1
|
Liu J, Verweij FJ, van Niel G, Galli T, Danglot L, Bun P. ExoJ - a Fiji/ImageJ2 plugin for automated spatiotemporal detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261938. [PMID: 39219469 DOI: 10.1242/jcs.261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task that is prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on Fiji/ImageJ2 software. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable for studying distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNARE protein reporters. Assessment of performance on synthetic data shows that ExoJ is a robust tool that is capable of correctly identifying exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.
Collapse
Affiliation(s)
- Junjun Liu
- Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | | | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
| | - Thierry Galli
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
| | - Lydia Danglot
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| |
Collapse
|
2
|
Cheng S, Zhang J, Zhang Y, Wang H, Wang H. In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20977-20985. [PMID: 39330215 DOI: 10.1021/acs.langmuir.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) can provide insights into the structure and states of natural membrane environments to explore the role of SNARE proteins at membrane fusion and understand the relationship between their subcellular localization/formation and action mechanism. Nevertheless, the identification of individual molecules in crowded and low signal-to-noise ratio membrane environments remains a significant challenge. In this study, cryo-ET is employed to image near-physiological state 293T cell membranes, specifically utilizing in situ synthesized gold nanoparticles (AuNPs) bound with cysteine-rich protein tags to single-molecularly labeled synaptosomal-associated protein 25 (SNAP25) on the membrane surface. The high-resolution images reveal that SNAP25 is predominantly located in regions of high molecular density within the cell membrane and aggregates into smaller clusters, which may increase the fusion efficiency. Remarkably, a zigzag arrangement of SNAP25 is observed on the cell membrane. These findings provide valuable insights into the functional mechanisms of SNARE proteins.
Collapse
Affiliation(s)
- Sihang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yaxuan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
3
|
Panda MS, Qazi B, Vishwakarma V, Pattnaik GP, Haldar S, Chakraborty H. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template. RSC Med Chem 2024:d4md00523f. [PMID: 39399312 PMCID: PMC11467784 DOI: 10.1039/d4md00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30-40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
Collapse
Affiliation(s)
- Manbit Subhadarsi Panda
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Bushra Qazi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Vaishali Vishwakarma
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
| | - Gourab Prasad Pattnaik
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| |
Collapse
|
4
|
Cao L, Zhang J, Li M, Zhou J, Liu Y, Liu C, Li X. Single-Vesicle Electrochemistry Reveals Polysaccharide from Glochidion eriocarpum Champ. Regulates Vesicular Storage and Exocytotic Release of Dopamine. Anal Chem 2024. [PMID: 39262202 DOI: 10.1021/acs.analchem.4c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Polysaccharides, which are well-known natural macromolecules, have been recognized for their protective effects on neurons and their influence on extracellular dopamine levels in the brain. It is crucial to investigate the impact of plant polysaccharides on neurotransmission, particularly regarding the vesicular storage and exocytosis of neurotransmitters. In this study, we demonstrated the possibility of studying how the polysaccharide from Glochidion eriocarpum Champ.(GPS) affects vesicle dopamine content and the dynamics of exocytosis in pheochromocytoma (PC12) cells using single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC). Our results unambiguously demonstrate that GPS effectively enhances vesicular neurotransmitter content and alters the dynamics of exocytosis, favoring a smaller fraction of content released in exocytotic release, thereby inducing the partial release mode. These significant effects are attributed to GPS's efficient elevation of calcium influx, significant alteration in the composition of exocytosis-related membrane lipids, and enhancement of free radical scavenging ability. These findings not only establish GPS as a promising candidate for preventive or therapeutic interventions against neurodegenerative disorders but also reiterate the importance of screening native neurologic drugs with single-vesicle electrochemical approaches, the combination of SCA and IVIEC, from a neurotransmitter-centric perspective.
Collapse
Affiliation(s)
- Lijiao Cao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Mo Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junlan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yuying Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Chunlan Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xianchan Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
5
|
Liu X, Gao Y, Li Y, Zhang J. Targeting Syntaxin 1A via RNA interference inhibits feeding and midgut development in Locusta migratoria. INSECT SCIENCE 2024. [PMID: 39075757 DOI: 10.1111/1744-7917.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Wu B, Dou X, Zhao Y, Wang X, Zhao C, Xia J, Xing C, He S, Feng C. Chiral Supramolecular Nanofibers Regulated Tumor-Derived Exosomes Secretion for Constructing an Anti-Tumor Extracellular Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308335. [PMID: 38420895 DOI: 10.1002/smll.202308335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D-phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| |
Collapse
|
7
|
Qin Y, Wen C, Hu B, Wu H. Investigating the potential role of α-SNAP in preventing chemotherapy-induced ovarian dysfunction: Insights from cellular and animal models. Heliyon 2024; 10:e32802. [PMID: 38994045 PMCID: PMC11237948 DOI: 10.1016/j.heliyon.2024.e32802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Background The phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) pathway plays a crucial role in the activation of primordial follicles. However, excessive activation and the loss of primordial follicles can lead to ovarian dysfunction. The alpha-soluble N-ethylmaleimide sensitive factor attachment protein (α-SNAP) protein has been implicated in PI3K/Akt/mTORCl signaling, suggesting its potential involvement in follicle activation. Thus, this study aimed to explore the role of α-SNAP in the activation of the PI3K/Akt/mTORC1 signaling pathway and its ability to mitigate the effects of cisplatin on ovarian function, using both in vitro and in vivo models. Methods We transfected KGN human ovarian granulosa cells (GCs) with small interfering RNA (siRNA) targeting α-SNAP to investigate the effects of α-SNAP inhibition on GC proliferation and apoptosis, as well as on the activity of the PI3K/Akt/mTORC1 pathway. In a mouse model, α-SNAP siRNA was delivered via an adeno-associated virus before treatment with cisplatin to assess its effects on follicle activation and ovarian function. Follicle counts at various growth stages, western blotting, and immunohistochemistry analyses were conducted to detect the expression of cleaved caspase-3, Ki67, α-SNAP, and p-mTOR. Additionally, the serum concentrations of anti-Müllerian hormone (AMH) were measured through an enzyme-linked immunosorbent assay. Results In vitro, α-SNAP depletion prevented GC proliferation by inhibiting the PI3K/Akt/mTORC1 pathway, thereby indicating its role in the regulation of cell growth. In vivo, α-SNAP knockdown attenuated the cisplatin-induced overactivation of primordial follicles by suppressing the PI3K/Akt/mTORC1 signaling pathway and partially restoring AMH levels. In addition, the expression and distribution patterns of cleaved caspase-3, Ki67, α-SNAP, and p-mTOR varied across different follicular growth stages, suggesting a protective effect against chemotherapy-induced ovarian damage. Conclusions Inhibiting α-SNAP may attenuate GC proliferation by suppressing the PI3K/Akt/mTORC1 pathway, thereby mitigating the overactivation and loss of primordial follicles induced by cisplatin. Targeting α-SNAP may emerge as a novel strategy to prevent ovarian damage resulting from chemotherapy. However, these conclusions warrant repeated testing, and the mechanistic underpinnings of α-SNAP must be further elucidated in the future.
