1
|
Bülbül B, Doğan Ş, Dayanıklı C, Kırbaş M, Şengül E, Kal Y, Yaman Y. Genome-wide discovery of underlying genetic factors associated with fresh and frozen-thawed semen traits in composite ram breeds exhibiting different cryotolerance. Cryobiology 2025; 118:105197. [PMID: 39793643 DOI: 10.1016/j.cryobiol.2025.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fewer studies investigate the effects of underlying genetic factors related to semen characteristics, significantly affecting sheep farm profitability. This study aimed to identify single nucleotide polymorphisms (SNP) and genomic regions associated with fresh and frozen-thawed semen traits in rams with low (Hasak) and high (Hasmer) cryotolerance. Semen collected from 11 (5 Hasak with low and 6 Hasmer with high cryotolerance) rams cryopreserved in 0.25 ml straws in the breeding season. Quality characteristics were determined in fresh, equilibrated, and frozen-thawed semen. A Genome-Wide Association Study (GWAS) was conducted to unveil the genetic structure that might be attributed to cryotolerance in low and high cryotoleranced rams. Fresh (regarding total and progressive motility) and equilibrated semen quality were similar in Hasak and Hasmer rams (p > 0.6). However, the freeze-thawing process had a more pronounced negative effect on ram semen traits in Hasak than in Hasmer (p < 0.05). GWAS revealed 27 SNPs correlated with post-thaw semen parameters. Moreover, network analyses revealed pathways related to sperm ion channels and their activities, providing insights into the intricate molecular mechanisms underlying sperm physiology and emphasizing their role in potentially impacting sperm cryotolerance. The functional significance of detected SNPs and the associated pathways require further exploration.
Collapse
Affiliation(s)
- Bülent Bülbül
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Dokuz Eylül University, TR-35890, İzmir, Türkiye.
| | - Şükrü Doğan
- Department of Animal Breeding, Bahri Dağdaş International Agricultural Research Institute, Karatay, TR-42020, Konya, Türkiye
| | - Cemal Dayanıklı
- Department of Breeding Techniques, Sheep Breeding Research Institute, Bandırma, TR-10200, Balıkesir, Türkiye
| | - Mesut Kırbaş
- Department of Animal Breeding, Bahri Dağdaş International Agricultural Research Institute, Karatay, TR-42020, Konya, Türkiye
| | - Ebru Şengül
- Department of Breeding Techniques, Sheep Breeding Research Institute, Bandırma, TR-10200, Balıkesir, Türkiye
| | - Yavuz Kal
- Department of Animal Breeding, Bahri Dağdaş International Agricultural Research Institute, Karatay, TR-42020, Konya, Türkiye
| | - Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, TR-56100, Siirt, Türkiye
| |
Collapse
|
2
|
Sledzieski S, Versavel C, Singh R, Ocitti F, Devkota K, Kumar L, Shpilker P, Roger L, Yang J, Lewinski N, Putnam H, Berger B, Klein-Seetharaman J, Cowen L. Decoding the Functional Interactome of Non-Model Organisms with PHILHARMONIC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.25.620267. [PMID: 39553947 PMCID: PMC11565725 DOI: 10.1101/2024.10.25.620267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein-protein interaction (PPI) networks are a fundamental resource for modeling cellular and molecular function, and a large and sophisticated toolbox has been developed to leverage their structure and topological organization to predict the functional roles of under-studied genes, proteins, and pathways. However, the overwhelming majority of experimentally-determined interactions from which such networks are constructed come from a small number of well-studied model organisms. Indeed, most species lack even a single experimentally-determined interaction in these databases, much less a network to enable the analysis of cellular function, and methods for computational PPI prediction are too noisy to apply directly. We introduce PHILHARMONIC, a novel computational approach that couples deep learning de novo network inference with robust unsupervised spectral clustering algorithms to uncover functional relationships and high-level organization in non-model organisms. Our clustering approach allows us to de-noise the predicted network, producing highly informative functional modules. We also develop a novel algorithm called ReCIPE, which aims to reconnect disconnected clusters, increasing functional enrichment and biological interpretability. We perform remote homology-based functional annotation by leveraging hmmscan and GODomainMiner to assign initial functions to proteins at large evolutionary distances. Our clusters enable us to newly assign functions to uncharacterized proteins through "function by association." We demonstrate the ability of PHILHARMONIC to recover clusters with significant functional coherence in the reef-building coral P. damicornis, its algal symbiont C. goreaui, and the well-annotated fruit fly D. melanogaster. We perform a deeper analysis of the P. damicornis network, where we show that PHILHARMONIC clusters correlate strongly with gene co-expression and investigate several clusters that participate in temperature regulation in the coral, including the first putative functional annotation of several previously uncharacterized proteins. Easy to run end-to-end and requiring only a sequenced proteome, PHILHARMONIC is an engine for biological hypothesis generation and discovery in non-model organisms.
