1
|
Vu NT, Kim H, Lee S, Hwang IS, Kwon CT, Oh CS. Bacteriophage cocktail for biocontrol of soft rot disease caused by Pectobacterium species in Chinese cabbage. Appl Microbiol Biotechnol 2024; 108:11. [PMID: 38159122 DOI: 10.1007/s00253-023-12881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soohong Lee
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choon-Tak Kwon
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Sason G, Chalegoua E, Pun M, Nussinovitch A, Jurkevitch E, Yedidia I. Encapsulated Predatory Bacteria Efficiently Protect Potato Tubers from Soft Rot Disease. PLANT DISEASE 2024:PDIS02240487RE. [PMID: 39003501 DOI: 10.1094/pdis-02-24-0487-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Soft rot Pectobacteriaceae (SRP) are a group of destructive Gram-negative phytopathogens that can infect a wide range of plant hosts, including potatoes. There are no effective control agents available against SRP, making their management challenging. We have developed a novel approach to protect potato tubers against SRP. It makes use of encapsulated predatory Bdellovibrio bacteriovorus bacteria that, upon release from a polymeric carrier, prey upon SRP. We applied a carrageenan-trehalose-based formulation containing a B. bacteriovorus HD100 predator to prevent soft rot disease development in potato tubers, under various conditions. The dried formulation exhibited very high stability over an 18-month period at room temperature (∼25°C), in contrast to unencapsulated suspensions of the predator, in which viability decreased rapidly below detection level. The rehydrated formulation was as efficient as freshly grown unencapsulated predators and provided high protection in potted potato tubers, displaying an average of 50% reduction in disease parameters (e.g., tissue decay and disease index) under controlled conditions at 7 days postinoculation and planting. The protective effect provided by this formulation was maintained in longer-term trials (28 days) conducted in larger vessels within a net house under natural climate conditions, highlighting its potential for practical application in the field.
Collapse
Affiliation(s)
- Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Errikos Chalegoua
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Manoj Pun
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Amos Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
3
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Joko T, Ava S, Putri INS, Subandiyah S, Rohman MS, Ogawa N. Manuka Honey Inhibits Biofilm Formation and Reduces the Expression of the Associated Genes in Pectobacterium brasiliense. SCIENTIFICA 2024; 2024:8837149. [PMID: 39502934 PMCID: PMC11535176 DOI: 10.1155/2024/8837149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Biofilms are major virulence factors formed by pathogenic bacteria to invade their host and maintain their colony. While biofilms usually develop on diverse solid surfaces, floating biofilms, also called pellicles, are formed at the air-liquid interface. To address the problem of biofilm formation by bacterial pathogens, honey has been extensively studied. However, information on the effect of honey on biofilm formation by plant pathogens is scarce. This study aimed to determine the effects of manuka honey on biofilm and pellicle formation by Pectobacterium brasiliense and analyze the expression of genes encoding proteins needed to form biofilm by using semiquantitative PCR and RT-qPCR. Treatment with 5% (w/v) of manuka honey significantly decreased biofilm and pellicle formation by P. brasiliense. RT-qPCR results showed that the expression of bcsA, fis, hrpL, and expI decreased 7.07-fold, 5.71-fold, 13.11-fold, and 6.26-fold, respectively, after exposure to 5% (w/v) manuka honey. Our findings reveal that manuka honey may effectively inhibit biofilm and pellicle formation.
Collapse
Affiliation(s)
- Tri Joko
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sheila Ava
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Isna Nurifa Sasmita Putri
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Siti Subandiyah
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhammad Saifur Rohman
- Department of Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Naoto Ogawa
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
5
|
Dapuliga CC, Claussen M, Schmidt S. First draft genome sequence of a Pectobacterium polaris strain isolated in South Africa from potato tuber affected by soft rot. Microbiol Resour Announc 2024; 13:e0069124. [PMID: 39248549 PMCID: PMC11465975 DOI: 10.1128/mra.00691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
A phytopathogenic strain of Pectobacterium polaris (designated SRB2) was isolated for the first time in South Africa from a potato tuber affected by soft rot. The draft genome of strain SRB2 encodes various plant cell wall-degrading enzymes and genes associated with biofilm formation and virulence. Antibiotic resistance genes were not detected.
Collapse
Affiliation(s)
- Christiana C. Dapuliga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Maike Claussen
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
6
|
Kamata K, Birkholz N, Ceelen M, Fagerlund RD, Jackson SA, Fineran PC. Repurposing an Endogenous CRISPR-Cas System to Generate and Study Subtle Mutations in Bacteriophages. CRISPR J 2024. [PMID: 39347602 DOI: 10.1089/crispr.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
While bacteriophage applications benefit from effective phage engineering, selecting the desired genotype after subtle modifications remains challenging. Here, we describe a two-phase endogenous CRISPR-Cas-based phage engineering approach that enables selection of small defined edits in Pectobacterium carotovorum phage ZF40. We designed plasmids containing sequences homologous to ZF40 and a mini-CRISPR array. The plasmids allowed genome editing through homologous recombination and counter-selection against non-recombinant phage genomes using an endogenous type I-E CRISPR-Cas system. With this technique, we first deleted target genes and subsequently restored loci with modifications. This two-phase approach circumvented major challenges in subtle phage modifications, including inadequate sequence distinction for CRISPR-Cas counter-selection and the requirement of a protospacer-adjacent motif, limiting sequences that can be modified. Distinct 20-bp barcodes were incorporated through engineering as differential target sites for programmed CRISPR-Cas activity, which allowed quantification of phage variants in mixed populations. This method aids studies and applications that require mixtures of similar phages.
Collapse
Affiliation(s)
- Kotaro Kamata
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Marijn Ceelen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Sandoval-Gutiérrez J, Cubero-Agüero D, Brenes-Guillén L, Galiano-Murillo F, Vidaurre-Barahona D, Uribe-Lorío L. Draft genome sequence of Raoultella terrigena strain Ech2A causing soft rot on sweet pepper ( Capsicum annuum). Microbiol Resour Announc 2024:e0015924. [PMID: 39329470 DOI: 10.1128/mra.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
We report the draft genome sequence of Raoultella terrigena strain Ech2A causing soft rot on pepper. To verify pathogenicity, Koch's postulates were performed on sweet pepper. Genes encoding pectinolytic enzymes were found in the genome.
Collapse
Affiliation(s)
- J Sandoval-Gutiérrez
- School of Biological Sciences, Universidad Nacional of Costa Rica, Heredia, Costa Rica
| | - D Cubero-Agüero
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - L Brenes-Guillén
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - F Galiano-Murillo
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - D Vidaurre-Barahona
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - L Uribe-Lorío
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
- School of Agronomy, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
8
|
Li AT, Liu SK, Li JR, Blanco SD, Tsai HW, Xie JX, Tsai YC, Tzean Y, Lin YH. A Mitogen-Activated Protein Kinase Pathway Is Required for Bacillus amyloliquefaciens PMB05 to Enhance Disease Resistance to Bacterial Soft Rot in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2591. [PMID: 39339566 PMCID: PMC11434654 DOI: 10.3390/plants13182591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
When a plant is infected by a pathogen, endogenous immune responses are initiated. When the initiation of these defense responses is induced by a pathogen-associated molecular pattern (PAMP) of a pathogen, it is called PAMP-triggered immunity (PTI). Previous studies have shown that Bacillus amyloliquefaciens PMB05 can enhance PTI signals and improve disease control of bacterial soft rot and wilt in Arabidopsis thaliana. In the context of controlling bacterial wilt disease, the involvement of a mitogen-activated protein kinase (MAPK) signaling pathway has been established. Nevertheless, it remains unclear whether this pathway is also required for B. amyloliquefaciens PMB05 in controlling bacterial soft rot. In this study, A. thaliana ecotype Columbia (Col-0) and its mutants on a MAPK pathway-related pathway were used as a model and established that the ability of B. amyloliquefaciens PMB05 to control soft rot requires the participation of the MAPK pathway. Moreover, the enhancement of disease resistance by PMB05 is highly correlated with the activation of reactive oxygen species generation and stomata closure, rather than callose deposition. The spray inoculation method was used to illustrate that PMB05 can enhance stomatal closure, thereby restricting invasion by the soft rot bacterium. This control mechanism has also been demonstrated to require the activation of the MAPK pathway. This study demonstrates that B. amyloliquefaciens PMB05 can accelerate stomata closure via the activation of the MAPK pathway during PTI, thereby reducing pathogen invasion and achieving disease resistance against bacterial soft rot.