Collapse
Affiliation(s)
- Ying Qin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
- Reproductive Medicine Center, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Canliang Wen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Bilan Hu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Huijiao Wu
- Reproductive Medicine Center, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
8
|
Liu X, Gao Y, Li Y, El Wakil A, Moussian B, Zhang J. Syntaxin5 is essential for survival by ensuring midgut epithelial homeostsis and regulating feeding in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105934. [PMID: 38879326 DOI: 10.1016/j.pestbp.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
9
|
Song EAC, Chung SH, Kim JH. Molecular mechanisms of saliva secretion and hyposecretion. Eur J Oral Sci 2024; 132:e12969. [PMID: 38192116 DOI: 10.1111/eos.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
The exocrine salivary gland secretes saliva, a fundamental body component to maintain oral homeostasis. Saliva is composed of water, ions, and proteins such as amylase, mucins, and immunoglobulins that play essential roles in the digestion of food, lubrication, and prevention of dental caries and periodontitis. An increasing number of people experience saliva hyposecretion due to aging, medications, Sjögren's syndrome, and radiation therapy for head and neck cancer. However, current treatments are mostly limited to temporary symptomatic relief. This review explores the molecular mechanisms underlying saliva secretion and hyposecretion to provide insight into putative therapeutic targets for treatment. Proteins implicated in saliva secretion pathways, including Ca2+ -signaling proteins, aquaporins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and tight junctions, are aberrantly expressed and localized in patients with saliva hyposecretion, such as Sjögren's syndrome. Analysis of studies on the mechanisms of saliva secretion and hyposecretion suggests that crosstalk between fluid and protein secretory pathways via Ca2+ /protein kinase C and cAMP/protein kinase A regulates saliva secretion. Impaired crosstalk between the two secretory pathways may contribute to saliva hyposecretion. Future research into the detailed regulatory mechanisms of saliva secretion and hyposecretion may provide information to define novel targets and generate therapeutic strategies for saliva hyposecretion.
Collapse
Affiliation(s)
- Eun-Ah Christine Song
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sul-Hee Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Department of KHU-KIST Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ali G, Shin KC, Habbab W, Alkhadairi G, AbdelAleem A, AlShaban FA, Park Y, Stanton LW. Characterization of a loss-of-function NSF attachment protein beta mutation in monozygotic triplets affected with epilepsy and autism using cortical neurons from proband-derived and CRISPR-corrected induced pluripotent stem cell lines. Front Neurosci 2024; 17:1302470. [PMID: 38260021 PMCID: PMC10801733 DOI: 10.3389/fnins.2023.1302470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated whether a homozygous recessive genetic variant of NSF attachment protein beta (NAPB) gene inherited by monozygotic triplets contributed to their phenotype of early-onset epilepsy and autism. Induced pluripotent stem cell (iPSC) lines were generated from all three probands and both parents. The NAPB genetic variation was corrected in iPSC lines from two probands by CRISPR/Cas9 gene editing. Cortical neurons were produced by directed, in vitro differentiation from all iPSC lines. These cell line-derived neurons enabled us to determine that the genetic variation in the probands causes exon skipping and complete absence of NAPB protein. Electrophysiological and transcriptomic comparisons of cortical neurons derived from parents and probands cell lines indicate that loss of NAPB function contributes to alterations in neuronal functions and likely contributed to the impaired neurodevelopment of the triplets.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Alice AbdelAleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Fouad A. AlShaban
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
11
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (Beijing) 2023; 4:e410. [PMID: 37916034 PMCID: PMC10616655 DOI: 10.1002/mco2.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.
Collapse
Affiliation(s)
- Wenxiu Han
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Hailiang Zhang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Lei Feng
- Department of NeurosurgeryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
| | - Ruili Dang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Jing Wang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningP. R. China
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| |
Collapse
|
13
|
Georgiou X, Dimou S, Diallinas G, Samiotaki M. The interactome of the UapA transporter reveals putative new players in anterograde membrane cargo trafficking. Fungal Genet Biol 2023; 169:103840. [PMID: 37730157 DOI: 10.1016/j.fgb.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.
Collapse
Affiliation(s)
- Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari 16672, Greece.
| |
Collapse
|
14
|
Pyne S, Pyne P, Mitra RK. The explicit role of interfacial hydration during polyethylene glycol induced lipid fusion: a THz spectroscopic investigation. Phys Chem Chem Phys 2023; 25:31326-31334. [PMID: 37960951 DOI: 10.1039/d3cp04868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While the phenomenon of excipient mediated membrane fusion has been studied widely, the inherent role of interfacial hydration involved in the process has mostly remained unaddressed. Here we report the experimental validation of the fact that PEG-induced membrane fusion is associated with the dehydration of the membrane(s). We explore the explicit hydration behavior at three different lipids (DOPC, POPC and DPPC) membranes with different aliphatic tails as they undergo fusogenic transition in the presence of PEG of average molecular weight of 4000 using THz-FTIR spectroscopy in the frequency window of 1.5-13.5 THz. Dynamic light scattering and electron microscopic measurements confirm the formation of different intermediate steps of the liposomes during the fusion process: bilayer aggregation, destabilization and finally lipid fusion. We observe that membrane hydration follows a systematic trend with the lipid specificity as the fusion process sets in.
