1
|
Stockdale JN, Millwood RJ. Transgene Bioconfinement: Don't Flow There. PLANTS (BASEL, SWITZERLAND) 2023; 12:1099. [PMID: 36903958 PMCID: PMC10005267 DOI: 10.3390/plants12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The adoption of genetically engineered (GE) crops has led to economic and environmental benefits. However, there are regulatory and environmental concerns regarding the potential movement of transgenes beyond cultivation. These concerns are greater for GE crops with high outcrossing frequencies to sexually compatible wild relatives and those grown in their native region. Newer GE crops may also confer traits that enhance fitness, and introgression of these traits could negatively impact natural populations. Transgene flow could be lessened or prevented altogether through the addition of a bioconfinement system during transgenic plant production. Several bioconfinement approaches have been designed and tested and a few show promise for transgene flow prevention. However, no system has been widely adopted despite nearly three decades of GE crop cultivation. Nonetheless, it may be necessary to implement a bioconfinement system in new GE crops or in those where the potential of transgene flow is high. Here, we survey such systems that focus on male and seed sterility, transgene excision, delayed flowering, as well as the potential of CRISPR/Cas9 to reduce or eliminate transgene flow. We discuss system utility and efficacy, as well as necessary features for commercial adoption.
Collapse
|
2
|
Heredia-Pech M, Chávez-Pesqueira M, Ortiz-García MM, Andueza-Noh RH, Chacón-Sánchez MI, Martínez-Castillo J. Consequences of introgression and gene flow on the genetic structure and diversity of Lima bean ( Phaseolus lunatus L.) in its Mesoamerican diversity area. PeerJ 2022; 10:e13690. [PMID: 35811827 PMCID: PMC9266586 DOI: 10.7717/peerj.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
We evaluated the role of gene flow and wild-crop introgression on the structure and genetic diversity of Lima bean (Phaseolus lunatus) in the Yucatan Peninsula, an important Mesoamerican diversity area for this crop, using a genotyping-by-sequencing approach (15,168 SNP markers) and two scales. At the local scale, STRUCTURE and NGSEP analyses showed predominantly crop-to-wild introgression, but also evidence of a bidirectional gene flow in the two wild-weedy-crop complexes studied (Itzinté and Dzitnup). The ABBA-BABA tests showed a higher introgression in Itzinté (the older complex) than in Dzitnup (the younger one); at the allelic level, the wild-crop introgression in Itzinté was similar in both directions, in Dzitnup it was higher from crop-to-wild; and at the chromosomal level, introgression in Itzinté was from wild-to-crop, whereas in Dzitnup it occured in the opposite direction. Also, we found H E values slightly higher in the domesticated accessions than in the wild ones, in both complexes (Itzinté: wild = 0.31, domesticated = 0.34; Dzinup: wild = 0.27, domesticated = 0.36), but %P and π estimators were higher in the wild accessions than in the domesticated ones. At a regional scale, STRUCTURE and MIGRATE showed a low gene flow, predominantly from crop-to-wild; and STRUCTURE, Neighbor-Joining and PCoA analyses indicated the existence of two wild groups and one domesticated group, with a marked genetic structure based in the existence of domesticated MI and wild MII gene pools. Also, at the regional scale, we found a higher genetic diversity in the wild accessions than in the domesticated ones, in all estimators used (e.g., H E = 0.27 and H E = 0.17, respectively). Our results indicate that gene flow and introgression are playing an important role at the local scale, but its consequences on the structure and genetic diversity of the Lima bean are not clearly reflected at the regional scale, where diversity patterns between wild and domesticated populations could be reflecting historical events.
