1
|
Lopez I, Truskey GA. Multi-cellular engineered living systems to assess reproductive toxicology. Reprod Toxicol 2024; 127:108609. [PMID: 38759876 PMCID: PMC11179964 DOI: 10.1016/j.reprotox.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Toxicants and some drugs can negatively impact reproductive health. Many toxicants haven't been tested due to lack of available models. The impact of many drugs taken during pregnancy to address maternal health may adversely affect fetal development with life-long effects and clinical trials do not examine toxicity effects on the maternal-fetal interface, requiring indirect assessment of safety and efficacy. Due to current gaps in reproductive toxicological knowledge and limitations of animal models, multi-cellular engineered living systems may provide solutions for modeling reproductive physiology and pathology for chemical and xenobiotic toxicity studies. Multi-cellular engineered living systems, such as microphysiological systems (MPS) and organoids, model of functional units of tissues. In this review, we highlight the key functions and structures of human reproductive organs and well-known representative toxicants afflicting these systems. We then discuss current approaches and specific studies where scientists have used MPS or organoids to recreate in vivo markers and cellular responses of the female and male reproductive system, as well as pregnancy-associated placenta formation and embryo development. We provide specific examples of organoids and organ-on-chip that have been used for toxicological purposes with varied success. Finally, we address current issues related to usage of MPS, emerging techniques for improving upon these complications, and improvements needed to make MPS more capable in assessing reproductive toxicology. Overall, multi-cellular engineered living systems have considerable promise to serve as a suitable, alternative reproductive biological model compared to animal studies and 2D culture.
Collapse
Affiliation(s)
- Isabella Lopez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
2
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Diaz-Castro J, Toledano JM, Sanchez-Romero J, Aguilar AC, Martín-Alvarez E, Puche-Juarez M, Moreno-Fernandez J, Pinar-Gonzalez M, Prados S, Carrillo MP, Ruiz-Duran S, De Paco Matallana C, Ochoa JJ. COVID-19 and Pregnancy: A Dangerous Mix for Bone Turnover and Metabolism Biomarkers in Placenta and Colostrum. J Clin Med 2024; 13:2124. [PMID: 38610889 PMCID: PMC11012405 DOI: 10.3390/jcm13072124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Background: In pregnant women, COVID-19 can alter the metabolic environment, cell metabolism, and oxygen supply of trophoblastic cells and, therefore, have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the bone turnover and endocrine function of several metabolic biomarkers in colostrum and placenta. Methods: One hundred and twenty-four pregnant mothers were recruited from three hospitals between June 2020 and August 2021 and assigned to two groups: Control group and COVID-19 group. Metabolism biomarkers were addressed in placental tissue and colostrum. Results: Lipocalin-2 and resistin levels were higher in the placenta, revealing an underlying pro-inflammatory status in the gestation period for mothers suffering from COVID-19; a decrease in GLP-1 and leptin was also observed in this group. As for adiponectin, resistin, and insulin, their concentrations showed an increase; a decrease in GLP-1, leptin, and PYY was also reported in the colostrum of mothers suffering from COVID-19 compared with the control group. Conclusions: As for bone turnover, placental samples from mothers with COVID-19 showed lower levels of OPG, while DKK-1 increased compared with the control group. Colostrum samples showed higher levels of OPG, SOST, and PTH in the COVID-19 group, a fact that could have noteworthy implications for energy metabolism, fetal skeletal development, and postnatal bone density and mineralization. Further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in infants' health.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Javier Sanchez-Romero
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (C.D.P.M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Africa Caño Aguilar
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain
| | - Estefanía Martín-Alvarez
- Unit of Neonatology, Pediatric Service, Hospital Universitario Materno-Infantil Virgen de las Nieves, 18014 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Maria Pinar-Gonzalez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Sonia Prados
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain
| | - María Paz Carrillo
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.P.C.)
| | - Susana Ruiz-Duran
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.P.C.)
| | - Catalina De Paco Matallana
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (C.D.P.M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|
4
|
Hamilton ST, Loo C, Weber MA, John R, Shand A, Rawlinson WD. SARS-CoV-2 infection of the placenta is associated with extensive fibrin deposition which may cause adverse pregnancy outcomes. Pathology 2024; 56:437-441. [PMID: 37806945 DOI: 10.1016/j.pathol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology East (Randwick Campus), Prince of Wales Hospital, Sydney, NSW, Australia; School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Christine Loo
- Department of Anatomical Pathology, NSW Health Pathology East (Randwick Campus), Prince of Wales Hospital, Sydney, NSW, Australia
| | - Martin A Weber
- Department of Anatomical Pathology, NSW Health Pathology East (Randwick Campus), Prince of Wales Hospital, Sydney, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Roshini John
- Obstetrics and Gynaecology, Shoalhaven District Memorial Hospital, Nowra, NSW, Australia
| | - Antonia Shand
- Royal Hospital for Women, Sydney, NSW, Australia; Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology East (Randwick Campus), Prince of Wales Hospital, Sydney, NSW, Australia; School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Zhu X, Huang Q, Jiang L, Nguyen VT, Vu T, Devlin G, Shaima J, Wang X, Chen Y, Ma L, Xiang K, Wang E, Rong Q, Zhou Q, Kang Y, Asokan A, Feng L, Hsu SWD, Shen X, Yao J. Longitudinal intravital imaging of mouse placenta. SCIENCE ADVANCES 2024; 10:eadk1278. [PMID: 38507481 PMCID: PMC10954206 DOI: 10.1126/sciadv.adk1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Van-Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jabbar Shaima
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Yong Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lijun Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Shiao-Wen D. Hsu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Popescu DE, Roșca I, Jura AMC, Cioca A, Pop O, Lungu N, Popa ZL, Rațiu A, Boia M. Prompt Placental Histopathological and Immunohistochemical Assessment after SARS-CoV-2 Infection during Pregnancy-Our Perspective of a Small Group. Int J Mol Sci 2024; 25:1836. [PMID: 38339114 PMCID: PMC10855253 DOI: 10.3390/ijms25031836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Research indicates compelling evidence of SARS-CoV-2 vertical transmission as a result of placental pathology. This study offers an approach to histopathological and immunohistochemical placental observations from SARS-CoV-2-positive mothers compared to negative ones. Out of the 44 examined placentas, 24 were collected from patients with a SARS-CoV-2 infection during pregnancy and 20 were collected from patients without infection. The disease group showed strong SARS-CoV-2 positivity of the membranes, trophoblasts, and fetal villous macrophages. Most infections occurred during the third trimester of pregnancy (66.6%). Pathology revealed areas consistent with avascular villi (AV) and thrombi in the chorionic vessels and umbilical cord in the positive group, suggesting fetal vascular malperfusion (FVM). This study shows SARS-CoV-2 has an impact on coagulation, demonstrated by fetal thrombotic vasculopathy (p = 0.01) and fibrin deposition (p = 0.01). Other observed features included infarction (17%), perivillous fibrin deposition (29%), intervillous fibrin (25%), delayed placental maturation (8.3%), chorangiosis (13%), chorioamnionitis (8.3%), and meconium (21%). The negative control group revealed only one case of placental infarction (5%), intervillous fibrin (5%), delayed placental maturation (5%), and chorioamnionitis (5%) and two cases of meconium (19%). Our study sheds light on the changes and differences that occurred in placentas from SARS-CoV-2-infected mothers and the control group. Further research is necessary to definitively establish whether SARS-CoV-2 is the primary culprit behind these intricate complications.
