1
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
2
|
Moroz LL, Romanova DY. Functional evolution and functional biodiversity: 150 years of déjà vu or new physiology of evolution? Front Cell Dev Biol 2024; 12:1485089. [PMID: 39512903 PMCID: PMC11541955 DOI: 10.3389/fcell.2024.1485089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Laboratory of Cellular Neurobiology of Learning, Moscow, Russia
| |
Collapse
|
3
|
Phillips JR, Nicolau GK, Ngwenya SS, Jackson EA, Womack MC. Habitat and Respiratory Strategy Effects on Hypoxia Performance in Anuran Tadpoles. Integr Comp Biol 2024; 64:336-353. [PMID: 38621716 DOI: 10.1093/icb/icae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
A critical component of animal conservation in a changing world is an understanding of the physiological resilience of animals to different conditions. In many aquatic animals, hypoxia (low environmental oxygen levels) is a regular occurrence, but the likelihood and severity of hypoxia vary across habitats. Fast-flowing, stream-like habitats are never hypoxic, so long as flow is maintained. Do animals from such habitats retain the capacity to survive hypoxic conditions? We use aquatic frog tadpoles to test the effects of natural habitat on performance in hypoxia in an experimental framework, finding that stream-living tadpoles have reduced performance in hypoxia. Tadpoles also vary in lung presence, with some species able to breathe air during hypoxia. We found that among lunged tadpoles, air-breathing rates increase in hypoxia in pond-living species but not stream-living species. Lung presence was also found to influence hypoxia performance, as lungless, stream-living tadpoles were found to be especially vulnerable to hypoxia, while pond-living, lungless tadpoles appeared largely resilient to hypoxia. We consider the ramifications of our findings on conservation outlooks and strategies for frogs and their tadpoles, suggesting that stream-living tadpoles, and especially lungless, stream-living tadpoles, may be particularly at risk to factors that reduce stream flow. Thus, a primary goal for conservation and management of species with stream-living tadpoles should be the maintenance of year-round streamflow, which oxygenates waters and prevents hypoxia.
Collapse
Affiliation(s)
| | | | - Shane S Ngwenya
- University of the Western Cape, Biodiversity and Conservation Biology, Cape Town, RSA 7535, South Africa
| | | | | |
Collapse
|
4
|
Gontier N. Situating physiology within evolutionary theory. J Physiol 2024; 602:2401-2415. [PMID: 37755322 DOI: 10.1113/jp284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Traditionally defined as the science of the living, or as the field that beyond anatomical structure and bodily form studies functional organization and behaviour, physiology has long been excluded from evolutionary research. The main reason for this exclusion is that physiology has a presential and futuristic outlook on life, while evolutionary theory is traditionally defined as the study of natural history. In this paper, I re-evaluate these classic science divisions and situate physiology within the history of the evolutionary sciences, as well as within debates on the Extended Evolutionary Synthesis and the need for a Third Way of Evolution. I then briefly point out how evolutionary physiology in particular contributes to research on function, causation, teleonomy, agency and cognition.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Mentesana L, Casagrande S, Hau M. Baseline glucocorticoids alone do not predict reproductive success across years, but in interaction with enzymatic antioxidants. Ecol Evol 2024; 14:e11193. [PMID: 38571797 PMCID: PMC10985372 DOI: 10.1002/ece3.11193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Glucocorticoids are known to adjust organismal functions, such as metabolism, in response to environmental conditions. Therefore, these hormones are thought to play a key role in regulating the metabolically demanding aspects of reproduction, especially in variable environments. However, support for the hypothesis that variation in glucocorticoid concentrations predicts reproductive success is decidedly mixed. Two explanations may account for this discrepancy: (i) Glucocorticoids might not act independently but could interact with other physiological traits, jointly influencing reproduction, and (ii) such an association could become apparent primarily in challenging environments when glucocorticoid concentrations increase. To address these two possibilities, we determined natural variation in circulating baseline glucocorticoid concentrations in parental great tits (Parus major) alongside two physiological systems known to be related with an individual's metabolism: oxidative status parameters (i.e., concentrations of pro-oxidants, dietary, and enzymatic antioxidants) and body condition. These systems interact with glucocorticoids and can also influence reproductive success. We measured these variables in two breeding seasons that differed in environmental conditions. When accounting for the interaction of baseline glucocorticoids with other physiological traits, we found a positive relationship between baseline glucocorticoids and the number of fledglings in adult great tits. The strength of this relationship was more pronounced for those individuals who also had high concentrations of the enzymatic antioxidant glutathione peroxidase. When studied independently, glucocorticoids were not related to fitness proxies, even in the year with more challenging environmental conditions. Together, our study lend to support the hypothesis that glucocorticoids do not influence fitness alone, but in association with other physiological systems.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Biological IntelligenceSeewiesenGermany
| | | | - Michaela Hau
- Max Planck Institute for Biological IntelligenceSeewiesenGermany
- University of KonstanzKonstanzGermany
| |
Collapse
|
6
|
Cooke SJ, Madliger CL, Lennox RJ, Olden JD, Eliason EJ, Cramp RL, Fuller A, Franklin CE, Seebacher F. Biological mechanisms matter in contemporary wildlife conservation. iScience 2023; 26:106192. [PMID: 36895647 PMCID: PMC9988666 DOI: 10.1016/j.isci.2023.106192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Given limited resources for wildlife conservation paired with an urgency to halt declines and rebuild populations, it is imperative that management actions are tactical and effective. Mechanisms are about how a system works and can inform threat identification and mitigation such that conservation actions that work can be identified. Here, we call for a more mechanistic approach to wildlife conservation and management where behavioral and physiological tools and knowledge are used to characterize drivers of decline, identify environmental thresholds, reveal strategies that would restore populations, and prioritize conservation actions. With a growing toolbox for doing mechanistic conservation research as well as a suite of decision-support tools (e.g., mechanistic models), the time is now to fully embrace the concept that mechanisms matter in conservation ensuring that management actions are tactical and focus on actions that have the potential to directly benefit and restore wildlife populations.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Corresponding author
| | - Christine L. Madliger
- Department of Biology, Algoma University, 1520 Queen St. East, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca L. Cramp
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Craig E. Franklin
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Jelena M, Anssi L, Katja R. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient. BMC Ecol Evol 2022; 22:11. [PMID: 35123416 PMCID: PMC8818180 DOI: 10.1186/s12862-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits. Results We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles. Conclusions Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01967-1.