Collapse
Affiliation(s)
- Mauricio Heredia-Pech
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Mariana Chávez-Pesqueira
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Matilde M. Ortiz-García
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Rubén Humberto Andueza-Noh
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Conkal, Yucatán, México
| | - María Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jaime Martínez-Castillo
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| |
Collapse
|
3
|
Mitchell N, Chamberlain SA, Whitney KD. Proximity to crop relatives determines some patterns of natural selection in a wild sunflower. Evol Appl 2021; 14:1328-1342. [PMID: 34025771 PMCID: PMC8127714 DOI: 10.1111/eva.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022] Open
Abstract
Abiotic and biotic heterogeneity result in divergent patterns of natural selection in nature, with important consequences for fundamental evolutionary processes including local adaptation, speciation, and diversification. However, increasing amounts of the global terrestrial surface are homogenized by agriculture (which covers nearly 50% of terrestrial vegetated land surface) and other anthropogenic activities. Agricultural intensification leads to highly simplified biotic communities for many taxa, which may alter natural selection through biotic selective agents. In particular, the presence of crops may alter selection on traits of closely related wild relatives via shared mutualists and antagonists such as pollinators and herbivores. We asked how the presence of crop sunflowers (Helianthus annuus) alters natural selection on reproductive traits of wild sunflowers (Helianthus annuus texanus). Across two years and multiple sites, we planted replicated paired populations of wild H. a. texanus bordering sunflower crop fields versus approximately 2.5 km away. We measured fitness, floral traits, and interactions of the plants with insect pollinators and seed predators. We found limited evidence that proximity to crop sunflowers altered selection on individual traits, as total or direct selection differed by proximity for only three of eleven traits: ray length (a marginally significant effect), Isophrictis (Gelechiidae, moth) attack, and Neolasioptera (Cecidomyiidae, midge) attack. Direct (but not total) selection was significantly more heterogenous far from crop sunflowers relative to near crop sunflowers. Both mutualist pollinators and antagonist seed predators mediated differences in selection in some population-pairs near versus far from crop sunflowers. Here, we demonstrate that agriculture can influence the evolution of wild species via altered selection arising from shared biotic interactions, complementing previously demonstrated evolutionary effects via hybridization.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWIUSA
| | - Scott A. Chamberlain
- Department of Ecology & Evolutionary BiologyRice UniversityHoustonTXUSA
- Present address:
rOpenSciDepartment of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
4
|
Nam KH, Kim DY, Moon YS, Pack IS, Jeong SC, Kim HB, Kim CG. Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions. Sci Rep 2020; 10:9319. [PMID: 32518274 PMCID: PMC7283212 DOI: 10.1038/s41598-020-66206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Gene transfer from transgenic crops to their weedy relatives may introduce undesired ecological consequences that can increase the fitness and invasiveness of weedy populations. Here, we examined the rate of gene flow from abiotic stress-tolerant transgenic rice that over-express AtCYP78A7, a gene encoding cytochrome P450 protein, to six weedy rice accessions and compared the phenotypic performance and drought tolerance of their hybrids over generations. The rate of transgene flow from AtCYP78A7-overexpressing transgenic to weedy rice varied between 0% and 0.0396%. F1 hybrids containing AtCYP78A7 were significantly taller and heavier, but the percentage of ripened grains, grain numbers and weight per plant were significantly lower than their transgenic and weedy parents. The homozygous and hemizygous F2 progeny showed higher tolerance to drought stress than the nullizygous F2 progeny, as indicated by leaf rolling scores. Shoot growth of nullizygous F3 progeny was significantly greater than weedy rice under water-deficient conditions in a rainout shelter, however, that of homozygous F3 progeny was similar to weedy rice, indicating the cost of continuous expression of transgene. Our findings imply that gene flow from AtCYP78A7-overexpressing transgenic to weedy rice might increase drought tolerance as shown in the pot experiment, however, increased fitness under stressed conditions in the field were not observed for hybrid progeny containing transgenes.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- LMO research team, National Institute of Ecology, Seocheon, 33657, Republic of Korea
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ye Seul Moon
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - In Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon, 14548, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
5
|
Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation. FRONTIERS IN PLANT SCIENCE 2019; 10:4. [PMID: 30774638 PMCID: PMC6367218 DOI: 10.3389/fpls.2019.00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/04/2019] [Indexed: 05/18/2023]
Abstract
Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions. Gene flow, from either the same species or a different species, may be an immediate primary source to widen genetic diversity and adaptions to various environments. When the incorporation of a foreign variant leads to an increase of the fitness of the recipient pool, it is referred to as "adaptive introgression". Crop species are excellent case studies of this phenomenon since their genetic variability has been considerably reduced over space and time but most of them continue exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive introgression, presenting methodological approaches and challenges to detecting it. We pay particular attention to the potential of this evolutionary mechanism for the adaptation of crops. Furthermore, we discuss the importance of farmers' knowledge and practices in shaping wild-to-crop gene flow. Finally, we argue that screening the wild introgression already existing in the cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop adaptation to current environmental changes and for informing new breeding directions.