Collapse
Affiliation(s)
- Samuel Sledzieski
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Rohit Singh
- Departments of Biostatistics & Bioinformatics and Cell Biology, Duke University, Durham, NC, USA
| | - Faith Ocitti
- Department of Computer Science, Tufts University, Medford MA, USA
| | - Kapil Devkota
- Departments of Biostatistics & Bioinformatics and Cell Biology, Duke University, Durham, NC, USA
| | - Lokender Kumar
- Shoolini University, Solan, Himachal Pradesh-173229- India
| | - Polina Shpilker
- Department of Computer Science, Tufts University, Medford MA, USA
| | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Jinkyu Yang
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Laboratory and Department of Mathematics, MIT Cambridge, MA, USA
| | | | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford MA, USA
| |
Collapse
|
3
|
Eggan P, Gordon SE, Zagotta WN. Ligand-coupled conformational changes in a cyclic nucleotide-gated ion channel revealed by time-resolved transition metal ion FRET. eLife 2024; 13:RP99854. [PMID: 39656198 PMCID: PMC11630820 DOI: 10.7554/elife.99854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG. In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
4
|
Eggan P, Gordon SE, Zagotta WN. Ligand-Coupled Conformational Changes in a Cyclic Nucleotide-Gated Ion Channel Revealed by Time-Resolved Transition Metal Ion FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591185. [PMID: 39411160 PMCID: PMC11475872 DOI: 10.1101/2024.04.25.591185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy ( ΔG ) and differences in free energy change ( ΔΔG ) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG . In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - William N. Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
5
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. Proc Natl Acad Sci U S A 2024; 121:e2321430121. [PMID: 38530893 PMCID: PMC10998601 DOI: 10.1073/pnas.2321430121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds- to hours-long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in Caenorhabditis elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change and indicate that the deployment of both transcriptional and nontranscriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA02454
| |
Collapse
|
7
|
Wang W, Cheng HY, Zhou JM. New insight into Ca 2+ -permeable channel in plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:623-631. [PMID: 38289015 DOI: 10.1111/jipb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Calcium ions (Ca2+ ) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+ -permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+ -permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+ -permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
8
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570166. [PMID: 38168209 PMCID: PMC10760192 DOI: 10.1101/2023.12.05.570166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds to hours long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in C. elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change, and indicate that the deployment of both transcriptional and non-transcriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
9
|
Benko F, Urminská D, Ďuračka M, Tvrdá E. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation. Biomedicines 2023; 11:2519. [PMID: 37760960 PMCID: PMC10525812 DOI: 10.3390/biomedicines11092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In order to accomplish their primary goal, mammalian spermatozoa must undergo a series of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability. Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage through the female reproductive tract, and which are necessary for male gametes to acquire their functional competence. This review summarizes the current knowledge about specific ion channels and transporters located in the mammalian sperm plasma membrane, which are intricately involved in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility and capacitation to further lead to the acrosome reaction and sperm-egg fusion. We also discuss the functionality of selected ion channels in male reproductive health and/or disease since these may become promising targets for clinical management of infertility in the future.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| |
Collapse
|
10
|
Burtscher V, Mount J, Cowgill J, Chang Y, Bickel K, Yuan P, Chanda B. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553623. [PMID: 37645882 PMCID: PMC10462129 DOI: 10.1101/2023.08.17.553623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Mount
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
11
|
Hagio H, Koyama W, Hosaka S, Song AD, Narantsatsral J, Matsuda K, Shimizu T, Hososhima S, Tsunoda SP, Kandori H, Hibi M. Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases. eLife 2023; 12:e83975. [PMID: 37589546 PMCID: PMC10435232 DOI: 10.7554/elife.83975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Hanako Hagio
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Wataru Koyama
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
| | - Shiori Hosaka
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
| | | | | | - Koji Matsuda
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
| | - Takashi Shimizu
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of TechnologyNagoyaJapan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of TechnologyNagoyaJapan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of TechnologyNagoyaJapan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya University, JapanNagoyaJapan
| |
Collapse
|
12
|
Barret D, Schuster D, Rodrigues M, Leitner A, Picotti P, Schertler G, Kaupp U, Korkhov V, Marino J. Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proc Natl Acad Sci U S A 2023; 120:e2300309120. [PMID: 37011209 PMCID: PMC10104587 DOI: 10.1073/pnas.2300309120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.
Collapse
Affiliation(s)
- Diane C. A. Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| | - Dina Schuster
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8049Zurich, Switzerland
| | - Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
| | | | - U. Benjamin Kaupp
- Life and Medical Sciences Institute, University of Bonn, 53115Bonn, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | - Volodymyr M. Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8049Zurich, Switzerland
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| |
Collapse
|
13
|
Ma Y, Garrido K, Ali R, Berkowitz GA. Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1223-1236. [PMID: 36633062 DOI: 10.1111/tpj.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca2+ influx as an early step in numerous signaling cascades. CNGC-mediated Ca2+ elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways. It is shown CNGC2, CNGC4, and CNGC6 physically interact in vivo, whereas CNGC12 does not. CNGC involvement in immune signaling was evaluated by monitoring mutant response to elicitor peptide Pep3. Pep3 response cascades involving CNGCs included mitogen-activated kinase activation mediated by Ca2+ -dependent protein kinase phosphorylation. Pep3-induced reactive oxygen species generation was impaired in cngc2, cngc4, and cngc6, but not in cngc12, suggesting that CNGC2, CNGC4, and CNGC6 (which physically interact) may be components of a multimeric CNGC channel complex for immune signaling. However, unlike cngc2 and cngc4, cngc6 is not sensitive to high Ca2+ and displays no pleiotropic dwarfism. All four cngc mutants showed thermotolerance compared to wild-type, although CNGC12 does not interact with the other three CNGCs. These results imply that physically interacting CNGCs may, in some cases, function in a signaling cascade as components of a heteromeric channel complex, although this may not be the case in other signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
14
|
Krieg PF, Sonner JK, Kurelic R, Engler JB, Scharenberg MF, Bauer S, Nikolaev VO, Friese MA. GPR52 regulates cAMP in T cells but is dispensable for encephalitogenic responses. Front Immunol 2023; 13:1113348. [PMID: 36761164 PMCID: PMC9902724 DOI: 10.3389/fimmu.2022.1113348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/31/2022] [Indexed: 01/25/2023] Open
Abstract
G-protein coupled receptors (GPCR) regulate 3',5'-cyclic adenosine monophosphate (cAMP) levels in T cells. cAMP as ubiquitous second messenger is crucial for adequate physiology of T cells by mediating effector T cell (Teff) function as well as regulatory T cell (Treg)-mediated immunosuppression. Several GPCRs have been identified to be crucial for Teff and Treg function. However, the role of the orphan, constitutively active Gs-coupled GPCR GPR52 is unknown. Here we show that GPR52 regulates cAMP levels in T cells but does not affect T cell function. We found that stimulation of transfected HEK cells or primary T cells with a GPR52 agonist results in a rise of intracellular cAMP. However, neither Gpr52 deficiency nor pharmacological modulation of GPR52 by antagonists or agonists affected T cell activation, differentiation, and proliferation or Treg-mediated immunosuppression. Moreover, Gpr52 deletion did not modify the clinical disease course of experimental autoimmune encephalomyelitis (EAE). Our results demonstrate that a modulation of cAMP levels in T cells does not inevitably result in altered T cell function. While we could not identify an obvious role of GPR52 in in vitro T cell assays and in vivo CNS autoimmunity, it might regulate T cell function in a different context or affect the function of other GPR52-expressing cells.
