1
|
Goudar V, Kim JW, Liu Y, Dede AJO, Jutras MJ, Skelin I, Ruvalcaba M, Chang W, Ram B, Fairhall AL, Lin JJ, Knight RT, Buffalo EA, Wang XJ. A Comparison of Rapid Rule-Learning Strategies in Humans and Monkeys. J Neurosci 2024; 44:e0231232024. [PMID: 38871463 PMCID: PMC11236592 DOI: 10.1523/jneurosci.0231-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent hidden Markov model-generalized linear models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a win-stay, lose-shift strategy with interspecies similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, New York 10003
| | - Jeong-Woo Kim
- Center for Neural Science, New York University, New York 10003
| | - Yue Liu
- Center for Neural Science, New York University, New York 10003
| | - Adam J O Dede
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Michael J Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - William Chang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Bhargavi Ram
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Jack J Lin
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Psychology, University of California, Berkeley, California 94720
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Washington Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York 10003
| |
Collapse
|
2
|
Goudar V, Kim JW, Liu Y, Dede AJO, Jutras MJ, Skelin I, Ruvalcaba M, Chang W, Fairhall AL, Lin JJ, Knight RT, Buffalo EA, Wang XJ. Comparing rapid rule-learning strategies in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523416. [PMID: 36711889 PMCID: PMC9882042 DOI: 10.1101/2023.01.10.523416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inter-species comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of macaque monkey and human strategies on an analogue of the Wisconsin Card Sort Test, a widely studied and applied multi-attribute measure of cognitive function, wherein performance requires the inference of a changing rule given ambiguous feedback. We found that well-trained monkeys rapidly infer rules but are three times slower than humans. Model fits to their choices revealed hidden states akin to feature-based attention in both species, and decision processes that resembled a Win-stay lose-shift strategy with key differences. Monkeys and humans test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidates. An attention-set based learning stage categorization revealed that perseveration, random exploration and poor sensitivity to negative feedback explain the under-performance in monkeys.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, NY, USA
| | - Jeong-Woo Kim
- Center for Neural Science, New York University, NY, USA
| | - Yue Liu
- Center for Neural Science, New York University, NY, USA
| | - Adam J. O. Dede
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Michael J. Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - William Chang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrienne L. Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T. Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Elizabeth A. Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Washington Primate Research Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3
|
Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:676911. [PMID: 34055808 PMCID: PMC8155536 DOI: 10.3389/fcell.2021.676911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex, a six-layer neuronal brain structure that arose during the evolution of, and is unique to, mammals, is the seat of higher order brain functions responsible for human cognitive abilities. Despite its recent evolutionary origin, it shows a striking variability in size and folding complexity even among closely related mammalian species. In most mammals, cortical neurogenesis occurs prenatally, and its length correlates with the length of gestation. The evolutionary expansion of the neocortex, notably in human, is associated with an increase in the number of neurons, particularly within its upper layers. Various mechanisms have been proposed and investigated to explain the evolutionary enlargement of the human neocortex, focussing in particular on changes pertaining to neural progenitor types and their division modes, driven in part by the emergence of human-specific genes with novel functions. These led to an amplification of the progenitor pool size, which affects the rate and timing of neuron production. In addition, in early theoretical studies, another mechanism of neocortex expansion was proposed—the lengthening of the neurogenic period. A critical role of neurogenic period length in determining neocortical neuron number was subsequently supported by mathematical modeling studies. Recently, we have provided experimental evidence in rodents directly supporting the mechanism of extending neurogenesis to specifically increase the number of upper-layer cortical neurons. Moreover, our study examined the relationship between cortical neurogenesis and gestation, linking the extension of the neurogenic period to the maternal environment. As the exact nature of factors promoting neurogenic period prolongation, as well as the generalization of this mechanism for evolutionary distinct lineages, remain elusive, the directions for future studies are outlined and discussed.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany.,Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| |
Collapse
|
4
|
Di Plinio S, Ebisch SJH. Combining local and global evolutionary trajectories of brain-behaviour relationships through game theory. Eur J Neurosci 2020; 52:4198-4213. [PMID: 32594640 DOI: 10.1111/ejn.14883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 01/05/2023]
Abstract
The study of the evolution of brain-behaviour relationships concerns understanding the causes and repercussions of cross- and within-species variability. Understanding such variability is a main objective of evolutionary and cognitive neuroscience, and it may help explaining the appearance of psychopathological phenotypes. Although brain evolution is related to the progressive action of selection and adaptation through multiple paths (e.g. mosaic vs. concerted evolution, metabolic vs. structural and functional constraints), a coherent, integrative framework is needed to combine evolutionary paths and neuroscientific evidence. Here, we review the literature on evolutionary pressures focusing on structural-functional changes and developmental constraints. Taking advantage of recent progress in neuroimaging and cognitive neuroscience, we propose a twofold hypothetical model of brain evolution. Within this model, global and local trajectories imply rearrangements of neural subunits and subsystems and of behavioural repertoires of a species, respectively. We incorporate these two processes in a game in which the global trajectory shapes the structural-functional neural substrates (i.e. players), while the local trajectory shapes the behavioural repertoires (i.e. stochastic payoffs).