Collapse
Affiliation(s)
- Ai-Ting Li
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Shang-Kai Liu
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Jia-Rong Li
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Sabrina Diana Blanco
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Hsin-Wei Tsai
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Jia-Xin Xie
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Yun-Chen Tsai
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Yuh Tzean
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
9
|
Ma X, Zhang X, Stodghill P, Rioux R, Shrestha S, Babler B, Rivedal H, Frost K, Hao J, Secor G, Swingle B. Analysis of soft rot Pectobacteriaceae population diversity in US potato growing regions between 2015 and 2022. Front Microbiol 2024; 15:1403121. [PMID: 39351298 PMCID: PMC11439646 DOI: 10.3389/fmicb.2024.1403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Soft rot Pectobacteriaceae (SRP) bacteria are globally dispersed pathogens that cause significant economic loss in potato and other crops. Our understanding of the SRP species diversity has expanded in recent years due to advances and adoption of whole-genome sequence technologies. There are currently 34 recognized SRP species that belong to the Dickeya and Pectobacterium genera. Methods We used whole-genome sequencing based analysis to describe the current distribution and epidemiology of SRP isolated from diseased potato samples obtained from commercial potato cropping systems in the United States. Our primary objectives in the present study were to: (1) identify the species of these SRP isolates recovered from potato samples across 14 states in the US, (2) describe the variation among SRP isolates from various US locations and track their temporal changes, and (3) evaluate the evolutionary relationships among these SRP isolates to deduce their source. We collected 118 SRP strains from diseased potato plants and tubers in 14 states between 2015 and 2022. Results We identified three Dickeya and eight Pectobacterium species from diseased potato samples. Dickeya dianthicola, Pectobacterium parmentieri, P. carotovorum, and P. versatile appeared to be the predominant species, constituting 83% of the isolates. Furthermore, all D. dianthicola strains studied here as well as 90% of US D. dianthicola isolates sequenced to date exhibit significant clonality. Discussion The prevalence of this specific group of D. dianthicola, temporally and geographically, aligns with the occurrence of blackleg and soft rot outbreaks in the northeastern US after 2014. The genomic diversity observed in P. parmentieri implies multiple introductions to the US from at least four distinct sources, earlier than the arrival of the predominant group of D. dianthicola. In contrast, P. carotovorum and P. versatile appear to be widespread, long-term endemic strains in the US.
Collapse
Affiliation(s)
- Xing Ma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Xiuyan Zhang
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, United States
| | - Renee Rioux
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Smita Shrestha
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brooke Babler
- Wisconsin Seed Potato Certification Program, Department of Plant Pathology, University of Wisconsin-Madison, Middleton, WI, United States
| | - Hannah Rivedal
- Forage Seed and Cereal Research Unit, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR, United States
| | - Kenneth Frost
- Department of Botany and Plant Pathology and Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, United States
| |
Collapse
|
10
|
Matte LM, Genal AV, Landolt EF, Danka ES. T6SS in plant pathogens: unique mechanisms in complex hosts. Infect Immun 2024; 92:e0050023. [PMID: 39166846 PMCID: PMC11385963 DOI: 10.1128/iai.00500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.
Collapse
Affiliation(s)
- Lexie M Matte
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Abigail V Genal
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Emily F Landolt
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Elizabeth S Danka
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| |
Collapse
|
11
|
Wang W, Portal-Gonzalez N, Wang X, Li J, Li H, Portieles R, Borras-Hidalgo O, He W, Santos-Bermudez R. Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot. MICROBIOME 2024; 12:167. [PMID: 39244625 PMCID: PMC11380783 DOI: 10.1186/s40168-024-01885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Plant-associated microorganisms can be found in various plant niches and collectively comprise the plant microbiome. The plant microbiome assemblages have been extensively studied, primarily in model species. However, a deep understanding of the microbiome assembly associated with plant health is still needed. Ginger rhizome rot has been variously attributed to multiple individual causal agents. Due to its global relevance, we used ginger and rhizome rot as a model to elucidate the metabolome-driven microbiome assembly associated with plant health. RESULTS Our study thoroughly examined the biodiversity of soilborne and endophytic microbiota in healthy and diseased ginger plants, highlighting the impact of bacterial and fungal microbes on plant health and the specific metabolites contributing to a healthy microbial community. Metabarcoding allowed for an in-depth analysis of the associated microbial community. Dominant genera represented each microbial taxon at the niche level. According to linear discriminant analysis effect size, bacterial species belonging to Sphingomonas, Quadrisphaera, Methylobacterium-Methylorubrum, Bacillus, as well as the fungal genera Pseudaleuria, Lophotrichus, Pseudogymnoascus, Gymnoascus, Mortierella, and Eleutherascus were associated with plant health. Bacterial dysbiosis related to rhizome rot was due to the relative enrichment of Pectobacterium, Alcaligenes, Klebsiella, and Enterobacter. Similarly, an imbalance in the fungal community was caused by the enrichment of Gibellulopsis, Pyxidiophorales, and Plectosphaerella. Untargeted metabolomics analysis revealed several metabolites that drive microbiome assembly closely related to plant health in diverse microbial niches. At the same time, 6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was present at the level of the entire healthy ginger plant. Lipids and lipid-like molecules were the most significant proportion of highly abundant metabolites associated with ginger plant health versus rhizome rot disease. CONCLUSIONS Our research significantly improves our understanding of metabolome-driven microbiome structure to address crop protection impacts. The microbiome assembly rather than a particular microbe's occurrence drove ginger plant health. Most microbial species and metabolites have yet to be previously identified in ginger plants. The indigenous microbial communities and metabolites described can support future strategies to induce plant disease resistance. They provide a foundation for further exploring pathogens, biocontrol agents, and plant growth promoters associated with economically important crops. Video Abstract.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Nayanci Portal-Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China
| | - Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, Shandong, 276826, People's Republic of China
| | - Orlando Borras-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, Shandong, 276826, People's Republic of China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China.
| | - Ramon Santos-Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
12
|
Hadizadeh I, Peivastegan B, Nielsen KL, Auvinen P, Sipari N, Pirhonen M. Transcriptome analysis unravels the biocontrol mechanism of Serratia plymuthica A30 against potato soft rot caused by Dickeya solani. PLoS One 2024; 19:e0308744. [PMID: 39240997 PMCID: PMC11379202 DOI: 10.1371/journal.pone.0308744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Faculty of Biological and Environmental Sciences, Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Pedersen JS, Carstens AB, Rothgard MM, Roy C, Viry A, Papudeshi B, Kot W, Hille F, Franz CMAP, Edwards R, Hansen LH. A novel genus of Pectobacterium bacteriophages display broad host range by targeting several species of Danish soft rot isolates. Virus Res 2024; 347:199435. [PMID: 38986742 PMCID: PMC11445585 DOI: 10.1016/j.virusres.2024.199435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.