Collapse
Affiliation(s)
- Paula F. Krieg
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlena F. Scharenberg
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Manuel A. Friese,
| |
Collapse
|
15
|
Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Int J Mol Sci 2022; 23:ijms232214143. [PMID: 36430626 PMCID: PMC9694239 DOI: 10.3390/ijms232214143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of three CNGA3 and one CNGB3 subunits. Calmodulin (CaM) binds to two distinct sites (CaM1: residues 565-587 and CaM2: residues 1120-1147) within the cytosolic domains of rod CNGB1. The binding of Ca2+-bound CaM to CNGB1 promotes the Ca2+-induced desensitization of CNG channels in retinal rods that may be important for photoreceptor light adaptation. Mutations that affect Ca2+-dependent CNG channel function are responsible for inherited forms of blindness. In this review, we propose structural models of the rod CNG channel bound to CaM that suggest how CaM might cause channel desensitization and how dysregulation of the channel may lead to retinal disease.
Collapse
|
16
|
Dickinson MS, Pourmal S, Gupta M, Bi M, Stroud RM. Symmetry Reduction in a Hyperpolarization-Activated Homotetrameric Ion Channel. Biochemistry 2022; 61:2177-2181. [PMID: 34964607 PMCID: PMC9931035 DOI: 10.1021/acs.biochem.1c00654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants obtain nutrients from the soil via transmembrane transporters and channels in their root hairs, from which ions radially transport in toward the xylem for distribution across the plant body. We determined structures of the hyperpolarization-activated channel AKT1 from Arabidopsis thaliana, which mediates K+ uptake from the soil into plant roots. These structures of AtAKT1 embedded in lipid nanodiscs show that the channel undergoes a reduction of C4 to C2 symmetry, possibly to regulate its electrical activation.
Collapse
Affiliation(s)
- Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
| | - Maxine Bi
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Graduate Group in Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
- Graduate Group in Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
17
|
Schirmeyer J, Eick T, Schulz E, Hummert S, Sattler C, Schmauder R, Benndorf K. Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels. PLoS Comput Biol 2022; 18:e1010376. [PMID: 35998156 PMCID: PMC9512249 DOI: 10.1371/journal.pcbi.1010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion. Here we studied 16 concatamers with systematically disabled, but still functional, binding sites and quantified channel activation by systems of intimately coupled state models transferred to 4D hypercubes, thereby exploiting a weak voltage dependence of the channels. We provide the complete landscape of free energies for the complex activation process of heterotetrameric channels, including 32 binding steps, in both the closed and open channel, as well as 16 closed-open isomerizations. The binding steps are specific for the subunits and show pronounced positive cooperativity for the binding of the second and the third ligand. The energetics of the closed-open isomerizations were disassembled to elementary subunit promotion energies for channel opening, ΔΔGfpn, adding to the free energy of the closed-open isomerization of the empty channel, E0. The ΔΔGfpn values are specific for the four subunits and presumably invariant for the specific patterns of liganding. In conclusion, subunit cooperativity is confined to the CNBD whereas the subunit promotion energies for channel opening are independent. Olfactory sensory neurons (OSNs) in the nose transmit the information of odor molecules to electrical signals that are conducted to central parts of the brain. Olfactory cyclic nucleotide-gated (CNG) ion channels, located in the cell membrane of the OSNs, are relevant proteins in this process. These olfactory CNG channels are formed by three types of homologue subunits and each of these subunits contains a cyclic nucleotide binding domain (CNBD). A channel is activated by the binding of up to four cyclic nucleotides. The process of channel activation is only poorly understood. Herein we analyzed this activation process in great detail by concatenating these four subunits, disabling the CNBDs by mutations and performing extended computational fit analyses providing all 32 constants for the different binding steps at different degrees of liganding and, in addition, elementary subunit promotion energies for channel opening for all subunits. Our data suggest that subunit cooperativity is confined to the action of the CNBD.
Collapse
Affiliation(s)
- Jana Schirmeyer
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Eick
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Sabine Hummert
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
18
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
19
|
Xue J, Han Y, Zeng W, Jiang Y. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron 2022; 110:86-95.e5. [PMID: 34699778 PMCID: PMC8738139 DOI: 10.1016/j.neuron.2021.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cGMP or cAMP and play essential roles in the signal transduction of the visual and olfactory sensory systems. CNGA1, the principal component of the CNG channel from rod photoreceptors, can by itself form a functional homotetrameric channel and has been used as the model system in the majority of rod CNG studies. However, the native rod CNG functions as a heterotetramer consisting of three A1 and one B1 subunits and exhibits different functional properties than the CNGA1 homomer. Here we present the functional analysis of human rod CNGA1/B1 heterotetramer and its cryo-EM structures in apo, cGMP-bound, cAMP-bound, and L-cis-Diltiazem-blocked states. These structures, with resolution ranging from 2.6 to 3.3 Å, elucidate the structural mechanisms underlying the 3:1 subunit stoichiometry, the asymmetrical gating upon cGMP activation, and the unique pharmacological property of the native rod CNG channel.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Han
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Lead Contact: Youxing Jiang, Ph.D., Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9040, Tel. 214 645-6027; Fax. 214 645-6042;
| |
Collapse
|
20
|
Barret DCA, Schertler GFX, Kaupp UB, Marino J. Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map. J Struct Biol 2021; 214:107828. [PMID: 34971760 DOI: 10.1016/j.jsb.2021.107828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.