Collapse
Affiliation(s)
- Simone Di Plinio
- Department of Neuroscience, Imaging, and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sjoerd J H Ebisch
- Department of Neuroscience, Imaging, and Clinical Sciences, G D'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G D'Annunzio University of Chieti Pescara, Chieti, Italy
| |
Collapse
|
5
|
Alexander B, Kelly CE, Adamson C, Beare R, Zannino D, Chen J, Murray AL, Loh WY, Matthews LG, Warfield SK, Anderson PJ, Doyle LW, Seal ML, Spittle AJ, Cheong JL, Thompson DK. Changes in neonatal regional brain volume associated with preterm birth and perinatal factors. Neuroimage 2019; 185:654-663. [DOI: 10.1016/j.neuroimage.2018.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
|
6
|
Pei Y, Peng J, Behl M, Sipes NS, Shockley KR, Rao MS, Tice RR, Zeng X. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 2016; 1638:57-73. [PMID: 26254731 PMCID: PMC5032144 DOI: 10.1016/j.brainres.2015.07.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here, we report on the comparative cytotoxicity of 80 compounds (neurotoxicants, developmental neurotoxicants, and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC), neurons, and astrocytes. All compounds were tested over a 24-h period at 10 and 100 μM, in duplicate, with cytotoxicity measured using the MTT assay. Of the 80 compounds tested, 50 induced significant cytotoxicity in at least one cell type; per cell type, 32, 38, 46, and 41 induced significant cytotoxicity in iPSC, NSC, neurons, and astrocytes, respectively. Four compounds (valinomycin, 3,3',5,5'-tetrabromobisphenol, deltamethrin, and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1, 10, and 100 μM using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone, we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally, the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ying Pei
- XCell Science Inc., Novato, CA, USA
| | - Jun Peng
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Nisha S Sipes
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Keith R Shockley
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | | | - Raymond R Tice
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Xianmin Zeng
- XCell Science Inc., Novato, CA, USA; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
7
|
Zarb F, McEntee MF, Rainford L. A multi-phased study of optimisation methodologies and radiation dose savings for head CT examinations. RADIATION PROTECTION DOSIMETRY 2015; 163:480-490. [PMID: 25009189 DOI: 10.1093/rpd/ncu227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The impact of optimisation methods on dose reductions for head computerised tomography was undertaken in three phases for two manufacturer models. Phase 1: a Catphan(®)600 was employed to evaluate protocols where the impact of parameter manipulation on dose and image quality was gauged by psychophysical measurements of contrast and spatial resolution in terms of contrast discs and line pairs. mA, kV and pitch were systematically altered until the optimisation threshold was identified. Phantom studies provide dose comparisons during optimisation but lack anatomical detail. Phase 2: optimised protocols were tested on a porcine model permitting further dose reductions over phantom findings providing anatomical structures for image quality evaluation using relative visual grading analysis of anatomical criteria. Phase 3: patient images using pre- and post-optimised protocols were clinically audited using visual grading characteristic analysis and ordinal regression analysis providing a robust analysis of image quality data prior to clinical implementation.