Collapse
Affiliation(s)
- Mausbach Jelena
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Laurila Anssi
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Räsänen Katja
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland. .,Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland.
| |
Collapse
|
8
|
Lailvaux SP, Mishra A, Pun P, Ul Kabir MW, Wilson RS, Herrel A, Hoque MT. Machine learning accurately predicts the multivariate performance phenotype from morphology in lizards. PLoS One 2022; 17:e0261613. [PMID: 35061733 PMCID: PMC8782310 DOI: 10.1371/journal.pone.0261613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Completing the genotype-to-phenotype map requires rigorous measurement of the entire multivariate organismal phenotype. However, phenotyping on a large scale is not feasible for many kinds of traits, resulting in missing data that can also cause problems for comparative analyses and the assessment of evolutionary trends across species. Measuring the multivariate performance phenotype is especially logistically challenging, and our ability to predict several performance traits from a given morphology is consequently poor. We developed a machine learning model to accurately estimate multivariate performance data from morphology alone by training it on a dataset containing performance and morphology data from 68 lizard species. Our final, stacked model predicts missing performance data accurately at the level of the individual from simple morphological measures. This model performed exceptionally well, even for performance traits that were missing values for >90% of the sampled individuals. Furthermore, incorporating phylogeny did not improve model fit, indicating that the phenotypic data alone preserved sufficient information to predict the performance based on morphological information. This approach can both significantly increase our understanding of performance evolution and act as a bridge to incorporate performance into future work on phenomics.
Collapse
Affiliation(s)
- Simon P. Lailvaux
- Department of Biological Sciences, The University of New Orleans, New Orleans, LA, United States of America
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX, United States of America
| | - Pooja Pun
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| | - Md Wasi Ul Kabir
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| | - Robbie S. Wilson
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Md Tamjidul Hoque
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| |
Collapse
|
9
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Abstract
AbstractTrade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.
Collapse
|
11
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
12
|
Baur J, Jagusch D, Michalak P, Koppik M, Berger D. The mating system affects the temperature sensitivity of male and female fertility. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Dorian Jagusch
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
- Organismal and Evolutionary Biology Research Program Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Piotr Michalak
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - David Berger
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
13
|
Scott GR, Dalziel AC. Physiological insight into the evolution of complex phenotypes: aerobic performance and the O2 transport pathway of vertebrates. J Exp Biol 2021; 224:271829. [PMID: 34387318 DOI: 10.1242/jeb.210849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evolutionary physiology strives to understand how the function and integration of physiological systems influence the way in which organisms evolve. Studies of the O2 transport pathway - the integrated physiological system that transports O2 from the environment to mitochondria - are well suited to this endeavour. We consider the mechanistic underpinnings across the O2 pathway for the evolution of aerobic capacity, focusing on studies of artificial selection and naturally selected divergence among wild populations of mammals and fish. We show that evolved changes in aerobic capacity do not require concerted changes across the O2 pathway and can arise quickly from changes in one or a subset of pathway steps. Population divergence in aerobic capacity can be associated with the evolution of plasticity in response to environmental variation or activity. In some cases, initial evolutionary divergence of aerobic capacity arose exclusively from increased capacities for O2 diffusion and/or utilization in active O2-consuming tissues (muscle), which may often constitute first steps in adaptation. However, continued selection leading to greater divergence in aerobic capacity is often associated with increased capacities for circulatory and pulmonary O2 transport. Increases in tissue O2 diffusing capacity may augment the adaptive benefit of increasing circulatory O2 transport owing to their interactive influence on tissue O2 extraction. Theoretical modelling of the O2 pathway suggests that O2 pathway steps with a disproportionately large influence over aerobic capacity have been more likely to evolve, but more work is needed to appreciate the extent to which such physiological principles can predict evolutionary outcomes.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
14
|
Goymann W, Schwabl H. The tyranny of phylogeny-A plea for a less dogmatic stance on two-species comparisons: Funding bodies, journals and referees discourage two- or few-species comparisons, but such studies provide essential insights complementary to phylogenetic comparative studies. Bioessays 2021; 43:e2100071. [PMID: 34155665 DOI: 10.1002/bies.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Phylogenetically controlled studies across multiple species correct for taxonomic confounds in physiological performance traits. Therefore, they are preferred over comparisons of two or few closely-related species. Funding bodies, referees and journal editors nowadays often even reject to consider detailed comparisons of two or few closely related species. Here, we plea for a less dogmatic stance on such comparisons, because phylogenetic studies come with their own limitations similar in magnitude as those of two-species comparisons. Two-species comparisons are particularly relevant and instructive for understanding physiological pathways and de novo mutations in three contexts: in a purely mechanistic context, when differences in the regulation of a trait are the focus of investigation, when a physiological trait lacks a direct connection to fitness, and when physiological measures cannot easily be standardized among laboratories. In conclusion, phylogenetic comparative and two-species studies have different strengths and weaknesses and combining these complementary approaches will help integrating biology.