Collapse
Affiliation(s)
- Diane C A Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland; Department of Biology, ETH-Zurich, Switzerland
| | - U Benjamin Kaupp
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; Life and Medical Sciences Institute LIMES, University of Bonn, Germany
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland.
| |
Collapse
|
21
|
CNG channel structure, function, and gating: a tale of conformational flexibility. Pflugers Arch 2021; 473:1423-1435. [PMID: 34357442 DOI: 10.1007/s00424-021-02610-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/20/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are key to the signal transduction machinery of certain sensory modalities both in vertebrate and invertebrate organisms. They translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through sensory cells. Despite CNG and voltage-gated potassium channels sharing a remarkable amino acid sequence homology and basic architectural plan, their functional properties are dramatically different. While voltage-gated potassium channels are highly selective and require membrane depolarization to open, CNG channels have low ion selectivity and are not very sensitive to voltage. In the last few years, many high-resolution structures of intact CNG channels have been released. This wealth of new structural information has provided enormous progress toward the understanding of the molecular mechanisms and driving forces underpinning CNG channel activation. In this review, we report on the current understanding and controversies surrounding the gating mechanism in CNG channels, as well as the deep intertwining existing between gating, the ion permeation process, and its modulation by membrane voltage. While the existence of this powerful coupling was recognized many decades ago, its direct structural demonstration, and ties to the CNG channel inherent pore flexibility, is a recent achievement.
Collapse
|
22
|
Wang NK, Liu PK, Kong Y, Levi SR, Huang WC, Hsu CW, Wang HH, Chen N, Tseng YJ, Quinn PMJ, Tai MH, Lin CS, Tsang SH. Mouse Models of Achromatopsia in Addressing Temporal "Point of No Return" in Gene-Therapy. Int J Mol Sci 2021; 22:8069. [PMID: 34360834 PMCID: PMC8347118 DOI: 10.3390/ijms22158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/03/2022] Open
Abstract
Achromatopsia is characterized by amblyopia, photophobia, nystagmus, and color blindness. Previous animal models of achromatopsia have shown promising results using gene augmentation to restore cone function. However, the optimal therapeutic window to elicit recovery remains unknown. Here, we attempted two rounds of gene augmentation to generate recoverable mouse models of achromatopsia including a Cnga3 model with a knock-in stop cassette in intron 5 using Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR) and targeted embryonic stem (ES) cells. This model demonstrated that only 20% of CNGA3 levels in homozygotes derived from target ES cells remained, as compared to normal CNGA3 levels. Despite the low percentage of remaining protein, the knock-in mouse model continued to generate normal cone phototransduction. Our results showed that a small amount of normal CNGA3 protein is sufficient to form "functional" CNG channels and achieve physiological demand for proper cone phototransduction. Thus, it can be concluded that mutating the Cnga3 locus to disrupt the functional tetrameric CNG channels may ultimately require more potent STOP cassettes to generate a reversible achromatopsia mouse model. Our data also possess implications for future CNGA3-associated achromatopsia clinical trials, whereby restoration of only 20% functional CNGA3 protein may be sufficient to form functional CNG channels and thus rescue cone response.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Pei-Kang Liu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yang Kong
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Sarah R. Levi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Wan-Chun Huang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Chun-Wei Hsu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Hung-Hsi Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Nelson Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Yun-Ju Tseng
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (Y.-J.T.); (C.-S.L.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter M. J. Quinn
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (Y.-J.T.); (C.-S.L.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY 10032, USA; (N.-K.W.); (P.-K.L.); (Y.K.); (S.R.L.); (W.-C.H.); (C.-W.H.); (H.-H.W.); (N.C.); (P.M.J.Q.)
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
23
|
Thermodynamic profile of mutual subunit control in a heteromeric receptor. Proc Natl Acad Sci U S A 2021; 118:2100469118. [PMID: 34301910 PMCID: PMC8325370 DOI: 10.1073/pnas.2100469118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
Collapse
|
24
|
Maba IK, Cruz JV, Zampronio AR. Change in prostaglandin signaling during sickness syndrome hyperalgesia after ovariectomy in female rats. Behav Brain Res 2021; 410:113368. [PMID: 34000337 DOI: 10.1016/j.bbr.2021.113368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
The present study investigated hyperalgesia during sickness syndrome in female rats. Hyperalgesia was induced by an intraperitoneal injection of lipopolysaccharide (LPS) or an intracerebroventricular injection of prostaglandin E2 (PGE2). No differences were found in basal mechanical and thermal thresholds or in LPS-induced hyperalgesia in sham-operated animals in the diestrus or proestrus phase or in ovariectomized (OVX) animals. However, higher levels of PGE2 where found in the cerebrospinal fluid of OVX animals compared to sham-operated females. Intracerebroventricular injection of PGE2 produced rapid mechanical hyperalgesia in sham-operated rats while these responses were observed at later times in OVX animals. The protein kinase A (PKA) inhibitor H-89 reduced mechanical PGE2-induced hyperalgesia in OVX female rats, whereas no effect was observed in sham-operated animals. In contrast, the exchange protein activated by cyclic adenosine monophosphate (cAMP; Epac) inhibitor ESI-09 reduced mechanical PGE2-induced hyperalgesia, whereas no effect was observed in OVX animals. PGE2 also induced thermal hyperalgesia in sham-operated and OVX female rats and a similar effect of ESI-09 was observed. These results suggest that PGE2-induced hyperalgesia that is observed during sickness syndrome has different signaling mechanisms in cycling and OVX female rats involving the activation of the cAMP-Epac or cAMP-PKA pathways, respectively.
