, Prothrombin G20210A Gene Mutation, Plasminogen Activator Inhibitor-1, oral contraceptives and hormonal replacement, long-haul flight, residual venous thrombosis, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, trauma and fractures, pregnancy, immobilization, antiphospholipid syndrome, surgery and cancer. Regarding the latter, the incidence of VTE seems highest in pancreatic, liver and non-small cells lung cancer (>70 per 1000 person-years) and lowest in breast, melanoma and prostate cancer (<20 per 1000 person-years). In this comprehensive review, we summarized the prevalence of different risk factors for VTE and the potential molecular mechanisms/pathogenetic mediators leading to VTE.
Collapse
|
9
|
Rowley MA, Thawanyarat K, Shah JK, Yesantharao PS, Nazerali R. A recent national analysis of breast reconstruction outcomes in patients with underlying autoimmune connective tissue diseases. EUROPEAN JOURNAL OF PLASTIC SURGERY 2023. [DOI: 10.1007/s00238-023-02043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Wang Z, Zhang H, Huang C, Li K, Luo W, Zhang G, Li X. Predictive value of modified systemic inflammation score for postoperative unplanned ICU admission in patients with NSCLC. Front Surg 2022; 9:893555. [PMID: 35990092 PMCID: PMC9381959 DOI: 10.3389/fsurg.2022.893555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 01/17/2023] Open
Abstract
BackgroundThe purpose of this study was to investigate the predictive value of the modified systemic inflammation score (mSIS) in postoperative unplanned admission to the intensive care unit (ICU) in patients with non-small-cell lung cancer (NSCLC).MethodsThe clinical data of 1,321 patients with NSCLC treated with thoracic surgery in our hospital from August 2019 to June 2021 were analyzed retrospectively. The preoperative mSIS, which takes into account the serum albumin (ALB) level and lymphocyte-to-monocyte ratio (LMR), was recorded as 0, 1 or 2 and then was used to identify high-risk patients with unplanned admission to the ICU. The independent risk factors for unplanned admission to the ICU in patients with NSCLC after surgery were identified by multivariate logistic regression analysis.ResultsA total of 1,321 patients, including 549 (41.6%) males and 772 (58.4%) females, were included. The median age was 57 years (range 16–95 years). The incidence of unplanned admission to the ICU in patients with mSIS = 2 was significantly higher than that in those with mSIS = 0 and mSIS = 1. The multivariate analysis showed that an mSIS of 2 (OR = 3.728; P = 0.004; 95% CI, 1.520–9.143), an alcohol consumption history (OR = 2.791, P = 0.011; 95% CI, 1.262–6.171), intraoperative infusion volume (OR = 1.001, P = 0.021; 95% CI, 1.000–1.001) and preoperative underlying diseases (OR = 3. 57, P = 0.004; 95% CI, 1.497–8.552) were independent risk factors for unplanned admission to the ICU after lung cancer surgery. In addition, the multivariate logistic regression model showed that the C-statistic value was 0.799 (95% CI: 0.726∼0.872, P < 0.001).ConclusionsThe mSIS scoring system can be used as a simplified and effective predictive tool for unplanned ICU admission in patients with NSCLC.
Collapse
Affiliation(s)
- Zhulin Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Hua Zhang
- Department of Cardiovascular surgery, Henan Provincial Chest Hospital, ZhengzhouChina
| | - Chunyao Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Kaiyuan Li
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Wenqing Luo
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Guoqing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
- Correspondence: Xiangnan Li Guoqing Zhang
| | - Xiangnan Li
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
- Correspondence: Xiangnan Li Guoqing Zhang
| |
Collapse
|
11
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
12
|
Vidyanti AN, Maulida Awaliyah MTN, Fauzi AR, Harahap ISK, Mulya DP. Dementia in a patient with autoimmune disease and hypercoagulable state worsened by COVID-19 vaccination: A case report. Ann Med Surg (Lond) 2022; 78:103886. [PMID: 35677525 PMCID: PMC9163025 DOI: 10.1016/j.amsu.2022.103886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background Systemic autoimmune disorders are associated with an increased risk of hypercoagulability. The hypercoagulable state in people with systemic autoimmune disorders has lately gained attention. Presentation of case We presented a 44-year-old male with a chief complaint of progressive difficulty concentrating, memory impairment, and weakness in all limbs. Seven months before admission to our Memory Clinic, the patient began to have infrequent short-term memory loss and sometimes got lost when he went for a drive. Three months later, he complained of feeling dizzy when in a crowd, being unable to watch television for a long time, and easily forgetting. Computed tomography (CT) scan showed brain infarction. After receiving the first dose of COVID-19 vaccine (Sinovac), the patient had difficulty communicating verbally and could only point at objects, as well as tetraparesis. These conditions severely intervened in his daily activities. The patient was then referred to an immunologist and diagnosed with autoimmune disease. In our Memory Clinic, his performances of attention, memory, language, visuospatial, and executive function were very poor. We diagnosed him with autoimmune dementia. The administration of methylprednisolone, mycophenolate mofetil, vitamin D3, donepezil, and memantine could improve his condition. Discussion Autoimmune disease can cause microvascular thrombosis and microembolism at the central nervous system level, which would cause vascular damage and cognitive impairment leading to brain infarction and dementia. Conclusion There seems to be a link between autoimmune disease, hypercoagulable state, and dementia, although the magnitude of this link and the underlying processes are not fully understood. Systemic autoimmune disorders are associated with an increased risk of hypercoagulability. Autoimmune diseases may develop cognitive impairment and vascular damage. Autoimmune disease can lead to brain infarction and dementia.
Collapse
Affiliation(s)
- Amelia Nur Vidyanti
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Corresponding author. Neurobehavior Division, Department of Neurology Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Mira Tamila Nurul Maulida Awaliyah
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Aditya Rifqi Fauzi
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Indra Sari Kusuma Harahap
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| | - Deshinta Putri Mulya
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|
13
|
Cardenas JC. Thrombin Generation Following Severe Trauma: Mechanisms, Modulators, and Implications for Hemostasis and Thrombosis. Shock 2021; 56:682-690. [PMID: 33660669 DOI: 10.1097/shk.0000000000001773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Thrombin is the central coagulation enzyme that catalyzes the conversion of fibrinogen to form insoluble fibrin blood clots. In vivo, thrombin production results from the concerted effort of plasma enzymatic reactions with essential contributions from circulating and vessel wall cells. The relative amount of thrombin produced directly dictates the structure and stability of fibrin clots; therefore, sufficient thrombin generation is essential for normal hemostasis to occur. Examination of thrombin generation phenotypes among severely injury trauma patients reveals important relationships between the potential for generating thrombin and risks of bleeding and thrombotic complications. Thus, understanding determinants of thrombin generation following traumatic injury is of high clinical importance. This review will focus on patterns and mechanisms of thrombin generation in severely injured patients, the role of fluid resuscitation in modulating thrombin generation and implications for outcomes.