Collapse
Affiliation(s)
- Julie Stenberg Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Magnus Mulbjerg Rothgard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Anouk Viry
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Robert Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
14
|
Tang WC, Wang LH, Chan JJ, Goh RP, Wu YF, Chu CC. Inter- and Intra-Specific Variations in Phenotypic Traits of Pectobacterium Strains Isolated from Diverse Eudicots and Monocots in Taiwan. PLANT DISEASE 2024; 108:2410-2421. [PMID: 38506909 DOI: 10.1094/pdis-10-23-2130-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Pectobacterium spp. are phytopathogenic bacteria whose phylogeny has been continuously revised throughout the years. Previous studies on Pectobacterium's phenotypic diversity often analyzed strains obtained from specific crops or adopted outdated Pectobacterium classification systems. Therefore, a current perspective on trait variations in Pectobacterium species or strains infecting more diverse plant species is limited. This study conducted phylogenetic and phenotypic analyses on strains isolated from eight eudicot and four monocot families in Taiwan. Phylogenetic analysis on 78 strains identified six recognized species, namely, P. brasiliense, P. aroidearum, P. actinidiae, P. colocasium, P. carotovorum, and P. versatile. Among these, the first two were the most predominant species. Patterns suggesting varying host preferences among bacterial species were detected; most P. aroidearum strains were isolated from monocots, whereas P. brasiliense and P. actinidiae tended to exhibit preferences for eudicots. Physiological tests and Biolog analyses conducted on representative strains of each species revealed great within-species phenotypic variations. Despite these strain-level variations, a combination of indole production and phosphatase activity tests was capable of distinguishing all representative strains of P. brasiliense from those of other identified species. Inoculation assays on potato, bok choy, calla lily, and onion showed inter- and intra-specific heterogeneities in the tested strains' maceration potentials. Virulence patterns across Pectobacterium species and strains differed depending on the inoculated host. Altogether, the findings from this work expand the understanding of Pectobacterium's phenotypic diversity and provide implications for pathogen identification and management.
Collapse
Affiliation(s)
- Wen-Chien Tang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Liang-Hsuan Wang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Jiun-Jie Chan
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Reun-Ping Goh
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yea-Fang Wu
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, Tainan 71246, Taiwan
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
15
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Weng L, Tang Z, Sardar MF, Yu Y, Ai K, Liang S, Alkahtani J, Lyv D. Unveiling the frontiers of potato disease research through bibliometric analysis. Front Microbiol 2024; 15:1430066. [PMID: 39027102 PMCID: PMC11257026 DOI: 10.3389/fmicb.2024.1430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Research on potato diseases had been widely reported, but a systematic review of potato diseases was lacking. Here, bibliometrics was used to systematically analyze the progress of potato disease. The publications related to "potato" and "disease" were searched in the Web of Science (WOS) from 2014 to 2023. The results showed that a total of 2095 publications on potato diseases were retrieved, with the annual publication output increasing year by year at a growth rate of 8.52%. The main countries where publications were issued were the United States, China, and India. There was relatively close cooperation observed between China, the United States, and the United Kingdom in terms of international collaboration, while international cooperation by India was less extensive. Based on citation analysis and trending topics, potential future research directions include nanoparticles, which provides highly effective carriers for biologically active substances due to their small dimensions, extensive surface area, and numerous binding sites; machine learning, which facilitates rapid identification of relevant targets in extensive datasets, thereby accelerating the process of disease diagnosis and fungicide innovation; and synthetic communities composed of various functional microorganisms, which demonstrate more stable effects in disease prevention and control.
Collapse
Affiliation(s)
- Ling Weng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, China
| | - Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences (National Agricultural Experimental Station for Soil Quality, Taihe)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei, China
| | - Keyu Ai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shurui Liang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dianqiu Lyv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
17
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
18
|
Smoktunowicz M, Wawrzyniak R, Jonca J, Waleron M, Waleron K. Untargeted metabolomics coupled with genomics in the study of sucrose and xylose metabolism in Pectobacterium betavasculorum. Front Microbiol 2024; 15:1323765. [PMID: 38812674 PMCID: PMC11133636 DOI: 10.3389/fmicb.2024.1323765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pectobacterium betavasculorum is a member of the Pectobacerium genus that inhabits a variety of niches and is found in all climates. Bacteria from the Pectobacterium genus can cause soft rot disease on various plants due to the secretion of plant cell wall degrading enzymes (PCWDEs). The species P. betavasculorum is responsible for the vascular necrosis of sugar beet and soft rot of many vegetables. It also infects sunflowers and artichokes. The main sugar present in sugar beet is sucrose while xylose is one of the main sugars in artichoke and sunflower. Methods In our work, we applied metabolomic studies coupled with genomics to investigate the metabolism of P. betavasculorum in the presence of xylose and sucrose as the only carbon source. The ability of the strains to use various sugars as the only carbon source were confirmed by the polypyridyl complex of Ru(II) method in 96-well plates. Results Our studies provided information on the metabolic pathways active during the degradation of those substrates. It was observed that different metabolic pathways are upregulated in the presence of xylose in comparison to sucrose. Discussion The presence of xylose enhances extracellular metabolism of sugars and glycerol as well as stimulates EPS and IPS synthesis. In contrast, in the presence of sucrose the intensive extracellular metabolism of amines and amino acids is promoted.
Collapse
Affiliation(s)
- Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Sun Y, Utpal H, Wu Y, Sun Q, Feng Z, Shen Y, Zhang R, Zhou X, Wu J. Comparative genomic and transcriptome analyses of two Pectobacterium brasiliense strains revealed distinct virulence determinants and phenotypic features. Front Microbiol 2024; 15:1362283. [PMID: 38800750 PMCID: PMC11116658 DOI: 10.3389/fmicb.2024.1362283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.
Collapse
Affiliation(s)
- Yue Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Handique Utpal
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yajuan Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qinghua Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiwen Feng
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | | | - Ruofang Zhang
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiaofeng Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jian Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
21
|
Mena Navarro MP, Espinosa Bernal MA, Martinez-Avila AE, Aponte Pineda LS, Montes Flores LA, Chan Ku CD, Hernández Gómez YF, González Espinosa J, Pacheco Aguilar JR, Ramos López MÁ, Arvizu Gómez JL, Saldaña Gutierrez C, Rodríguez Morales JA, Amaro Reyes A, Hernández Flores JL, Campos Guillén J. Role of Volatile Organic Compounds Produced by Kosakonia cowanii Cp1 during Competitive Colonization Interaction against Pectobacterium aroidearum SM2. Microorganisms 2024; 12:930. [PMID: 38792761 PMCID: PMC11123878 DOI: 10.3390/microorganisms12050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The competitive colonization of bacteria on similar ecological niches has a significant impact during their establishment. The synthesis speeds of different chemical classes of molecules during early competitive colonization can reduce the number of competitors through metabolic effects. In this work, we demonstrate for the first time that Kosakonia cowanii Cp1 previously isolated from the seeds of Capsicum pubescens R. P. produced volatile organic compounds (VOCs) during competitive colonization against Pectobacterium aroidearum SM2, affecting soft rot symptoms in serrano chili (Capsicum annuum L.). The pathogen P. aroidearum SM2 was isolated from the fruits of C. annuum var. Serrano with soft rot symptoms. The genome of the SM2 strain carries a 5,037,920 bp chromosome with 51.46% G + C content and 4925 predicted protein-coding genes. It presents 12 genes encoding plant-cell-wall-degrading enzymes (PCDEWs), 139 genes involved in five types of secretion systems, and 16 genes related to invasion motility. Pathogenic essays showed soft rot symptoms in the fruits of C. annuum L., Solanum lycopersicum, and Physalis philadelphica and the tubers of Solanum tuberosum. During the growth phases of K. cowanii Cp1, a mix of VOCs was identified by means of HS-SPME-GC-MS. Of these compounds, 2,5-dimethyl-pyrazine showed bactericidal effects and synergy with acetoin during the competitive colonization of K. cowanii Cp1 to completely reduce soft rot symptoms. This work provides novel evidence grounding a better understanding of bacterial interactions during competitive colonization on plant tissue, where VOC synthesis is essential and has a high potential capacity to control pathogenic microorganisms in agricultural systems.