Collapse
Affiliation(s)
- I K Maba
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil
| | - J V Cruz
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil
| | - A R Zampronio
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
25
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 2021; 109:1302-1313.e4. [PMID: 33651975 DOI: 10.1016/j.neuron.2021.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels play an essential role in the signal transduction of the visual and olfactory sensory systems. Here we reveal the structural mechanism of ligand gating in human rod CNGA1 channel by determining its cryo-EM structures in both the apo closed and cGMP-bound open states. Distinct from most other members of voltage-gated tetrameric cation channels, CNGA1 forms a central channel gate in the middle of the membrane, occluding the central cavity. Structural analyses of ion binding profiles in the selectivity filters of the wild-type channel and the E365Q filter mutant allow us to unambiguously define the two Ca2+ binding sites inside the selectivity filter, providing structural insights into Ca2+ blockage and permeation in CNG channels. The structure of the E365Q mutant also reveals two alternative side-chain conformations at Q365, providing a plausible explanation for the voltage-dependent gating of CNG channel acquired upon E365 mutation.
Collapse
|
27
|
Yarwood SJ. Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview. Cells 2020; 9:cells9102274. [PMID: 33053803 PMCID: PMC7599692 DOI: 10.3390/cells9102274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotides 3′,5′-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.
Collapse
Affiliation(s)
- Stephen John Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|
28
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
29
|
Lee S, Jones WD, Kim DH. A cyclic nucleotide-gated channel in the brain regulates olfactory modulation through neuropeptide F in fruit fly Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21620. [PMID: 31625196 DOI: 10.1002/arch.21620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Olfactory sensing and its modulation are important for the insects in recognizing diverse odors from the environment and in making correct decisions to survive. Identifying new genes involved in olfactory modulation and unveiling their mechanisms may lead us to understand decision making processes in the central nervous system. Here, we report a novel olfactory function of the cyclic nucleotide-gated (CNG) channel CG42260 in modulating ab3A olfactory sensory neurons, which specifically respond to food-derived odors in fruit fly Drosophila melanogaster. We found that two independent CG42260 mutants show reduced responses in the ab3A neurons. Unlike mammalian CNGs, CG42260 is not expressed in the odorant sensory neurons but broadly in the central nervous system including neuropeptide-producing cells. By using molecular genetic tools, we identified CG42260 expression in one pair of neuropeptide F (NPF) positive L1-l cells known to modulate food odor responsiveness. Knockdown of CG42260 in the NPF neurons reduced production of NPF in Ll-1 cells, which in turn, led to reduction of neuronal responses of the ab3A neurons. Our findings show the novel biological function of CG42260 in modulating olfactory responses to food odor through NPF.
Collapse
Affiliation(s)
- Sion Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Walton D Jones
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
30
|
Otte M, Schweinitz A, Lelle M, Thon S, Enke U, Yüksel S, Schmauder R, Bonus M, Gohlke H, Benndorf K. Novel Fluorescent Cyclic Nucleotide Derivatives to Study CNG and HCN Channel Function. Biophys J 2019; 116:2411-2422. [PMID: 31130235 DOI: 10.1016/j.bpj.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.
Collapse
Affiliation(s)
- Maik Otte
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Schweinitz
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Marco Lelle
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sezin Yüksel
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre & Institute for Complex Systems Structural Biochemistry, Forschungszentrum Jülich, GmbH, Jülich, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
31
|
Morgan JLW, Evans EGB, Zagotta WN. Functional characterization and optimization of a bacterial cyclic nucleotide-gated channel. J Biol Chem 2019; 294:7503-7515. [PMID: 30885945 DOI: 10.1074/jbc.ra119.007699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels produce the initial electrical signal in mammalian vision and olfaction. They open in response to direct binding of cyclic nucleotide (cAMP or cGMP) to a cytoplasmic region of the channel. However, the conformational rearrangements occurring upon binding to produce pore opening (i.e. gating) are not well understood. SthK is a bacterial CNG channel that has the potential to serve as an ideal model for structure-function studies of gating but is currently limited by its toxicity, native cysteines, and low open probability (P o). Here, we expressed SthK in giant Escherichia coli spheroplasts and performed patch-clamp recordings to characterize SthK gating in a bacterial membrane. We demonstrated that the P o in cAMP is higher than has been previously published and that cGMP acts as a weak partial SthK agonist. Additionally, we determined that SthK expression is toxic to E. coli because of gating by cytoplasmic cAMP. We overcame this toxicity by developing an adenylate cyclase-knockout E. coli cell line. Finally, we generated a cysteine-free SthK construct and introduced mutations that further increase the P o in cAMP. We propose that this SthK model will help elucidate the gating mechanism of CNG channels.
Collapse
Affiliation(s)
- Jacob L W Morgan
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Eric G B Evans
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - William N Zagotta
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
32
|
Moon JY, Belloeil C, Ianna ML, Shin R. Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants. Int J Mol Sci 2019; 20:E413. [PMID: 30669376 PMCID: PMC6358908 DOI: 10.3390/ijms20020413] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Heavy metal ions, including toxic concentrations of essential ions, negatively affect diverse metabolic and cellular processes. Heavy metal ions are known to enter cells in a non-selective manner; however, few studies have examined the regulation of heavy metal ion transport. Plant cyclic nucleotide-gated channels (CNGCs), a type of Ca2+-permeable-channel, have been suggested to be involved in the uptake of both essential and toxic cations. To determine the candidates responsible for heavy metal ion transport, a series of Arabidopsis CNGC mutants were examined for their response to Pb2+ and Cd2+ ions. The primary focus was on root growth and the analysis of the concentration of heavy metals in plants. Results, based on the analysis of primary root length, indicated that AtCNGC1, AtCNGC10, AtCNGC13 and AtCNGC19 play roles in Pb2+ toxicity, while AtCNGC11, AtCNGC13, AtCNGC16 and AtCNGC20 function in Cd2+ toxicity in Arabidopsis. Ion content analysis verified that the mutations of AtCNGC1 and AtCNGC13 resulted in reduced Pb2+ accumulation, while the mutations of AtCNGC11, AtCNGC15 and AtCNGC19 resulted in less Pb2+ and Cd2+ accumulation in plants. These findings provide functional evidence which support the roles of these AtCNGCs in the uptake and transport of Pb2+ or Cd2+ ion in plants.