Collapse
Affiliation(s)
- Daniela Eugenia Popescu
- Department of Obstetrics and Gynecology, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
- Department of Neonatology, Premiere Hospital, Regina Maria Health Network, Calea Aradului, No. 113, 300645 Timişoara, Romania
| | - Ioana Roșca
- Faculty of Midwifery and Nursery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Ana Maria Cristina Jura
- Department of Obstetrics and Gynecology, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Andreea Cioca
- Department of Pathology, Premiere Hospital, Regina Maria Health Network, Calea Aradului, No. 113, 300645 Timişoara, Romania;
| | - Ovidiu Pop
- Department of Morphological Sciences, University of Oradea, Universității Street, No. 1, 410087 Oradea, Romania
| | - Nicoleta Lungu
- Department of Obstetrics and Gynecology, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Zoran-Laurențiu Popa
- Department XII Obstetrics and Gynecology—Obstetrics and Gynecology III, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Adrian Rațiu
- Department of Obstetrics and Gynecology, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Mărioara Boia
- Department of Obstetrics and Gynecology, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
7
|
El-Atawi K, Abdul Wahab MG, Elsayed Y, Saleh M. Perinatal Outcomes of Newborns of COVID-19-Infected Pregnant Women: An Updated Systematic Review and Meta-Analysis. Cureus 2024; 16:e54306. [PMID: 38496078 PMCID: PMC10944650 DOI: 10.7759/cureus.54306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
In this systematic review and meta-analysis, we aimed to review the characteristics and outcomes of the newborns of Coronavirus disease 2019 (COVID-19) infected pregnant women. We conducted an online bibliographic search using the following electronic databases: MEDLINE via PubMed, Scopus, Web of Science, and Cochrane Central. Studies were deemed eligible if they recruited newborns from mothers with confirmed COVID-19 and reported the perinatal outcomes of neonatal COVID-19 cases. A total of 20 studies were included. Neonates born to mothers with positive COVID-19 results have been shown to have significantly lower birth weights (mean difference, MD = -48.54 g, p = 0.04), increased risks of fetal distress (odds ratio, OR = 1.76, p < 0.00001), respiratory distress (OR = 1.96, p = 0.006), premature birth (OR = 2.08, p < 0.00001), neonatal death (OR = 2.20, p = 0.004), and a lower 5-minute Apgar score (OR = 1.44, p = 0.02). Additionally, they were more likely to be admitted to the neonatal intensive care unit (NICU) (OR = 2.25, p = 0.007) and test positive for COVID-19 themselves (OR = 9.88, p = 0.03). However, other parameters, such as risks for malformations, mechanical ventilation, hypoglycemia, and sepsis, appeared to be comparable between the two groups. Maternal infection with COVID-19 during pregnancy is associated with several neonatal outcomes, some of which are adverse and others that do not show significant deviation from norms. While our meta-analysis clearly illustrates heightened risks associated with premature birth, reduced neonatal weight, and other challenges, it also emphasizes that not all neonatal outcomes can be directly attributed to maternal SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khaled El-Atawi
- Pediatrics/Neonatal Intensive Care Unit, Latifa Women and Children Hospital, Dubai, ARE
| | | | - Yasser Elsayed
- Pediatrics and Neonatology, Health Sciences Centre-Winnipeg, Max Rady College of Medicine, University of Manitoba, Manitoba, CAN
| | - Maysa Saleh
- Pediatrics and Child Health, Al Jalila Children's Hospital, Dubai, ARE
| |
Collapse
|
8
|
Mansouri S, Alharbi Y, Alqahtani A. Nanomaterials Connected to Bioreceptors to Introduce Efficient Biosensing Strategy for Diagnosis of the TORCH Infections: A Critical Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38193140 DOI: 10.1080/10408347.2023.2301649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City, Saudi Arabia
| |
Collapse
|
9
|
Wu H, Wang Y, Wang H. Generation of Human Trophoblast Stem Cell-Dependent Placental In Vitro Models. Methods Mol Biol 2024; 2767:43-52. [PMID: 36515896 DOI: 10.1007/7651_2022_463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Currently, human trophoblast stem cell (hTSC) is considered to be the most promising laboratory model stimulating trophoblast criteria. Our group has established hTSCs allowing differentiation to syncytiotrophoblast (STB) and extravillous trophoblast (EVT). Further, hTSC-based three-dimensional (3D) trophoblast organoid (hTSC-organoid) provides a transformative model for studying human placental development and the interaction between trophoblast and maternal environment. Here, we present a protocol to obtain different types of placental trophoblast cells and trophoblast organoids using hTSCs. The generation of hTSC-organoids takes 6 days. hTSC-organoids permit passaging and can differentiate into EVT lineage.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
10
|
Wu H, Huang XY, Sun MX, Wang Y, Zhou HY, Tian Y, He B, Li K, Li DY, Wu AP, Wang H, Qin CF. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat Commun 2023; 14:5541. [PMID: 37684223 PMCID: PMC10491779 DOI: 10.1038/s41467-023-41158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Ying Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Beijia He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - De-Yu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ai-Ping Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
11
|
de Andrade Vieira Alves F, Nunes PCG, Arruda LV, Salomão NG, Rabelo K. The Innate Immune Response in DENV- and CHIKV-Infected Placentas and the Consequences for the Fetuses: A Minireview. Viruses 2023; 15:1885. [PMID: 37766291 PMCID: PMC10535478 DOI: 10.3390/v15091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Dengue virus (DENV) and chikungunya (CHIKV) are arthropod-borne viruses belonging to the Flaviviridae and Togaviridae families, respectively. Infection by both viruses can lead to a mild indistinct fever or even lead to more severe forms of the diseases, which are characterized by a generalized inflammatory state and multiorgan involvement. Infected mothers are considered a high-risk group due to their immunosuppressed state and the possibility of vertical transmission. Thereby, infection by arboviruses during pregnancy portrays a major public health concern, especially in countries where epidemics of both diseases are regular and public health policies are left aside. Placental involvement during both infections has been already described and the presence of either DENV or CHIKV has been observed in constituent cells of the placenta. In spite of that, there is little knowledge regarding the intrinsic earlier immunological mechanisms that are developed by placental cells in response to infection by both arboviruses. Here, we approach some of the current information available in the literature about the exacerbated presence of cells involved in the innate immune defense of the placenta during DENV and CHIKV infections.
Collapse
Affiliation(s)
- Felipe de Andrade Vieira Alves
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Laíza Vianna Arruda
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
12
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol 2023; 229:106254. [PMID: 36681283 PMCID: PMC10038932 DOI: 10.1016/j.jsbmb.2023.106254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Progesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Tzu Ning Liu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
14
|
Schulz J, Schilling E, Fabian C, Zenclussen AC, Stojanovska V, Claus C. Dissecting Rubella Placental Infection in an In Vitro Trophoblast Model. Int J Mol Sci 2023; 24:ijms24097894. [PMID: 37175600 PMCID: PMC10178045 DOI: 10.3390/ijms24097894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Vertical transmission of rubella virus (RuV) occurs at a high rate during the first trimester of pregnancy. The modes of vertical transmission including the response of trophoblasts to RuV are not well understood. Here, RuV-trophoblast interaction was studied in the BeWo trophoblast cell line. Analysis included early and late time-point kinetics of virus infection rate and the antiviral innate immune response at mRNA and protein level. BeWo characteristics were addressed through metabolic activity by extracellular flux analysis and syncytiotrophoblast formation through incubation with forskolin. We found that RuV infection of BeWo led to profuse type III interferon (IFN) production. Transfecting trophoblast cells with dsRNA analog induced an increase in the production of type I IFN-β and type III IFNs; however, this did not occur in RuV-infected BeWo trophoblasts. IFN-β and to a lesser extent type III IFN-λ1 were inhibitory to RuV. While no significant metabolic alteration was detected, RuV infection reduced the cell number in the monolayer culture in comparison to the mock control and resulted in detached and floating cells. Syncytia formation restricted RuV infection. The use of BeWo as a relevant cell culture model for infection of trophoblasts highlights cytopathogenicity in the absence of a type I IFN response as a pathogenic alteration by RuV.
Collapse
Affiliation(s)
- Juliane Schulz
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Erik Schilling
- Rheumatology Unit, Department of Internal Medicine III, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Claire Fabian
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
- Perinatal Immunology Research Group, Saxonian Incubator for Clinical Translation, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Gomez-Lopez N, Romero R, Escobar MF, Carvajal JA, Echavarria MP, Albornoz LL, Nasner D, Miller D, Gallo DM, Galaz J, Arenas-Hernandez M, Bhatti G, Done B, Zambrano MA, Ramos I, Fernandez PA, Posada L, Chaiworapongsa T, Jung E, Garcia-Flores V, Suksai M, Gotsch F, Bosco M, Than NG, Tarca AL. Pregnancy-specific responses to COVID-19 revealed by high-throughput proteomics of human plasma. COMMUNICATIONS MEDICINE 2023; 3:48. [PMID: 37016066 PMCID: PMC10071476 DOI: 10.1038/s43856-023-00268-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Pregnant women are at greater risk of adverse outcomes, including mortality, as well as obstetrical complications resulting from COVID-19. However, pregnancy-specific changes that underlie such worsened outcomes remain unclear. METHODS Plasma samples were collected from pregnant women and non-pregnant individuals (male and female) with (n = 72 pregnant, 52 non-pregnant) and without (n = 29 pregnant, 41 non-pregnant) COVID-19. COVID-19 patients were grouped as asymptomatic, mild, moderate, severe, or critically ill according to NIH classifications. Proteomic profiling of 7,288 analytes corresponding to 6,596 unique protein targets was performed using the SOMAmer platform. RESULTS Herein, we profile the plasma proteome of pregnant and non-pregnant COVID-19 patients and controls and show alterations that display a dose-response relationship with disease severity; yet, such proteomic perturbations are dampened during pregnancy. In both pregnant and non-pregnant state, the proteome response induced by COVID-19 shows enrichment of mediators implicated in cytokine storm, endothelial dysfunction, and angiogenesis. Shared and pregnancy-specific proteomic changes are identified: pregnant women display a tailored response that may protect the conceptus from heightened inflammation, while non-pregnant individuals display a stronger response to repel infection. Furthermore, the plasma proteome can accurately identify COVID-19 patients, even when asymptomatic or with mild symptoms. CONCLUSION This study represents the most comprehensive characterization of the plasma proteome of pregnant and non-pregnant COVID-19 patients. Our findings emphasize the distinct immune modulation between the non-pregnant and pregnant states, providing insight into the pathogenesis of COVID-19 as well as a potential explanation for the more severe outcomes observed in pregnant women.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - María Fernanda Escobar
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Javier Andres Carvajal
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Maria Paula Echavarria
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Ludwig L Albornoz
- Departamento de Laboratorio Clínico y Patología, Fundación Valle del Lili, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Daniela Nasner
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maria Andrea Zambrano
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Isabella Ramos
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Paula Andrea Fernandez
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Leandro Posada
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
16
|
De Luca D, Vauloup-Fellous C, Benachi A, Vivanti A. Transmission of SARS-CoV-2 from mother to fetus or neonate: What to know and what to do? Semin Fetal Neonatal Med 2023; 28:101429. [PMID: 36935314 PMCID: PMC10010052 DOI: 10.1016/j.siny.2023.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
SARS-CoV-2 can be vertically transmitted from the mother to the fetus and the neonate. This transmission route is rare compared to the environmental or horizontal spread and therefore, the risk can be deemed inconsequential by some medical providers. However, severe, although just as rare, feto-neonatal consequences are possible: fetal demise, severe/critical neonatal COVID-19 and multi-inflammatory syndrome (MIS-N) have been described. Therefore, it is important for the clinicians to know the mechanism of vertical transmission, how to recognize this, and how to deal with neonatal COVID-19 and MIS-N. Our knowledge about this field has significantly increased in the last three years. This is a summary of the pathophysiology, diagnostics, and therapeutics of vertical SARS-CoV-2 transmission that clinicians apply in their clinical practice.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP, Clamart, France.