Collapse
Affiliation(s)
- Concetta Burgarella
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| | - Adeline Barnaud
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Ndjido Ardo Kane
- Laboratoire National de Recherches sur les Productions Végétales, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
| | - Frédérique Jankowski
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UPR GREEN, Montpellier, France
- GREEN, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Université de Montpellier, Montpellier, France
- Bureau d’Analyses Macro-Economiques, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Nora Scarcelli
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Claire Billot
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Yves Vigouroux
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Cécile Berthouly-Salazar
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| |
Collapse
|
6
|
Weiner J, Du YL, Zhang C, Qin XL, Li FM. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 2017; 98:2261-2266. [PMID: 28783218 DOI: 10.1002/ecy.1934] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/24/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness.
Collapse
Affiliation(s)
- Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Yan-Lei Du
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Cong Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Liang Qin
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Feng-Min Li
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Rešetnik I, Baričevič D, Batîr Rusu D, Carović-Stanko K, Chatzopoulou P, Dajić-Stevanović Z, Gonceariuc M, Grdiša M, Greguraš D, Ibraliu A, Jug-Dujaković M, Krasniqi E, Liber Z, Murtić S, Pećanac D, Radosavljević I, Stefkov G, Stešević D, Šoštarić I, Šatović Z. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae). PLoS One 2016; 11:e0159545. [PMID: 27441834 PMCID: PMC4956250 DOI: 10.1371/journal.pone.0159545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic diversity and structure also provide the baseline data for conservation of S. officinalis genetic resources valuable for future breeding programmes.
Collapse
Affiliation(s)
- Ivana Rešetnik
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Dea Baričevič
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Paschalina Chatzopoulou
- Department of Aromatic and Medicinal Plants, Hellenic Agricultural Organisation, Thessaloniki, Greece
| | | | - Maria Gonceariuc
- Institute of Genetics and Plant Physiology, Academy of Sciences, Chişinău, Moldova
| | - Martina Grdiša
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | - Alban Ibraliu
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | | | - Elez Krasniqi
- Faculty of Natural Sciences and Mathematics, University of Pristina, Prishtinë, Kosovo
| | - Zlatko Liber
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Senad Murtić
- Faculty of Agriculture and Food Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Dragana Pećanac
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Gjoshe Stefkov
- Faculty of Pharmacy, University of Ss. Cyril and Methodius, Skopje, Macedonia
| | - Danijela Stešević
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Podgorica, Montenegro
| | - Ivan Šoštarić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Zlatko Šatović
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Campbell LG, Teitel Z, Miriti MN. Contemporary evolution and the dynamics of invasion in crop-wild hybrids with heritable variation for two weedy life-histories. Evol Appl 2016; 9:697-708. [PMID: 27247620 PMCID: PMC4869411 DOI: 10.1111/eva.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/06/2016] [Indexed: 11/27/2022] Open
Abstract
Gene flow in crop-wild complexes between phenotypically differentiated ancestors may transfer adaptive genetic variation that alters the fecundity and, potentially, the population growth (λ) of weeds. We created biotypes with potentially invasive traits, early flowering or long leaves, in wild radish (Raphanus raphanistrum) and F5 crop-wild hybrid (R. sativus × R. raphanistrum) backgrounds and compared them to randomly mated populations, to provide the first experimental estimate of long-term fitness consequences of weedy life-history variation. Using a life table response experiment design, we modeled λ of experimental, field populations in Pellston, MI, and assessed the relative success of alternative weed strategies and the contributions of individual vital rates (germination, survival, seed production) to differences in λ among experimental populations. Growth rates (λ) were most influenced by seed production, a trait altered by hybridization and selection, compared to other vital rates. More seeds were produced by wild than hybrid populations and by long-leafed than early-flowering lineages. Although we did not detect a biotype by selection treatment effect on lambda, lineages also exhibited contrasting germination and survival strategies. Identifying life-history traits affecting population growth contributes to our understanding of which portions of the crop genome are most likely to introgress into weed populations.