Collapse
Affiliation(s)
- Francis Zarb
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Mark F McEntee
- Discipline of Medical Radiation Sciences and Brain and Mind Research Institute, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Louise Rainford
- School of Medicine and Medical Science, Health Science Centre, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
8
|
Radel R, Davranche K, Fournier M, Dietrich A. The role of (dis)inhibition in creativity: decreased inhibition improves idea generation. Cognition 2014; 134:110-20. [PMID: 25460384 DOI: 10.1016/j.cognition.2014.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
There is now a large body of evidence showing that many different conditions related to impaired fronto-executive functioning are associated with the enhancement of some types of creativity. In this paper, we pursue the possibility that the central mechanism associated with this effect might be a reduced capacity to exert inhibition. We tested this hypothesis by exhausting the inhibition efficiency through prolonged and intensive practice of either the Simon or the Eriksen Flanker task. Performance on another inhibition task indicated that only the cognitive resources for inhibition of participants facing high inhibition demands were impaired. Subsequent creativity tests revealed that exposure to high inhibition demands led to enhanced fluency in a divergent thinking task (Alternate Uses Task), but no such changes occurred in a convergent task (Remote Associate Task; studies 1a and 1b). The same manipulation also led to a hyper-priming effect for weakly related primes in a Lexical Decision Task (Study 2). Together, these findings suggest that inhibition selectively affects some types of creative processes and that, when resources for inhibition are lacking, the frequency and the originality of ideas was facilitated.
Collapse
Affiliation(s)
- Rémi Radel
- Laboratoire LAMHESS (EA6309), Université de Nice Sophia-Antipolis, France.
| | | | - Marion Fournier
- Laboratoire LAMHESS (EA6309), Université de Nice Sophia-Antipolis, France
| | | |
Collapse
|
9
|
Rilling JK. Comparative primate neurobiology and the evolution of brain language systems. Curr Opin Neurobiol 2014; 28:10-4. [DOI: 10.1016/j.conb.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 01/10/2023]
|
10
|
Miller DJ, Lackey EP, Hackett TA, Kaas JH. Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (Otolemur garnetti). J Comp Neurol 2014; 521:3804-16. [PMID: 23749337 DOI: 10.1002/cne.23379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/07/2022]
Abstract
Change in the timeline of neurobiological growth is an important source of biological variation, and thus phenotypic evolution. However, no study has to date investigated sensory system development in any of the prosimian primates that are thought to most closely resemble our earliest primate ancestors. Acetylcholine (ACh) is a neurotransmitter critical to normal brain function by regulating synaptic plasticity associated with attention and learning. Myelination is an important structural component of the brain because it facilitates rapid neuronal communication. In this work we investigated the expression of acetylcholinesterase (AChE) and the density of myelinated axons throughout postnatal development in the inferior colliculus (IC), medial geniculate complex (MGC), and auditory cortex (auditory core, belt, and parabelt) in Garnett's greater galago (Otolemur garnetti). We found that the IC and MGC exhibit relatively high myelinated fiber length density (MFLD) values at birth and attain adult-like values by the species-typical age at weaning. In contrast, neocortical auditory fields are relatively unmyelinated at birth and only attain adult-like MFLD values by the species-typical age at puberty. Analysis of AChE expression indicated that, in contrast to evidence from rodent samples, the adult-like distribution of AChE in the core area of auditory cortex, dense bands in layers I, IIIb/IV, and Vb/VI, is present at birth. These data indicate the differential developmental trajectory of central auditory system structures and demonstrate the early onset of adult-like AChE expression in primary auditory cortex in O. garnetti, suggesting the auditory system is more developed at birth in primates compared to rodents.