| | - Christelle Vauloup-Fellous
- Division of Virology, "Paul Brousse" Hospital, Paris Saclay University Hospitals, APHP, Villejuif, France
| | - Alexandra Benachi
- Division of Obstetrics and Gynecology, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP, Clamart, France
| | - Alexandre Vivanti
- Division of Obstetrics and Gynecology, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP, Clamart, France
| |
Collapse
|
17
|
Beltrami S, Rizzo S, Strazzabosco G, Gentili V, Alogna A, Narducci M, Bortolotti D, Schiuma G, Rizzo R. Non-classical HLA class I molecules and their potential role in viral infections. Hum Immunol 2023:S0198-8859(23)00061-7. [PMID: 37005169 DOI: 10.1016/j.humimm.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Human Leukocyte Antigens (HLA) are classified in three different classes I, II and III, and represent the key mediators of immune responses, self-tolerance development and pathogen recognition. Among them, non-classical subtypes (HLA-Ib), e.g. HLA-E and HLA-G, are characterize by tolerogenic functions that are often exploited by viruses to evade the host immune responses. In this perspective, we will review the main current data referred to HLA-G and HLA-E and viral infections, as well as the impact on immune response. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane library) for a systematic search until November 2022 using MeSH keywords/terms (i.e. HLA, HLA-G, HLA-E, viral infection, SARS-CoV-2, etc.…). Recent studies support the involvement of non-classical molecules, such as HLA-E and HLA-G, in the control of viral infection. On one side, viruses exploit HLA-G and HLA-E molecule to control host immune activation. On the other side, the expression of these molecules might control the inflammatory condition generated by viral infections. Hence, this review has the aim to summarize the state of art of literature about the modulation of these non-classical HLA-I molecules, to provide a general overview of the new strategies of viral immune system regulation to counteract immune defenses.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Andrea Alogna
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Marco Narducci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy; Temple University, Japan Campus, 1 Chome-14-29 Taishido, Setagaya City, Tokyo 154-0004, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy; LTTA, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy.
| |
Collapse
|
18
|
SARS-CoV-2 placentitis, stillbirth, and maternal COVID-19 vaccination: clinical-pathologic correlations. Am J Obstet Gynecol 2023; 228:261-269. [PMID: 36243041 PMCID: PMC9554221 DOI: 10.1016/j.ajog.2022.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Stillbirth is a recognized complication of COVID-19 in pregnant women that has recently been demonstrated to be caused by SARS-CoV-2 infection of the placenta. Multiple global studies have found that the placental pathology present in cases of stillbirth consists of a combination of concurrent destructive findings that include increased fibrin deposition that typically reaches the level of massive perivillous fibrin deposition, chronic histiocytic intervillositis, and trophoblast necrosis. These 3 pathologic lesions, collectively termed SARS-CoV-2 placentitis, can cause severe and diffuse placental parenchymal destruction that can affect >75% of the placenta, effectively rendering it incapable of performing its function of oxygenating the fetus and leading to stillbirth and neonatal death via malperfusion and placental insufficiency. Placental infection and destruction can occur in the absence of demonstrable fetal infection. Development of SARS-CoV-2 placentitis is a complex process that may have both an infectious and immunologic basis. An important observation is that in all reported cases of SARS-CoV-2 placentitis causing stillbirth and neonatal death, the mothers were unvaccinated. SARS-CoV-2 placentitis is likely the result of an episode of SARS-CoV-2 viremia at some time during the pregnancy. This article discusses clinical and pathologic aspects of the relationship between maternal COVID-19 vaccination, SARS-CoV-2 placentitis, and perinatal death.
Collapse
|
19
|
Wong YP, Tan GC, Khong TY. SARS-CoV-2 Transplacental Transmission: A Rare Occurrence? An Overview of the Protective Role of the Placenta. Int J Mol Sci 2023; 24:ijms24054550. [PMID: 36901979 PMCID: PMC10002996 DOI: 10.3390/ijms24054550] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis, causing substantial concern especially to the pregnant population. Pregnant women infected with SARS-CoV-2 are at greater risk of devastating pregnancy complications such as premature delivery and stillbirth. Irrespective of the emerging reported cases of neonatal COVID-19, reassuringly, confirmatory evidence of vertical transmission is still lacking. The protective role of the placenta in limiting in utero spread of virus to the developing fetus is intriguing. The short- and long-term impact of maternal COVID-19 infection in the newborn remains an unresolved question. In this review, we explore the recent evidence of SARS-CoV-2 vertical transmission, cell-entry pathways, placental responses towards SARS-CoV-2 infection, and its potential effects on the offspring. We further discuss how the placenta serves as a defensive front against SARS-CoV-2 by exerting various cellular and molecular defense pathways. A better understanding of the placental barrier, immune defense, and modulation strategies involved in restricting transplacental transmission may provide valuable insights for future development of antiviral and immunomodulatory therapies to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Correspondence: (Y.P.W.); (G.C.T.)
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: (Y.P.W.); (G.C.T.)
| | - T. Yee Khong
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Department of Pathology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
20
|
Kumar D, Verma S, Mysorekar IU. COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Transl Res 2023; 251:84-95. [PMID: 35970470 PMCID: PMC9371980 DOI: 10.1016/j.trsl.2022.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 02/04/2023]
Abstract
As the COVID-19 pandemic continues into its third year, emerging data indicates increased risks associated with SARS-CoV-2 infection during pregnancy, including pre-eclampsia, intrauterine growth restriction, preterm birth, stillbirth, and risk of developmental defects in neonates. Here, we review clinical reports to date that address different COVID-19 pregnancy complications. We also document placental pathologies induced by SARS-CoV-2 infection, entry mechanisms in placental cells, and immune responses at the maternal-fetal interface. Since new variants of SARS-CoV-2 are emerging with characteristics of higher transmissibility and more effective immune escape strategies, we also briefly highlight the genomic and proteomic features of SARS-CoV-2 investigated to date. Vector and mRNA-based COVID-19 vaccines continue to be rolled out globally. However, because pregnant individuals were not included in the vaccine clinical trials, some pregnant individuals have safety concerns and are hesitant to take these vaccines. We describe the recent studies that have addressed the effectiveness and safety of the current vaccines during pregnancy. This review also sheds light on important areas that need to be carefully or more fully considered with respect to understanding SARS-CoV-2 disease mechanisms of concern during pregnancy.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Sonam Verma
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
21
|
Daza M, Corchuelo S, Osorio J, Alberto Gómez L, Parra E, Alarcón Á, Mercado M. Fetal demise and SARS-CoV-2 infection during pregnancy: Histopathological and immunohistochemical findings of three cases referred to the Colombian National Institute of Health. CLINICAL INFECTION IN PRACTICE 2023; 17:100219. [PMID: 36687140 PMCID: PMC9846883 DOI: 10.1016/j.clinpr.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection during pregnancy is related with adverse maternal, fetal, and neonatal outcomes. Placental SARS-CoV-2 involvement may include various degrees of inflammation and malperfusion leading to diverse pregnancy complications. METHODS Placental, fetal and umbilical cord samples of three fetal demise cases that occurred in the context of maternal SARS-CoV-2 infections were analyzed. Cases were notified to the Colombian SARS-CoV-2 National Surveillance System. RT-PCR and immunohistochemistry (IHC) analysis were employed to identify potential tissue viral involvement. RESULTS RT-PCR and IHC confirmed the presence of viral genomes and antigens in placental and umbilical cord tissues. Histopathological analysis revealed findings consistent with placental malperfusion and inflammation. CONCLUSIONS SARS-CoV-2 infection during pregnancy can lead to placental dysfunction and damage compromising fetal survival. Many questions regarding SARS-CoV-2 dynamics during pregnancy including placental physiopathology and in utero transmission are still pending definitive answers.