Collapse
Affiliation(s)
- Lesley G Campbell
- Department of Chemistry & Biology Ryerson University Toronto ON Canada
| | - Zachary Teitel
- Department of Chemistry & Biology Ryerson University Toronto ON Canada; Present address: Department of Integrative Biology University of Guelph Guelph ON Canada
| | - Maria N Miriti
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| |
Collapse
|
9
|
Cruz-Reyes R, Ávila-Sakar G, Sánchez-Montoya G, Quesada M. Experimental assessment of gene flow between transgenic squash and a wild relative in the center of origin of cucurbits. Ecosphere 2015. [DOI: 10.1890/es15-00304.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Simmons HE, Prendeville HR, Dunham JP, Ferrari MJ, Earnest JD, Pilson D, Munkvold GP, Holmes EC, Stephenson AG. Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent Vertical Transmission of Zucchini yellow mosaic virus. PLANT DISEASE 2015; 99:1616-1621. [PMID: 30695961 DOI: 10.1094/pdis-10-14-1062-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic squash cultivar with wild C. pepo, and determined whether seed-to-seedling transmission of ZYMV was possible in seeds harvested from transgenic backcrossed C. pepo. We then compared these transmission rates to those of non-transgenic (backcrossed and wild) C. pepo. The overall seed-to-seedling transmission rate in ZYMV was similar to those found in previous studies (1.37%), with no significant difference between transgenic backcrossed (2.48%) and non-transgenic (1.03%) backcrossed and wild squash. Fewer transgenic backcrossed plants had symptom development (7%) in comparison with all non-transgenic plants (26%) and may be instrumental in preventing yield reduction due to ZYMV. Our study shows that ZYMV is seed transmitted in transgenic backcrossed squash, which may affect the spread of ZYMV via the movement of ZYMV-infected seeds. Deep genome sequencing of the seed-transmitted viral populations revealed that 23% of the variants found in this study were present in other vertically transmitted ZYMV populations, suggesting that these variants may be necessary for seed transmission or are distributed geographically via seeds.
Collapse
Affiliation(s)
- H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011; and Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - H R Prendeville
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588; and Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - J P Dunham
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90033
| | - M J Ferrari
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - J D Earnest
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - D Pilson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588
| | - G P Munkvold
- Seed Science Center, Iowa State University, Ames, IA 50011
| | - E C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802; and Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, NSW 2006, Australia
| | - A G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
|
12
|
Cheung KW, Razeq FM, Sauder CA, James T, Martin SL. Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae). JOURNAL OF PLANT RESEARCH 2015; 128:469-480. [PMID: 25698113 DOI: 10.1007/s10265-015-0702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
With transgenic crop development it is important to evaluate the potential for transgenes to escape into populations of wild, weedy relatives. Ethiopian mustard (Brassica carinata, BBCC) is easily transformed and is being investigated for uses from biodiesel fuels to biopharmaceuticals. However, little work has been done evaluating its ability to cross with relatives such as wild mustard (Sinapsis arvensis, SrSr), an abundant, cosmopolitan weedy relative. Here we conducted bidirectional crosses with Ethiopian mustard as a maternal parent in 997 crosses and paternal parent in 1,109 crosses. Hybrids were confirmed using flow cytometry and species-specific ITS molecular markers and indicate a high hybridization rate of 6.43 % between Ethiopian mustard (♀) and wild mustard (♂) and a lower, but not insignificant, hybridization rate of 0.01 % in the reverse direction. The majority of the hybrids were homoploid (BCSr) with less than 1 % of pollen production of their parents and low seed production (0.26 seeds/pollination) in crosses and backcrosses indicating a potential for advanced generation hybrids. The accession used had a significant effect on hybrid seed production with different accessions of Ethopian mustard varying in their production of hybrid offspring from 2.69 to 16.34 % and one accession of wild mustard siring almost twice as many hybrid offspring per flower as the other. One pentaploid (BBCCSr) and one hexaploid (BBCCSrSr) hybrid were produced and had higher pollen viability, though no and low seed production, respectively. As wild mustard is self-incompatible and the outcrossing rate of Ethiopian mustard has been estimated as 30 % potential for hybrid production in the wild appears to be high, though the hybridization rate found here represents a worst case scenario as it does not incorporate pre-pollination barriers. Hybridization in the wild needs to be directly evaluated as does the propensity of Ethiopian mustard to volunteer.