Collapse
Affiliation(s)
- Daniel J Miller
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37205
| | | | | | | |
Collapse
|
11
|
Lee KB, Cho E, Kang YS. Changes in 5-hydroxytryptamine and cortisol plasma levels in menopausal women after inhalation of clary sage oil. Phytother Res 2014; 28:1599-605. [PMID: 24802524 DOI: 10.1002/ptr.5163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to examine the antidepressant-like effects of clary sage oil on human beings by comparing the neurotransmitter level change in plasma. The voluntary participants were 22 menopausal women in 50's. Subjects were classified into normal and depression tendency groups using each of Korean version of Beck Depression Inventory-I (KBDI-I), KBDI-II, and Korean version of Self-rating Depression Scale. Then, the changes in neurotransmitter concentrations were compared between two groups. After inhalation of clary sage oil, cortisol levels were significantly decreased while 5-hydroxytryptamine (5-HT) concentration was significantly increased. Thyroid stimulating hormone was also reduced in all groups but not statistically significantly. The different change rate of 5-HT concentration between normal and depression tendency groups was variable according to the depression measurement inventory. When using KBDI-I and KBDI-II, 5-HT increased by 341% and 828% for the normal group and 484% and 257% for the depression tendency group, respectively. The change rate of cortisol was greater in depression tendency groups compared with normal groups, and this difference was statistically significant when using KBDI-II (31% vs. 16% reduction) and Self-rating Depression Scale inventory (36% vs. 8.3% reduction). Among three inventories, only KBDI-II differentiated normal and depression tendency groups with significantly different cortisol level. Finally, clary sage oil has antidepressant-like effect, and KBDI-II inventory may be the most sensitive and valid tool in screening for depression status or severity.
Collapse
Affiliation(s)
- Kyung-Bok Lee
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Seoul, Korea
| | | | | |
Collapse
|
12
|
Davis JM, Keeney JG, Sikela JM, Hepburn S. Mode of genetic inheritance modifies the association of head circumference and autism-related symptoms: a cross-sectional study. PLoS One 2013; 8:e74940. [PMID: 24058641 PMCID: PMC3776732 DOI: 10.1371/journal.pone.0074940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
Background Frequently individuals with autism spectrum disorder (ASD) have been noted with a larger head circumference (HC) than their typical developing peers. Biologic hypotheses suggest that an overly rapid brain growth leads to the core symptoms of ASD by impairing connectivity. Literature is divided however where deleterious, protective and null associations of HC with ASD symptoms in individuals with ASD have been found. Method Individuals (n = 1,416) from the Autism Genetic Resource Exchange with ASD were examined for associations of HC with ASD like symptoms. Mixed models controlling for sex, age, race/ethnicity, simplex/multiplex status and accounting for correlations between siblings were used. Interactions by simplex/multiplex were explored. Adjustments for height in a sub-population with available data were explored as well. Results A Significant interaction term (p = 0.03) suggested that the effect of HC was dependent on whether the individual was simplex or multiplex. In simplex individuals at mean age (8.9 years) 1 cm increase in head circumference was associated with a 24% increase in the odds of a high social diagnostic score from the Autism Diagnostic Interview – Revised (odds ratio = 1.24, p = 0.01). There was no association in multiplex individuals. Additionally, individuals classified with a non-verbal IQ <70 were 90% simplex and had a significantly increased head circumference (0.7 cm p = 0.03) relative to a mid-range non-verbal IQ group. Interestingly, children classified with a >110 non-verbal IQ also had an increased HC (0.4 cm p = 0.04), relative to a mid-range non-verbal IQ group, and were 90% multiplex. HC effects do not appear to be confounded by height, however, larger samples with height information are needed. Conclusion The potential link between brain growth and autism like symptoms is complex and could depend on specific etiologies. Further investigations accounting for a likely mode of inheritance will help identify an ASD subtype related to HC.