Collapse
Affiliation(s)
- Marcela Daza
- Maternal and Perinatal Research Group, Public Health Research Division, Instituto Nacional de Salud, Bogotá, Colombia
| | - Sheryll Corchuelo
- Cell Morphology Research Group, Public Health Research Division, Instituto Nacional de Salud, Bogotá, Colombia
| | - Johana Osorio
- Maternal and Perinatal Research Group, Public Health Research Division, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luis Alberto Gómez
- Molecular Physiology Research Group, Public Health Research Division, Instituto Nacional de Salud, Bogotá, Colombia
| | - Edgar Parra
- Pathology Laboratory, Public Health Laboratory Network, Instituto Nacional de Salud, Bogotá, Colombia
| | - Ángela Alarcón
- Public Health Surveillance Division, Instituto Nacional de Salud, Bogotá, Colombia
| | - Marcela Mercado
- Public Health Research Director, Public Health Research Division, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
22
|
Redline RW, Ravishankar S, Bagby C, Saab S, Zarei S. Diffuse and Localized SARS-CoV-2 Placentitis: Prevalence and Pathogenesis of an Uncommon Complication of COVID-19 Infection During Pregnancy. Am J Surg Pathol 2022; 46:1036-1047. [PMID: 35319524 PMCID: PMC9281407 DOI: 10.1097/pas.0000000000001889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection in pregnancy has been associated with preterm delivery and preeclampsia. A less frequent and underrecognized complication is extensive placental infection which is associated with high rates of perinatal morbidity and mortality. The frequency, early pathogenesis, and range of lesions associated with this infection are poorly understood. We conducted a population-based study of placental pathology from all mothers with COVID-19 (n=271) over an 18-month period delivering within our health system. The overall prevalence of diffuse severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) placentitis, as defined by typical histology and immunohistochemical (IHC) staining for SARS-CoV-2 spike protein, was 14.8/1000, but increased to 59/1000 in preterm births. We also identified 3 cases with isolated small foci of localized SARS-CoV-2 placentitis, characterized by focal perivillous fibrin and intervillositis, which illustrate the early pathogenesis and suggest that infection may be contained in some cases. Two other placental lesions were more common in mothers with COVID-19, high-grade maternal vascular malperfusion in preterm deliveries and high-grade chronic villitis at term (5/5 cases tested of the latter were negative by IHC for SARS-CoV-2). Additional investigation of diffuse and localized SARS-CoV-2 placentitis by IHC showed loss of BCL-2, C4d staining in surrounding villi, and an early neutrophil-predominant intervillous infiltrate that later became dominated by monocyte-macrophages. We propose a model of focal infection of syncytiotrophoblast by virally infected maternal leukocytes leading to loss of BCL-2 and apoptosis. Infection is then either contained by surrounding fibrinoid (localized) or initiates waves of aponecrosis and immune activation that spread throughout the villous parenchyma (diffuse).
Collapse
Affiliation(s)
- Raymond W. Redline
- Department of Pathology, University Hospitals Cleveland Medical Center
- Departments of Pathology
- Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sanjita Ravishankar
- Department of Pathology, University Hospitals Cleveland Medical Center
- Departments of Pathology
| | - Christina Bagby
- Department of Pathology, University Hospitals Cleveland Medical Center
- Departments of Pathology
| | - Shahrazad Saab
- Department of Pathology, University Hospitals Cleveland Medical Center
- Departments of Pathology
| | - Shabnam Zarei
- Department of Pathology, University Hospitals Cleveland Medical Center
- Departments of Pathology
| |
Collapse
|
23
|
SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life. Biomedicines 2022; 10:biomedicines10081775. [PMID: 35892675 PMCID: PMC9331824 DOI: 10.3390/biomedicines10081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction.
Collapse
|
24
|
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | | | | | - Sagnika Dash
- Obstetrics and Gynecology Apollo Clinic Qatar 23656 Doha Qatar
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences Raebareli UP 226001 India
| | - Mandakini Pradhan
- Department of Fetal Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Reabareli Road Lucknow UP 226014 India
| |
Collapse
|
25
|
Abstract
SARS-CoV-2 infection poses increased risks of poor outcomes during pregnancy, including preterm birth and stillbirth. There is also developing concern over the effects of SARS-CoV-2 infection on the placenta, and these effects seem to vary between different viral variants. Despite these risks, many pregnant individuals have been reluctant to be vaccinated against the virus owing to safety concerns. We now have extensive data confirming the safety and effectiveness of COVID-19 vaccination during pregnancy, although it will also be necessary to determine the effectiveness of these vaccines specifically against newly emerging viral variants, including Omicron. In this Progress article, I cover recent developments in our understanding of the risks of SARS-CoV-2 infection in pregnancy, and how vaccination can reduce these.
Collapse
Affiliation(s)
- Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
26
|
Heydarifard Z, Zadheidar S, Yavarian J, Shatizadeh Malekshahi S, Kalantari S, Mokhtari-Azad T, Shafiei-Jandaghi NZ. Potential role of viral infections in miscarriage and insights into the underlying molecular mechanisms. Congenit Anom (Kyoto) 2022; 62:54-67. [PMID: 34961973 DOI: 10.1111/cga.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Intrauterine viruses can infect the decidua and placenta and cause adverse effects on the fetus during gestation. This review discusses the contribution of various viral infections to miscarriage and the molecular mechanisms by which viruses can cause devastating effects on healthy fetuses and induce miscarriage. Severe acute respiratory syndrome coronavirus 2 as newly emerged coronavirus was considered here, due to the concerns about its role during pregnancy and inducing miscarriage, as well. In this narrative review, an extensive literature search was conducted to find all studies investigating viral infections in miscarriage and their molecular mechanisms published over the past 20 years. The results of various studies investigating the roles of 20 viral infections in miscarriage are presented. Then, the mechanisms of pregnancy loss in viral infections were addressed, including alteration of trophoblast invasion and placental dysfunction, inducing excessive maternal immune response, and inducing apoptosis in the placental tissue. Viruses may cause pregnancy loss through different mechanisms and our knowledge about these mechanisms can be helpful for controlling or preventing viral infections and achieving a successful pregnancy.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sevrin Zadheidar
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirin Kalantari
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
27
|
SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166321. [PMID: 34920081 PMCID: PMC8668602 DOI: 10.1016/j.bbadis.2021.166321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) also in pregnant women. Infection in pregnancy leads to maternal and placental functional alterations. Pregnant women with vascular defects such as preeclampsia show high susceptibility to SARS-CoV-2 infection by undefined mechanisms. Pregnant women infected with SARS-CoV-2 show higher rates of preterm birth and caesarean delivery, and their placentas show signs of vasculopathy and inflammation. It is still unclear whether the foetus is affected by the maternal infection with this virus and whether maternal infection associates with postnatal affections. The SARS-CoV-2 infection causes oxidative stress and activation of the immune system leading to cytokine storm and next tissue damage as seen in the lung. The angiotensin-converting-enzyme 2 expression is determinant for these alterations in the lung. Since this enzyme is expressed in the human placenta, SARS-CoV-2 could infect the placenta tissue, although reported to be of low frequency compared with maternal lung tissue. Early-onset preeclampsia (eoPE) shows higher expression of ADAM17 (a disintegrin and metalloproteinase 17) causing an imbalanced renin-angiotensin system and endothelial dysfunction. A similar mechanism seems to potentially account for SARS-CoV-2 infection. This review highlights the potentially common characteristics of pregnant women with eoPE with those with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on the placenta function is determinant since eoPE/COVID-19 association may result in maternal metabolic alterations that might lead to a potential worsening of the foetal programming of diseases in the neonate, young, and adult.