Collapse
Affiliation(s)
- Sumana Pyne
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| | - Partha Pyne
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
15
|
Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life (Basel) 2023; 13:2033. [PMID: 37895415 PMCID: PMC10608050 DOI: 10.3390/life13102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Madita Wandrey
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Jadwiga Jablonska
- Translational Oncology/ENT Department, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany;
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Roland H. Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Désirée Gül
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| |
Collapse
|
16
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
17
|
Brosio G, Rossi G, Bochicchio D. Nanoparticle-induced biomembrane fusion: unraveling the effect of core size on stalk formation. NANOSCALE ADVANCES 2023; 5:4675-4680. [PMID: 37705778 PMCID: PMC10496904 DOI: 10.1039/d3na00430a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Membrane fusion in vitro is a strategy to load model or cell-derived vesicles with proteins, drugs, and genetic materials for theranostic applications. It is thus crucial to develop strategies to control the fusion process, also through synthetic fusogenic agents. Ligand-protected, membrane-penetrating gold nanoparticles (Au NPs) can facilitate membrane fusion, but the molecular mechanisms remain unresolved. Here, we tackle NP-induced stalk formation using a coarse-grained molecular dynamics approach and enhanced sampling techniques. We show that smaller (2 nm in diameter) NPs lead to a lower free energy barrier and higher stalk stability than larger NPs (4 nm). We demonstrate that this difference is due to a different ligand conformational freedom, which in turn depends on the Au core curvature. Our study provides precious insights into the mechanisms underlying NP-mediated membrane fusion, while our computational approach is general and applicable to studying stalk formation caused by other fusogenic agents.
Collapse
Affiliation(s)
- Giorgia Brosio
- Department of Physics, University of Genoa Via Dodecaneso 33 16146 Genoa Italy
| | - Giulia Rossi
- Department of Physics, University of Genoa Via Dodecaneso 33 16146 Genoa Italy
| | - Davide Bochicchio
- Department of Physics, University of Genoa Via Dodecaneso 33 16146 Genoa Italy
| |
Collapse
|
18
|
Papantoniou C, Laugks U, Betzin J, Capitanio C, Ferrero JJ, Sánchez-Prieto J, Schoch S, Brose N, Baumeister W, Cooper BH, Imig C, Lučić V. Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming. SCIENCE ADVANCES 2023; 9:eadf6222. [PMID: 37343100 DOI: 10.1126/sciadv.adf6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.
Collapse
Affiliation(s)
- Christos Papantoniou
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia Betzin
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Cristina Capitanio
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - José Javier Ferrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Susanne Schoch
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vladan Lučić
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
19
|
Jasinski J, Völkl M, Hahn J, Jérôme V, Freitag R, Scheibel T. Polystyrene microparticle distribution after ingestion by murine macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131796. [PMID: 37307726 DOI: 10.1016/j.jhazmat.2023.131796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The impact of microplastic particles on organisms is currently intensely researched. Although it is well established that macrophages ingest polystyrene (PS) microparticles, little is known about the subsequent fate of the particles, such as entrapment in organelles, distribution during cell division, as well as possible mechanisms of excretion. Here, submicrometer (0.2 and 0.5 µm) and micron-sized (3 µm) particles were used to analyze particle fate upon ingestion of murine macrophages (J774A.1 and ImKC). Distribution and excretion of PS particles was investigated over cycles of cellular division. The distribution during cell division seems cell-specific upon comparing two different macrophage cell lines, and no apparent active excretion of microplastic particles could be observed. Using polarized cells, M1 polarized macrophages show higher phagocytic activity and particle uptake than M2 polarized ones or M0 cells. While particles with all tested diameters were found in the cytoplasm, submicron particles were additionally co-localized with the endoplasmic reticulum. Further, 0.5 µm particles were occasionally found in endosomes. Our results indicate that a possible reason for the previously described low cytotoxicity upon uptake of pristine PS microparticles by macrophages may be due to the preferential localization in the cytoplasm.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Jonas Hahn
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
20
|
Canepa E, Bochicchio D, Brosio G, Silva PHJ, Stellacci F, Dante S, Rossi G, Relini A. Cholesterol-Containing Liposomes Decorated With Au Nanoparticles as Minimal Tunable Fusion Machinery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207125. [PMID: 36899445 DOI: 10.1002/smll.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Indexed: 06/08/2023]
Abstract
Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release. Similar cooperative effects must be explored when considering synthetic approaches for controlled membrane fusion. We show that liposomes decorated with amphiphilic Au nanoparticles (AuLips) can act as minimal tunable fusion machinery. AuLips fusion is triggered by divalent ions, while the number of fusion events dramatically changes with, and can be finely tuned by, the liposome cholesterol content. We combine quartz-crystal-microbalance with dissipation monitoring (QCM-D), fluorescence assays, and small-angle X-ray scattering (SAXS) with molecular dynamics (MD) at coarse-grained (CG) resolution, revealing new mechanistic details on the fusogenic activity of amphiphilic Au nanoparticles (AuNPs) and demonstrating the ability of these synthetic nanomaterials to induce fusion regardless of the divalent ion used (Ca2+ or Mg2+ ). The results provide a novel contribution to developing new artificial fusogenic agents for next-generation biomedical applications that require tight control of the rate of fusion events (e.g., targeted drug delivery).