Collapse
Affiliation(s)
- Mayra Paola Mena Navarro
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Merle Ariadna Espinosa Bernal
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Adriana Eunice Martinez-Avila
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Leonela Sofia Aponte Pineda
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Luis Alberto Montes Flores
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Carlos Daniel Chan Ku
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Yoali Fernanda Hernández Gómez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Jacqueline González Espinosa
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Juan Ramiro Pacheco Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | - Jackeline Lizzeta Arvizu Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico;
| | - Carlos Saldaña Gutierrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Querétaro 76220, Mexico;
| | | | - Aldo Amaro Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| | | | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro, Mexico; (M.P.M.N.); (M.A.E.B.); (A.E.M.-A.); (L.S.A.P.); (L.A.M.F.); (C.D.C.K.); (Y.F.H.G.); (J.G.E.); (J.R.P.A.); (M.Á.R.L.); (A.A.R.)
| |
Collapse
|
22
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
23
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
24
|
Fenstemaker S, Ma X, Bamberg J, Swingle B. Reproducible Quantitative Trait Loci for Resistance to Soft Rot Caused by Dickeya dianthicola Derived from the Wild Potato Solanum microdontum (PI 458355) Are Located on Chromosomes 1, 3, and 5. PHYTOPATHOLOGY 2024; 114:580-589. [PMID: 37750865 DOI: 10.1094/phyto-05-23-0158-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The potato wild relative Solanum microdontum is a breeder-friendly source of genetic resistance to soft rot. Our objectives were to (i) identify loci associated with soft rot resistance in S. microdontum germplasm and (ii) develop bi-parental populations in a self-compatible S. tuberosum genetic background to recover segregating F2 progenies, construct a linkage map, and identify quantitative trait loci (QTLs). Under objective (i), tubers from 103 S. microdontum genotypes from the United States Potato Genebank were inoculated with a high virulence strain of Dickeya dianthicola, and lesion size was measured after a 24-h incubation period at 30°C. Association analysis using 3,490 polymorphic Infinium array SNP markers identified soft rot resistance loci on chromosomes 1, 2, 3, 5, 7, 8, 11, and 12. Under objective (ii), a resistant S. microdontum accession PI 458355 was crossed with a highly fertile, self-compatible, diploid S. tuberosum pollen parent (PI 654351) to generate segregating F2 populations. Composite interval mapping was conducted using a genetic linkage map with 970 GBS-based SNP markers. Reproducible QTLs were detected on chromosomes 1, 3, and 5, explaining 11, 13, and 23% of the phenotypic variation, respectively. Homozygous S. microdontum alleles at the QTL on chromosome 5 and heterozygous or homozygous S. microdontum alleles at QTLs on chromosomes 1 and 3 significantly decrease lesion size compared with the homozygous S. tuberosum parent. The germplasm created in these studies provides a resource for studying traits from S. microdontum, and we can use the advanced F2 selections for future potato improvement. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sean Fenstemaker
- U.S. Department of Agriculture-Agricultural Research Service, United States Potato Genebank, Sturgeon Bay, WI 54235
| | - Xing Ma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - John Bamberg
- U.S. Department of Agriculture-Agricultural Research Service, United States Potato Genebank, Sturgeon Bay, WI 54235
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, NY 14853
| |
Collapse
|
25
|
Liu Q, Zuo M, Song Y, He S, Huang J, Chen Y. Bioinspired total synthesis and biological activity of Pegaharine A. PEST MANAGEMENT SCIENCE 2024; 80:1372-1381. [PMID: 37926482 DOI: 10.1002/ps.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Phytopathogens cause various diseases by parasitizing crops, reducing crop yield and resulting in substantial economic losses in agricultural production. A novel type isolated from the perennial herbaceous Peganum harmala L. seeds, β-carboline alkaloids pegaharine A (PA), has become a hot topic in developing plant-originated green pesticides owing to their significant physiological activities. RESULTS A scalable bioinspired total synthesis of PA is accomplished in the present work. The systematical biological assay study showed that PA exhibited moderate inhibitory activity against nine tested plant pathogenic fungi and showed significant inhibitory activity in vitro against the three tested plant pathogenic bacteria. Most noteworthy is the inhibitory rates of PA on Xanthomonas oryzae pv. oryzae (Xoo), X. oryzae pv. oryzicola (Xoc) and X. axonopodis pv. citri (Xac) of 93.6%, 92.1% and 86.1%, respectively, which are better than the control drug, bismerthiazol (63.4%, 61.2% and 53.7% at 100 μg mL-1 concentration). Furthermore, the EC50 value of PA against Xoo, Xoc and Xac was 52.2, 60.0 and 65.1 μg mL-1 , respectively, superior to 72.9, 64.2 and 70.1 μg mL-1 of the control drug. Moreover, the anti-Xoo mechanistic studies revealed that PA exerted its antibacterial effects by increasing the permeability of the bacterial membrane, reducing the extracellular polysaccharide content and inducing morphological changes in bacterial cells. CONCLUSION A novel β-carboline alkaloid, PA, was prepared by biomimetic total synthesis. Its significant antibacterial activity was closely related to the permeation of bacterial cell membranes, which was confirmed by anti-Xoo mechanistic studies. More importantly, the structure could be regarded as a model for developing novel bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Mei Zuo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi Song
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Jian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
26
|
Czajkowski R, Krzyżanowska DM, Sokolova D, Rąbalski Ł, Kosiński M, Jafra S, Królicka A. Genetic Loci of Plant Pathogenic Dickeya solani IPO 2222 Expressed in Contact with Weed-Host Bittersweet Nightshade ( Solanum dulcamara L.) Plants. Int J Mol Sci 2024; 25:2794. [PMID: 38474041 PMCID: PMC10931765 DOI: 10.3390/ijms25052794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.