Collapse
|
28
|
Yu W, Hu X, Cao B. Viral Infections During Pregnancy: The Big Challenge Threatening Maternal and Fetal Health. MATERNAL-FETAL MEDICINE 2022; 4:72-86. [PMID: 35187500 PMCID: PMC8843053 DOI: 10.1097/fm9.0000000000000133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections during pregnancy are associated with adverse pregnancy outcomes, including maternal and fetal mortality, pregnancy loss, premature labor, and congenital anomalies. Mammalian gestation encounters an immunological paradox wherein the placenta balances the tolerance of an allogeneic fetus with protection against pathogens. Viruses cannot easily transmit from mother to fetus due to physical and immunological barriers at the maternal-fetal interface posing a restricted threat to the fetus and newborns. Despite this, the unknown strategies utilized by certain viruses could weaken the placental barrier to trigger severe maternal and fetal health issues especially through vertical transmission, which was not fully understood until now. In this review, we summarize diverse aspects of the major viral infections relevant to pregnancy, including the characteristics of pathogenesis, related maternal-fetal complications, and the underlying molecular and cellular mechanisms of vertical transmission. We highlight the fundamental signatures of complex placental defense mechanisms, which will prepare us to fight the next emerging and re-emerging infectious disease in the pregnancy population.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
29
|
Gioia CD, Zullo F, Vecchio RCB, Pajno C, Perrone G, Galoppi P, Pecorini F, Mascio DD, Carletti R, Prezioso C, Pietropaolo V, Masuelli L, Bei R, Ciallella C, Rocca CD, Giancotti A, Brunelli R. Stillbirth and fetal capillary infection by SARS-CoV-2. Am J Obstet Gynecol MFM 2021; 4:100523. [PMID: 34700024 PMCID: PMC8541829 DOI: 10.1016/j.ajogmf.2021.100523] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022]
Abstract
We presented the case of stillbirth in a paucisymptomatic mother affected by SARS-CoV-2. At gross examination, the placenta showed a diffuse marble appearance and a focal hemorrhagic area. Multiple areas of hemorrhagic or ischemic necrosis with central and peripheral villous infarctions and thrombosis of several maternal and fetal vessels with luminal fibrin and platelet deposition were observed. All lesions seemed to be synchronous. Virus particles were identified within the cytoplasm of endothelial cells using electron microscopy, whereas SARS-CoV-2 RNA was detected in the placental tissue using real-time reverse transcription-polymerase chain reaction. Here, fetal vascular malperfusion was associated with infection; in fact, electron microscopy images showed that marked SARS-CoV-2 endotheliotropism involved the intravillous fetal capillaries. Furthermore, we confirmed that syncytiotrophoblast is the major target cell type for SARS-CoV-2 infection of the placenta. In conclusion, the possible consequences of the action of the placentotropic SARS-CoV-2 included the occurrence of vertical transmission, as reported in the literature, and/or stillbirth: the latter possibility may be triggered by a hampered maternal and/or fetal perfusion of the placenta. The diffuse thrombosis and subsequent ischemia of fetal capillaries induced by COVID-19 cannot be predicted by standard clinical surveillance.
Collapse
Affiliation(s)
- Cira di Gioia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Zullo
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy.
| | | | - Cristina Pajno
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Giuseppina Perrone
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Paola Galoppi
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Francesco Pecorini
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy; IRCSS San Raffaele Roma, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Costantino Ciallella
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| | - Roberto Brunelli
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
30
|
Murphy CA, O'Reilly DP, Edebiri O, Weiss L, Cullivan S, El-Khuffash A, Doyle E, Donnelly JC, Malone FD, Ferguson W, Drew RJ, O'Loughlin J, Neary E, Maguire PB, Kevane B, NíAinle F, McCallion N. Haematological parameters and coagulation in umbilical cord blood following COVID-19 infection in pregnancy. Eur J Obstet Gynecol Reprod Biol 2021; 266:99-105. [PMID: 34601263 PMCID: PMC8454187 DOI: 10.1016/j.ejogrb.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022]
Abstract
Objective The aim of this study was to evaluate infants, born to women with SARS-CoV-2 detected during pregnancy, for evidence of haematological abnormalities or hypercoagulability in umbilical cord blood. Study design This was a prospective observational case-control study of infants born to women who had SARS-CoV-2 RNA detected by PCR at any time during their pregnancy (n = 15). The study was carried out in a Tertiary University Maternity Hospital (8,500 deliveries/year) in Ireland. This study was approved by the Hospital Research Ethics Committee and written consent was obtained. Umbilical cord blood samples were collected at delivery, full blood count and Calibrated Automated Thrombography were performed. Demographics and clinical outcomes were recorded. Healthy term infants, previously recruited as controls to a larger study prior to the outbreak of COVID-19, were the historical control population (n = 10). Results Infants born to women with SARS-CoV-2 had similar growth parameters (birth weight 3600 g v 3680 g, p = 0.83) and clinical outcomes to healthy controls, such as need for resuscitation at birth (2 (13.3%) v 1 (10%), p = 1.0) and NICU admission (1 (6.7%) v 2 (20%), p = 0.54). Haematological parameters (Haemoglobin, platelet, white cell and lymphocyte counts) in the COVID-19 group were all within normal neonatal reference ranges. Calibrated Automated Thrombography revealed no differences in any thrombin generation parameters (lag time (p = 0.92), endogenous thrombin potential (p = 0.24), peak thrombin (p = 0.44), time to peak thrombin (p = 0.94)) between the two groups. Conclusion In this prospective study including eligible cases in a very large population of approximately 1500 women, there was no evidence of derangement of the haematological parameters or hypercoagulability in umbilical cord blood due to COVID-19. Further research is required to investigate the pathological placental changes, particularly COVID-19 placentitis and the impact of different strains of SARS-CoV-2 (particularly the B.1.1.7 and the emerging Delta variant) and the severity and timing of infection on the developing fetus.
Collapse
Affiliation(s)
- Claire A Murphy
- Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Neonatology, Rotunda Hospital, Dublin, Ireland; Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland.
| | - Daniel P O'Reilly
- Department of Neonatology, Rotunda Hospital, Dublin, Ireland; Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland
| | - Osasere Edebiri
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland; School of Medicine, University College Dublin, Ireland
| | - Luisa Weiss
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland
| | - Sarah Cullivan
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland; Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Afif El-Khuffash
- Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Neonatology, Rotunda Hospital, Dublin, Ireland
| | - Emma Doyle
- Department of Pathology, Rotunda Hospital, Dublin, Ireland
| | - Jennifer C Donnelly
- Department of Obstetrics and Gynaecology, Rotunda Hospital, Dublin, Ireland; Department of Obstetrics and Gynaecology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal D Malone
- Department of Obstetrics and Gynaecology, Rotunda Hospital, Dublin, Ireland; Department of Obstetrics and Gynaecology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wendy Ferguson
- Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Neonatology, Rotunda Hospital, Dublin, Ireland; Department of Paediatric Infectious Diseases, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Richard J Drew
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland; Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John O'Loughlin
- Department of Laboratory Medicine, Rotunda Hospital, Dublin, Ireland
| | - Elaine Neary
- Department of Neonatology, Liverpool Women's Hospital, Liverpool, United Kingdom; Department of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Patricia B Maguire
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland
| | - Barry Kevane
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland; Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala NíAinle
- Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland; School of Medicine, University College Dublin, Ireland; Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Naomi McCallion
- Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Neonatology, Rotunda Hospital, Dublin, Ireland
| |
Collapse
|
31
|
McKinney JR, Seferovic MD, Major AM, Suter MA, Tardif SD, Patterson JL, Castro ECC, Aagaard KM. Placental Autophagy and Viral Replication Co-localize in Human and Non-human Primate Placentae Following Zika Virus Infection: Implications for Therapeutic Interventions. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:720760. [PMID: 37431450 PMCID: PMC10331925 DOI: 10.3389/fviro.2021.720760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Background Multiple studies have shown both induction and inhibition of autophagy during Zika virus (ZIKV) infection. While some have proposed mechanisms by which autophagic dysregulation might facilitate ZIKV vertical transmission, there is a lack of in situ data in human and non-human primate models. This is an especially pertinent question as autophagy-inhibitors, such as hydroxychloroquine, have been proposed as potential therapeutic agents aimed at preventing vertical transmission of ZIKV and other RNA viruses. Objectives Given the paucity of pre-clinical data in support of either autophagic enhancement or inhibition of placental ZIKV viral infection, we sought to assess cellular, spatial, and temporal associations between placental ZIKV infection and measures of autophagy in human primary cell culture and congenital infection cases, as well as an experimental non-human primate (marmoset, Callithrix jacchus) model. Study Design Primary trophoblast cells were isolated from human placentae (n = 10) and infected in vitro with ZIKV. Autophagy-associated gene expression (ULK-1, BECN1, ATG5, ATG7, ATG12, ATG16L1, MAP1LC3A, MAP1LC3B, p62/SQSTM1) was then determined by TaqMan qPCR to determine fold-change with ZIKV-infection. In in vivo validation experiments, autophagy genes LC3B and p62/SQSTM1 were probed using in situ hybridization (ISH) in the placentae of human Congenital Zika Syndrome (CZS) cases (n = 3) and ZIKV-infected marmoset placenta (n = 1) and fetal tissue (n = 1). Infected and uninfected villi were compared for mean density and co-localization of autophagic protein markers. Results Studies of primary cultured human trophoblasts revealed decreased expression of autophagy genes ATG5 and p62/SQSTM1 in ZIKV-infected trophoblasts [ATG5 fold change (±SD) 0.734-fold (±0.722), p = 0.036; p62/SQSTM1 0.661-fold (±0.666), p = 0.029]. Histologic examination by ISH and immunohistochemistry confirmed spatial association of autophagy and ZIKV infection in human congenital infection cases, as well as marmoset placental and fetal tissue samples. When quantified by densitometric data, autophagic protein LC3B, and p62/SQSTM1 expression in marmoset placenta were significantly decreased in in situ ZIKV-infected villi compared to less-infected areas [LC3B mean 0.951 (95% CI, 0.930-0.971), p = 0.018; p62/SQSTM1 mean 0.863 (95% CI, 0.810-0.916), p = 0.024]. Conclusion In the current study, we observed that in the non-transformed human and non-human primate placenta, disruption (specifically down-regulation) of autophagy accompanies later ZIKV replication in vitro, in vivo, and in situ. The findings collectively suggest that dysregulated autophagy spatially and temporally accompanies placental ZIKV replication, providing the first in situ evidence in relevant primate pre-clinical and clinical models for the importance of timing of human therapeutic strategies aimed at agonizing/antagonizing autophagy. These studies have likely further implications for other congenitally transmitted viruses, particularly the RNA viruses, given the ubiquitous nature of autophagic disruption and dysregulation in host responses to viral infection during pregnancy.