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Genoa, 16146, Italy
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | | | - Giorgia Brosio
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | | | - Francesco Stellacci
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Silvia Dante
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Giulia Rossi
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| |
Collapse
|
21
|
Asghar H, Ahmed T. Comparative Study of Time-Dependent Aluminum Exposure and Post-Exposure Recovery Shows Better Improvement in Synaptic Changes and Neuronal Pathology in Rat Brain After Short-Term Exposure. Neurochem Res 2023:10.1007/s11064-023-03936-6. [PMID: 37093344 DOI: 10.1007/s11064-023-03936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Aluminum is a ubiquitous metal that causes multiple brain pathologies such as, cognitive dysfunction and Alzheimer's disease like symptoms. Exposure to aluminum through drinking water is responsible for hampering learning and memory. This study aimed to compare (1) the time-dependent effect of aluminum exposure (keeping total exposure of 5850 mg/kg same) in two durations, 30 and 45 days, and (2) to compare post-exposure self-recovery effect after 20 days in both (30 and 45 days exposure) groups. Rats were given 130 and 195 mg/kg of AlCl3·6H2O for 45 and 30 days respectively, to see the time-dependent exposure effect. At the end of exposure, rats were given distilled water and allowed to self-recover for 20 days to study the recovery. Expression levels of synaptic genes (Syp, SNAP25, Nrxn1/2, PSD95, Shank1/2, Homer1, CamkIV, Nrg1/2 and Kalrn) were measured using qPCR and compared in the exposure and recovery groups. Cellular morphology of the rat brain cortex and hippocampus was also investigated. Damage in lipid and protein profile was measured by employing FTIR. Results showed downregulation of mRNA expression of synaptic genes, plaques deposition, disorganization in lipid and protein profile by increasing membrane fluidity, and disorder and alteration of protein secondary structure after both exposure periods. However, better improvement/recovery in these parameters were observed in recovery group of 30 days aluminum exposure compared to 45 days aluminum exposure group. Taken together, these results suggested that short-term exposure resulted in better restoration of lipid and protein profile after time-dependent exposure of aluminum than prolonged exposure.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
22
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
23
|
Ramesh D, Bakkannavar S, Bhat VR, Sharan K. Extracellular vesicles as novel drug delivery systems to target cancer and other diseases: Recent advancements and future perspectives. F1000Res 2023; 12:329. [PMID: 37868300 PMCID: PMC10589634 DOI: 10.12688/f1000research.132186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles produced into the extracellular space by cells. Apoptotic bodies (ApoBD), microvesicles (MVs), and exosomes are examples of EVs, which act as essential regulators in cell-cell communication in both normal and diseased conditions. Natural cargo molecules such as miRNA, messenger RNA, and proteins are carried by EVs and transferred to nearby cells or distant cells through the process of circulation. Different signalling cascades are then influenced by these functionally active molecules. The information to be delivered to the target cells depends on the substances within the EVs that also includes synthesis method. EVs have attracted interest as potential delivery vehicles for therapies due to their features such as improved circulation stability, biocompatibility, reduced immunogenicity, and toxicity. Therefore, EVs are being regarded as potent carriers of therapeutics that can be used as a therapeutic agent for diseases like cancer. This review focuses on the exosome-mediated drug delivery to cancer cells and the advantages and challenges of using exosomes as a carrier molecule.
Collapse
Affiliation(s)
- Divya Ramesh
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Shankar Bakkannavar
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Vinutha R Bhat
- Biochemistry, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Radiotherapy Oncology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| |
Collapse
|
24
|
Li W, Xing Y, Wang Y, Xu T, Song E, Feng W. A non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex. Structure 2023; 31:68-77.e5. [PMID: 36608665 DOI: 10.1016/j.str.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
As the prototype of Sec1/Munc18 (SM) family proteins, Munc18-1 can manipulate the distinct conformations of syntaxin-1 for controlling intracellular membrane fusion. The Munc18-1-interacting domain of Mint1 (Mint1-MID) binds to Munc18-1 together with syntaxin-1 to form a Mint1-Munc18-1-syntaxin-1 complex, but the mechanism underlying the complex assembly remains unclear. Here, we determine the structure of the Mint1-MID-Munc18-1-syntaxin-1 complex. Unexpectedly, Munc18-1 recognizes Mint1-MID and syntaxin-1 simultaneously via two opposite sites. The canonical central cavity between domains 1 and 3a of Munc18-1 embraces closed syntaxin-1, whereas the non-canonical basic pocket in domain 3b captures the acidic Mint1-MID helix. The domain 3b-mediated recognition of an acidic-helical motif is distinct from other target-recognition modes of Munc18-1. Mutations in the interface between domain 3b and Mint1-MID disrupt the assembly of the Mint1-Munc18-1-syntaxin-1 complex. This work reveals a non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex.
Collapse
Affiliation(s)
- Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ying Xing
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Agostini S, Bolognesi E, Mancuso R, Marventano I, Citterio LA, Guerini FR, Clerici M. miR-23a-3p and miR-181a-5p modulate SNAP-25 expression. PLoS One 2023; 18:e0279961. [PMID: 36649268 PMCID: PMC9844927 DOI: 10.1371/journal.pone.0279961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
SNAP-25 protein is a key protein of the SNARE complex that is involved in synaptic vesicles fusion with plasma membranes and neurotransmitter release, playing a fundamental role in neural plasticity. Recently the concentration of three specific miRNAs-miR-27b-3p, miR-181a-5p and miR-23a-3p -was found to be associated with a specific SNAP-25 polymorphism (rs363050). in silico analysis showed that all the three miRNAs target SNAP-25, but the effect of the interaction between these miRNAs and the 3'UTR of SNAP-25 mRNA is currently unknown. For this reason, we verified in vitro whether miR-27b-3p, miR-181a-5p and miR-23a-3p modulate SNAP-25 gene and protein expression. Initial experiments using miRNAs-co-transfected Vero cells and SNAP-25 3'UTR luciferase reporter plasmids showed that miR-181a-5p (p≤0.01) and miR-23a-3p (p<0.05), but not miR-27b-3p, modulate the luciferase signal, indicating that these two miRNAs bind the SNAP-25 3'UTR. Results obtained using human oligodendroglial cell line (MO3.13) transfected with miR-181a-5p or miR-27b-3p confirmed that miR-181a-5p and miR-23a-3p regulate SNAP-25 gene and protein expression. Interestingly, the two miRNAs modulate in an opposite way SNAP-25, as miR-181a-5p significantly increases (p<0.0005), whereas miR-23a-3p decreases (p<0.0005) its expression. These results for the first time describe the ability of miR-181a-5p and miR-23a-3p to modulate SNAP-25 expression, suggesting their possible use as biomarkers or as therapeutical targets for diseases in which SNAP-25 expression is altered.