Collapse
Affiliation(s)
- Ju Yeon Moon
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Célestine Belloeil
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Université Paris Diderot, 5 rue Thomas Mann, 75013 Paris, France.
| | - Madeline Louise Ianna
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- School of Science and Technology, UNE, Armidale, New South Wales 2351, Australia.
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
33
|
Gao Q, Liu Y, Lei X, Deng Q, Tong Y, Du L, Shen Y. A Novel CNGA1 Gene Mutation (c.G622A) of Autosomal Recessive Retinitis Pigmentosa Leads to the CNGA1 Protein Reduction on Membrane. Biochem Genet 2019; 57:540-554. [DOI: 10.1007/s10528-019-09907-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
|
34
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
35
|
Abstract
Abstract Primary sensory neurons are responsible for transmitting sensory information from the peripheral to the central nervous system. Their responses to incoming stimulation become greatly enhanced and prolonged following inflammation, giving rise to exaggerated nociceptive responses and chronic pain. The inflammatory mediator, prostaglandin E2 (PGE2), released from the inflamed tissue surrounding the terminals of sensory neurons contributes to the abnormal pain responses. PGE2 acts on G protein-coupled EP receptors to activate adenylyl cyclase, which catalyzes the conversion of adenosine triphosphate to cyclic adenosine 3′,5′-monophosphate (cAMP). Under normal conditions, cAMP activates primarily protein kinase A. After inflammation, cAMP also activates the exchange proteins activated by cAMP (Epacs) to produce exaggerated PGE2-mediated hyperalgesia. The role of cAMP-Epac signaling in the generation of hypersensitivity is the topic of this review.
Collapse
Affiliation(s)
| | - Yanping Gu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, TX 77555-1069, USA
| |
Collapse
|
36
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
37
|
A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, Is Activated by the Co-Presence of Na⁺ and K⁺ and Permeable to Na⁺ and K⁺ Non-Selectively. PLANTS 2018; 7:plants7030061. [PMID: 30049942 PMCID: PMC6161278 DOI: 10.3390/plants7030061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Current was not observed in X. laevis oocytes injected with HvCNGC2-3 complementary RNA (cRNA) in a bathing solution containing either Na+ or K+ solely, even in the presence of 8-bromoadenosine 3′,5′-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na+ and K+ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K+, Na+ and Cl− were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.
Collapse
|
38
|
Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1698-1706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Ion channels are pore-forming protein complexes in membranes that play essential roles in a diverse array of biological activities. Ion channel activity is strictly regulated at multiple levels and by numerous cellular events to selectively activate downstream effectors involved in specific biological activities. For example, ions, binding proteins, nucleotides, phosphorylation, the redox state, channel subunit composition have all been shown to regulate channel activity and subsequently allow channels to participate in distinct cellular events. While these forms of modulation are well documented and have been extensively reviewed, in this article, we will first review and summarize channel proteolysis as a novel and quite widespread mechanism for altering channel activity. We will then highlight the recent findings demonstrating that proteolysis profoundly alters Inositol 1,4,5 trisphosphate receptor activity, and then discuss its potential functional ramifications in various developmental and pathological conditions.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
39
|
A molecular dynamics study of adenylyl cyclase: The impact of ATP and G-protein binding. PLoS One 2018; 13:e0196207. [PMID: 29694437 PMCID: PMC5918993 DOI: 10.1371/journal.pone.0196207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the biosynthesis of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP) and play an important role in many signal transduction pathways. The enzymatic activity of ACs is carefully controlled by a variety of molecules, including G-protein subunits that can both stimulate and inhibit cAMP production. Using homology models developed from existing structural data, we have carried out all-atom, microsecond-scale molecular dynamics simulations on the AC5 isoform of adenylyl cyclase and on its complexes with ATP and with the stimulatory G-protein subunit Gsα. The results show that both ATP and Gsα binding have significant effects on the structure and flexibility of adenylyl cyclase. New data on ATP bound to AC5 in the absence of Gsα notably help to explain how Gsα binding enhances enzyme activity and could aid product release. Simulations also suggest a possible coupling between ATP binding and interactions with the inhibitory G-protein subunit Gαi.
Collapse
|
40
|
Ruiz-Larrañaga O, Langa J, Rendo F, Manzano C, Iriondo M, Estonba A. Genomic selection signatures in sheep from the Western Pyrenees. Genet Sel Evol 2018; 50:9. [PMID: 29566643 PMCID: PMC5865298 DOI: 10.1186/s12711-018-0378-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current large spectrum of sheep phenotypic diversity results from the combined product of sheep selection for different production traits such as wool, milk and meat, and its natural adaptation to new environments. In this study, we scanned the genome of 25 Sasi Ardi and 75 Latxa sheep from the Western Pyrenees for three types of regions under selection: (1) regions underlying local adaptation of Sasi Ardi semi-feral sheep, (2) regions related to a long traditional dairy selection pressure in Latxa sheep, and (3) regions experiencing the specific effect of the modern genetic improvement program established for the Latxa breed during the last three decades. RESULTS Thirty-two selected candidate regions including 147 annotated genes were detected by using three statistical parameters: pooled heterozygosity H, Tajima's D, and Wright's fixation index Fst. For Sasi Ardi sheep, chromosomes Ovis aries (OAR)4, 6, and 22 showed the strongest signals and harbored several candidate genes related to energy metabolism and morphology (BBS9, ELOVL3 and LDB1), immunity (NFKB2), and reproduction (H2AFZ). The major genomic difference between Sasi Ardi and Latxa sheep was on OAR6, which is known to affect milk production, with highly selected regions around the ABCG2, SPP1, LAP3, NCAPG, LCORL, and MEPE genes in Latxa sheep. The effect of the modern genetic improvement program on Latxa sheep was also evident on OAR15, on which several olfactory genes are located. We also detected several genes involved in reproduction such as ESR1 and ZNF366 that were affected by this selection program. CONCLUSIONS Natural and artificial selection have shaped the genome of both Sasi Ardi and Latxa sheep. Our results suggest that Sasi Ardi traits related to energy metabolism, morphological, reproductive, and immunological features have been under positive selection to adapt this semi-feral sheep to its particular environment. The highly selected Latxa sheep for dairy production showed clear signatures of selection in genomic regions related to milk production. Furthermore, our data indicate that the selection criteria applied in the modern genetic improvement program affect immunity and reproduction traits.