Collapse
Affiliation(s)
- Jennifer R. McKinney
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Maxim D. Seferovic
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Angela M. Major
- Pathology and Laboratory Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Melissa A. Suter
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Suzette D. Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Eumenia C. C. Castro
- Pathology and Laboratory Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Kjersti M. Aagaard
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
- Pathology and Laboratory Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
Roach SN, Langlois RA. Intra- and Cross-Species Transmission of Astroviruses. Viruses 2021; 13:v13061127. [PMID: 34208242 PMCID: PMC8230745 DOI: 10.3390/v13061127] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Astroviruses are non-enveloped, single-stranded RNA viruses that infect mammalian and avian species. In humans, astrovirus infections are one of the most common causes of gastroenteritis in children. Infection has also been linked to serious neurological complications, especially in immunocompromised individuals. More extensive disease has also been characterized in non-human mammalian and avian species. To date, astroviruses have been detected in over 80 different avian and mammalian hosts. As the number of hosts continues to rise, the need to understand how astroviruses transmit within a given species as well as to new host species becomes increasingly important. Here, we review the current understanding of astrovirus transmission, the factors that influence viral spread, and the potential for cross-species transmission. Additionally, we highlight the current gaps in knowledge and areas of future research that will be key to understanding astrovirus transmission and zoonotic potential.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
33
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
34
|
Granja MG, Oliveira ACDR, de Figueiredo CS, Gomes AP, Ferreira EC, Giestal-de-Araujo E, de Castro-Faria-Neto HC. SARS-CoV-2 Infection in Pregnant Women: Neuroimmune-Endocrine Changes at the Maternal-Fetal Interface. Neuroimmunomodulation 2021; 28:1-21. [PMID: 33910207 PMCID: PMC8247841 DOI: 10.1159/000515556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Molecular and Cellular Biology Program, Federal University of State of Rio de Janeiro − UNIRIO, Rio de Janeiro, Rajasthan, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
| | | | | | - Alex Portes Gomes
- Medical Science Program, Neurology and Neuroscience, Fluminense Federal University − UFF, Niterói, Rajasthan, Brazil
| | - Erica Camila Ferreira
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
| | - Elizabeth Giestal-de-Araujo
- Neuroscience Program, Fluminense Federal University − UFF, Niterói, Rajasthan, Brazil
- National Institute of Technology-Neuroimmunomodulation − INCT-NIM, Rio de Janeiro, Rajasthan, Brazil
| | - Hugo Caire de Castro-Faria-Neto
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation − Fiocruz, Rio de Janeiro, Rajasthan, Brazil
- National Institute of Technology-Neuroimmunomodulation − INCT-NIM, Rio de Janeiro, Rajasthan, Brazil
| |
Collapse
|
35
|
Betancourt DM, Llana MN, Sarnacki SH, Cerquetti MC, Monzalve LS, Pustovrh MC, Giacomodonato MN. Salmonella Enteritidis foodborne infection induces altered placental morphometrics in the murine model. Placenta 2021; 109:11-18. [PMID: 33915480 DOI: 10.1016/j.placenta.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Salmonella foodborne disease during pregnancy causes a significant fetal loss in domestic livestock and preterm birth, chorioamnionitis and miscarriage in humans. These complications could be associated with alterations in placental structure. This study was aimed to determine how a low dose of Salmonella Enteritidis during late gestation affects placental histomorphometric in mice. METHODS We used a self-limiting enterocolitis murine model. BALB/c pregnant animals received a low dose of Salmonella Enteritidis (3-4 x 102 CFU/mouse) on gestational day (GD) 15. At day 3 post infection bacterial loads, serum cytokines expression and placental histomorphometrics parameters were analyzed. RESULTS We found that a sub-lethal infection with Salmonella induced a significant drop in fetal weight -to-placental weight-ratio and an increase in the placental coefficient. After bacterial inoculation maternal organs were colonized, inducing placental morphometric alterations, including increased placental thickness, reduced surface area, and diminished major and minor diameters. Also, foci of necrosis accompanied by acute leukocyte infiltration in decidual zone, reduction of vascular spaces and vascular congestion in labyrinth zone, were also evident in placentas from infected females on GD 18. Our data shows that placentas from infected mothers are phenotypically different from control ones. Furthermore, expression of IFN-gamma and IL-6 was up regulated in response to Salmonella in maternal serum. DISCUSSION Our findings demonstrate that a low dose of Salmonella during late gestation alters the placental morphometry leading to negative consequences on pregnancy outcome such as significant reduction in fetal body weight.
Collapse
Affiliation(s)
- Diana M Betancourt
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - Mariángeles Noto Llana
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - Sebastián H Sarnacki
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - M Cristina Cerquetti
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | | | - María C Pustovrh
- Departamento de Morfología, Facultad de Salud, Universidad Del Valle, Cali, Colombia.
| | - Mónica N Giacomodonato
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Zaigham M, Holmberg A, Karlberg ML, Lindsjö OK, Jokubkiene L, Sandblom J, Strand AS, Andersson O, Hansson SR, Nord DG, Tannenberg P. Intrauterine vertical SARS-CoV-2 infection: a case confirming transplacental transmission followed by divergence of the viral genome. BJOG 2021; 128:1388-1394. [PMID: 33638908 PMCID: PMC8013698 DOI: 10.1111/1471-0528.16682] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
This article includes Author Insights, a video abstract available at https://vimeo.com/bjog/authorinsights16682
Collapse
Affiliation(s)
- M Zaigham
- Obstetrics & Gynaecology, Department of Clinical Sciences Malmö, Skåne University Hospital, Lund University, Lund, Sweden
| | - A Holmberg
- Division of Infection Medicine, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Infection Control, Region Skåne, Lund, Sweden
| | - M L Karlberg
- Unit for Laboratory Development and Technology Transfer, Public Health Agency of Sweden, Stockholm, Sweden
| | - O K Lindsjö
- Unit for Laboratory Development and Technology Transfer, Public Health Agency of Sweden, Stockholm, Sweden
| | - L Jokubkiene
- Obstetrics & Gynaecology, Department of Clinical Sciences Malmö, Skåne University Hospital, Lund University, Lund, Sweden
| | - J Sandblom
- Neonatology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden
| | - A S Strand
- Department of Clinical Microbiology, Lund University and Regional Laboratories, Lund, Sweden
| | - O Andersson
- Neonatology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden
| | - S R Hansson
- Obstetrics & Gynaecology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - D G Nord
- Clinical Genetics and Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - P Tannenberg
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden.,Paediatric Cardiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Ouyang Y, Mouillet JF, Sorkin A, Sadovsky Y. Trophoblastic extracellular vesicles and viruses: Friends or foes? Am J Reprod Immunol 2021; 85:e13345. [PMID: 32939907 PMCID: PMC7880881 DOI: 10.1111/aji.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cells produce cytoplasmic vesicles to facilitate the processing and transport of RNAs, proteins, and other signaling molecules among intracellular organelles. Moreover, most cells release a range of extracellular vesicles (EVs) that mediate intercellular communication in both physiological and pathological settings. In addition to a better understanding of their biological functions, the diagnostic and therapeutic prospects of EVs, particularly the nano-sized small EVs (sEVs, exosomes), are currently being rigorously pursued. While EVs and viruses such as retroviruses might have evolved independently, they share a number of similar characteristics, including biogenesis pathways, size distribution, cargo, and cell-targeting mechanisms. The interplay of EVs with viruses has profound effects on viral replication and infectivity. Our research indicates that sEVs, produced by primary human trophoblasts, can endow other non-placental cell types with antiviral response. Better insights into the interaction of EVs with viruses may illuminate new ways to attenuate viral infections during pregnancy, and perhaps develop new antiviral therapeutics to protect the feto-placental unit during critical times of human development.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Jing H, Ackerman WE, Zhao G, El Helou Y, Buhimschi CS, Buhimschi IA. Connecting the dots on vertical transmission of SARS-CoV-2 using protein-protein interaction network analysis - Potential roles of placental ACE2 and ENDOU. Placenta 2021; 104:16-19. [PMID: 33197855 PMCID: PMC7649632 DOI: 10.1016/j.placenta.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
We conducted a protein-protein interaction (PPI) network study searching for proteins relevant to pregnancy-associated COVID-19 in pregnancy complicated with severe preeclampsia (sPE) and intra-amniotic infection and/or inflammation (Triple-I). PPI networks from sPE and Triple-I were intersected with the PPI network from coronavirus infection. Common proteins included the SARS-CoV-2 entry receptor ACE2 and ENDOU, a placental endoribonuclease homologous to Nsp15, a protein produced by the virus to escape host immunity. Remarkably, placental ENDOU mRNA expression far exceeded that of ACE2. Immunohistochemistry confirmed ENDOU localization at the hemochorial maternal-fetal interface. Investigation of ENDOU's relevance to vertical transmission of SARS-CoV-2 is further warranted.