Collapse
Affiliation(s)
| | | | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- * E-mail:
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Mitra T, Gulati R, Uppal A, Kumari SR, Tripathy S, Ranjan P, Janardhanan R. Prospecting of exosomal-miRNA signatures as prognostic marker for gestational diabetes mellitus and other adverse pregnancy outcomes. Front Endocrinol (Lausanne) 2023; 14:1097337. [PMID: 36843574 PMCID: PMC9946972 DOI: 10.3389/fendo.2023.1097337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Exosomal microRNA (ExomiRs) serves as potential cargo molecules responsible for post-translation of gene expression and intracellular communication playing a vital role in acting as clinically relevant prognostic biomarkers for identifying pregnancy-associated complications in patients. ExomiRs are associated with Gestational Diabetes Mellitus (GDM) as potential targets for understanding the pathophysiology of beta-cell dysfunction. ExomiRs (ExomiR 122, ExomiR 16-5p, ExomiR 215-5p, ExomiR 450b-3p, ExomiR 122-5p) aid to act as biomarkers and regulate the progression of diabetes and its related complication. These ExomiRshave been reported to interfere with the regulation of various genes such as ZEB2, IRS1, IRS2, GLUT1, GLUT4, etc. and inhibition of several pathways like PI3K/AKT, Wnt, and mTOR signaling pathways leading to the modulation in the development of GDM affecting the clinical and pathological features of women. These ExomiRs have also been associated with other pregnancy-associated complications, including preeclampsia, hypothyroidism, pregnancy loss, and ectopic pregnancies. On the other hand, overexpression of certain ExomiRs such as Exomir-515-5p, ExomiR-221, and ExomiR-96 serve a regulatory role in overcoming insulin resistance. Taken together, the current review focuses on the prospective capabilities of ExomiRs for diagnosis and clinical prognosis of GDM women with respect to pregnancy outcomes.
Collapse
Affiliation(s)
- Tridip Mitra
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Sajeetha R Kumari
- Department of Obstetrics and Gynaecology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Priya Ranjan
- Department of Electrical Engineering, Biju Patnaik University of Technology, Rourkela, Odisha, India
| | - Rajiv Janardhanan
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
27
|
Wang Q, Wolf A, Ozkan S, Richert L, Mely Y, Chasserot-Golaz S, Ory S, Gasman S, Vitale N. V-ATPase modulates exocytosis in neuroendocrine cells through the activation of the ARNO-Arf6-PLD pathway and the synthesis of phosphatidic acid. Front Mol Biosci 2023; 10:1163545. [PMID: 37091866 PMCID: PMC10119424 DOI: 10.3389/fmolb.2023.1163545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Although there is mounting evidence indicating that lipids serve crucial functions in cells and are implicated in a growing number of human diseases, their precise roles remain largely unknown. This is particularly true in the case of neurosecretion, where fusion with the plasma membrane of specific membrane organelles is essential. Yet, little attention has been given to the role of lipids. Recent groundbreaking research has emphasized the critical role of lipid localization at exocytotic sites and validated the essentiality of fusogenic lipids, such as phospholipase D (PLD)-generated phosphatidic acid (PA), during membrane fusion. Nevertheless, the regulatory mechanisms synchronizing the synthesis of these key lipids and neurosecretion remain poorly understood. The vacuolar ATPase (V-ATPase) has been involved both in vesicle neurotransmitter loading and in vesicle fusion. Thus, it represents an ideal candidate to regulate the fusogenic status of secretory vesicles according to their replenishment state. Indeed, the cytosolic V1 and vesicular membrane-associated V0 subdomains of V-ATPase were shown to dissociate during the stimulation of neurosecretory cells. This allows the subunits of the vesicular V0 to interact with different proteins of the secretory machinery. Here, we show that V0a1 interacts with the Arf nucleotide-binding site opener (ARNO) and promotes the activation of the Arf6 GTPase during the exocytosis in neuroendocrine cells. When the interaction between V0a1 and ARNO was disrupted, it resulted in the inhibition of PLD activation, synthesis of phosphatidic acid during exocytosis, and changes in the timing of fusion events. These findings indicate that the separation of V1 from V0 could function as a signal to initiate the ARNO-Arf6-PLD1 pathway and facilitate the production of phosphatidic acid, which is essential for effective exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Alexander Wolf
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Sebahat Ozkan
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS UMR and Université de Strasbourg, Strasbourg, France
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS UMR and Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
- *Correspondence: Nicolas Vitale,
| |
Collapse
|
28
|
Wehrum S, Siukstaite L, Williamson DJ, Branson TR, Sych T, Madl J, Wildsmith GC, Dai W, Kempmann E, Ross JF, Thomsen M, Webb ME, Römer W, Turnbull WB. Membrane Fusion Mediated by Non-covalent Binding of Re-engineered Cholera Toxin Assemblies to Glycolipids. ACS Synth Biol 2022; 11:3929-3938. [PMID: 36367814 PMCID: PMC9764410 DOI: 10.1021/acssynbio.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.