Collapse
Affiliation(s)
- Jessica C Cardenas
- Division of Acute Care Surgery and Center for Translationssal Injury Research, Department of Surgery, McGovern School of Medicine, The University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
14
|
Iliadi V, Konstantinidou I, Aftzoglou K, Iliadis S, Konstantinidis TG, Tsigalou C. The Emerging Role of Neutrophils in the Pathogenesis of Thrombosis in COVID-19. Int J Mol Sci 2021; 22:5368. [PMID: 34065210 PMCID: PMC8161034 DOI: 10.3390/ijms22105368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that COVID-19 leads to thrombotic complications, which have been associated with high morbidity and mortality rates. Neutrophils are the largest population of white blood cells and play a pivotal role in innate immunity. During an infection, neutrophils migrate from circulation to the infection site, contributing to killing pathogens. This mechanism is regulated by chemokines such as IL-8. Moreover, it was shown that neutrophils play an important role in thromboinflammation. Through a diverse repertoire of mechanisms, neutrophils, apart from directly killing pathogens, are able to activate the formation of thrombi. In COVID-19 patients, neutrophil activation promotes neutrophil extracellular trap (NET) formation, platelet aggregation, and cell damage. Furthermore, neutrophils participate in the pathogenesis of endothelitis. Overall, this review summarizes recent progress in research on the pathogenesis of COVID-19, highlighting the role of the prothrombotic action of neutrophils in NET formation.
Collapse
Affiliation(s)
- Valeria Iliadi
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | | | | | - Sergios Iliadis
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece;
| |
Collapse
|
15
|
Han X, Li C, Zhang S, Hou X, Chen Z, Zhang J, Zhang Y, Sun J, Wang Y. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196:500-509. [PMID: 33091704 DOI: 10.1016/j.thromres.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.
Collapse
Affiliation(s)
- Xiaorong Han
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Cheng Li
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Shuai Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China.
| | - Zhongbo Chen
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jin Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Ying Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| |
Collapse
|
16
|
Abstract
CONTEXT.— The coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coagulation dysfunction is a hallmark in patients with COVID-19. Fulminant thrombotic complications emerge as critical issues in patients with severe COVID-19. OBJECTIVE.— To present a review of the literature and discuss the mechanisms of COVID-19 underlying coagulation activation and the implications for anticoagulant and thrombolytic treatment in the management of COVID-19. DATA SOURCES.— We performed a systemic review of scientific papers on the topic of COVID-19, available online via the PubMed NCBI, medRxiv, and Preprints as of May 15, 2020. We also shared our experience on the management of thrombotic events in patients with COVID-19. CONCLUSIONS.— COVID-19-associated coagulopathy ranges from mild laboratory alterations to disseminated intravascular coagulation (DIC) with a predominant phenotype of thrombotic/multiple organ failure. Characteristically, high D-dimer levels on admission and/or continuously increasing concentrations of D-dimer are associated with disease progression and poor overall survival. SARS-CoV-2 infection triggers the immune-hemostatic response. Drastic inflammatory responses including, but not limited to, cytokine storm, vasculopathy, and NETosis may contribute to an overwhelming activation of coagulation. Hypercoagulability and systemic thrombotic complications necessitate anticoagulant and thrombolytic interventions, which provide opportunities to prevent or reduce "excessive" thrombin generation while preserving "adaptive" hemostasis and bring additional benefit via their anti-inflammatory effect in the setting of COVID-19.
Collapse
Affiliation(s)
- Yang Fei
- From the Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Fei, Tang)
| | - Ning Tang
- From the Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Fei, Tang)
| | - Hefei Liu
- the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Liu, Cao)
| | - Wenjing Cao
- the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Liu, Cao)
| |
Collapse
|
17
|
Apte G, Börke J, Rothe H, Liefeith K, Nguyen TH. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS APPLIED BIO MATERIALS 2020; 3:5574-5589. [PMID: 35021790 DOI: 10.1021/acsabm.0c00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modulation of platelet-surface activation is important for many biomedical applications such as in vivo performance, platelet storage, and acceptance of an implant. Reducing platelet-surface activation is challenging because they become activated immediately after short contact with nonphysiological surfaces. To date, controversies and open questions in the field of platelet-surface activation still remain. Here, we review state-of-the-art approaches in inhibiting platelet-surface activation, mainly focusing on modification, patterning, and methodologies for characterization of the surfaces. As a future perspective, we discuss how the combination of biochemical and physiochemical strategies together with the topographical modulations would assist in the search for an ideal nonthrombogenic surface.
Collapse
|
18
|
Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin Hemorheol Microcirc 2020; 75:27-34. [PMID: 32568186 PMCID: PMC7458519 DOI: 10.3233/ch-200895] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The burden of pandemic COVID-19 is growing worldwide, as the continuous increases of contagion. Only 10–15% of the entire infected population has the necessity of intensive care unit (ICU) treatments. But, this relatively low rate of patients has absorbed almost the whole availability of ICU during few days, becoming at least in Italy, an emergency for the national health system. In COVID-19 ICU patients massive aggression of lung with severe pulmonary failure, as well as kidney and liver injuries, heart, brain, bowel and spleen damages with lymph nodes necrosis and even cutaneous manifestations have been observed. Moreover, increased levels of cytokines so-called “cytokines storm (CS), and overt intravascular disseminated coagulation have been also reported. The hypercoagulation and CS would speculate about a microvascular dysfunction. Unfortunately, no specific observations have been performed on microcirculatory dysfunction in COVID-19 patients. Hence the presumed pathophysiological pathways and models about a microvascular involvement can be gathered by sepsis models studies. But despite this lack of evidence, the COVID-19 has emphasized the compelling need for microcirculation monitoring at the bedside in ICU patients.