Collapse
Affiliation(s)
- Hongwu Jing
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA.
| | - William E Ackerman
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA
| | - Guomao Zhao
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA
| | - Yara El Helou
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, IL, 60612, USA
| |
Collapse
|
39
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
Maternal Microbiome and Infections in Pregnancy. Microorganisms 2020; 8:microorganisms8121996. [PMID: 33333813 PMCID: PMC7765218 DOI: 10.3390/microorganisms8121996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy induces unique changes in maternal immune responses and metabolism. Drastic physiologic adaptations, in an intricately coordinated fashion, allow the maternal body to support the healthy growth of the fetus. The gut microbiome plays a central role in the regulation of the immune system, metabolism, and resistance to infections. Studies have reported changes in the maternal microbiome in the gut, vagina, and oral cavity during pregnancy; it remains unclear whether/how these changes might be related to maternal immune responses, metabolism, and susceptibility to infections during pregnancy. Our understanding of the concerted adaption of these different aspects of the human physiology to promote a successful pregnant remains limited. Here, we provide a comprehensive documentation and discussion of changes in the maternal microbiome in the gut, oral cavity, and vagina during pregnancy, metabolic changes and complications in the mother and newborn that may be, in part, driven by maternal gut dysbiosis, and, lastly, common infections in pregnancy. This review aims to shed light on how dysregulation of the maternal microbiome may underlie obstetrical metabolic complications and infections.
Collapse
|
41
|
Debelenko L, Katsyv I, Chong AM, Peruyero L, Szabolcs M, Uhlemann AC. Trophoblast damage with acute and chronic intervillositis: disruption of the placental barrier by severe acute respiratory syndrome coronavirus 2. Hum Pathol 2020; 109:69-79. [PMID: 33321162 PMCID: PMC7733682 DOI: 10.1016/j.humpath.2020.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 10/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was demonstrated in the placenta; however, the data on the prevalence of placental infection and associated histopathology are limited. To identify the frequency and features of SARS-CoV-2 involvement, we performed a clinicopathologic analysis of 75 placental cases from women infected at the time of delivery and 75 uninfected controls. Placental samples were studied with anti-SARS-CoV-2 immunohistochemistry and/or in situ hybridization. Positive results were confirmed by electron microscopy and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). During delivery, only one woman had symptoms of coronavirus disease 2019, six women reported previous symptoms, and 68 women were asymptomatic. All neonates tested negative for SARS-CoV-2 as per nasopharyngeal swab PCR results. Obstetric histories were unremarkable in 29 of 75 SARS-CoV-2-positive and 8 of 75 SARS-CoV-2-negative women. Placental examination was normal in 12 of 75 infected and 3 of 75 uninfected subjects, respectively. In the remaining cases, placental pathology correlated with obstetric comorbidities without significant differences between SARS-CoV-2-positive and SARS-CoV-2-negative women. SARS-CoV-2 was identified in one placenta of an infected, but asymptomatic, parturient. Viral staining was predominantly localized to the syncytiotrophoblast (STB) which demonstrated marked damage accompanied by perivillous fibrin deposition and mixed intervillositis. A significant decrease of viral titers was detected in the attached umbilical cord compared with the villous parenchyma as per qRT-PCR. SARS-CoV-2 is seldom identified in placentas of infected women. Placental involvement by the virus is characterized by STB damage disrupting the placental barrier and can be seen in asymptomatic mothers without evidence of vertical transmission.
Collapse
Affiliation(s)
- Larisa Debelenko
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Igor Katsyv
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alexander M Chong
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Leonore Peruyero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthias Szabolcs
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
42
|
Schwartz DA, Morotti D. Placental Pathology of COVID-19 with and without Fetal and Neonatal Infection: Trophoblast Necrosis and Chronic Histiocytic Intervillositis as Risk Factors for Transplacental Transmission of SARS-CoV-2. Viruses 2020; 12:E1308. [PMID: 33203131 PMCID: PMC7697563 DOI: 10.3390/v12111308] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mechanism(s) by which neonates testing positive for coronavirus disease 2019 (COVID-19) acquire their infection has been largely unknown. Transmission of the etiological agent, SARS-CoV-2, from mother to infant has been suspected but has been difficult to confirm. This communication summarizes the spectrum of pathology findings from pregnant women with COVID-19 based upon the infection status of their infants and addresses the potential interpretation of these results in terms of the effects of SARS-CoV-2 on the placenta and the pathophysiology of maternal-fetal infection. Placentas from pregnant women with COVID-19 and uninfected neonates show significant variability in the spectrum of pathology findings. In contrast, placentas from infected maternal-neonatal dyads are characterized by the finding of mononuclear cell inflammation of the intervillous space, termed chronic histiocytic intervillositis, together with syncytiotrophoblast necrosis. These placentas show prominent positivity of syncytiotrophoblast by SARS-CoV-2, fulfilling the published criteria for transplacental viral transmission as confirmed in fetal cells through identification of viral antigens by immunohistochemistry or viral nucleic acid using RNA in situ hybridization. The co-occurrence of chronic histiocytic intervillositis and trophoblast necrosis appears to be a risk factor for placental infection with SARS-CoV-2 as well as for maternal-fetal viral transmission, and suggests a potential mechanism by which the coronavirus can breach the maternal-fetal interface.
Collapse
Affiliation(s)
- David A. Schwartz
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Denise Morotti
- Pathology Unit and Medical Genetics Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| |
Collapse
|
43
|
Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Rojas-Pirela M, Maya JD, Prieto H, Kemmerling U. Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants. Front Immunol 2020; 11:595250. [PMID: 33240284 PMCID: PMC7677230 DOI: 10.3389/fimmu.2020.595250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Maura Rojas-Pirela
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Humberto Prieto
- Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Prochaska E, Jang M, Burd I. COVID-19 in pregnancy: Placental and neonatal involvement. Am J Reprod Immunol 2020; 84:e13306. [PMID: 32779810 PMCID: PMC7404599 DOI: 10.1111/aji.13306] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 12 million infections and more than 550 000 deaths.1 Morbidity and mortality appear partly due to host inflammatory response.2 Despite rapid, global research, the effect of SARS-CoV-2 on the developing fetus remains unclear. Case reports indicate that vertical transmission is uncommon; however, there is evidence that placental and fetal infection can occur.3-7 Placentas from infected patients show inflammatory, thrombotic, and vascular changes that have been found in other inflammatory conditions.8,9 This suggests that the inflammatory nature of SARS-CoV-2 infection during pregnancy could cause adverse obstetric and neonatal events. Exposure to intrauterine inflammation and placental changes could also potentially result in long-term, multisystemic defects in exposed infants. This review will summarize the known literature on the placenta in SARS-CoV-2 infection, evidence of vertical transmission, and possible outcomes of prenatal exposure to the virus.