Collapse
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143 Kyiv, Ukraine
| | - Łukasz Rąbalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Maciej Kosiński
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland;
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| |
Collapse
|
27
|
Gao P, Qi Y, Li L, Yang S, Guo J, Liu J, Wei H, Huang F, Yu L. Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1334996. [PMID: 38444534 PMCID: PMC10912172 DOI: 10.3389/fpls.2024.1334996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Soft rot of konjac (Amorphophallus spp.) is a devastating disease caused by the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) with serious adverse effects on plantation development, corm quality and crop yield due to the current lack of effective control measures. The main objective of the present study was to elucidate the mechanisms underlying plant resistance to soft rot disease. A combination of transcriptomic and metabolomic analyses demonstrated significant enrichment of differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) associated with plant hormones, phenylpropanoid biosynthesis and, in particular, alkaloid metabolism, in Amorphophallus muelleri following Pcc infection compared with A. konjac, these data implicate alkaloid metabolism as the dominant mechanism underlying disease resistance of A. muelleri. Quantitative real-time polymerase chain reaction analysis further revealed involvement of PAL, CYP73A16, CCOAOMT1, RBOHD and CDPK20 genes in the response of konjac to Pcc. Analysis of the bacteriostatic activities of total alkaloid from A. muelleri validated the assumption that alkaloid metabolism positively regulates disease resistance of konjac. Our collective results provide a foundation for further research on the resistance mechanisms of konjac against soft rot disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
28
|
Gonzales M, Kergaravat B, Jacquet P, Billot R, Grizard D, Chabrière É, Plener L, Daudé D. Disrupting quorum sensing as a strategy to inhibit bacterial virulence in human, animal, and plant pathogens. Pathog Dis 2024; 82:ftae009. [PMID: 38724459 PMCID: PMC11110857 DOI: 10.1093/femspd/ftae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of the latter being reduced by SsoPox treatment. In fish pathogens, lactonase treatment inhibited biofilm formation and bioluminescence in Vibrio harveyi and affected QS regulation in Aeromonas salmonicida. QS inhibition can thus be used to largely impact the virulence of bacterial pathogens and would constitute a global and sustainable approach for public, crop, and livestock health in line with the expectations of the One Health initiative.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Baptiste Kergaravat
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Damien Grizard
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Éric Chabrière
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
29
|
Kang J, Yoon HM, Jung J, Yu S, Choi SY, Bae HW, Cho YH, Chung EH, Lee Y. Pleiotropic effects of N-acylhomoserine lactone synthase ExpI on virulence, competition, and transmission in Pectobacterium carotovorum subsp. carotovorum Pcc21. PEST MANAGEMENT SCIENCE 2024; 80:687-697. [PMID: 37758685 DOI: 10.1002/ps.7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Hye Min Yoon
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Shin-Yae Choi
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Hee-Won Bae
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
30
|
Moon YJ, Lee SY, Kim U, Oh SW. Naked-eye detection with loop-mediated isothermal amplification for P. carotovorum subsp. carotovorum in agricultural products. Food Sci Biotechnol 2024; 33:203-209. [PMID: 38186613 PMCID: PMC10766909 DOI: 10.1007/s10068-023-01315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 01/09/2024] Open
Abstract
Pectobacterium carotovorum causing soft-rot disease requires on-site detection before the distribution of agricultural products. Loop-mediated isothermal amplification (LAMP), which is resistant to food inhibitors, is known for its high detection sensitivity for pathogens and when coupled with lateral flow immunoassay (LFA) enables visualizations. For detection of soft-rot disease, we developed a LAMP-LFA system targeting 16S ribosomal RNA, a partial sequence gene of P. carotovorum subsp. carotovorum. The LAMP-LFA was performed at 60 °C for 50 min followed by hybridization of digoxygenin-labeled LAMP amplicon and biotinylated probe. Detection sensitivity was 3.22 × 101 CFU/mL in pure culture, which specifically detected the target. In Chinese cabbage and potato, the target was detected up to low levels of 1.57 × 102 CFU/g and 1.29 × 102 CFU/g, respectively. This study showed potential applicability as a sensitive point-of-care system for soft-rot disease bacteria detection in agricultural products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01315-z.
Collapse
Affiliation(s)
- Ye-Ji Moon
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
31
|
Mainello-Land AM, Bibi S, Gugino B, Bull CT. Multilocus sequence and phenotypic analysis of Pectobacterium and Dickeya type strains for identification of soft rot Pectobacteriaceae from symptomatic potato stems and tubers in Pennsylvania. Syst Appl Microbiol 2024; 47:126476. [PMID: 38113702 DOI: 10.1016/j.syapm.2023.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.
Collapse
Affiliation(s)
- Amanda M Mainello-Land
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaheen Bibi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Beth Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
32
|
Borowicz M, Krzyżanowska DM, Narajczyk M, Sobolewska M, Rajewska M, Czaplewska P, Węgrzyn K, Czajkowski R. Soft rot pathogen Dickeya dadantii 3937 produces tailocins resembling the tails of Peduovirus P2. Front Microbiol 2023; 14:1307349. [PMID: 38098664 PMCID: PMC10719855 DOI: 10.3389/fmicb.2023.1307349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Tailocins are nanomolecular machines with bactericidal activity. They are produced by bacteria to contribute to fitness in mixed communities, and hence, they play a critical role in their ecology in a variety of habitats. Here, we characterized the new tailocin produced by Dickeya dadantii strain 3937, a well-characterized member of plant pathogenic Soft Rot Pectobacteriaceae (SRP). Tailocins induced in D. dadantii were ca. 166 nm long tubes surrounded by contractive sheaths with baseplates having tail fibers at one end. A 22-kb genomic cluster involved in their synthesis and having high homology to the cluster coding for the tail of the Peduovirus P2 was identified. The D. dadantii tailocins, termed dickeyocins P2D1 (phage P2-like dickeyocin 1), were resistant to inactivation by pH (3.5-12), temperature (4-50°C), and elevated osmolarity (NaCl concentration: 0.01-1 M). P2D1 could kill a variety of different Dickeya spp. but not any strain of Pectobacterium spp. tested and were not toxic to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Marcin Borowicz
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Sobolewska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
33
|
Li J, Chen R, Yang R, Wei X, Xie H, Shi Y, Xie X, Chai A, Fan T, Li B, Li L. Rapid Detection and Quantification of Viable Cells of Pectobacterium brasiliense Using Propidium Monoazide Combined with Real-Time PCR. Microorganisms 2023; 11:2808. [PMID: 38004819 PMCID: PMC10673545 DOI: 10.3390/microorganisms11112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Pectobacterium brasiliense (Pbr) has caused significant economic losses in major vegetable production areas in Northern China by causing bacterial soft rot in cash crops such as potatoes and cucumbers. This study aimed to establish a PMA-qPCR detection method for Pbr by screening specific and sensitive primers based on the glu gene and the conserved region of the 23S rRNA gene. Based on the optimized PMA pretreatment conditions, a standard curve was designed and constructed for PMA-qPCR detection (y = -3.391x + 36.28; R2 = 0.99). The amplification efficiency reached 97%, and the lowest detection limit of viable cells was approximately 2 × 102 CFU·mL-1. The feasibility of the PMA-qPCR method was confirmed through a manually simulated viable/dead cell assay under various concentrations. The analysis of potato tubers and cucumber seeds revealed that nine naturally collected seed samples contained a range from 102 to 104 CFU·g-1 viable Pbr bacteria. Furthermore, the system effectively identified changes in the number of pathogenic bacteria in cucumber and potato leaves affected by soft rot throughout the disease period. Overall, the detection and prevention of bacterial soft rot caused by Pbr is crucial.
Collapse
Affiliation(s)
- Junhui Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Ruxing Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Ruwei Yang
- Comprehensive Experimental Farm, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Xinchen Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.); (R.C.); (X.W.); (Y.S.); (X.X.); (A.C.); (T.F.)