Collapse
Affiliation(s)
- Otsanda Ruiz-Larrañaga
- Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Jorge Langa
- Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Rendo
- Genetics, Sequencing and Genotyping Unit, Advanced Research Facilities (SGIker), University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carmen Manzano
- Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Iriondo
- Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andone Estonba
- Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
41
|
Abstract
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| |
Collapse
|
42
|
Täger J, Kohl S, Birch DG, Wheaton DKH, Wissinger B, Reuter P. An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Exp Eye Res 2018; 171:48-53. [PMID: 29499183 DOI: 10.1016/j.exer.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
The cyclic nucleotide-gated (CNG) channel - composed of CNGA3 and CNGB3 subunits - mediates the influx of cations in cone photoreceptors after light stimulation and thus is a key element in cone phototransduction. Mutations in CNGA3 and CNGB3 are associated with achromatopsia, a rare autosomal recessive retinal disorder. Here, we demonstrate that the presence of an early nonsense mutation in CNGA3 induces the usage of a downstream alternative translation initiation site giving rise to a short CNGA3 isoform. The expression of this short isoform was verified by Western blot analysis and DAB staining of HEK293 cells and cone photoreceptor-like 661W cells expressing CNGA3-GST fusion constructs. Functionality of the short isoform was confirmed by a cellular calcium influx assay. Furthermore, patients carrying an early nonsense mutation were analyzed for residual cone photoreceptor function in order to identify a potential role of the short isoform to modify the clinical outcome in achromatopsia patients. Yet the results suggest that the short isoform is not able to compensate for the loss of the long isoform leaving the biological role of this variant unclear.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
43
|
O'Banion CP, Priestman MA, Hughes RM, Herring LE, Capuzzi SJ, Lawrence DS. Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase. Cell Chem Biol 2018; 25:100-109.e8. [PMID: 29104065 PMCID: PMC5777159 DOI: 10.1016/j.chembiol.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022]
Abstract
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
Collapse
Affiliation(s)
- Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melanie A Priestman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert M Hughes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry; East Carolina University, Greenville, NC 27858, USA
| | - Laura E Herring
- UNC Proteomics Core, Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen J Capuzzi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Mazzolini M, Arcangeletti M, Marchesi A, Napolitano LMR, Grosa D, Maity S, Anselmi C, Torre V. The gating mechanism in cyclic nucleotide-gated ion channels. Sci Rep 2018; 8:45. [PMID: 29311674 PMCID: PMC5758780 DOI: 10.1038/s41598-017-18499-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the α-helix S6 controls gating in most of its members. To date, only the open, cGMP-bound, structure of a CNG channel has been determined at atomic resolution, which is inadequate to determine the molecular events underlying gating. By using electrophysiology, site-directed mutagenesis, chemical modification, and Single Molecule Force Spectroscopy, we demonstrate that opening of CNGA1 channels is initiated by the formation of salt bridges between residues in the C-linker and S5 helix. These events trigger conformational changes of the α-helix S5, transmitted to the P-helix and leading to channel opening. Therefore, the superfamily of voltage-gated channels shares a similar molecular architecture but has evolved divergent gating mechanisms.
Collapse
Affiliation(s)
- Monica Mazzolini
- International School for Advanced Studies, Trieste, 34136, Italy.
| | | | - Arin Marchesi
- INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, 13009, France
| | - Luisa M R Napolitano
- International School for Advanced Studies, Trieste, 34136, Italy
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - Debora Grosa
- International School for Advanced Studies, Trieste, 34136, Italy
| | - Sourav Maity
- International School for Advanced Studies, Trieste, 34136, Italy
| | - Claudio Anselmi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Vincent Torre
- International School for Advanced Studies, Trieste, 34136, Italy.
| |
Collapse
|
45
|
Zhang XR, Xu YP, Cai XZ. SlCNGC1 and SlCNGC14 Suppress Xanthomonas oryzae pv. oryzicola-Induced Hypersensitive Response and Non-host Resistance in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:285. [PMID: 29559989 PMCID: PMC5845538 DOI: 10.3389/fpls.2018.00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/19/2018] [Indexed: 05/06/2023]
Abstract
Mechanisms underlying plant non-host resistance to Xanthomonas oryzae pv. oryzicola (Xoc), the pathogen causing rice leaf streak disease, are largely unknown. Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological processes including plant resistance. In this study, functions of two tomato CNGC genes SlCNGC1 and SlCNGC14 in non-host resistance to Xoc were analyzed. Silencing of SlCNGC1 and SlCNGC14 in tomato significantly enhanced Xoc-induced hypersensitive response (HR) and non-host resistance, demonstrating that both SlCNGC1 and SlCNGC14 negatively regulate non-host resistance related HR and non-host resistance to Xoc in tomato. Silencing of SlCNGC1 and SlCNGC14 strikingly increased Xoc-induced callose deposition and strongly promoted both Xoc-induced and flg22-elicited H2O2, indicating that these two SlCNGCs repress callose deposition and ROS accumulation to attenuate non-host resistance and PAMP-triggered immunity (PTI). Importantly, silencing of SlCNGC1 and SlCNGC14 apparently compromised cytosolic Ca2+ accumulation, implying that SlCNGC1 and SlCNGC14 function as Ca2+ channels and negatively regulate non-host resistance and PTI-related responses through modulating cytosolic Ca2+ accumulation. SlCNGC14 seemed to play a stronger regulatory role in the non-host resistance and PTI compared to SlCNGC1. Our results reveal the contribution of CNGCs and probably also Ca2+ signaling pathway to non-host resistance and PTI.