Collapse
Affiliation(s)
- Sarah Wehrum
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Lina Siukstaite
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Daniel J. Williamson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Thomas R. Branson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Taras Sych
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Josef Madl
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Gemma C. Wildsmith
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Wenyue Dai
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Erik Kempmann
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - James F. Ross
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Maren Thomsen
- School of
Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Michael E. Webb
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Winfried Römer
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..,
| |
Collapse
|
29
|
Lu S, Lu L, Liu Y, Li Z, Fang Y, Chen Z, Zhou J. Native and engineered extracellular vesicles for wound healing. Front Bioeng Biotechnol 2022; 10:1053217. [PMID: 36568307 PMCID: PMC9780283 DOI: 10.3389/fbioe.2022.1053217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) that act as messengers mediate communication between parent and recipient cells through their contents, including nucleic acids, proteins, and lipids. These endogenous vesicles have emerged as a novel cell-free strategy for the treatment of diseases. EVs can be released by various types of cells with unique biological properties. Recent studies have shown that native EVs are used as therapeutic agents to promote tissue repair by delivering various growth factors and trophic factors including VEGF, EGF, TFN-α, IL-1β, and TGF-β to participate in all physiological processes of wound healing. Furthermore, to improve their specificity, safety, and efficiency for wound healing, the content and surface of EVs can be designed, modified, and engineered. The engineering strategies of EVs are divided into parent cell modification and indirect modification of EVs. The therapeutic potential of current EVs and engineered EVs for wound healing still requires the exploration of their large-scale clinical applications through innovative approaches. Herein, we provide an overview of the current biological knowledge about wound healing and EVs, as well as the application of native EVs in promoting wound healing. We also outline recent advances in engineering EV methodologies to achieve ideal therapeutic potential. Finally, the therapeutic applications of engineered EVs in wound healing are reviewed, and the challenges and prospects for the translation of engineered EVs to clinical applications are discussed.
Collapse
Affiliation(s)
- Shengli Lu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liping Lu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Liu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherland
| | - Zenan Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Fang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhizhao Chen
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Cheppali SK, Dharan R, Sorkin R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membr Biol 2022; 255:677-690. [PMID: 35616705 DOI: 10.1007/s00232-022-00241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel. .,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. .,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel. .,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Takamori S, Cicuta P, Takeuchi S, Di Michele L. DNA-assisted selective electrofusion (DASE) of Escherichia coli and giant lipid vesicles. NANOSCALE 2022; 14:14255-14267. [PMID: 36129323 PMCID: PMC9536516 DOI: 10.1039/d2nr03105a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Synthetic biology and cellular engineering require chemical and physical alterations, which are typically achieved by fusing target cells with each other or with payload-carrying vectors. On one hand, electrofusion can efficiently induce the merging of biological cells and/or synthetic analogues via the application of intense DC pulses, but it lacks selectivity and often leads to uncontrolled fusion. On the other hand, synthetic DNA-based constructs, inspired by natural fusogenic proteins, have been shown to induce a selective fusion between membranes, albeit with low efficiency. Here we introduce DNA-assisted selective electrofusion (DASE) which relies on membrane-anchored DNA constructs to bring together the objects one seeks to merge, and applying an electric impulse to trigger their fusion. The DASE process combines the efficiency of standard electrofusion and the selectivity of fusogenic nanostructures, as we demonstrate by inducing and characterizing the fusion of spheroplasts derived from Escherichia coli bacteria with cargo-carrying giant lipid vesicles.
Collapse
Affiliation(s)
- Sho Takamori
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Pietro Cicuta
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Lorenzo Di Michele
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Department of Chemistry, Imperial College London, London W12 0BZ, UK.
- fabriCELL, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
32
|
Halbgebauer S, Steinacker P, Hengge S, Oeckl P, Abu Rumeileh S, Anderl-Straub S, Lombardi J, Von Arnim CAF, Giese A, Ludolph AC, Otto M. CSF levels of SNAP-25 are increased early in Creutzfeldt-Jakob and Alzheimer's disease. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328646. [PMID: 35995553 DOI: 10.1136/jnnp-2021-328646] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP-25) in cerebrospinal fluid (CSF) is an emerging synaptic biomarker for the early diagnosis of Alzheimer's disease (AD). However, comprehensive studies investigating the marker in Creutzfeldt-Jakob disease (CJD) and in the differential diagnosis of neurodegenerative diseases are still lacking. METHODS We developed a novel, sensitive ELISA for the measurement of SNAP-25 in CSF. In total, we analysed 316 patients from 6 diagnostic groups comprising patients with AD (n=96), CJD (n=55), Parkinson's disease spectrum (n=41), frontotemporal lobar degeneration (n=25) and amyotrophic lateral sclerosis (n=24) and non-neurodegenerative control patients (n=75). Using receiver operating characteristic curve analysis, we analysed the differential diagnostic potential and compared the results with core AD biomarkers. RESULTS SNAP-25 CSF concentrations were elevated in AD and CJD (p<0.0001) but not in the other neurodegenerative diseases. Increased levels were observed already at early AD and CJD stages (p<0.0001). In CJD, SNAP-25 levels correlated negatively with survival time (r=-0.33 (95% CI -0.57 to -0.04, p=0.02). For the discrimination of AD from all other diseases except CJD, we observed a good diagnostic performance for CSF SNAP-25 (area under the curve (AUC) 0.85) which was further improved by applying the ratio with CSF amyloid-β 1-42 (AUC 0.95). For CJD, we could demonstrate a strong differential diagnostic potential against all other groups including AD (AUC 0.97). CONCLUSION Using the novel established CSF SNAP-25 ELISA, we here demonstrate the applicability of SNAP-25 as an early synaptic biomarker for both AD and CJD with a possible prognostic value in patients with CJD.
Collapse
Affiliation(s)
| | - Petra Steinacker
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Sophie Hengge
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Samir Abu Rumeileh
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | | | | | - Christine A F Von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Goettingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Sharma L, Sharma A, Kumar D, Asthana MK, Lalhlenmawia H, Kumar A, Bhattacharyya S, Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1727-1744. [PMID: 35015199 DOI: 10.1007/s11011-021-00847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer's have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for developing effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.
Collapse
Affiliation(s)
- Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Zemabawk, Aizawl, 796017, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
34
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
35
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
36
|
Rahman MM, Garudadri T, Das S. Role of Surface Tension in Microrobot Penetration in Membranes. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2022; 2022:10.1109/marss55884.2022.9870474. [PMID: 37521089 PMCID: PMC10387354 DOI: 10.1109/marss55884.2022.9870474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.