| |
Collapse
|
34
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, Borriss R, Guzzi PH, Veltri P. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Sci Rep 2023; 13:19095. [PMID: 37925555 PMCID: PMC10625545 DOI: 10.1038/s41598-023-46672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023] Open
Abstract
Biocontrol agents are safe and effective methods for controlling plant disease pathogens, such as Fusarium solani, which causes dry wilt, and Pectobacterium spp., responsible for potato soft rot disease. Discovering agents that can effectively control both fungal and bacterial pathogens in potatoes has always presented a challenge. Biological controls were investigated using 500 bacterial strains isolated from rhizospheric microbial communities, along with two promising biocontrol strains: Pseudomonas (T17-4 and VUPf5). Bacillus velezensis (Q12 and US1) and Pseudomonas chlororaphis VUPf5 exhibited the highest inhibition of fungal growth and pathogenicity in both laboratory (48%, 48%, 38%) and greenhouse (100%, 85%, 90%) settings. Q12 demonstrated better control against bacterial pathogens in vivo (approximately 50%). Whole-genome sequencing of Q12 and US1 revealed a genome size of approximately 4.1 Mb. Q12 had 4413 gene IDs and 4300 coding sequences, while US1 had 4369 gene IDs and 4255 coding sequences. Q12 exhibited a higher number of genes classified under functional subcategories related to stress response, cell wall, capsule, levansucrase synthesis, and polysaccharide metabolism. Both Q12 and US1 contained eleven secondary metabolite gene clusters as identified by the antiSMASH and RAST servers. Notably, Q12 possessed the antibacterial locillomycin and iturin A gene clusters, which were absent in US1. This genetic information suggests that Q12 may have a more pronounced control over bacterial pathogens compared to US1. Metabolic profiling of the superior strains, as determined by LC/MS/MS, validated our genetic findings. The investigated strains produced compounds such as iturin A, bacillomycin D, surfactin, fengycin, phenazine derivatives, etc. These compounds reduced spore production and caused deformation of the hyphae in F. solani. In contrast, B. velezensis UR1, which lacked the production of surfactin, fengycin, and iturin, did not affect these structures and failed to inhibit the growth of any pathogens. Our findings suggest that locillomycin and iturin A may contribute to the enhanced control of bacterial pectolytic rot by Q12.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.
| | - Pierangelo Veltri
- Department of Informatics Modeling Electronics and System Engineering, University of Calabria, Calabria, Italy
| |
Collapse
|
35
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
36
|
He W, Luo W, Zhou J, Zhu X, Xu J. Pectobacterium carotovorum Subsp. brasiliense Causing Soft Rot in Eggplant in Xinjiang, China. Microorganisms 2023; 11:2662. [PMID: 38004675 PMCID: PMC10673395 DOI: 10.3390/microorganisms11112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
An outbreak of stem rot in eggplants was observed in Heshuo County, Xinjiang, during winter 2021-2022 in about 12-35% of the eggplants in the region (about 40 hm2). The infected tissues yielded a total of four bacterial strains, which were subsequently subjected to physiological and biochemical assays as well as molecular identification. Based on these analyses, the pathogen was identified as Pectobacterium carotovorum subsp. brasiliense. The pathogenicity was confirmed through the fulfillment of Koch's postulates. The host range test confirmed the broad spectrum of species susceptible to infection by the strains. This study represents the first case of infection caused by P. carotovorum subsp. brasiliense resulting in stem rot in eggplant.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (W.L.); (J.Z.); (X.Z.)
| | - Wenfang Luo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (W.L.); (J.Z.); (X.Z.)
| | - Junhui Zhou
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (W.L.); (J.Z.); (X.Z.)
| | - Xiafen Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (W.L.); (J.Z.); (X.Z.)
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Jianjun Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (W.L.); (J.Z.); (X.Z.)
| |
Collapse
|
37
|
Chen C, Che S, Dong Z, Sui J, Tian Y, Su Y, Zhang M, Sun W, Fan J, Xie J, Xie H. A genome-wide association study reveals that epistasis underlies the pathogenicity of Pectobacterium. Microbiol Spectr 2023; 11:e0176423. [PMID: 37712699 PMCID: PMC10580964 DOI: 10.1128/spectrum.01764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023] Open
Abstract
Pectobacterium spp. are important bacterial pathogens that cause soft rot symptoms in various crops. However, their mechanism of pathogenicity requires clarity to help control their infections. Here, genome-wide association studies (GWAS) were conducted by integrating genomic data and measurements of two phenotypes (virulence and cellulase activity) for 120 various Pectobacterium strains in order to identify the genetic basis of their pathogenicity. An artificial intelligence-based software program was developed to automatically measure lesion areas on Chinese cabbage, thereby facilitating accurate and rapid data collection for virulence phenotypes for use in GWAS analysis. The analysis discovered 428 and 158 loci significantly associated with Pectobacterium virulence (lesion area) and cellulase activity, respectively. In addition, 1,229 and 586 epistasis loci pairs were identified for the virulence and cellulase activity phenotypes, respectively. Among them, the AraC transcriptional regulator exerted epistasis effects with another three nutrient transport-related genes in pairs contributing to the virulence phenotype, and their epistatic effects were experimentally confirmed for one pair with knockout mutants of each single gene and double gene. This study consequently provides valuable insights into the genetic mechanism underlying Pectobacterium spp. pathogenicity. IMPORTANCE Plant diseases and pests are responsible for the loss of up to 40% of food crops, and annual economic losses caused by plant diseases reach more than $220 billion. Fighting against plant diseases requires an understanding of the pathogenic mechanisms of pathogens. This study adopted an advanced approach using population genomics integrated with virulence-related phenotype data to investigate the genetic basis of Pectobacterium spp., which causes serious crop losses worldwide. An automated software program based on artificial intelligence was developed to measure the virulence phenotype (lesion area), which greatly facilitated this research. The analysis predicted key genomic loci that were highly associated with virulence phenotypes, exhibited epistasis effects, and were further confirmed as critical for virulence with mutant gene deletion experiments. The present study provides new insights into the genetic determinants associated with Pectobacterium pathogenicity and provides a valuable new software resource that can be adapted to improve plant infection measurements.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shu Che
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhou Dong
- EVision Technology (Beijing) Co. Ltd, Beijing, China
| | - Jiayi Sui
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu Tian
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanyan Su
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Meng Zhang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wangwang Sun
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hua Xie
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
38
|
Wein P, Dornblut K, Herkersdorf S, Krüger T, Molloy EM, Brakhage AA, Hoffmeister D, Hertweck C. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease. mBio 2023; 14:e0078723. [PMID: 37486262 PMCID: PMC10470514 DOI: 10.1128/mbio.00787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.
Collapse
Affiliation(s)
- Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
39
|
Skelsey P, Civita F, Humphris S. Landscape Epidemiology of Potato Blackleg. PHYTOPATHOLOGY 2023; 113:1474-1482. [PMID: 36973860 DOI: 10.1094/phyto-12-22-0483-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Potato blackleg is a common bacterial disease that causes serious losses in potato (Solanum tuberosum) production worldwide. Despite this, relatively little is known of the landscape epidemiology of this disease. This study provides the first national-scale analysis of spatial and spatiotemporal patterns of blackleg incidence rates and associated risk factors for disease at the landscape scale. This was achieved through a combination of ArcGIS and interpretable machine learning applied to a longitudinal dataset of naturally infected seed potato crops from across Scotland. We found striking differences in long-term disease outcomes across the country and identified that features (variables) related to the health status and management of mother crops (seed stocks), matching features in daughter crops, and the characteristics of surrounding potato crop distributions were the most important predictors of disease, followed by field, bioclimatic, and soil features. Our approach provides a comprehensive overview of potato blackleg at a national scale, new epidemiological insights, and an accurate model that could serve as the basis of a decision support tool for improved blackleg management.
Collapse
|
40
|
Kersey CM, Dumenyo CK. Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71. Microorganisms 2023; 11:1747. [PMID: 37512919 PMCID: PMC10384996 DOI: 10.3390/microorganisms11071747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pectobacterium versatile (formally P. carotovorum) causes disease on diverse plant species by synthesizing and secreting copious amount of plant-cell-wall-degrading exoenzymes including pectate lyases, polygalacturonases, cellulases, and proteases. Exoenzyme production and virulence are controlled by many factors of bacterial, host, and environmental origin. The ion channel forming the magnesium, nickel, and cobalt transporter CorA is required for exoenzyme production and full virulence in strain Ecc71. We investigated CorA's role as a virulence factor and its expression in P. versatile. Inhibiting the transport function of CorA by growing a CorA+ strain in the presence of specific CorA inhibitor, cobalt (III) hexaammine (Co (III)Hex), has no effect on exoenzyme production. Transcription of pel-1, encoding a pectate lyase isozyme, is decreased in the absence of CorA, suggesting that CorA influences exoenzyme production at the transcriptional level, although apparently not through its transport function. CorA- and CorA+ strains grown in the presence of Co (III)Hex transcriptionally express corA at higher levels than CorA+ strains in the absence of an inhibitor, suggesting the transport role of corA contributes to autorepression. The expression of corA is about four-fold lower in HrpL- strains lacking the hrp-specific extracytoplasmic sigma factor. The corA promoter region contains a sequence with a high similarity to the consensus Hrp box, suggesting that corA is part of Hrp regulon. Our data suggest a complex role, possibly requiring the physical presence of the CorA protein in the virulence of the Pectobacterium versatile strain Ecc71.