Collapse
Affiliation(s)
- Romeo Martini
- Unità Operativa di Angiologia, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| |
Collapse
|
19
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
20
|
Andrianova IA, Ponomareva AA, Mordakhanova ER, Le Minh G, Daminova AG, Nevzorova TA, Rauova L, Litvinov RI, Weisel JW. In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation. J Autoimmun 2020; 107:102355. [PMID: 31732191 PMCID: PMC10875727 DOI: 10.1016/j.jaut.2019.102355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a high risk of venous and arterial thrombosis, not necessarily associated with prothrombotic antiphospholipid antibodies (Abs). Alternatively, thrombosis may be due to an increased titer of anti-dsDNA Abs that presumably promote thrombosis via direct platelet activation. Here, we investigated effects of purified anti-dsDNA Abs from the blood of SLE patients, alone or in a complex with dsDNA, on isolated normal human platelets. We showed that anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes induced strong platelet activation assessed by enhanced P-selectin expression and dramatic morphological and ultrastructural changes. Electron microscopy revealed a significantly higher percentage of platelets that lost their discoid shape, formed multiple filopodia and had a shrunken body when treated with anti-dsDNA Abs or anti-dsDNA Ab/dsDNA complexes compared with control samples. In addition, these platelets activated with anti-dsDNA Ab/dsDNA complexes typically contained a reduced number of secretory α-granules that grouped in the middle and often merged into a solid electron dense area. Many activated platelets released plasma membrane-derived microvesicles and/or fell apart into subcellular cytoplasmic fragments. Confocal microscopy revealed that platelets treated with anti-dsDNA Ab/dsDNA complex had a heterogeneous distribution of septin2 compared with the homogeneous distribution in control platelets. Structural perturbations were concomitant with mitochondrial depolarization and a decreased content of platelet ATP, indicating energetic exhaustion. Most of the biochemical and morphological changes in platelets induced by anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes were prevented by pre-treatment with a monoclonal mAb against FcγRIIA. The aggregate of data indicates that anti-dsDNA Abs alone or in a complex with dsDNA strongly affect platelets via the FcγRIIA receptor. The immune activation of platelets with antinuclear Abs may comprise a prothrombotic mechanism underlying a high risk of thrombotic complications in patients with SLE.
Collapse
Affiliation(s)
- Izabella A Andrianova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Anastasiya A Ponomareva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation.
| | - Elmira R Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Giang Le Minh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Amina G Daminova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation.
| | - Tatiana A Nevzorova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Lubica Rauova
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - John W Weisel
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Caiazzo E, Bilancia R, Rossi A, Ialenti A, Cicala C. Ectonucleoside Triphosphate Diphosphohydrolase-1/CD39 Affects the Response to ADP of Female Rat Platelets. Front Pharmacol 2020; 10:1689. [PMID: 32082171 PMCID: PMC7005199 DOI: 10.3389/fphar.2019.01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
There is evidence that an imbalance of extracellular purine levels may be associated with increased cardiovascular risk. Platelets play a pivotal role in vascular homeostasis and thrombosis and are important source of purine nucleotides and nucleosides. Hydrolysis of nucleotides ATP and ADP is regulated by two ectonucleotidases, triphosphate diphosphohydrolase-1 (NTPDase-1/CD39) and ecto-5’-nucleotidase (ecto-5’-NT/CD73). CD39 enzyme is expressed on the endothelium, circulating blood cells, and smooth muscle cells; there is evidence that changes in CD39 expression and activity affects the potential thrombogenic of a tissue. Gender difference in the cardiovascular risk has been extensively observed; however, while the age-dependent difference in the prevalence of cardiovascular events between men and women has been attributed to the loss of the protective effect of estrogens in the postmenopausal period, the physiological mechanism behind gender disparity is still unclear. Here, we evaluated comparatively male and female rat platelet reactivity and considered the possible role of CD39 at the basis of difference observed. We found a reduced in vitro response to ADP (1–30 µM) of female compared to male platelets, associated to increased platelet CD39 expression and activity. Platelet response to ADP was strongly increased by incubation (10 min) with the CD39 inhibitor, ARL67156 (100 µM), while male platelet response was unaffected. Rat treatment with clopidogrel (30 mg/kg, per os) inhibited ex vivo platelet aggregation. Bleeding time was prolonged in female compared to male. Taken together, our results suggest that platelet ATPase and ADPase activity might be a reliable predictor of platelet reactivity.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Expression of vascular infarction-related molecules after anti-vascular endothelium growth factor treatment for diabetic macular edema. Sci Rep 2019; 9:12373. [PMID: 31451777 PMCID: PMC6710265 DOI: 10.1038/s41598-019-48869-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
To determine whether an intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) in eyes with diabetic macular edema (DME) affects the vascular infarction-related molecules (VIRMs). Nineteen eyes with DME were treated with 0.5 mg of intravitreal ranibizumab (IVR), and 22 eyes with DME were treated with 2 mg of intravitreal aflibercept (IVA). Blood was collected before, 1 week and 1 month after the injections. Aqueous humor was collected before and 1 month after the injections. The concentration of the VIRMs (cardiac myoglobin, cardiac troponin, intercellular adhesion molecule, monocyte chemotactic protein-1, matrix metalloproteinase-8, placental growth factor [PlGF], tenascin-C, tissue inhibitor of metalloproteinase-1, thrombospondin-2, vascular cell adhesion molecule-1, and VEGF) were determined by the multiplex assay. After the single injection of both types of anti-VEGF agents, the concentration of aqueous VEGF decreased significantly (P < 0.01). The plasma VEGF was reduced significantly at 1 week after the IVA (93.7 ± 17.6 to 39.5 ± 11.6 pg/ml; P < 0.01) but no significant change was seen after IVR (120.2 ± 11.3 to 137.4 ± 17.7 pg/ml). No significant changes were detected for the other VIRMs in the plasma and aqueous. A single intravitreal injection of anti-VEGF for DME does not significantly affect the concentration of several VIRMs.
Collapse
|
23
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
24
|
Xu L, Li X, Zhang E, Liang H, Li W, Wang S, Song S, Ji A. The effect of leech extracts on endothelial cell coagulation-related factors and endothelial dysfuction-related molecules. Clin Exp Hypertens 2018; 41:220-230. [DOI: 10.1080/10641963.2018.1465076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lixu Xu
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Xue Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - E Zhang
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Hao Liang
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Weiting Li
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Shangyi Wang
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Aiguo Ji
- Marine College, Shandong University, Weihai, China
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
25
|
Higgins SJ, De Ceunynck K, Kellum JA, Chen X, Gu X, Chaudhry SA, Schulman S, Libermann TA, Lu S, Shapiro NI, Christiani DC, Flaumenhaft R, Parikh SM. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest 2018; 128:1471-1484. [PMID: 29360642 DOI: 10.1172/jci97488] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in 2 large independent cohorts (combined N = 1,077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized prothrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.