Collapse
Affiliation(s)
- Jonathan M Davis
- Department of Biochemistry and Molecular Genetics & Human Medical Genetics & Neuroscience Programs, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | | | | | | |
Collapse
|
13
|
Neill D. Life's timekeeper. Ageing Res Rev 2013; 12:567-78. [PMID: 23354279 DOI: 10.1016/j.arr.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/18/2022]
Abstract
Life's timekeeper is a 'free-running' intracellular oscillator synchronised across all cells. It runs throughout life splitting lifespan into equal length phases. During the maturational period it controls the overall rate of progression whereas in the post-maturational period it controls the overall rate of ageing. This includes the rate of senescence and hence time to death. As such life's timekeeper equates maturational and post-maturational time, hence explains the tight correlation between these time periods that has existed throughout mammalian evolution. Life's timekeeper is proposed to have played an important role in vertebrate evolution. A slower oscillatory frequency results in proportional life phase prolongation. This leads to increased body and brain size, together with extended lifespan. Higher brain centres, neocortex in mammals, are disproportionately enlarged. Hence behavioural capacity is increased. The extended post-maturational period ensures that there is enough time in order that the behavioural advantages can be fully manifest in the environment. A faster oscillatory frequency would result in proportional life phase reduction. This process however would lead to reduced behavioural capacity, and is hence unlikely to be positively selected. Therefore throughout evolution life's timekeeper has operated to extend lifespan. It has hence functioned to promote longevity as opposed to ageing.
Collapse
Affiliation(s)
- David Neill
- Department of Psychiatry, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
14
|
The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10661-8. [PMID: 22723358 DOI: 10.1073/pnas.1201895109] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroscientists have become used to a number of "facts" about the human brain: It has 100 billion neurons and 10- to 50-fold more glial cells; it is the largest-than-expected for its body among primates and mammals in general, and therefore the most cognitively able; it consumes an outstanding 20% of the total body energy budget despite representing only 2% of body mass because of an increased metabolic need of its neurons; and it is endowed with an overdeveloped cerebral cortex, the largest compared with brain size. These facts led to the widespread notion that the human brain is literally extraordinary: an outlier among mammalian brains, defying evolutionary rules that apply to other species, with a uniqueness seemingly necessary to justify the superior cognitive abilities of humans over mammals with even larger brains. These facts, with deep implications for neurophysiology and evolutionary biology, are not grounded on solid evidence or sound assumptions, however. Our recent development of a method that allows rapid and reliable quantification of the numbers of cells that compose the whole brain has provided a means to verify these facts. Here, I review this recent evidence and argue that, with 86 billion neurons and just as many nonneuronal cells, the human brain is a scaled-up primate brain in its cellular composition and metabolic cost, with a relatively enlarged cerebral cortex that does not have a relatively larger number of brain neurons yet is remarkable in its cognitive abilities and metabolism simply because of its extremely large number of neurons.
Collapse
|
15
|
Pfefferle AD, Warner LR, Wang CW, Nielsen WJ, Babbitt CC, Fedrigo O, Wray GA. Comparative expression analysis of the phosphocreatine circuit in extant primates: Implications for human brain evolution. J Hum Evol 2010; 60:205-212. [PMID: 21190724 DOI: 10.1016/j.jhevol.2010.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 10/04/2010] [Accepted: 10/19/2010] [Indexed: 12/15/2022]
Abstract
While the hominid fossil record clearly shows that brain size has rapidly expanded over the last ~2.5 M.yr. the forces driving this change remain unclear. One popular hypothesis proposes that metabolic adaptations in response to dietary shifts supported greater encephalization in humans. An increase in meat consumption distinguishes the human diet from that of other great apes. Creatine, an essential metabolite for energy homeostasis in muscle and brain tissue, is abundant in meat and was likely ingested in higher quantities during human origins. Five phosphocreatine circuit proteins help regulate creatine utilization within energy demanding cells. We compared the expression of all five phosphocreatine circuit genes in cerebral cortex, cerebellum, and skeletal muscle tissue for humans, chimpanzees, and rhesus macaques. Strikingly, SLC6A8 and CKB transcript levels are higher in the human brain, which should increase energy availability and turnover compared to non-human primates. Combined with other well-documented differences between humans and non-human primates, this allocation of energy to the cerebral cortex and cerebellum may be important in supporting the increased metabolic demands of the human brain.