Collapse
Affiliation(s)
- Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
15
|
Kinneary JJ. Perspectives on Salinity, Immunity, and the Common Snapping Turtle. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1469.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joseph J. Kinneary
- 3 Penrose Path, East Northport, New York 11731 USA; Department of Biology, Farmingdale State College, Farmingdale, New York 11735 USA []
| |
Collapse
|
16
|
Verberk WCEP, Calosi P, Brischoux F, Spicer JI, Garland T, Bilton DT. Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proc Biol Sci 2020; 287:20200488. [PMID: 32453989 PMCID: PMC7287373 DOI: 10.1098/rspb.2020.0488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Diving as a lifestyle has evolved on multiple occasions when air-breathing terrestrial animals invaded the aquatic realm, and diving performance shapes the ecology and behaviour of all air-breathing aquatic taxa, from small insects to great whales. Using the largest dataset yet assembled, we show that maximum dive duration increases predictably with body mass in both ectotherms and endotherms. Compared to endotherms, ectotherms can remain submerged for longer, but the mass scaling relationship for dive duration is much steeper in endotherms than in ectotherms. These differences in diving allometry can be fully explained by inherent differences between the two groups in their metabolic rate and how metabolism scales with body mass and temperature. Therefore, we suggest that similar constraints on oxygen storage and usage have shaped the evolutionary ecology of diving in all air-breathing animals, irrespective of their evolutionary history and metabolic mode. The steeper scaling relationship between body mass and dive duration in endotherms not only helps explain why the largest extant vertebrate divers are endothermic rather than ectothermic, but also fits well with the emerging consensus that large extinct tetrapod divers (e.g. plesiosaurs, ichthyosaurs and mosasaurs) were endothermic.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Piero Calosi
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
17
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Harris BN. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. Gen Comp Endocrinol 2020; 288:113355. [PMID: 31830473 DOI: 10.1016/j.ygcen.2019.113355] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress is ubiquitous and thus, not surprisingly, many hypotheses and models have been created to better study the role stress plays in life. Stress spans fields and is found in the literature of biology, psychology, psychophysiology, sociology, economics, and medicine, just to name a few. Stress, and the hypothalamic-pituitaryadrenal/interrenal (HPA/I) axis and sympathetic nervous system (SNS), are involved in a multitude of behaviors and physiological processes, including life-history and ecological tradeoffs, developmental transitions, health, and survival. The goal of this review is to highlight and summarize the large number of available hypotheses and models, to aid in comparative and interdisciplinary thinking, and to increase reproducibility by a) discouraging hypothesizing after results are known (HARKing) and b) encouraging a priori hypothesis testing. For this review I collected 214 published hypotheses or models dealing broadly with stress. In the main paper, I summarized and categorized 131 of those hypotheses and models which made direct connections among stress and/or HPA/I and SNS, tradeoffs, transitions, and health. Of those 131, the majority made predictions about reproduction (n = 43), the transition from health to disease (n = 38), development (n = 23), and stress coping (n = 18). Additional hypotheses were classified as stage-spanning or models (n = 37). The additional 83 hypotheses found during searches were tangentially related, or pertained to immune function or oxidative stress, and these are listed separately. Many of the hypotheses share underlying rationale and suggest similar, if not identical, predictions, and are thus not mutually exclusive; some hypotheses spanned classification categories. Some of the hypotheses have been tested multiple times, whereas others have only been examined a few times. It is the hope that multi-disciplinary stress researchers will begin to harmonize their naming of hypotheses in the literature so as to build a clearer picture of how stress impacts various outcomes across fields. The paper concludes with some considerations and recommendations for robust testing of stress hypotheses.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
19
|
|
20
|
Hazard LC, Nagy KA, Miles DB, Svensson EI, Costa D, Sinervo B. Integration of Genotype, Physiological Performance, and Survival in a Lizard (Uta stansburiana) with Alternative Mating Strategies. Physiol Biochem Zool 2019; 92:303-315. [DOI: 10.1086/703136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Ziv Y, Davidowitz G. When Landscape Ecology Meets Physiology: Effects of Habitat Fragmentation on Resource Allocation Trade-Offs. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Angilletta MJ, Youngblood JP, Neel LK, VandenBrooks JM. The neuroscience of adaptive thermoregulation. Neurosci Lett 2019; 692:127-136. [DOI: 10.1016/j.neulet.2018.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|
23
|