Collapse
Affiliation(s)
- Sarah J Higgins
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiuying Chen
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Xuesong Gu
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Sharjeel A Chaudhry
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A Libermann
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Shulin Lu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Christiani
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School and the Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| |
Collapse
|
26
|
Albert V, Subramanian A, Trikha V, Veerappan SK, Jothi A. Acute coagulofibrinolytic and inflammatory changes in response to intramedullary nailing and its impact on outcome. J Clin Orthop Trauma 2018; 9:S67-S73. [PMID: 29628702 PMCID: PMC5883903 DOI: 10.1016/j.jcot.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Affiliation(s)
- Venencia Albert
- Departments of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, AIIMS, New Delhi, India
| | - Arulselvi Subramanian
- Departments of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, AIIMS, New Delhi, India,Corresponding author at: Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Vivek Trikha
- Department of Orthopaedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil Kumar Veerappan
- Department of Orthopaedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Arul Jothi
- Department of Orthopaedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Date K, Ettelaie C, Maraveyas A. Tissue factor-bearing microparticles and inflammation: a potential mechanism for the development of venous thromboembolism in cancer. J Thromb Haemost 2017; 15:2289-2299. [PMID: 29028284 DOI: 10.1111/jth.13871] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 12/31/2022]
Abstract
Cancer is associated with an increased risk of venous thromboembolism (VTE); the exact mechanisms for the induction of VTE remain to be fully elucidated, but it is widely acknowledged that tissue factor (TF)-bearing microparticles (TF-MPs) may play a significant role. However, TF-MPs have yet to be accepted as a genuine biomarker for cancer-associated VTE, as the presence of elevated TF-MP levels is not always accompanied by thrombosis; interestingly, in certain cases, particularly in pancreatic cancer, VTE seems to be more likely in the context of acute inflammation. Although several potential mechanisms for the development of VTE in cancer have been postulated, this review explores the homeostatic disruption of TF-MPs, as the main reservoir of bloodborne TF, in the context of cancer and inflammation, and considers the abrogated responses of the activated endothelium and mononuclear phagocyte system in mediating this disruption.
Collapse
Affiliation(s)
- K Date
- Hull York Medical School, University of Hull, Hull, UK
| | - C Ettelaie
- School of Life Sciences, University of Hull, Hull, UK
| | - A Maraveyas
- Hull York Medical School, University of Hull, Hull, UK
- Queen's Centre for Oncology and Haematology, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
28
|
Smeets MWJ, Mourik MJ, Niessen HWM, Hordijk PL. Stasis Promotes Erythrocyte Adhesion to von Willebrand Factor. Arterioscler Thromb Vasc Biol 2017; 37:1618-1627. [PMID: 28775074 DOI: 10.1161/atvbaha.117.309885] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Venous thromboembolism is a major contributor to global disease burden. Leukocytes and platelets initiate thrombogenesis on blood stasis and initiate the formation of a fibrin, VWF (von Willebrand factor), and neutrophil extracellular trap scaffold for erythrocytes. However, there is little knowledge on how erythrocytes become stably incorporated into this scaffold. Recently, we described the adhesion of calcium-loaded erythrocytes to endothelial-derived VWF strings. Because VWF is part of the scaffold of venous thrombi, we questioned whether reduced flow or stasis promotes the adhesion of normal erythrocytes to VWF and whether venous thrombi show evidence of erythrocyte-VWF interactions. APPROACH AND RESULTS In the present work, we perfused, under controlled shear conditions, washed, normal erythrocytes over surface-immobilized plasma and extracellular matrix proteins and showed that normal erythrocytes specifically bind to VWF. The interaction between erythrocytes and VWF significantly increased when the wall shear stress was reduced. Next, we investigated whether erythrocyte-VWF interactions support the structure of venous thrombi. High-resolution immunofluorescence imaging of human venous thrombi showed a striking pattern between erythrocytes, VWF, and fibrin, which suggests that VWF plays a supporting role, linking erythrocytes to fibrin in the thrombus. CONCLUSIONS Our data suggest that erythrocyte retention in venous thrombi is mediated by erythrocyte-VWF or erythrocyte-VWF-fibrin interactions. Targeting erythrocyte retention could be a new strategy in the treatment or prevention of venous thrombosis.
Collapse
Affiliation(s)
- Michel W J Smeets
- From the Departments of Molecular Cell Biology (M.W.J.S., P.L.H.) and Plasma Proteins (M.J.M.), Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands; and Department of Pathology and Cardiac Surgery, ICaR-VU (H.W.M.N.) and Department of Physiology (P.L.H.), VU University Medical Center, Amsterdam, The Netherlands.
| | - Marjon J Mourik
- From the Departments of Molecular Cell Biology (M.W.J.S., P.L.H.) and Plasma Proteins (M.J.M.), Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands; and Department of Pathology and Cardiac Surgery, ICaR-VU (H.W.M.N.) and Department of Physiology (P.L.H.), VU University Medical Center, Amsterdam, The Netherlands
| | - Hans W M Niessen
- From the Departments of Molecular Cell Biology (M.W.J.S., P.L.H.) and Plasma Proteins (M.J.M.), Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands; and Department of Pathology and Cardiac Surgery, ICaR-VU (H.W.M.N.) and Department of Physiology (P.L.H.), VU University Medical Center, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Departments of Molecular Cell Biology (M.W.J.S., P.L.H.) and Plasma Proteins (M.J.M.), Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands; and Department of Pathology and Cardiac Surgery, ICaR-VU (H.W.M.N.) and Department of Physiology (P.L.H.), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Elizondo P, Fogelson AL. A Mathematical Model of Venous Thrombosis Initiation. Biophys J 2017; 111:2722-2734. [PMID: 28002748 DOI: 10.1016/j.bpj.2016.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/23/2016] [Accepted: 10/17/2016] [Indexed: 01/28/2023] Open
Abstract
We present a mathematical model for the initiation of venous thrombosis (VT) due to slow flow and the consequent activation of the endothelial cells (ECs) lining the vein, in the absence of overt mechanical disruption of the EC layer. It includes all reactions of the tissue factor (TF) pathway of coagulation through fibrin formation, incorporates the accumulation of blood cells on activated ECs, accounts for the flow-mediated delivery and removal of coagulation proteins and blood cells from the locus of the reactions, and accounts for the activity of major inhibitors including heparan-sulfate-accelerated antithrombin and activated protein C. The model reveals that the occurrence of robust thrombin generation (a thrombin burst) depends in a threshold manner on the density of TF on the activated ECs and on the concentration of thrombomodulin and the degree of heparan-sulfate accelerated antithrombin activity on those cells. Small changes in any of these in appropriate narrow ranges switches the response between "no burst" and "burst." The model predicts synergies among the inhibitors, both in terms of each inhibitor's multiple targets, and in terms of interactions between the different inhibitors. The model strongly suggests that the rate and extent of accumulation of activated monocytes, platelets, and MPs that can support the coagulation reactions has a powerful influence on whether a thrombin burst occurs and the thrombin response when it does. The slow rate of accumulation of cells supporting coagulation is one reason that the progress of VT is so much slower than that of arterial thrombosis initiated by subendothelial exposure.