Collapse
Affiliation(s)
- Md Mahmudur Rahman
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA. He is now with Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458 USA
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
37
|
Amin AH, Sharifi LMA, Kakhharov AJ, Opulencia MJC, Alsaikhan F, Bokov DO, Majdi HS, Jawad MA, Hammid AT, Shalaby MN, Mustafa YF, Siahmansouri H. Role of Acute Myeloid Leukemia (AML)-Derived exosomes in tumor progression and survival. Biomed Pharmacother 2022; 150:113009. [PMID: 35486974 DOI: 10.1016/j.biopha.2022.113009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a quickly aggressive hematopoietic disorder that progress due to the accumulation and clonal expansion of immature myeloid cells. Despite the latest developments in AML treatment, repeated relapses and drug resistance remain one of the major challenges in treatment of leukemia. Currently, it is well known that the components of the tumor microenvironment such as cellular and non-cellular elements play a critical function in treatment failures of AML, also they are most common cause of complications including suppression of hematopoiesis. Exosomes are membrane-bound extracellular vesicles (EVs) that transfer signaling molecules and have attracted a large amount of attention due to their important role in inter-cellular communication in health and disease. Exosomes participate in the survival and chemoresistance of many leukemia through transferring their rich cargos of molecules including miRNAs, growth factors, and cytokines. The key producers of exosomes that mainly participate to AML pathogenesis are bone marrow mesenchymal stem cell (BMSCs) and AML cell themselves. These cells release an enormous number of exosomes that affect several target cells such as natural killer (NK) and hematopoietic stem cells to the development of leukemia proliferation and progression. In the present study, a comprehensive review of the literature has been done to briefly discuss the biology of exosomes and highlight the role of exosomes derived from AML in the progress of acute myeloid leukemia.
Collapse
Affiliation(s)
- Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Alisher Jamoliddinovich Kakhharov
- Department of Oncology and Medical Radiology, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Oncology and Medical Radiology, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | | | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 down-regulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.
Collapse
|
39
|
Sulaiman N, Yaseen Hachim M, Khalique A, Mohammed AK, Al Heialy S, Taneera J. EXOC6 (Exocyst Complex Component 6) Is Associated with the Risk of Type 2 Diabetes and Pancreatic β-Cell Dysfunction. BIOLOGY 2022; 11:biology11030388. [PMID: 35336762 PMCID: PMC8945791 DOI: 10.3390/biology11030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
EXOC6 and EXOC6B (EXOC6/6B) components of the exocyst complex are involved in the secretory granule docking. Recently, EXOC6/6B were anticipated as a molecular link between dysfunctional pancreatic islets and ciliated lung epithelium, making diabetic patients more prone to severe SARS-CoV-2 complications. However, the exact role of EXOC6/6B in pancreatic β-cell function and risk of T2D is not fully understood. Herein, microarray and RNA-sequencing (RNA-seq) expression data demonstrated the expression of EXOC6/6B in human pancreatic islets. Expression of EXOC6/6B was not affected by diabetes status. Exploration of the using the translational human pancreatic islet genotype tissue-expression resource portal (TIGER) revealed three genetic variants (rs947591, rs2488071 and rs2488073) in the EXOC6 gene that were associated (p < 2.5 × 10−20) with the risk of T2D. Exoc6/6b silencing in rat pancreatic β-cells (INS1-832/13) impaired insulin secretion, insulin content, exocytosis machinery and glucose uptake without cytotoxic effect. A significant decrease in the expression Ins1, Ins1, Pdx1, Glut2 and Vamp2 was observed in Exoc6/6b-silenced cells at the mRNA and protein levels. However, NeuroD1, Gck and InsR were not influenced compared to the negative control. In conclusion, our data propose that EXOC6/6B are crucial regulators for insulin secretion and exocytosis machinery in β-cells. This study identified several genetic variants in EXOC6 associated with the risk of T2D. Therefore, EXOC6/6B could provide a new potential target for therapy development or early biomarkers for T2D.
Collapse
Affiliation(s)
- Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.Y.H.); (S.A.H.)
| | - Anila Khalique
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.Y.H.); (S.A.H.)
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7743
| |
Collapse
|
40
|
Chang HF, Schirra C, Ninov M, Hahn U, Ravichandran K, Krause E, Becherer U, Bálint Š, Harkiolaki M, Urlaub H, Valitutti S, Baldari CT, Dustin ML, Jahn R, Rettig J. Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nat Commun 2022; 13:1029. [PMID: 35210420 PMCID: PMC8873490 DOI: 10.1038/s41467-022-28596-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Ulrike Hahn
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Štefan Bálint
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OX3 7FY, Oxford, UK
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM U1037, 31037, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OX3 7FY, Oxford, UK
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
41
|
A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. mBio 2022; 13:e0323921. [PMID: 35038916 PMCID: PMC8764524 DOI: 10.1128/mbio.03239-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a Plasmodium-specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. IMPORTANCE Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.
Collapse
|
42
|
Szule JA. Hypothesis Relating the Structure, Biochemistry and Function of Active Zone Material Macromolecules at a Neuromuscular Junction. Front Synaptic Neurosci 2022; 13:798225. [PMID: 35069169 PMCID: PMC8766674 DOI: 10.3389/fnsyn.2021.798225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
This report integrates knowledge of in situ macromolecular structures and synaptic protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon terminals. Advancements in electron tomography, to image tissue sections in 3D at nanometer scale resolution, have led to structural characterizations of a network of different classes of macromolecules at the active zone, called “Active Zone Material’. At frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”, “ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion. Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely help organize and maintain the structural integrity of active zones. Extensive studies on the biochemistry that regulates secretion have led to comprehensive characterizations of the many conserved proteins universally involved in these trafficking events. Here, a hypothesis including a partial proteomic atlas of Active Zone Material is presented which considers the common roles, binding partners, physical features/structure, and relative positioning in the axon terminal of both the proteins and classes of macromolecules involved in the vesicle trafficking events. The hypothesis designates voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are connected to macromolecules that span the presynaptic membrane at the active zone. SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars. RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms, and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal here is to help direct future studies that aim to bridge Active Zone Material structure, biochemistry, and function to ultimately determine how it regulates the trafficking events in vivo that lead to neurotransmitter secretion.