Collapse
Affiliation(s)
- Kyle W Cheung
- Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | | | | | | | | |
Collapse
|
13
|
Davidar P, Snow AA, Rajkumar M, Pasquet R, Daunay MC, Mutegi E. The potential for crop to wild hybridization in eggplant (Solanum melongena; Solanaceae) in southern India. AMERICAN JOURNAL OF BOTANY 2015; 102:129-39. [PMID: 25587155 DOI: 10.3732/ajb.1400404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY In India and elsewhere, transgenic Bt eggplant (Solanum melongena) has been developed to reduce insect herbivore damage, but published studies of the potential for pollen-mediated, crop- to- wild gene flow are scant. This information is useful for risk assessments as well as in situ conservation strategies for wild germplasm.• METHODS In 2010-2014, we surveyed 23 populations of wild/weedy eggplant (Solanum insanum; known as wild brinjal), carried out hand-pollination experiments, and observed pollinators to assess the potential for crop- to- wild gene flow in southern India.• KEY RESULTS Wild brinjal is a spiny, low-growing perennial commonly found in disturbed sites such as roadsides, wastelands, and sparsely vegetated areas near villages and agricultural fields. Fourteen of the 23 wild populations in our study occurred within 0.5 km of cultivated brinjal and at least nine flowered in synchrony with the crop. Hand crosses between wild and cultivated brinjal resulted in seed set and viable F1 progeny. Wild brinjal flowers that were bagged to exclude pollinators did not set fruit, and fruit set from manual self-pollination was low. The exserted stigmas of wild brinjal are likely to promote outcrossing. The most effective pollinators appeared to be bees (Amegilla, Xylocopa, Nomia, and Heterotrigona spp.), which also were observed foraging for pollen on crop brinjal.• CONCLUSION Our findings suggest that hybridization is possible between cultivated and wild brinjal in southern India. Thus, as part of the risk assessment process, we assume that transgenes from the crop could spread to wild brinjal populations that occur nearby.
Collapse
Affiliation(s)
- Priya Davidar
- Department of Ecology and Environmental Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Allison A Snow
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, Ohio 43210 USA
| | - Muthu Rajkumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Remy Pasquet
- IRD, UR 072, LEGS 91198 Gif-sur-yvette, France; Université Paris-Sud 11 91400 Orsay, France
| | - Marie-Christine Daunay
- INRA, Unité de Génétique & Amélioration des Fruits et Légumes, UR1052, Domaine St Maurice, CS 60094 F-84143 Montfavet cedex, France
| | - Evans Mutegi
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, Ohio 43210 USA
| |
Collapse
|
14
|
Ramírez-Valiente JA, Robledo-Arnuncio JJ. Adaptive consequences of human-mediated introgression for indigenous tree species: the case of a relict Pinus pinaster population. TREE PHYSIOLOGY 2014; 34:1376-1387. [PMID: 25466514 DOI: 10.1093/treephys/tpu097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human-induced gene movement via afforestation and restoration programs is a widespread phenomenon throughout the world. However, its effects on the genetic composition of native populations have received relatively little attention, particularly in forest trees. Here, we examine to what extent gene flow from allochthonous plantations of Pinus pinaster Aiton impacts offspring performance in a neighboring relict natural population and discuss the potential consequences for the long-term genetic composition of the latter. Specifically, we conducted a greenhouse experiment involving two contrasting watering treatments to test for differences in a set of functional traits and mortality rates between P. pinaster progenies from three different parental origins: (i) local native parents, (ii) exotic parents and (iii) intercrosses between local mothers and exotic fathers (intraspecific hybrids). Our results showed differences among crosses in cumulative mortality over time: seedlings of exotic parents exhibited the lowest mortality rates and seedlings of local origin the highest, while intraspecific hybrids exhibited an intermediate response. Linear regressions showed that seedlings with higher water-use efficiency (WUE, δ(13)C) were more likely to survive under drought stress, consistent with previous findings suggesting that WUE has an important role under dry conditions in this species. However, differences in mortality among crosses were only partially explained by WUE. Other non-measured traits and factors such as inbreeding depression in the relict population are more likely to explain the lower performance of native progenies. Overall, our results indicated that intraspecific hybrids and exotic individuals are more likely to survive under stressful conditions than local native individuals, at least during the first year of development. Since summer drought is the most important demographic and selective filter affecting tree establishment in Mediterranean ecosystems, a potential early selective advantage of exotic and hybrid genotypes would enhance initial steps of introgression of non-native genes into the study relict population of P. pinaster.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Department of Forest Ecology and Genetics, INIA-CIFOR, Carretera de La Coruña km 7.5, E-28040 Madrid, Spain Present address: Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Juan José Robledo-Arnuncio
- Department of Forest Ecology and Genetics, INIA-CIFOR, Carretera de La Coruña km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
15
|
Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. AMERICAN JOURNAL OF BOTANY 2014; 101:1791-800. [PMID: 25326621 DOI: 10.3732/ajb.1400116] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings.