Collapse
Affiliation(s)
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
30
|
Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawińska G, Drews K, Szymankiewicz M. The role of FV 1691G>A, FII 20210G>A mutations and MTHFR 677C>T; 1298A>C and 103G>T FXIII gene polymorphisms in pathogenesis of intraventricular hemorrhage in infants born before 32 weeks of gestation. Childs Nerv Syst 2017; 33:1201-1208. [PMID: 28578513 PMCID: PMC5496967 DOI: 10.1007/s00381-017-3460-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Congenital thrombophilia is associated with an increased intraventricular hemorrhage (IVH) risk among newborns, but it may also play a protective role. The role of genetic polymorphisms involved in the coagulation pathway of IVH pathogenesis is probably a consequence of an increased risk of thrombosis in the fine blood vessels in the germinal matrix region. MATERIAL AND METHODS The aim of this study was to evaluate the possible relationship between Factor V (FV) 1691G>A, Factor II (FII) 20210G>A mutations and methylenetetrahydrofolate reductase (MTHFR) 677C>T; 1298A>C and Factor XIII (FXIII) 103G>T gene polymorphisms and the occurrence of IVH in 100 infants born from 24 + 0 to 32 + 0 weeks of gestation, born from singleton pregnancy, before 32 + 0 weeks of gestation, exposed to antenatal steroid therapy, and without congenital abnormalities. RESULTS IVH developed 45 (45%) infants, including 15 (33.33%) diagnosed with IVH stage I, 20 (42.22%) with stage II, 8 (17.77%) with stage III, and 3 (6.66%) with stage IV. Analysis showed a prevalence 4.5 times higher of IVH stages II to IV in infants with the genotype CC (OR 4511 (1147-17.75); p = 0.026) of MTHFR 1298A>C gene polymorphism. Our investigation did not confirm any significant prevalence of IVH development in other studied mutations/polymorphisms. CONCLUSIONS This study confirmed that the MTHFR 1298A>C polymorphism is associated with the risk of IVH. IVH is a significant problem for preterm infants. In addition to little progress in preventing IVH in preterm babies, substantial research that is focused on understanding the etiology, mechanism, and risk factors for IVH is imperative. In the era of personalized medicine, identification of genetic risk factors creates opportunities to generate preventative strategies.
Collapse
Affiliation(s)
- Dawid Szpecht
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street, 60-535, Poznań, Poland.
| | - Janusz Gadzinowski
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street, 60-535, Poznań, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Plants, Poznan, Poland
| | - Grażyna Kurzawińska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Drews
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Szymankiewicz
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street, 60-535, Poznań, Poland
| |
Collapse
|
31
|
Hoekstra AG, Alowayyed S, Lorenz E, Melnikova N, Mountrakis L, van Rooij B, Svitenkov A, Závodszky G, Zun P. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0146. [PMID: 27698036 PMCID: PMC5052730 DOI: 10.1098/rsta.2016.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 05/27/2023]
Abstract
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Alfons G Hoekstra
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Saad Alowayyed
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Eric Lorenz
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands Electric Ant Lab BV, Panamalaan 4 K, 1019AZ Amsterdam, The Netherlands
| | - Natalia Melnikova
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Lampros Mountrakis
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Britt van Rooij
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Andrew Svitenkov
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Gábor Závodszky
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Pavel Zun
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| |
Collapse
|
32
|
Duca L, Blaise S, Romier B, Laffargue M, Gayral S, El Btaouri H, Kawecki C, Guillot A, Martiny L, Debelle L, Maurice P. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 2016; 110:298-308. [DOI: 10.1093/cvr/cvw061] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 12/17/2022] Open
|
33
|
Ivanciu L, Stalker TJ. Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 2015; 13:1949-59. [PMID: 26386264 PMCID: PMC5847271 DOI: 10.1111/jth.13145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
Abstract
The hemostatic response requires the tightly regulated interaction of the coagulation system, platelets, other blood cells and components of the vessel wall at a site of vascular injury. The dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is overly robust. Extensive studies over the past decade have sought to unravel the regulatory mechanisms that coordinate the multiple biochemical and cellular responses in time and space to ensure that an optimal response to vascular damage is achieved. These studies have relied in part on advances in in vivo imaging techniques in animal models, allowing for the direct visualization of various molecular and cellular events in real time during the hemostatic response. This review summarizes knowledge gained with these in vivo imaging and other approaches that provides new insights into the spatiotemporal regulation of coagulation and platelet activation at a site of vascular injury.
Collapse
Affiliation(s)
- L Ivanciu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15:130. [PMID: 26481314 PMCID: PMC4617895 DOI: 10.1186/s12872-015-0124-z] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Hemostasis encompasses a set of tightly regulated processes that govern blood clotting, platelet activation, and vascular repair. Upon vascular injury, the hemostatic system initiates a series of vascular events and activates extravascular receptors that act in concert to seal off the damage. Blood clotting is subsequently attenuated by a plethora of inhibitors that prevent excessive clot formation and eventual thrombosis. The endothelium which resides at the interface between the blood and surrounding tissues, serves an integral role in the hemostatic system. Depending on specific tissue needs and local stresses, endothelial cells are capable of evoking either antithrombotic or prothrombotic events. Healthy endothelial cells express antiplatelet and anticoagulant agents that prevent platelet aggregation and fibrin formation, respectively. In the face of endothelial dysfunction, endothelial cells trigger fibrin formation, as well as platelet adhesion and aggregation. Finally, endothelial cells release pro-fibrinolytic agents that initiate fibrinolysis to degrade the clot. Taken together, a functional endothelium is essential to maintain hemostasis and prevent thrombosis. Thus, a greater understanding into the role of the endothelium can provide new avenues for exploration and novel therapies for the management of thromboembolisms.
Collapse
Affiliation(s)
- Jonathan W Yau
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada.
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada. .,Divisions of Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, ON, Canada.