Collapse
Affiliation(s)
- Caleb M Kersey
- Department of Biological, Physical and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA
| | - C Korsi Dumenyo
- Departments of Plant Science, Tennessee State University, Campus Box 9543, Nashville, TN 37209, USA
| |
Collapse
|
41
|
Hugouvieux-Cotte-Pattat N, Pédron J, Van Gijsegem F. Insight into biodiversity of the recently rearranged genus Dickeya. FRONTIERS IN PLANT SCIENCE 2023; 14:1168480. [PMID: 37409305 PMCID: PMC10319131 DOI: 10.3389/fpls.2023.1168480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
The genus Dickeya includes plant pathogenic bacteria attacking a wide range of crops and ornamentals as well as a few environmental isolates from water. Defined on the basis of six species in 2005, this genus now includes 12 recognized species. Despite the description of several new species in recent years, the diversity of the genus Dickeya is not yet fully explored. Many strains have been analyzed for species causing diseases on economically important crops, such as for the potato pathogens D. dianthicola and D. solani. In contrast, only a few strains have been characterized for species of environmental origin or isolated from plants in understudied countries. To gain insights in the Dickeya diversity, recent extensive analyzes were performed on environmental isolates and poorly characterized strains from old collections. Phylogenetic and phenotypic analyzes led to the reclassification of D. paradisiaca (containing strains from tropical or subtropical regions) in the new genus, Musicola, the identification of three water species D. aquatica, D. lacustris and D. undicola, the description of a new species D. poaceaphila including Australian strains isolated from grasses, and the characterization of the new species D. oryzae and D. parazeae, resulting from the subdivision of the species D. zeae. Traits distinguishing each new species were identified from genomic and phenotypic comparisons. The high heterogeneity observed in some species, notably for D. zeae, indicates that additional species still need to be defined. The objective of this study was to clarify the present taxonomy of the genus Dickeya and to reassign the correct species to several Dickeya strains isolated before the current classification.
Collapse
Affiliation(s)
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| |
Collapse
|
42
|
Czajkowski R, Arif M, Chapman T. Editorial: Genome-wide analyses of Pectobacterium and Dickeya species, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1224293. [PMID: 37332713 PMCID: PMC10275604 DOI: 10.3389/fpls.2023.1224293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology Univesity of Gdansk (UG) and Medical University of Gdansk (MUG), University of Gdansk, Gdansk, Poland
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Toni Chapman
- Biosecurity and Food Safety, New South Wales (NSW) Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| |
Collapse
|
43
|
Sason G, Yedidia I, Nussinovitch A, Chalegoua E, Pun M, Jurkevitch E. Self-demise of soft rot bacteria by activation of microbial predators by pectin-based carriers. Microb Biotechnol 2023. [PMID: 37209364 DOI: 10.1111/1751-7915.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Soft rot pectobacteria (SRP) are phytopathogens of the genera Pectobacterium and Dickeya that cause soft rots on a wide range of crops and ornamental plants. SRP produce plant cell wall degrading enzymes (PCWDEs), including pectinases. Bdellovibrio and like organisms are bacterial predators that can prey on a variety of Gram-negative species, including SRP. In this research, a low methoxyl pectin (LMP)-based immobilization system for B. bacteriovorus is established. It takes advantage that pectin residues induce PCWDE secretion by the pathogens, bringing upon the release of the encapsulated predators. Three commercial LMPs differing in the degree of esterification (DE) and amidation (DA) were tested as potential carriers, by examining their effect on SRP growth, enzymes secretion and substrate breakdown. A clear advantage was observed for pectin 5 CS with the lowest DE and DA content. The degradation of 5 CS pectin-based carriers was further optimized by reducing cross-linker and pectin concentration, by adding gelatin and by dehydration. This resulted in SRP-induced disintegration of the carrier within 72 h. The released encapsulated predator caused a large decrease in SRP population while its own significantly increased, demonstrating the efficiency of this system in which the pathogen brings about its own demise.
Collapse
Affiliation(s)
- Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Amos Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Errikos Chalegoua
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Manoj Pun
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
44
|
Sokolova D, Smolarska A, Bartnik P, Rabalski L, Kosinski M, Narajczyk M, Krzyżanowska DM, Rajewska M, Mruk I, Czaplewska P, Jafra S, Czajkowski R. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci Rep 2023; 13:7534. [PMID: 37160956 PMCID: PMC10169776 DOI: 10.1038/s41598-023-34803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.
Collapse
Affiliation(s)
- Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Anna Smolarska
- Department of Cancer Biology, Institute of Biology, Warsaw, University of Life Sciences (SGGW), J. Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Przemysław Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Inez Mruk
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
45
|
Hossain A, Luo J, Ali MA, Chai R, Shahid M, Ahmed T, M Hassan M, H Kadi R, An Q, Li B, Wang Y. Synergistic Action of Biosynthesized Silver Nanoparticles and Culture Supernatant of Bacillus amyloliquefacience against the Soft Rot Pathogen Dickeya dadantii. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091817. [PMID: 37176882 PMCID: PMC10181212 DOI: 10.3390/plants12091817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410-420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20-100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL-1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL-1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment.
Collapse
Affiliation(s)
- Afsana Hossain
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Md Arshad Ali
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Rongyao Chai
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed M Hassan
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Roqayah H Kadi
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Qianli An
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
46
|
Hossain A, Ali MA, Lin L, Luo J, You Y, Masum MMI, Jiang Y, Wang Y, Li B, An Q. Biocontrol of Soft Rot Dickeya and Pectobacterium Pathogens by Broad-Spectrum Antagonistic Bacteria within Paenibacillus polymyxa Complex. Microorganisms 2023; 11:microorganisms11040817. [PMID: 37110240 PMCID: PMC10142376 DOI: 10.3390/microorganisms11040817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Polymyxin-producing bacteria within the Paenibacillus polymyxa complex have broad-spectrum activities against fungi and bacteria. Their antibacterial activities against soft rot Dickeya and Pectobacterium phytopathogens containing multiple polymyxin-resistant genes were not clear. Here, we selected nine strains within the P. polymyxa complex having broad-spectrum antagonistic activities against phytopathogenic fungi and a polymyxin-resistant D. dadantii strain causing stem and root rot disease of sweet potato and did antagonistic assays on nutrient agar and sweet potato tuber slices. These strains within the P. polymyxa complex showed clear antagonistic activities against D. dadantii in vitro and in vivo. The most effective antagonistic strain P. polymyxa ShX301 showed broad-spectrum antagonistic activities against all the test Dickeya and Pectobacterium strains, completely eliminated D. dadantii from sweet potato seed tubers, and promoted the growth of sweet potato seedlings. Cell-free culture filtrate of P. polymyxa ShX301 inhibited D. dadantii growth, swimming motility, and biofilm formation and disrupted D. dadantii plasma membranes, releasing nucleic acids and proteins. Multiple lipopeptides produced by P. polymyxa ShX301 may play a major role in the bactericidal and bacteriostatic actions. This study clarifies that the antimicrobial spectrum of polymyxin-producing bacteria within the P. polymyxa complex includes the polymyxin-resistant Dickeya and Pectobacterium phytopathogens and strengthens the fact that bacteria within the P. polymyxa complex have high probability of being effective biocontrol agents and plant growth promoters.