Collapse
|
43
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
44
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
45
|
Xu Y, Jin L, Toomre D. Imaging Single-Vesicle Exocytosis with Total Internal Reflection Fluorescence Microscopy (TIRFM). Methods Mol Biol 2022; 2473:157-164. [PMID: 35819765 DOI: 10.1007/978-1-0716-2209-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) provides extremely thin optical sectioning with excellent signal-to-noise ratios, which allows for visualization of membrane dynamics at the cell surface with superb spatiotemporal resolution. In this chapter, TIRFM is used to record and analyze exocytosis of single glucose transporter-4 (GLUT4) containing vesicles in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - Luhong Jin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Moore CA, Ferrer AI, Alonso S, Pamarthi SH, Sandiford OA, Rameshwar P. Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:67-89. [PMID: 34888844 DOI: 10.1007/978-3-030-83282-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alejandra I Ferrer
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sara Alonso
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Oleta A Sandiford
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
47
|
Poojari CS, Scherer KC, Hub JS. Free energies of membrane stalk formation from a lipidomics perspective. Nat Commun 2021; 12:6594. [PMID: 34782611 PMCID: PMC8593120 DOI: 10.1038/s41467-021-26924-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Many biological membranes are asymmetric and exhibit complex lipid composition, comprising hundreds of distinct chemical species. Identifying the biological function and advantage of this complexity is a central goal of membrane biology. Here, we study how membrane complexity controls the energetics of the first steps of membrane fusions, that is, the formation of a stalk. We first present a computationally efficient method for simulating thermodynamically reversible pathways of stalk formation at coarse-grained resolution. The method reveals that the inner leaflet of a typical plasma membrane is far more fusogenic than the outer leaflet, which is likely an adaptation to evolutionary pressure. To rationalize these findings by the distinct lipid compositions, we computed ~200 free energies of stalk formation in membranes with different lipid head groups, tail lengths, tail unsaturations, and sterol content. In summary, the simulations reveal a drastic influence of the lipid composition on stalk formation and a comprehensive fusogenicity map of many biologically relevant lipid classes. Fusion of cellular membranes begins with the formation of a stalk. Here, the authors develop a computationally efficient method for coarse-grained simulations of stalk formation and apply this approach to comprehensively analyse how stalk formation is influenced by the membrane lipid composition.
Collapse
Affiliation(s)
- Chetan S Poojari
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Katharina C Scherer
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
48
|
Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225669. [PMID: 34830825 PMCID: PMC8616095 DOI: 10.3390/cancers13225669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers worldwide. The chance of surviving more than 5 years after initial diagnosis is less than 10%. This is due to a lack of early diagnostics, where often at the time of initial detection the tumour has already spread to different parts of the body and has developed a propensity to develop drug resistance. Therefore, to tackle this devastating disease, it is necessary to identify the key players responsible for driving pancreatic cancer. Numerous studies have found that small bubble-like packages shed by cancer cells, called extracellular vesicles, play an important role in the progression of the disease. Our knowledge on how extracellular vesicles aid in the progression, spread and chemoresistance of pancreatic cancer is the focus of this review. Of note, these extracellular vesicles may serve as biomarkers for earlier detection of pancreatic cancer and could represent drug targets or drug delivery agents for the treatment of pancreatic cancer. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.
Collapse
|
49
|
Li S, Zhang S, Li B, Li H. The SNARE Protein CfVam7 Is Required for Growth, Endoplasmic Reticulum Stress Response, and Pathogenicity of Colletotrichum fructicola. Front Microbiol 2021; 12:736066. [PMID: 34721333 PMCID: PMC8551764 DOI: 10.3389/fmicb.2021.736066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
The tea-oil tree Camellia oleifera is native to China and is cultivated in many parts of southern China. This plant has been grown for over 2,000 years, mainly for its high-quality cooking oil. Anthracnose is the main disease of tea-oil tree and results in a huge loss annually. Colletotrichum fructicola is a major pathogen causing anthracnose on tea-oil tree. In a previous study, we characterized that the bZIP transcription factor CfHac1 controlled the development and pathogenicity of C. fructicola. Here, we identified and characterized the function of CfVAM7 gene, which was significantly downregulated at the transcriptional level in the ΔCfhac1 strain under dithiothreitol stress. Targeted gene deletion revealed that CfVam7 is important in growth, pathogenicity, and responses to endoplasmic reticulum-related stresses. Further analysis revealed that CfVam7 is required for appressorium formation and homotypic vacuole fusion, which are important for fungal pathogen invasion. Cytological examinations revealed that CfVam7 is localized to vacuole membranes in the hyphal stage. The Phox homology (PX) and SNARE domains of CfVam7 were indispensable for normal cellular localization and biological function. Taken together, our results suggested that CfVam7-mediated vacuole membrane fusion promotes growth, stress response, and pathogenicity of C. fructicola.
Collapse
Affiliation(s)
- Sizheng Li
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
50
|
Vaidyanathan VV, Binz T. Ability of human SNAP-23 to generate high molecular weight SDS-resistant ternary SNARE complexes is influenced by C-terminal coil content. Biochem Biophys Rep 2021; 28:101150. [PMID: 34703905 PMCID: PMC8524102 DOI: 10.1016/j.bbrep.2021.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Using in vitro protein complex formation assay, ability of SNAP-25 isoforms to generate SDS-resistant ternary SNARE complexes with Syntaxin-1 and VAMP-2 was investigated. Major SNAP-25 family proteins were found to generate heat-resistant ternary complexes with varying efficiency. Compared to human SNAP-25, its non-neuronal counterparts SNAP-23 and SNAP-29 formed lower amounts of ternary complexes. Changing Pro182 in human SNAP-23 to Arg182 (SNAP-23 P182R) improved its ability to bind partners and form complexes. In silico analysis of C-terminal helical content in various SNAP-25 family members showed that except human SNAP-23, all others displayed secondary α-helical conformation. We also report that human SNAP-29 is resistant to the proteolytic action of botulinum neurotoxin A even when applied at large concentration. Human SNAP-23 forms reduced amounts of ternary SNARE complexes than human SNAP-25. SNAP-25 family proteins show varying levels of secondary structure at the C-terminus. C-terminal coil content influences neurotoxin sensitivity and ability to form stable ternary SNARE complexes.
Collapse
Affiliation(s)
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|