Collapse
Affiliation(s)
- Adam D Pfefferle
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA
| | - Lisa R Warner
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA
| | | | - William J Nielsen
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA
| | - Courtney C Babbitt
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA
| | - Olivier Fedrigo
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA
| | - Gregory A Wray
- Biology Department, Duke University, Durham, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, USA.,Department of Evolutionary Anthropology, Duke University, Durham, USA
| |
Collapse
|
16
|
Neill D. A proposal in relation to a genetic control of lifespan in mammals. Ageing Res Rev 2010; 9:437-46. [PMID: 20553971 DOI: 10.1016/j.arr.2010.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 01/26/2023]
Abstract
This article proposes that behavioural advancement during mammalian evolution had been in part mediated through extension of total developmental time. Such time extensions would have resulted in increased numbers of neuronal precursor cells, hence larger brains and a disproportionate increase in the neocortex. Larger neocortical areas enabled new connections to be formed during development and hence expansion of existing behavioural circuits. To have been positively selected such behavioural advances would have required enough postdevelopmental time to enable the behaviour to be fully manifest. It is therefore proposed that the success of mammalian evolution depended on initiating a genetic control of total postdevelopmental time. This could have been mediated through the redeployment of gene regulatory networks controlling total developmental time to additionally control total postdevelopmental time. The result would be that any extension of developmental time, leading to a behavioural advancement, would be accompanied by a proportional extension to postdevelopmental time. In effect it is proposed that mammalian lifespan as a whole is genetically controlled.
Collapse
Affiliation(s)
- David Neill
- Department of Psychiatry, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
17
|
Bastir M, Rosas A, Lieberman DE, O'Higgins P. Middle cranial fossa anatomy and the origin of modern humans. Anat Rec (Hoboken) 2008; 291:130-40. [PMID: 18213701 DOI: 10.1002/ar.20636] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anatomically, modern humans differ from archaic forms in possessing a globular neurocranium and a retracted face and in cognitive functions, many of which are associated with the temporal lobes. The middle cranial fossa (MCF) interacts during growth and development with the temporal lobes, the midface, and the mandible. It has been proposed that evolutionary transformations of the MCF (perhaps from modification of the temporal lobes) can have substantial influences on craniofacial morphology. Here, we use three-dimensional (3D) geometric morphometrics and computer reconstructions of computed tomography-scanned fossil hominids, fossil and recent modern humans and chimpanzees to address this issue further. Mean comparisons and permutation analyses of scaled 3D basicranial landmarks confirm that the MCF of Homo sapiens is highly significantly different (P < 0.001) from H. neanderthalensis, H. heidelbergensis, and Pan troglodytes. Modern humans have a unique configuration with relatively more anterolateral projection of the MCF pole relative to the optic chiasm and the foramen rotundum. These findings are discussed in the context of evolutionary changes in craniofacial morphology and the origins of modern human autapomorphies. In particular, the findings of this study point to variations in the temporal lobe, which, through effects on the MCF and face, are central to the evolution of modern human facial form.