Collapse
Affiliation(s)
- Xuan-Rui Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xin-Zhong Cai,
| |
Collapse
|
46
|
Affiliation(s)
- Gustavo D. Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
47
|
Components of the mitochondrial cAMP signalosome. Biochem Soc Trans 2017; 45:269-274. [PMID: 28202681 DOI: 10.1042/bst20160394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
3'-5'-Cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling is activated by different extracellular stimuli and mediates many diverse processes within the same cell. It is now well established that in order to translate into the appropriate cellular function multiple extracellular inputs, which may act simultaneously on the same cell, the cAMP/PKA signalling pathway is compartmentalised. Multimolecular complexes are organised at specific subcellular sites to generate spatially confined signalosomes, which include effectors, modulators and targets of the pathway. In recent years, it has become evident that mitochondria represent sites of compartmentalised cAMP signalling. However, the exact location and the molecular composition of distinct mitochondria signalosomes and their function remain largely unknown. In this review, we focus on individual components of the cAMP/PKA signalling pathway at distinct mitochondria subdomains represented by the outer and inner mitochondrial membranes, the intermembrane space and the matrix, highlighting some of the questions that remain unanswered.
Collapse
|
48
|
Nitric Oxide Modulates HCN Channels in Magnocellular Neurons of the Supraoptic Nucleus of Rats by an S-Nitrosylation-Dependent Mechanism. J Neurosci 2017; 36:11320-11330. [PMID: 27807172 DOI: 10.1523/jneurosci.1588-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022] Open
Abstract
The control of the excitability in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus has been attributed mainly to synaptic inputs from circunventricular organs. However, nitric oxide (NO), a gaseous messenger produced in this nucleus during isotonic and short-term hypertonic conditions, is an example of a modulator that can act directly on MNCs to modulate their firing rate. NO inhibits the electrical excitability of MNCs, leading to a decrease in the release of vasopressin and oxytocin. Although the effects of NO on MNCs are well established, the mechanism by which this gas produces its effect is, so far, unknown. Because NO acts independently of synaptic inputs, we hypothesized that ion channels present in MNCs are the targets of NO. To investigate this hypothesis, we used the patch-clamp technique in vitro and in situ to measure currents carried by hyperpolarization-activated and nucleotide-gated cation (HCN) channels and establish their role in determining the electrical excitability of MNCs in rats. Our results show that blockade of HCN channels by ZD7288 decreases MNC firing rate with significant consequences on the release of OT and VP, measured by radioimmunoassay. NO induced a significant reduction in HCN currents by binding to cysteine residues and forming S-nitrosothiol complexes. These findings shed new light on the mechanisms that control the electrical excitability of MNCs via the nitrergic system and strengthen the importance of HCN channels in the control of hydroelectrolyte homeostasis. SIGNIFICANCE STATEMENT Cells in our organism live in a liquid environment whose composition and osmolality are maintained within tight limits. Magnocellular neurons (MNCs) of the supra optic nucleus can sense osmolality and control the synthesis and secretion of vasopressin (VP) and oxytocin (OT) by the neurohypophysis. OT and VP act on the kidneys controlling the excretion of water and sodium to maintain homeostasis. Here we combined electrophysiology, molecular biology, and radioimmunoassay to show that the electrical activity of MNCs can be controlled by nitric oxide (NO), a gaseous messenger. NO reacts with cysteine residues (S-nitrosylation) on hyperpolarization-activated and nucleotide-gated cation channels decreasing the firing rate of MNCs and the consequent secretion of VP and OT.
Collapse
|
49
|
Fischer C, DeFalco TA, Karia P, Snedden WA, Moeder W, Yoshioka K, Dietrich P. Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. PLANT & CELL PHYSIOLOGY 2017; 58:1208-1221. [PMID: 28419310 DOI: 10.1093/pcp/pcx052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 05/23/2023]
Abstract
Ca2+ serves as a universal second messenger in eukaryotic signaling pathways, and the spatial and temporal patterns of Ca2+ concentration changes are determined by feedback and feed-forward regulation of the involved transport proteins. Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable channels that interact with the ubiquitous Ca2+ sensor calmodulin (CaM). CNGCs interact with CaMs via diverse CaM-binding sites, including an IQ-motif, which has been identified in the C-termini of CNGC20 and CNGC12. Here we present a family-wide analysis of the IQ-motif from all 20 Arabidopsis CNGC isoforms. While most of their IQ-peptides interacted with conserved CaMs in yeast, some were unable to do so, despite high sequence conservation across the family. We showed that the CaM binding ability of the IQ-motif is highly dependent on its proximal and distal vicinity. We determined that two alanine residues positioned N-terminal to the core IQ-sequence play a significant role in CaM binding, and identified a polymorphism at this site that promoted or inhibited CaM binding in yeast. Through detailed biophysical analysis of the CNGC2 IQ-motif, we found that this polymorphism specifically affected the Ca2+-independent interactions with the C-lobe of CaM. This same polymorphism partially suppressed the induction of programmed cell death by CNGC11/12 in planta. Our work expands the model of CNGC regulation, and posits that the C-lobe of apo-CaM is permanently associated with the channel at the N-terminal part of the IQ-domain. This mode allows CaM to function as a Ca2+-sensing regulatory subunit of the channel complex, providing a mechanism by which Ca2+ signals may be fine-tuned.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Thomas A DeFalco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Purva Karia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Wayne A Snedden
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
50
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|