Bauer CM, Fudickar AM, Anderson-Buckingham S, Abolins-Abols M, Atwell JW, Ketterson ED, Greives TJ. Seasonally sympatric but allochronic: differential expression of hypothalamic genes in a songbird during gonadal development. Proc Biol Sci 2018; 285:20181735. [PMID: 30355713 PMCID: PMC6234895 DOI: 10.1098/rspb.2018.1735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Allochrony, the mismatch of reproductive schedules, is one mechanism that can mediate sympatric speciation and diversification. In songbirds, the transition into breeding condition and gonadal growth is regulated by the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. We investigated whether the difference in reproductive timing between two seasonally sympatric subspecies of dark-eyed juncos (Junco hyemalis) was related to gene expression along the HPG axis. During the sympatric pre-breeding stage, we measured hypothalamic and testicular mRNA expression of candidate genes via qPCR in captive male juncos. For hypothalamic mRNA, we found our earlier breeding subspecies had increased expression of gonadotropin-releasing hormone (GnRH) and decreased expression of androgen receptor, oestrogen receptor alpha and mineralocorticoid receptor (MR). Subspecies did not differ in expression of hypothalamic gonadotropin-inhibitory hormone (GnIH) and glucocorticoid receptor (GR). While our earlier breeding subspecies had higher mRNA expression of testicular GR, subspecies did not differ in testicular luteinizing hormone receptor, follicle-stimulating hormone receptor or MR mRNA expression levels. Our findings indicate increased GnRH production and decreased hypothalamic sensitivity to sex steroid negative feedback as factors promoting differences in the timing of gonadal recrudescence between recently diverged populations. Differential gene expression along the HPG axis may facilitate species diversification under seasonal sympatry.
Collapse
Affiliation(s)
- Carolyn M Bauer
- Department of Biology, Adelphi University, Garden City, NY, USA
| | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Mikus Abolins-Abols
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Animal Biology, University of Illinois Urbana Champaign, Urbana, IL, USA
| | | | - Ellen D Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
24
|
Trochet A, Dupoué A, Souchet J, Bertrand R, Deluen M, Murarasu S, Calvez O, Martinez-Silvestre A, Verdaguer-Foz I, Darnet E, Chevalier HL, Mossoll-Torres M, Guillaume O, Aubret F. Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. J Therm Biol 2018; 77:38-44. [DOI: 10.1016/j.jtherbio.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
|
25
|
Lailvaux SP, Husak JF. Introduction to the Symposium: Integrative Life-History of Whole-Organism Performance. Integr Comp Biol 2018; 57:320-324. [PMID: 28859412 DOI: 10.1093/icb/icx084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SYNOPSIS A strong case can be made for whole-organism performance traits (i.e., dynamic, ecologically relevant traits whose expression is shaped by underlying morphological factors) as being the ultimate integrative traits. This is not only because they capture the output of multiple lower levels of biological organization, but also because they are directly relevant to individual fitness in multiple ecological contexts, and are in many cases important proximate determinants of survival and/or reproductive success. But although many ecological and evolutionary phenomena can be examined through the lens of performance (and vice-versa), performance research has been surprisingly slow to incorporate concepts from the large and important field of life-history evolution. Such a synthesis is necessary, because shifts in resource allocation strategies can have implications for these highly ecologically relevant, functional traits, whose expression may trade-off against fecundity, immune function, or longevity, among other key life-history traits. The papers in this symposium showcase many of the ways in which life-history strategies can have direct consequences for the expression, maintenance, and evolution of whole-organism performance (and at least one case where they may not). By approaching the issue of life-history trade-offs from a number of diverse perspectives, this symposium reveals the scope for future explicit integration of life-history techniques with those of whole-organism performance studies for a more complete understanding of multivariate phenotypic evolution.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|
26
|
Ghanizadeh H, Harrington KC. Perspectives on non-target site mechanisms of herbicide resistance in weedy plant species using evolutionary physiology. AOB PLANTS 2017; 9:plx035. [PMID: 28894568 PMCID: PMC5585855 DOI: 10.1093/aobpla/plx035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/27/2017] [Indexed: 05/30/2023]
Abstract
Evolutionary physiology merges the disciplines of evolution and physiology, and it is a research approach that has not received much attention for studying the development of herbicide resistance. This paper makes a case for using evolutionary physiology more frequently when studying herbicide resistance, and illustrates this using three areas where more work would be useful: (i) the interaction among major and minor alleles over many generations during the evolution of physiological responses that lead to specific mechanisms of resistance; (ii) the role of epigenetic factors, especially at an early stage of evolution, on the physiological modifications that result in phenotypes that become insensitive to herbicides; and (iii) the interaction between fitness and physiological performance over time, with emphasis on understanding mechanisms that improve the fitness of herbicide-resistant phenotypes during selection.