Collapse
Affiliation(s)
- Markus Bastir
- Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| | | | | | | |
Collapse
|
18
|
Berkowitz RL, Coplan JD, Reddy DP, Gorman JM. The human dimension: how the prefrontal cortex modulates the subcortical fear response. Rev Neurosci 2007; 18:191-207. [PMID: 18019606 DOI: 10.1515/revneuro.2007.18.3-4.191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous studies suggest that the amygdala is critical for the acquisition and expression of fear. Conditioned fear in animals has been considered a good model for human anxiety disorders, but animal models of anxiety have several limitations. Conditioned fear in animals can be directed to a specific stressor and is easily extinguished. Furthermore, animals do not seem to be able to develop the capacity to worry excessively about the future. While animal models are useful and can demonstrate psychiatric illnesses, they do not completely mimic the complex cognitive processes that occur in anxious humans. Thus, we hypothesize that human anxiety disorders are caused at least in part by differential activity in the prefrontal cortex, the brain region that most separates us from our nearest genetic neighbors. The human prefrontal cortex has not only been shown to be more developed than that of other mammals, but it also has unique morphology and gene expression. Neuroimaging studies repeatedly show abnormalities in the prefrontal cortex in anxious individuals. Thus, we suggest that the very same cortical complexity that allows us to produce a vibrant culture is also the seat of anxiety disorders. Interestingly, preclinical studies have shown that the prefrontal cortex inhibits the amygdala. There appears to be a distinction between two classes of anxiety disorders. Those disorders involving intense fear and panic--panic disorder, post-traumatic stress disorder, and phobias--seem to be characterized by an underactivity of the prefrontal cortex, thus disinhibiting the amygdala. Disorders such as generalized anxiety disorder and obsessive-compulsive disorder, which involve worry and rumination, on the other hand, seem to be characterized by an overactivity of the prefrontal cortex. Studies of prefrontal cortical function in psychiatric illness should be a fruitful method for identifying effective treatment approaches.
Collapse
Affiliation(s)
- Rachel Lisa Berkowitz
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
19
|
Neill D. Cortical evolution and human behaviour. Brain Res Bull 2007; 74:191-205. [PMID: 17720540 DOI: 10.1016/j.brainresbull.2007.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/06/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
All mammals have complex behaviours but these are generally stereotyped in nature and lack the flexibility of human behaviour. Can the flexibility of human behaviour be understood as an evolutionary extension of previous behaviours or is it a departure? Theories pertaining to this question have a long history including, now refuted, theories on neoteny. This paper, using an evolutionary developmental biology approach, outlines some existing theories and suggests some novel ideas. Previous trends during brain evolution are determined by outlining the phylogeny and ontogeny of the six layered mammalian isocortex with particular reference to the primate lineage. These evolutionary trends are extrapolated to hominids to postulate the effect of increasingly large brains. The palaeoanthropological literature is cited to debate the nature and time course of behavioural change during hominid evolution. In particular, when was truly flexible behaviour first evident, and did it occur gradually or suddenly? The proposed isocortical and behavioural changes during hominid evolution are then equated to determine if modern human behaviour can be seen as part of a continuum. It is concluded that a continuation of previous trends in isocortical evolution maybe inadequate to explain human behavioural flexibility. Several possible departures from previous trends that would be compatible with increased behavioural flexibility are suggested. These mainly relate to evolutionary changes in the later stages of isocortical development and in particular during the activity-dependant phase when cortico-cortical connections are refined.
Collapse
Affiliation(s)
- David Neill
- Department of Psychiatry, School of Neurology, Neurobiology and Psychiatry, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
20
|
Rilling JK. Human and nonhuman primate brains: Are they allometrically scaled versions of the same design? Evol Anthropol 2006. [DOI: 10.1002/evan.20095] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
|
22
|
Abstract
How do the representations underlying cognitive skills emerge? It is becoming increasingly apparent that answering this question requires integration of neural, cognitive and computational perspectives. Results from this integrative approach resonate with Piaget's central constructivist themes, thus converging on a 'neural constructivist' approach to development, which itself rests on two major research developments. First, accumulating neural evidence for developmental plasticity makes nativist proposals increasingly untenable. Instead, the evidence suggests that cortical development involves the progressive elaboration of neural circuits in which experience-dependent neural growth mechanisms act alongside intrinsic developmental processes to construct the representations underlying mature skills. Second, new research involving constructivist neural networks is elucidating the dynamic interaction between environmentally derived neural activity and developmental mechanisms. Recent neurodevelopmental studies further accord with Piaget's themes, supporting the view of human cortical development as a protracted period of hierarchical-representation construction. Combining constructive growth algorithms with the hierarchical construction of cortical regions suggests that cortical development involves a cascade of increasingly complex representations. Thus, protracted cortical development, while occurring at the expense of increased vulnerability and parental investment, appears to be a powerful and flexible strategy for constructing the representations underlying cognition.
Collapse
|