Collapse
Affiliation(s)
- Afsana Hossain
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Arshad Ali
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Yuxin You
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Md Mahidul Islam Masum
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Abbaci H, Nabti EH, Al-Bekairi AM, Hagras SAA, Salem-Bekhit MM, Adjaoud A, Alzahrani HA, Bensidhoum L, Alenazy R, Piras A, Falconieri D, Porcedda S, Benguerba Y, Houali K. Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules 2023; 28:molecules28062638. [PMID: 36985610 PMCID: PMC10053293 DOI: 10.3390/molecules28062638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2–95.5%). The main components were 1,8-cineole (65.6–86.1%), α-terpinyl acetate (2.5–7.6%), o-cymene (3.3–7.5%), and α-terpineol (3.3–3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.
Collapse
Affiliation(s)
- Hocine Abbaci
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - El-hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | | | - Soheir A. A. Hagras
- Department of Clinical Laboratory Sciences, Inaya Medical Colleges, Riyadh 11352, Saudi Arabia
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdenour Adjaoud
- Département des Sciences Biologiques de l’Environnement, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Hayat Ali Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73211, Saudi Arabia
| | - Leila Bensidhoum
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Danilo Falconieri
- Technical Institute “Michele Giua”, Via Montecassino, 09134 Cagliari, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
- Correspondence:
| | - Karim Houali
- Laboratoire de Biochimie Appliquée et Biotechnologies (LABAB), Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Tizi-Ouzou 15000, Algeria
| |
Collapse
|
48
|
Han W, Wang J, Pirhonen M, Pan Y, Qin J, Zhang S, Zhu J, Yang Z. Identification and characterization of opportunistic pathogen Pectobacterium polonicum causing potato blackleg in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1097741. [PMID: 36938006 PMCID: PMC10020715 DOI: 10.3389/fpls.2023.1097741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Blackleg and aerial stem rot of potato (Solanum tuberosum L.), caused by soft rot enterobacteria of the genera Pectobacterium and Dickeya, has recently increased years in Hebei Province, China. Field surveys were performed during the 2021 potato growing season in Hebei to identify and characterize bacterial pathogens. Sixteen potato plants showing blackleg or aerial stem rot were collected from three potato-producing areas, and ten representative pectinolytic bacteria were isolated from symptomatic plants. 16S rDNA sequencing and multilocus sequence analysis were performed to determine the taxonomic position of the bacterial isolates. The isolates belonged to the genus Pectobacterium, including Pectobacterium atrosepticum, Pectobacterium carotovorum, Pectobacterium brasiliense, and Pectobacterium parmentieri. The exceptions were isolates BY21311 and BY21312, which belonged to a new species of Pectobacterium polonicum previously found in groundwater. The taxonomy of isolate BY21311 was confirmed using whole genome-based analysis. P. polonicum has only been identified in potato plants on one farm in Baoding region in China. Isolates BY21311 and BY21312 displayed similar physiological and biochemical traits to the type strain DPMP315T. Artificial inoculation assays revealed that isolate BY21311 fulfilled Koch's postulates for potato blackleg. These findings represent the first time P. polonicum, a water-associated Pectobacterium species may be the cause of blackleg in the field. Interestingly, P. polonicum BY21311 has reduced ability to macerate potato tubers when compared to P. atrosepticum, P. brasiliense, P. versatile, and P. parvum, which is more virulent in tubers than the type strain DPMP315T. The host range of isolate BY21311 was determined by injection method, which can impregnate five plants. Although the genome of isolate BY21311 harbors gene clusters encoding a type III secretion system, it did not elicit a hypersensitive response (HR) in Nicotiana benthamiana or N. tabacum leaves. T3SS effector AvrE and T4SS effector PilN were obtained by predicting isolate BY21311 genome. P. polonicum appears to show significant variations in gene content between two genomes, and gene content varies between isolates BY21311 and DPMP315T, with strain specific-genes involved in many aspects, including lipopolysaccharide biosynthesis, substrate translocation, T4SS and T6SS among others, suggesting that isolates BY21311 and DPMP315T might represent distinct clades within the species.
Collapse
Affiliation(s)
- Wanxin Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingxin Qin
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shangqing Zhang
- Institute of Plant Protection, Tangshan Academy of Agricultural Sciences, Tangshan, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
49
|
Yu S, Kang J, Chung EH, Lee Y. Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease. THE PLANT PATHOLOGY JOURNAL 2023; 39:62-74. [PMID: 36760050 PMCID: PMC9929172 DOI: 10.5423/ppj.oa.09.2022.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.
Collapse
Affiliation(s)
- Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul 02841,
Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| |
Collapse
|
50
|
Jelušić A, Mitrović P, Marković S, Iličić R, Milovanović P, Stanković S, Popović Milovanović T. Diversity of Bacterial Soft Rot-Causing Pectobacterium Species Affecting Cabbage in Serbia. Microorganisms 2023; 11:microorganisms11020335. [PMID: 36838301 PMCID: PMC9962274 DOI: 10.3390/microorganisms11020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to identify and characterize the pectolytic bacteria responsible for the emergence of bacterial soft rot on two summer cabbage hybrids (Cheers F1 and Hippo F1) grown in the Futog locality (Bačka, Vojvodina), known for the five-century-long tradition of cabbage cultivation in Serbia. Symptoms manifesting as soft lesions on outer head leaves were observed during August 2021, while the inner tissues were macerated, featuring cream to black discoloration. As the affected tissue decomposed, it exuded a specific odor. Disease incidence ranged from 15% to 25%. A total of 67 isolates producing pits on crystal violet pectate (CVP) medium were characterized for their phenotypic and genotypic features. The pathogenicity was confirmed on cabbage heads. Findings yielded by the repetitive element palindromic-polymerase chain reaction (rep-PCR) technique confirmed interspecies diversity between cabbage isolates, as well as intraspecies genetic diversity within the P. carotovorum group of isolates. Based on multilocus sequence typing (MLST) using genes dnaX, mdh, icdA, and proA, five representative isolates were identified as Pectobacterium carotovorum (Cheers F1 and Hippo F1), while two were identified as Pectobacterium versatile (Hippo F1) and Pectobacterium odoriferum (Hippo F1), respectively, indicating the presence of diverse Pectobacterium species even in combined infection in the same field. Among the obtained isolates, P. carotovorum was the most prevalent species (62.69%), while P. versatile and P. odoriferum were less represented (contributing by 19.40% and 17.91%, respectively). Multilocus sequence analysis (MLSA) performed with concatenated sequences of four housekeeping genes (proA, dnaX, icdA, and mdh) and constructed a neighbor-joining phylogenetic tree enabled insight into the phylogenetic position of the Serbian cabbage Pectobacterium isolates. Bacterium P. odoriferum was found to be the most virulent species for cabbage, followed by P. versatile, while all three species had comparable virulence with respect to potato. The results obtained in this work provide a better understanding of the spreading routes and abundance of different Pectobacterium spp. in Serbia.
Collapse
Affiliation(s)
- Aleksandra Jelušić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (A.J.); (T.P.M.)
| | - Petar Mitrović
- Institute for Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Sanja Marković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Renata Iličić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | | | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Tatjana Popović Milovanović
- Institute for Plant Protection and Environment, Teodora Drajzer 9, 11040 Belgrade, Serbia
- Correspondence: (A.J.); (T.P.M.)
| |
Collapse
|