Collapse
Affiliation(s)
- Hossein Ghanizadeh
- Institute of Agriculture and Environment, Massey University, PB 11-222, Palmerston North 4442, New Zealand
| | - Kerry C Harrington
- Institute of Agriculture and Environment, Massey University, PB 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
27
|
Orr TJ, Garland T. Complex Reproductive Traits and Whole-Organism Performance. Integr Comp Biol 2017; 57:407-422. [DOI: 10.1093/icb/icx052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
|
29
|
Madliger CL, Love OP. The Power of Physiology in Changing Landscapes: Considerations for the Continued Integration of Conservation and Physiology. Integr Comp Biol 2016; 55:545-53. [PMID: 25805172 DOI: 10.1093/icb/icv001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.
Collapse
|
30
|
Hiramatsu L, Garland T. Nature or Nurture? Heritability in the Classroom. Physiol Biochem Zool 2016; 89:457-461. [PMID: 27792537 DOI: 10.1086/688289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding evolution is a necessary component of undergraduate education in biology, and evolution is difficult to explain without studying the heritability of traits. However, in most classes, heritability is presented with only a handful of graphs showing typical morphological traits, for example, beak size in finches and height in humans. The active-inquiry exercise outlined in the following pages allows instructors to engage students in this formerly dry subject by bringing their own data as the basis for estimates of heritability. Students are challenged to come up with their own hypotheses regarding how and to what extent their traits are inherited from their parents and then gather, analyze data, and make inferences with help from the instructor. The exercise is simple in concept and execution but uncovers many new avenues of inquiry for students, including potential biases in their estimates of heritability and misconceptions that they may have had about the extent of inference that can be made from their heritability estimates. The active-inquiry format of the exercise prioritizes curiosity and discussion, leading to a much deeper understanding of heritability and the scientific method.
Collapse
|
31
|
McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C, Killen SS, Lefevre S, Marras S, Michaelidis B, Nilsson GE, Peck MA, Perez-Ruzafa A, Rijnsdorp AD, Shiels HA, Steffensen JF, Svendsen JC, Svendsen MBS, Teal LR, van der Meer J, Wang T, Wilson JM, Wilson RW, Metcalfe JD. Conservation physiology of marine fishes: state of the art and prospects for policy. CONSERVATION PHYSIOLOGY 2016; 4:cow046. [PMID: 27766156 PMCID: PMC5070530 DOI: 10.1093/conphys/cow046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Collapse
Affiliation(s)
- David J. McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095 Montpellier, France
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 413 90 Gothenburg, Sweden
| | - Denis Chabot
- Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, CanadaG5H 3Z4
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, ZI Pointe du Diable. CS 10070, 29280 Plouzané, France
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B6
| | | | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paolo Domenici
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Pedro M. Guerreiro
- CCMAR – Centre for Marine Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, 5020 Bergen, Norway
| | - Shaun S. Killen
- Institute of Biodiversity,Animal Health and Comparative Medicine, College of Medical,Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sjannie Lefevre
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Stefano Marras
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Göran E. Nilsson
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Myron A. Peck
- Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg 22767, Germany
| | - Angel Perez-Ruzafa
- Department of Ecology and Hydrology, Faculty of Biology, Espinardo, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Murcia, Spain
| | - Adriaan D. Rijnsdorp
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Holly A. Shiels
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Jon C. Svendsen
- Section for Ecosystem-based Marine Management, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark
| | - Morten B. S. Svendsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Lorna R. Teal
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Jaap van der Meer
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonathan M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4050-123 Porto, Portugal
| | - Rod W. Wilson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, ExeterEX4 4QD, UK
| | - Julian D. Metcalfe
- Centre for Environment,Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| |
Collapse
|
32
|
Garland T, Zhao M, Saltzman W. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integr Comp Biol 2016; 56:207-24. [PMID: 27252193 PMCID: PMC5964798 DOI: 10.1093/icb/icw040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels.
Collapse
Affiliation(s)
- Theodore Garland
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Meng Zhao
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Wendy Saltzman
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| |
Collapse
|
33
|
Dodd RS, Douhovnikoff V. Adjusting to Global Change through Clonal Growth and Epigenetic Variation. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
35
|
Burggren WW. Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype 'washout'. ACTA ACUST UNITED AC 2015; 218:80-7. [PMID: 25568454 DOI: 10.1242/jeb.107318] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigenetic studies of both intragenerational and transgenerational epigenetic phenotypic modifications have proliferated in the last few decades. However, the strong reductionist focus on mechanism that prevails in many epigenetic studies to date has diverted attention away what might be called the 'dynamics' of epigenetics and its role in comparative biology. Epigenetic dynamics describes how both transgenerational and intragenerational epigenetic phenotypic modifications change in non-linear patterns over time. Importantly, a dynamic perspective suggests that epigenetic phenomena should not be regarded as 'digital' (on-off), in which a modified trait necessarily suddenly disappears between one generation and the next. Rather, dynamic epigenetic phenomena may be better depicted by graded, time-related changes that can potentially involve the 'washout' of modified phenotype both within and across generations. Conceivably, an epigenetic effect might also 'wash-in' over multiple generations, and there may be unexplored additive effects resulting from the pressures of environmental stressors that wax, wane and then wax again across multiple generations. Recognition of epigenetic dynamics is also highly dependent on the threshold for detection of the phenotypic modification of interest, especially when phenotypes wash out or wash in. Thus, studies of transgenerational epigenetic effects (and intragenerational effects, for that matter) that search for persistence of the phenomenon are best conducted with highly sensitive, precise quantitative methods. All of the scenarios in this review representing epigenetic dynamics are possible and some even likely. Focused investigations that concentrate on the time course will reveal much about both the impact and mechanisms of epigenetic phenomena.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
36
|
Artacho P, Saravia J, Ferrandière BD, Perret S, Le Galliard JF. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards. Ecol Evol 2015; 5:3600-9. [PMID: 26380689 PMCID: PMC4567864 DOI: 10.1002/ece3.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/11/2022] Open
Abstract
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.