Collapse
Affiliation(s)
- Erica Prochaska
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of Pediatric Infectious DiseasesDepartment of PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Minyoung Jang
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Irina Burd
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
45
|
Mahyuddin AP, Kanneganti A, Wong JJL, Dimri PS, Su LL, Biswas A, Illanes SE, Mattar CNZ, Huang RYJ, Choolani M. Mechanisms and evidence of vertical transmission of infections in pregnancy including SARS-CoV-2s. Prenat Diagn 2020; 40:1655-1670. [PMID: 32529643 PMCID: PMC7307070 DOI: 10.1002/pd.5765] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
There remain unanswered questions concerning mother‐to‐child‐transmission of SARS‐CoV‐2. Despite reports of neonatal COVID‐19, SARS‐CoV‐2 has not been consistently isolated in perinatal samples, thus definitive proof of transplacental infection is still lacking. To address these questions, we assessed investigative tools used to confirm maternal‐fetal infection and known protective mechanisms of the placental barrier that prevent transplacental pathogen migration. Forty studies of COVID‐19 pregnancies reviewed suggest a lack of consensus on diagnostic strategy for congenital infection. Although real‐time polymerase chain reaction of neonatal swabs was universally performed, a wide range of clinical samples was screened including vaginal secretions (22.5%), amniotic fluid (35%), breast milk (22.5%) and umbilical cord blood. Neonatal COVID‐19 was reported in eight studies, two of which were based on the detection of SARS‐CoV‐2 IgM in neonatal blood. Histological examination demonstrated sparse viral particles, vascular malperfusion and inflammation in the placenta from pregnant women with COVID‐19. The paucity of placental co‐expression of ACE‐2 and TMPRSS2, two receptors involved in cytoplasmic entry of SARS‐CoV‐2, may explain its relative insensitivity to transplacental infection. Viral interactions may utilise membrane receptors other than ACE‐2 thus, tissue susceptibility may be broader than currently known. Further spatial‐temporal studies are needed to determine the true potential for transplacental migration.
Collapse
Affiliation(s)
- Aniza P Mahyuddin
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhiram Kanneganti
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Jeslyn J L Wong
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Pooja S Dimri
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Lin L Su
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Y-J Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Chen W, Yuan P, Yang M, Yan Z, Kong S, Yan J, Liu X, Chen Y, Qiao J, Yan L. SARS-CoV-2 Entry Factors: ACE2 and TMPRSS2 Are Expressed in Peri-Implantation Embryos and the Maternal-Fetal Interface. ENGINEERING (BEIJING, CHINA) 2020; 6:1162-1169. [PMID: 32837754 PMCID: PMC7429517 DOI: 10.1016/j.eng.2020.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world, leading to large-scale population infection. Angiotensin-converting enzyme 2 (ACE2) is the receptor of both severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, it is still controversial whether vertical transmission exists. In order to investigate the potential risk of SARS-CoV-2 vertical transmission, we explored ACE2 and TMPRSS2 (encoding transmembrane protease serine 2) expression patterns in peri-implantation embryos and the maternal-fetal interface using previously published single-cell transcriptome data. The results showed that day 6 (D6) trophectoderm (TE) cells in peri-implantation embryos, as well as syncytiotrophoblast (STB) at 8 weeks of gestation (STB_8W) and extravillous trophoblast (EVT) cells at 24 weeks of gestation (EVT_24W) in the maternal-fetal interface, strongly co-expressed ACE2 and TMPRSS2, indicating a SARS-CoV-2 infection susceptibility. The ACE2 positive-expressing cells in the three cell types mentioned above were found to share common characteristics, which were involved in autophagy and immune-related processes. ACE2 showed no gender bias in post-implantation embryos but showed a significant gender difference in D6_TE, D6 primitive endoderm (PE) cells, and ACE2 positive-expressing STBs. These findings suggest that there may be different SARS-CoV-2 infection susceptibilities of D6 embryos of different genders and during the gestation of different genders. Our results reveal potential SARS-CoV-2 infection risks during embryo transfer, peri-implantation embryo development, and gestation.
Collapse
Affiliation(s)
- Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Siming Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing 100191, China
| | - Xixi Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yidong Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing 100191, China
| |
Collapse
|
47
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Hoo R, Nakimuli A, Vento-Tormo R. Innate Immune Mechanisms to Protect Against Infection at the Human Decidual-Placental Interface. Front Immunol 2020; 11:2070. [PMID: 33013876 PMCID: PMC7511589 DOI: 10.3389/fimmu.2020.02070] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
During pregnancy, the placenta forms the anatomical barrier between the mother and developing fetus. Infectious agents can potentially breach the placental barrier resulting in pathogenic transmission from mother to fetus. Innate immune responses, orchestrated by maternal and fetal cells at the decidual-placental interface, are the first line of defense to avoid vertical transmission. Here, we outline the anatomy of the human placenta and uterine lining, the decidua, and discuss the potential capacity of pathogen pattern recognition and other host defense strategies present in the innate immune cells at the placental-decidual interface. We consider major congenital infections that access the placenta from hematogenous or decidual route. Finally, we highlight the challenges in studying human placental responses to pathogens and vertical transmission using current experimental models and identify gaps in knowledge that need to be addressed. We further propose novel experimental strategies to address such limitations.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Annettee Nakimuli
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University, Kampala, Uganda
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Farsimadan M, Motamedifar M. The effects of human immunodeficiency virus, human papillomavirus, herpes simplex virus-1 and -2, human herpesvirus-6 and -8, cytomegalovirus, and hepatitis B and C virus on female fertility and pregnancy. Br J Biomed Sci 2020; 78:1-11. [PMID: 32726192 DOI: 10.1080/09674845.2020.1803540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female infertility may be defined as a woman of reproductive age being unable to become pregnant after a year of regular unprotected sexual intercourse. Social, genetic, endocrine, physiological, and psychological factors as well as lifestyle habits (i.e., smoking and alcohol consumption), either alone or in combination with male factors, are major causes. However, approximately 15-30% of cases of female infertility remain unexplained. Numerous investigations have also indicated that microbiomes play an important role in human reproduction. All parts of the female reproductive system may be influenced by infectious and pathological agents, especially viruses, and these may interfere with reproductive function and so are risk factors for infertility, although in many cases an exact role is unclear. We present an overview of the impact of common viral infections on female reproduction, searching Medline, PubMed, Scopus, and Google scholar databases for potentially relevant studies of viruses known to have a potential effect. Human immunodeficiency virus (HIV), herpes simplex virus (HSV) and human herpesvirus (HHV) increase infertility rates whilst human papillomavirus (HPV), cytomegalovirus (CMV), and hepatitis B and C virus (HBV, HCV) infections mostly lead to higher abortion and miscarriage rates. Moreover, HPV infection is linked to increased tubal infertility, endometriosis, and pelvic inflammatory disease. HPV was the most frequently observed infection and with lower pregnancy rate and foetal death in women undergoing IVF treatments. Assisted reproductive treatment could be a safe and effective approach for HIV and HBV infected women.
Collapse
Affiliation(s)
- M Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan , Rasht, Iran
| | - M Motamedifar
- Department of Bacteriology and Virology, Shiraz Medical School, and Shiraz HIV/Aids Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
50
|
Rabelo K, de Souza LJ, Salomão NG, Machado LN, Pereira PG, Portari EA, Basílio-de-Oliveira R, Dos Santos FB, Neves LD, Morgade LF, Provance DW, Higa LM, Tanuri A, de Carvalho JJ, Paes MV. Zika Induces Human Placental Damage and Inflammation. Front Immunol 2020; 11:2146. [PMID: 32983175 PMCID: PMC7490298 DOI: 10.3389/fimmu.2020.02146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In Brazil, an epidemic of Zika virus (ZIKV) infections was declared in 2015 that coincided with alarming reports of microcephaly in newborns associated with mother infection. Although the virus has placental tropism, changes in the tissue morphology and immunity of infected patients have not yet been elucidated. Here, we investigated the histopathological and ultrastructural changes along with the immunological profile and the BDNF expression in rare placental material. Tissues were obtained in the 2015–2016 Brazilian epidemic, of ten ZIKV-infected patients during pregnancy, five resulting in cases of fetal microcephaly and five non-microcephaly, compared to five non-infected control placentae. Viral antigens were only detected in samples from the ZIKV infected patients. Infected placentae presented histopathological severe damage, while the ultrastructural evaluation showed abnormal organelles, such as clusters of virus-like particles consistent with the ZIKV dimensions. Increased infiltration of CD68+ and TCD8+ cells, expression of MMPs, cytokines (IFN-γ and TNF-α) and other immunological mediators (RANTES/CCL5 and VEGFR-2) confirmed excessive inflammation and vascular permeability dysfunction. An evaluation of BDNF showed a decrease that could modulate neuronal damage in the developing fetus. The placental changes caused by ZIKV are not pathognomonic, however, the data provide evidence that this infection leads to severe placental injury.
Collapse
Affiliation(s)
- Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Priscila Gomes Pereira
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Laura Dias Neves
- Hospital Geral Dr. Beda, CEPLIN - Uti Neonatal Nicola Albano, Rio de Janeiro, Brazil
| | - Luciana Faes Morgade
- Hospital Geral Dr. Beda, CEPLIN - Uti Neonatal Nicola Albano, Rio de Janeiro, Brazil
| | - David William Provance
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciano Viana Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|