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost 2015; 13:1743-56. [PMID: 26190521 PMCID: PMC5014149 DOI: 10.1111/jth.13061] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022]
Abstract
Sepsis, also known as septicemia, is one of the 10 leading causes of death worldwide. The rising tide of sepsis due to bacterial, fungal and viral infections cannot be stemmed by current antimicrobial therapies and supportive measures. New paradigms for the mechanism and resolution of sepsis and consequences for sepsis survivors are emerging. Consistent with Benjamin Franklin's dictum 'an ounce of prevention is worth a pound of cure', sepsis can be prevented by vaccinations against pneumococci and meningococci. Recently, the NIH NHLBI Panel redefined sepsis as 'severe endothelial dysfunction syndrome in response to intravascular and extravascular infections causing reversible or irreversible injury to the microcirculation responsible for multiple organ failure'. Microvascular endothelial injury underlies sepsis-associated hypotension, edema, disseminated intravascular coagulation, acute respiratory distress syndrome and acute kidney injury. Microbial genome products trigger 'genome wars' in sepsis that reprogram the human genome and culminate in a 'genomic storm' in blood and vascular cells. Sepsis can be averted experimentally by endothelial cytoprotection through targeting nuclear signaling that mediates inflammation and deranged metabolism. Endothelial 'rheostats' (e.g. inhibitors of NF-κB, A20 protein, CRADD/RAIDD protein and microRNAs) regulate endothelial signaling. Physiologic 'extinguishers' (e.g. suppressor of cytokine signaling 3) can be replenished through intracellular protein therapy. Lipid mediators (e.g. resolvin D1) hasten sepsis resolution. As sepsis cases rose from 387 330 in 1996 to 1.1 million in 2011, and are estimated to reach 2 million by 2020 in the US, mortality due to sepsis approaches that of heart attacks and exceeds deaths from stroke. More preventive vaccines and therapeutic measures are urgently needed.
Collapse
Affiliation(s)
- J Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R A Veach
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
36
|
Struble E, Harrouk W, DeFelice A, Tesfamariam B. Nonclinical aspects of venous thrombosis in pregnancy. ACTA ACUST UNITED AC 2015; 105:190-200. [PMID: 26404176 DOI: 10.1002/bdrc.21111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pregnancy is a hypercoagulable state which carries an excess risk of maternal venous thrombosis. Endothelial injury, alterations in blood flow and activation of the coagulation pathway are proposed to contribute to the hypercoagulability. The risk for thrombosis may be accentuated by certain drugs and device implants that directly or indirectly affect the coagulation pathway. To help ensure that these interventions do not result in adverse maternal or fetal outcomes during pregnancy, gravid experimental animals can be exposed to such treatments at various stages of gestation and over a dosage range that would identify hazards and inform risk assessment. Circulating soluble biomarkers can also be evaluated for enhancing the assessment of any increased risk of venous thrombosis during pregnancy. In addition to traditional in vivo animal testing, efforts are under way to incorporate reliable non-animal methods in the assessment of embryofetal toxicity and thrombogenic effects. This review summarizes hemostatic balance during pregnancy in animal species, embryofetal development, biomarkers of venous thrombosis, and alterations caused by drug-induced venous thrombosis.
Collapse
Affiliation(s)
- Evi Struble
- Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Wafa Harrouk
- Division of Nonprescription Drug Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Albert DeFelice
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Belay Tesfamariam
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
37
|
Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol (Camb) 2015; 7:24-52. [PMID: 25335120 DOI: 10.1039/c4ib00173g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the two phenomena are usually studied separately, we summarise a considerable body of literature to the effect that a great many diseases involve (or are accompanied by) both an increased tendency for blood to clot (hypercoagulability) and the resistance of the clots so formed (hypofibrinolysis) to the typical, 'healthy' or physiological lysis. We concentrate here on the terminal stages of fibrin formation from fibrinogen, as catalysed by thrombin. Hypercoagulability goes hand in hand with inflammation, and is strongly influenced by the fibrinogen concentration (and vice versa); this can be mediated via interleukin-6. Poorly liganded iron is a significant feature of inflammatory diseases, and hypofibrinolysis may change as a result of changes in the structure and morphology of the clot, which may be mimicked in vitro, and may be caused in vivo, by the presence of unliganded iron interacting with fibrin(ogen) during clot formation. Many of these phenomena are probably caused by electrostatic changes in the iron-fibrinogen system, though hydroxyl radical (OH˙) formation can also contribute under both acute and (more especially) chronic conditions. Many substances are known to affect the nature of fibrin polymerised from fibrinogen, such that this might be seen as a kind of bellwether for human or plasma health. Overall, our analysis demonstrates the commonalities underpinning a variety of pathologies as seen in both hypercoagulability and hypofibrinolysis, and offers opportunities for both diagnostics and therapies.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
38
|
Ait Aissa K, Lagrange J, Mohamadi A, Louis H, Houppert B, Challande P, Wahl D, Lacolley P, Regnault V. Vascular Smooth Muscle Cells Are Responsible for a Prothrombotic Phenotype of Spontaneously Hypertensive Rat Arteries. Arterioscler Thromb Vasc Biol 2015; 35:930-7. [DOI: 10.1161/atvbaha.115.305377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The hypothesis that hypertension induces a hypercoagulable state arises from the complications associated with hypertension: stroke and myocardial infarction. Here, we determine whether hypertension causes changes in the thrombin-generating capacity of the vascular wall.
Approach and Results—
We used spontaneously hypertensive rats (SHR) compared with Wistar rats. The addition of thoracic aortic rings of SHR to a Wistar or SHR plasma pool resulted in a greater increase in thrombin generation compared with equivalent rings from Wistar. This increase occurred in 12- but not 5-week-old rats and was prevented by an angiotensin II–converting enzyme inhibitor, indicating that established hypertension is required to induce increased thrombin generation within the vessel wall. Whereas no difference was observed for endothelial cells, thrombin formation was higher on aortic smooth muscle cells (SMCs) from SHR than on those from Wistar. Exposure of negatively charged phospholipids was higher on SHR than on Wistar rings, as well as on cultured SMCs. Tissue factor activity was higher in SHR SMCs. Twelve-week-old SHR exhibited accelerated FeCl
3
-induced thrombus formation in carotid arteries, and the resulting occlusive thrombi were disaggregated by blockade of glycoprotein Ibα–von Willebrand factor interactions. SHR SMCs were more sensitive to thrombin-induced proliferation than Wistar SMCs. This effect was totally abolished by a protease-activated receptor 1 inhibitor.
Conclusions—
The prothrombotic phenotype of the SHR vessel wall was due to the ability of SMCs to support greater thrombin generation and resulted in accelerated occlusive thrombus formation after arterial injury, which was sensitive to glycoprotein Ibα–von Willebrand factor inhibitors.