Collapse
Affiliation(s)
- Paulina Artacho
- Instituto de Ciencias Ambientales y Evolutivas, Campus Isla Teja, Universidad Austral de ChileValdivia, Chile
- CNRS, UMR 7618, iEES Paris, Université Pierre et Marie Curie7 Quai St. Bernard, 75005, Paris, France
| | - Julia Saravia
- Instituto de Ciencias Ambientales y Evolutivas, Campus Isla Teja, Universidad Austral de ChileValdivia, Chile
- CNRS, UMR 7618, iEES Paris, Université Pierre et Marie Curie7 Quai St. Bernard, 75005, Paris, France
| | - Beatriz Decencière Ferrandière
- Instituto de Ciencias Ambientales y Evolutivas, Campus Isla Teja, Universidad Austral de ChileValdivia, Chile
- CNRS/ENS UMS 3194, CEREEP – Ecotron IleDeFrance, École Normale Supérieure78 rue du Château, 77140, St-Pierre-lès-Nemours, France
| | - Samuel Perret
- Instituto de Ciencias Ambientales y Evolutivas, Campus Isla Teja, Universidad Austral de ChileValdivia, Chile
- CNRS/ENS UMS 3194, CEREEP – Ecotron IleDeFrance, École Normale Supérieure78 rue du Château, 77140, St-Pierre-lès-Nemours, France
| | - Jean-François Le Galliard
- CNRS, UMR 7618, iEES Paris, Université Pierre et Marie Curie7 Quai St. Bernard, 75005, Paris, France
- CNRS/ENS UMS 3194, CEREEP – Ecotron IleDeFrance, École Normale Supérieure78 rue du Château, 77140, St-Pierre-lès-Nemours, France
| |
Collapse
|
37
|
Affiliation(s)
- Steven L. Chown
- School of Biological Sciences Monash University Melbourne Vic.3800 Australia
| | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn Cornwall TR10 9FE UK
| |
Collapse
|
38
|
Storz JF, Bridgham JT, Kelly SA, Garland T. Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Comp Physiol 2015; 309:R197-214. [PMID: 26041111 PMCID: PMC4525326 DOI: 10.1152/ajpregu.00100.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio; and
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
39
|
Sharp K, Bucci D, Zelensky PK, Chesney A, Tidhar W, Broussard DR, Heideman PD. Genetic variation in male sexual behaviour in a population of white-footed mice in relation to photoperiod. Anim Behav 2015; 104:203-212. [PMID: 25983335 PMCID: PMC4428349 DOI: 10.1016/j.anbehav.2015.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth.
Collapse
Affiliation(s)
- Kathy Sharp
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| | - Donna Bucci
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| | - Paul K. Zelensky
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| | - Alanna Chesney
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| | - Wendy Tidhar
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| | | | - Paul D. Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA, U.S.A
| |
Collapse
|
40
|
Kim M, McKinnon D, MacCarthy T, Rosati B, McKinnon D. Regulatory evolution and voltage-gated ion channel expression in squid axon: selection-mutation balance and fitness cliffs. PLoS One 2015; 10:e0120785. [PMID: 25875483 PMCID: PMC4395378 DOI: 10.1371/journal.pone.0120785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
It has been suggested that optimization of either axonal conduction velocity or the energy efficiency of action potential conduction predominates in the selection of voltage-gated sodium conductance levels in the squid axon. A population genetics model of channel gene regulatory function was used to examine the role of these and other evolutionary forces on the selection of both sodium and potassium channel expression levels. In this model, the accumulating effects of mutations result in degradation of gene regulatory function, causing channel gene expression to fall to near-zero in the absence of positive selection. In the presence of positive selection, channel expression levels fall to the lowest values consistent with the selection criteria, thereby establishing a selection-mutation balance. Within the parameter space of sodium and potassium conductance values, the physiological performance of the squid axon model showed marked discontinuities associated with conduction failure and excitability. These discontinuities in physiological function may produce fitness cliffs. A fitness cliff associated with conduction failure, combined with the effects of phenotypic noise, can account for the selection of sodium conductance levels, without considering either conduction velocity or metabolic cost. A fitness cliff associated with a transition in axonal excitability, combined with phenotypic noise, can explain the selection of potassium channel expression levels. The results suggest that voltage-gated ion channel expression will fall to low levels, consistent with key functional constraints, even in the absence of positive selection for energy efficiency. Channel expression levels and individual variation in channel expression within the population can be explained by regulatory evolution in combination with genetic variation in regulatory function and phenotypic noise, without resorting to more complex mechanisms, such as activity-dependent homeostasis. Only a relatively small region of the large, nominally isofunctional parameter space for channel expression will normally be occupied, because of the effects of mutation.