Collapse
Affiliation(s)
- Karima Ait Aissa
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Jérémy Lagrange
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Amel Mohamadi
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Huguette Louis
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Bénédicte Houppert
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Pascal Challande
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Denis Wahl
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Patrick Lacolley
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Véronique Regnault
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| |
Collapse
|
39
|
Tamaki H, Khasnis A. Venous thromboembolism in systemic autoimmune diseases: A narrative review with emphasis on primary systemic vasculitides. Vasc Med 2015; 20:369-76. [DOI: 10.1177/1358863x15573838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Venous thromboembolism (VTE) is a prevalent multifactorial health condition associated with significant morbidity and mortality. Population-based epidemiological studies have revealed an association between systemic autoimmune diseases and deep venous thrombosis (DVT)/VTE. The etiopathogenesis of increased risk of VTE in systemic autoimmune diseases is not entirely clear but multiple contributors have been explored, especially in the context of systemic inflammation and disordered thrombogenesis. Epidemiologic data on increased risk of VTE in patients with primary systemic vasculitides (PSV) have accumulated in recent years and some of these studies suggest the increased risk while patients have active diseases. This could lead us to hypothesize that venous vascular inflammation has a role to play in this phenomenon, but this is unproven. The role of immunosuppressive agents in modulating the risk of VTE in patients with PSV is not yet clear except for Behçet’s disease, where most of the studies are retrospective. Sensitizing physicians to this complication has implications for prevention and optimal management of patients with these complex diseases. This review will focus on the epidemiology and available evidence regarding pathogenesis, and will attempt to summarize the best available data regarding evaluation and treatment of these patients.
Collapse
Affiliation(s)
- Hiromichi Tamaki
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, USA
| | - Atul Khasnis
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, USA
| |
Collapse
|
40
|
Abdalla AME, Xiao L, Ouyang C, Yang G. Engineered nanoparticles: thrombotic events in cancer. NANOSCALE 2014; 6:14141-14152. [PMID: 25347245 DOI: 10.1039/c4nr04825c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanoparticles are being increasingly produced for specific applications in medicine. Broad selections of nano-sized constructs have been developed for applications in diagnosis, imaging, and drug delivery. Nanoparticles as contrast agents enable conjugation with molecular markers which are essential for designing effective diagnostic and therapeutic strategies. Such investigations can also lead to a better understanding of disease mechanisms such as cancer-associated thrombosis which remains unpredictable with serious bleeding complications and high risk of death. Here we review the recent and current applications of engineered nanoparticles in diagnosis and therapeutic strategies, noting their toxicity in relation to specific markers as a target.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
41
|
Kawecki C, Hézard N, Bocquet O, Poitevin G, Rabenoelina F, Kauskot A, Duca L, Blaise S, Romier B, Martiny L, Nguyen P, Debelle L, Maurice P. Elastin-derived peptides are new regulators of thrombosis. Arterioscler Thromb Vasc Biol 2014; 34:2570-8. [PMID: 25341794 DOI: 10.1161/atvbaha.114.304432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. APPROACH AND RESULTS We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. CONCLUSIONS These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.
Collapse
Affiliation(s)
- Charlotte Kawecki
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Nathalie Hézard
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Olivier Bocquet
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Gaël Poitevin
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Fanja Rabenoelina
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Alexandre Kauskot
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Duca
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Sébastien Blaise
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Béatrice Romier
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Martiny
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Philippe Nguyen
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Debelle
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Pascal Maurice
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.).
| |
Collapse
|
42
|
Bouvy C, Gheldof D, Chatelain C, Mullier F, Dogné JM. Contributing role of extracellular vesicles on vascular endothelium haemostatic balance in cancer. J Extracell Vesicles 2014; 3:24400. [PMID: 25045423 PMCID: PMC4095764 DOI: 10.3402/jev.v3.24400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) generated during tumourigenesis are thought to play a major role in the hypercoagulant state observed in cancer patients. They exhibit negatively charged phospholipids and tissue factor (TF) that promote coagulation cascade activation. In addition, they contain surface proteins and cytoplasmic molecules, both originating from the producing cell that can impact target cells’ expression. By targeting endothelial cells of blood vessels, these EVs could disturb the physiological anticoagulant properties of these cells and be partly responsible for the vascular endothelium activation observed in cancer patients. Indeed, vascular endothelium naturally exhibits heparin-like proteoglycan, TF pathway inhibitor and protein C anticoagulant pathway that prevent thrombosis in physiological condition. An overexpression of TF and a decreased expression of coagulation cascade inhibitors have been reported after EVs’ treatment of endothelial cells. The induction of apoptosis and an increased expression of platelet adhesion molecules have also been highlighted. These events may promote thrombus formation in cancer. The aim of this paper is to provide a targeted review on the current evidence and knowledge of roles and impact of EVs on endothelial surface anticoagulant and procoagulant factors and cellular adhesion molecules expression.
Collapse
Affiliation(s)
- Céline Bouvy
- Department of Pharmacy, Namur Research Institute of Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium
| | - Damien Gheldof
- Department of Hematology, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne, UCL Namur, Yvoir, Belgium
| | - Christian Chatelain
- Department of Hematology, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne, UCL Namur, Yvoir, Belgium
| | - François Mullier
- Department of Hematology, Namur Thrombosis and Hemostasis Center (NTHC), CHU Dinant-Godinne, UCL Namur, Yvoir, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute of Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium
| |
Collapse
|
43
|
Comparison of venous thromboembolism after total hip arthroplasty between ankylosing spondylitis and osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:712895. [PMID: 24995324 PMCID: PMC4065686 DOI: 10.1155/2014/712895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023]
Abstract
Objective. Ankylosing spondylitis (AS), an inflammatory rheumatic disease, will gradually lead to severe hip joint dysfunction. Total hip arthroplasty is a useful method to improve patients' quality of life. The aim of this study was to compare the incidence and risk factors of deep vein thrombosis (DVT) between AS and hip osteoarthritis. Methods. In a retrospective study, a total of 149 subjects who underwent cementless THA were studied. Clinical data, biochemical data, and surgery-related data were measured between AS and OA groups. Results. The incidence of DVT in AS group was lower than that of OA group, although no significant difference was detected (P = 0.89). The patients of AS group were much younger (P < 0.0001) and thinner (P = 0.018) compared with those of OA group. AS patients had higher ejection fraction (EF) (P = 0.016), higher platelet counts (P < 0.0001), and lower hypertension rate (P = 0.0004). The values of APTT, PT, and INR in AS patients were higher than those in OA patients (all P < 0.0001). The values of D-dimer and APTT were both significantly higher in DVT subjects than those in non-DVT subjects. Conclusion. AS patients potentially had a lower incidence of DVT compared with OA patients.
Collapse
|
44
|
Abstract
The membrane-dependent interaction of factor Xa (FXa) with factor Va (FVa) forms prothrombinase and drives thrombin formation essential for hemostasis. Activated platelets are considered to provide the primary biological surface to support prothrombinase function. However, the question of how other cell types may cooperate within the biological milieu to affect hemostatic plug formation remains unaddressed. We used confocal fluorescence microscopy to image the distribution of site-specific fluorescent derivatives of FVa and FXa after laser injury in the mouse cremaster arteriole. These proteins bound to the injury site extend beyond the platelet mass to the surrounding endothelium. Although bound FVa and FXa may have been present on the platelet core at the nidus of the injury, bound proteins were not evident on platelets adherent even a small distance from the injury site. Manipulations to drastically reduce adherent platelets yielded a surprisingly modest decrease in bound FXa and FVa with little impact on fibrin formation. Thus, platelets adherent to the site of vascular injury do not play the presumed preeminent role in supporting prothrombinase assembly and thrombin formation. Rather, the damaged/activated endothelium and possibly other blood cells play an unexpectedly important role in providing a procoagulant membrane surface in vivo.
Collapse
|
45
|
Francischetti IMB, Gordon E, Bizzarro B, Gera N, Andrade BB, Oliveira F, Ma D, Assumpção TCF, Ribeiro JMC, Pena M, Qi CF, Diouf A, Moretz SE, Long CA, Ackerman HC, Pierce SK, Sá-Nunes A, Waisberg M. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria. PLoS One 2014; 9:e87140. [PMID: 24586264 PMCID: PMC3938406 DOI: 10.1371/journal.pone.0087140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with inhibitors of SOD (diethyldithiocarbamate) or NADPH oxidase (diphenyleneiodonium) did not show protection or exacerbation for CM. Conclusion Results with Tempol suggest that intracellular ROS contribute, in part, to CM pathogenesis. Therapeutic targeting of intracellular ROS in CM is discussed.
Collapse
Affiliation(s)
- Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (IMBF); (MW)
| | - Emile Gordon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruna Bizzarro
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nidhi Gera
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruno B. Andrade
- Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, Maryland, United States of America
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Teresa C. F. Assumpção
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hans C. Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- University of Virginia, Department of Pathology, Charlottesville, Virginia, United States of America
- * E-mail: (IMBF); (MW)
| |
Collapse
|
46
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Alexopoulos SP, Thomas E, Berry E, Whang G, Matsuoka L. The portal vein-variceal anastomosis: an important technique for establishing portal vein inflow. Clin Transplant 2013; 28:52-7. [DOI: 10.1111/ctr.12278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Sophoclis P. Alexopoulos
- Division of Hepatobiliary, Pancreatic and Abdominal Transplant Surgery; Keck School of Medicine at the University of Southern California; Los Angeles CA USA
| | - Elizabeth Thomas
- Division of Hepatobiliary, Pancreatic and Abdominal Transplant Surgery; Keck School of Medicine at the University of Southern California; Los Angeles CA USA
| | - Emily Berry
- Division of Hepatobiliary, Pancreatic and Abdominal Transplant Surgery; Keck School of Medicine at the University of Southern California; Los Angeles CA USA
| | - Gilbert Whang
- Department of Radiology; Keck School of Medicine at the University of Southern California; Los Angeles CA USA
| | - Lea Matsuoka
- Division of Hepatobiliary, Pancreatic and Abdominal Transplant Surgery; Keck School of Medicine at the University of Southern California; Los Angeles CA USA
| |
Collapse
|
48
|
Pozzi N, Acquasaliente L, Frasson R, Cristiani A, Moro S, Banzato A, Pengo V, Scaglione GL, Arcovito A, De Cristofaro R, De Filippis V. β2 -Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions. J Thromb Haemost 2013; 11:1093-102. [PMID: 23578283 DOI: 10.1111/jth.12238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 08/31/2023]
Abstract
BACKGROUND This work was aimed at characterizing the interaction of β(2)-glycoprotein I (β(2)GPI), an abundant plasma protein of unknown function, with human thrombin, the final effector protease in the coagulation cascade. METHODS The β(2)GPI-thrombin interaction was studied by surface plasmon resonance (SPR), fluorescence, and molecular modeling. The effect of β(2)GPI on the procoagulant (fibrin generation and platelet aggregation) and anticoagulant (protein C activation) functions of thrombin were investigated with turbidimetric, immunocytofluorimetric and enzymatic assays. RESULTS SPR and fluorescence data indicated that β(2)GPI tightly bound thrombin (K(d) = 34 nM) by interacting with both protease exosites, while leaving the active site accessible. This picture is fully consistent with the theoretical model of the β(2)GPI-thrombin complex. In particular, blockage of thrombin exosites with binders specific for exosite-1 (hirugen and HD1 aptamer) or exosite-2 (fibrinogen γ'-peptide and HD22 aptamer) impaired the β2 GPI-thrombin interaction. Identical results were obtained with thrombin mutants having one of the two exosites selectively compromised by mutation (Arg73Ala and Arg101Ala). Fluorescence measurements indicated that β(2)GPI did not affect the affinity of the enzyme for active site inhibitors, such as p-aminobenzamidine and the hirudin(1-47) domain, in agreement with the structural model. β(2)GPI dose-dependently prolonged the thrombin clotting time and ecarin clotting time in β(2)GPI-deficient plasma. β(2)GPI inhibited thrombin-induced platelet aggregation (IC50 = 0.36 μM) by impairing thrombin cleavage of protease-activated receptor 1 (PAR1) (IC50 = 0.32 μM), both on gel-filtered platelets and in whole blood. Strikingly, β(2) GPI did not affect thrombin-mediated generation of the anticoagulant protein C. CONCLUSIONS β(2) GPI functions as a physiologic anticoagulant by inhibiting the key procoagulant activities of thrombin without affecting its unique anticoagulant function.
Collapse
Affiliation(s)
- N Pozzi
- Laboratory of Protein Chemistry, School of Medicine, University of Padua, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bergbold N, Lemberg MK. Emerging role of rhomboid family proteins in mammalian biology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2840-8. [PMID: 23562403 DOI: 10.1016/j.bbamem.2013.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 01/19/2023]
Abstract
From proteases that cleave peptide bonds in the plane of the membrane, rhomboids have evolved into a heterogeneous superfamily with a wide range of different mechanistic properties. In mammals 14 family members have been annotated based on a shared conserved membrane-integral rhomboid core domain, including intramembrane serine proteases and diverse proteolytically inactive homologues. While the function of rhomboid proteases is the proteolytic release of membrane-tethered factors, rhomboid pseudoproteases including iRhoms and derlins interact with their clients without cleaving them. It has become evident that specific recognition of membrane protein substrates and clients by the rhomboid fold reflects a spectrum of cellular functions ranging from growth factor activation, trafficking control to membrane protein degradation. This review summarizes recent progress on rhomboid family proteins in the mammalian secretory pathway and raises the question whether they can be seen as new drug targets for inflammatory diseases and cancer. This article is part of a special issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nina Bergbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|
50
|
Singarapu K, Pal I, Ramsey JD. Polyethylene glycol–grafted polyethylenimine used to enhance adenovirus gene delivery. J Biomed Mater Res A 2012; 101:1857-64. [DOI: 10.1002/jbm.a.34483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Kumar Singarapu
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Ivy Pal
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|