Collapse
Affiliation(s)
- Min Kim
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Don McKinnon
- Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Barbara Rosati
- Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States of America
| | - David McKinnon
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America; The Department of Research, Veterans Affairs Medical Center, Northport, New York, United States of America
| |
Collapse
|
41
|
Joslin R, Müller R. New Insights into Project Management Research: A Natural Sciences Comparative. PROJECT MANAGEMENT JOURNAL 2015. [DOI: 10.1002/pmj.21472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this article, a new research perspective toward project management phenomena is developed; it builds on the existing natural science theory of genotyping and phenotyping by developing a contemporary comparative model for project management research, which compares natural science molecular biology (genomics) as a way to investigate social science (specifically, project management) phenomena. The comparative maps concepts and terminology and, in doing so, explains why phenomena in genomics (study of genetics) can be compared with practices, behaviors, and established thinking in project management. To support the theory building process, the attributes of complex adaptive systems (CAS) are used to validate the constructs of the research. The comparative is then used to answer the research question by identifying two social science phenomena: “lessons intentionally not learned” and “bricolage of competing methodology subelements,” followed by a detailed explanation of the reasons for the phenomena using the attributes of the comparative. This article provides further examples of phenomena that were derived from the comparative model as well as the types of research questions where the model would provide insight. The authors believe that using a comparative model will challenge established thinking so that many aspects of project management will be seen in a new light in both the research and practitioner communities of project management.
Collapse
|
42
|
Passow CN, Greenway R, Arias-Rodriguez L, Jeyasingh PD, Tobler M. Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish. Physiol Biochem Zool 2015; 88:371-83. [PMID: 26052634 DOI: 10.1086/681053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism.
Collapse
Affiliation(s)
- Courtney N Passow
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078; 2División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | | |
Collapse
|
43
|
Sadowska J, Gębczyński AK, Konarzewski M. Effect of reproduction on the consistency of the between-line type divergence in laboratory mice selected on Basal metabolic rate. Physiol Biochem Zool 2015; 88:328-35. [PMID: 25860830 DOI: 10.1086/680167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Artificial selection experiments are an effective tool for testing evolutionary hypotheses, because they allow one to separate genetic and environmental variances of the phenotype. However, it is unclear whether trait divergence typically selected early in life persists over an animal's life and altered physiological states, such as reproduction. Here we analyzed the long-term consistency of the between-line type divergence in basal metabolic rate (BMR) selected at 12 wk of age in laboratory mice. We measured BMR in nonreproducing and reproducing females at the age of 22 wk and then at 27 wk of age. Our results show that within both the reproducing group and the control group, the between-line type separation in BMR is consistently retained over time and reproductive status. Metabolically active internal organs (heart, liver, kidneys, and small intestine) also consistently differed in size between the two line types with no significant long-term effect of reproduction. The observed consistency of the between-line type divergence in BMR suggests the existence of the persistent effect of the selection on metabolic traits applied early in life. Moreover, BMR variation achieved by means of artificial selection is considerably higher than that found in natural/unmanipulated populations. The latter may therefore be characterized by insufficient variance to statistically resolve correlations involving BMR.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | | | | |
Collapse
|
44
|
Garland T. Editorial: expanded areas of biology to be considered. Physiol Biochem Zool 2014; 87:585-6. [PMID: 25244371 DOI: 10.1086/678458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Hetem RS, Fuller A, Maloney SK, Mitchell D. Responses of large mammals to climate change. Temperature (Austin) 2014; 1:115-27. [PMID: 27583293 PMCID: PMC4977165 DOI: 10.4161/temp.29651] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 12/04/2022] Open
Abstract
Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.
Collapse
Affiliation(s)
- Robyn S Hetem
- Brain Function Research Group; School of Physiology; University of the Witwatersrand; Faculty of Health Science; Parktown, South Africa
| | - Andrea Fuller
- Brain Function Research Group; School of Physiology; University of the Witwatersrand; Faculty of Health Science; Parktown, South Africa
| | - Shane K Maloney
- Brain Function Research Group; School of Physiology; University of the Witwatersrand; Faculty of Health Science; Parktown, South Africa
- School of Anatomy, Physiology, and Human Biology; University of Western Australia; Crawley, Australia
| | - Duncan Mitchell
- Brain Function Research Group; School of Physiology; University of the Witwatersrand; Faculty of Health Science; Parktown, South Africa
- School of Anatomy, Physiology, and Human Biology; University of Western Australia; Crawley, Australia
| |
Collapse
|
46
|
Nespolo RF, Bartheld JL, González A, Bruning A, Roff DA, Bacigalupe LD, Gaitán‐Espitia JD. The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non‐additive genetic variation. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - José L. Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Avia González
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Andrea Bruning
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Derek A. Roff
- Department of Biology University of California Riverside CaliforniaUSA
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Juan D. Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
47
|
Patterson SH, Hahn TP, Cornelius JM, Breuner CW. Natural selection and glucocorticoid physiology. J Evol Biol 2013; 27:259-74. [DOI: 10.1111/jeb.12286] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/18/2023]
Affiliation(s)
- S. H. Patterson
- Division of Biological Sciences; University of Montana; Missoula MT USA
| | - T. P. Hahn
- Department of Neurobiology, Physiology and Behavior; University of California at Davis; Davis CA USA
| | - J. M. Cornelius
- Department of Neurobiology, Physiology and Behavior; University of California at Davis; Davis CA USA
| | - C. W. Breuner
- Division of Biological Sciences; University of Montana; Missoula MT USA
| |
Collapse
|
48
|
Rezende EL, Diniz-Filho JAF. Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. Compr Physiol 2013; 2:639-74. [PMID: 23728983 DOI: 10.1002/cphy.c100079] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comparisons among species have been a standard tool in animal physiology to understand how organisms function and adapt to their surrounding environment. During the last two decades, conceptual and methodological advances from different fields, including evolutionary biology and systematics, have revolutionized the way comparative analyses are performed, resulting in the advent of modern phylogenetic statistical methods. This development stems from the realization that conventional analytical methods assume that observations are statistically independent, which is not the case for comparative data because species often resemble each other due to shared ancestry. By taking evolutionary history explicitly into consideration, phylogenetic statistical methods can account for the confounding effects of shared ancestry in interspecific comparisons, improving the reliability of standard approaches such as regressions or correlations in comparative analyses. Importantly, these methods have also enabled researchers to address entirely new evolutionary questions, such as the historical sequence of events that resulted in current patterns of form and function, which can only be studied with a phylogenetic perspective. Here, we provide an overview of phylogenetic approaches and their importance for studying the evolution of physiological processes and mechanisms. We discuss the conceptual framework underlying these methods, and explain when and how phylogenetic information should be employed. We then outline the difficulties and limitations inherent to comparative approaches and discuss potential problems researchers may encounter when designing a comparative study. These issues are illustrated with examples from the literature in which the incorporation of phylogenetic information has been useful, or even crucial, for inferences on how species evolve and adapt to their surrounding environment.
Collapse
Affiliation(s)
- Enrico L Rezende
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
49
|
Cheviron ZA, Connaty AD, McClelland GB, Storz JF. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution 2013; 68:48-62. [PMID: 24102503 DOI: 10.1111/evo.12257] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/16/2013] [Indexed: 12/14/2022]
Abstract
In species that are distributed across steep environmental gradients, adaptive variation in physiological performance may be attributable to transcriptional plasticity in underlying regulatory networks. Here we report the results of common-garden experiments that were designed to elucidate the role of regulatory plasticity in evolutionary adaptation to hypoxic cold-stress in deer mice (Peromyscus maniculatus). We integrated genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance under hypoxia in highland (4350 m) and lowland (430 m) mice from three experimental groups: (1) wild-caught mice that were sampled at their native elevations; (2) wild-caught/lab-reared mice that were deacclimated to low-elevation conditions in a common-garden lab environment; and (3) the F(1) progeny of deacclimated mice that were maintained under the same low-elevation common-garden conditions. In each experimental group, highland mice exhibited greater thermogenic capacities than lowland mice, and this enhanced performance was associated with upregulation of transcriptional modules that influence several hierarchical steps in the O(2) cascade, including tissue O(2) diffusion (angiogenesis) and tissue O(2) utilization (metabolic fuel use and cellular oxidative capacity). Most of these performance-related transcriptomic changes occurred over physiological and developmental timescales, suggesting that regulatory plasticity makes important contributions to fitness-related physiological performance in highland deer mice.
Collapse
Affiliation(s)
- Zachary A Cheviron
- Department of Animal Biology, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois, 61801.
| | | | | | | |
Collapse
|
50
|
Cheviron ZA, Bachman GC, Storz JF. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. ACTA ACUST UNITED AC 2012. [PMID: 23197099 DOI: 10.1242/jeb.075598] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small mammals face especially severe thermoregulatory challenges at high altitude because the reduced O2 availability constrains the capacity for aerobic thermogenesis. Adaptive enhancement of thermogenic performance under hypoxic conditions may be achieved via physiological adjustments that occur within the lifetime of individuals (phenotypic plasticity) and/or genetically based changes that occur across generations, but their relative contributions to performance differences between highland and lowland natives are unclear. Here, we examined potentially evolved differences in thermogenic performance between populations of deer mice (Peromyscus maniculatus) that are native to different altitudes. The purpose of the study was to assess the contribution of phenotypic plasticity to population differences in thermogenic performance under hypoxia. We used a common-garden deacclimation experiment to demonstrate that highland deer mice have enhanced thermogenic capacities under hypoxia, and that performance differences between highland and lowland mice persist when individuals are born and reared under common-garden conditions, suggesting that differences in thermogenic capacity have a genetic basis. Conversely, population differences in thermogenic endurance appear to be entirely attributable to physiological plasticity during adulthood. These combined results reveal distinct sources of phenotypic plasticity for different aspects of thermogenic performance, and suggest that thermogenic capacity and endurance may have different mechanistic underpinnings.
Collapse
Affiliation(s)
- Zachary A Cheviron
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|