Collapse
Affiliation(s)
- Emily Warschefsky
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - R Varma Penmetsa
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| |
Collapse
|
16
|
Alexander HM, Emry DJ, Pace BA, Kost MA, Sparks KA, Mercer KL. Roles of maternal effects and nuclear genetic composition change across the life cycle of crop-wild hybrids. AMERICAN JOURNAL OF BOTANY 2014; 101:1176-1188. [PMID: 25016007 DOI: 10.3732/ajb.1400088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
• Premise of the study: The fitness of an offspring may depend on its nuclear genetic composition (via both parental genotypes) as well as on genetic maternal effects (via only the maternal parent). Understanding the relative importance of these two genetic factors is particularly important for research on crop-wild hybridization, since traits with important genetic maternal effects (e.g., seed size) often differ among crops and their relatives. We hypothesized that the effects of these genetic factors on fitness components would change across the life cycle of hybrids.• Methods: We followed seed, plant size, and reproductive traits in field experiments with wild and four crop-wild hybrids of sunflower (Helianthus annuus), which differed in nuclear genetic composition and maternal parent (wild or F1 hybrid).• Key results: We identified strong genetic maternal effects for early life cycle characteristics, with seeds produced on an F1 mother having premature germination, negligible seed dormancy, and greater seedling size. Increased percentages of crop alleles also increased premature germination and reduced dormancy in seeds produced on a wild mother. For mature plants, nuclear genetic composition dominated: greater percentages of crop alleles reduced height, branching, and fecundity.• Conclusions: Particular backcrosses between hybrids and wilds may differentially facilitate movement of crop alleles into wild populations due to their specific features. For example, backcross seeds produced on wild mothers can persist in the seed bank, illustrating the importance of genetic maternal effects, whereas backcross individuals with either wild or F1 mothers have high fecundity, resulting from their wild-like nuclear genetic composition.
Collapse
Affiliation(s)
- Helen M Alexander
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045 USA
| | - D Jason Emry
- Department of Biology, Washburn University, Topeka, Kansas 66621 USA
| | - Brian A Pace
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 USA
| | - Matthew A Kost
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 USA
| | - Kathryn A Sparks
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045 USA
| | - Kristin L Mercer
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
17
|
Pinheiro PV, Quintela ED, Junqueira AMR, Aragão FJL, Faria JC. Populational survey of arthropods on transgenic common bean expressing the rep gene from Bean golden mosaic virus. GM CROPS & FOOD 2014; 5:139-48. [PMID: 24922280 DOI: 10.4161/gmcr.29224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetically modified (GM) crops is considered the fastest adopted crop technology in the history of modern agriculture. However, possible undesirable and unintended effects must be considered during the research steps toward development of a commercial product. In this report we evaluated effects of a common bean virus resistant line on arthropod populations, considered as non-target organisms. This GM bean line (named M1/4) was modified for resistance against Bean golden mosaic virus (BGMV) by expressing a mutated REP protein, which is essential for virus replication. Biosafety studies were performed for a period of three years under field conditions. The abundance of some species was significantly higher in specific treatments in a particular year, but not consistently different in other years. A regular pattern was not observed in the distribution of insects between genetically modified and conventional treatments. Data analyses showed that minor differences observed can be attributed to random variation and were not consistent enough to conclude that the treatments were different. Therefore the present study indicates that the relative abundance of species are similar in transgenic and non-transgenic fields.
Collapse
Affiliation(s)
| | | | | | | | - Josias C Faria
- Embrapa Arroz e Feijão; Santo Antônio de Goiás; Goiás, Brazil
| |
Collapse
|
18
|
Félix DT, Coello-Coello J, Martínez-Castillo J. Wild to crop introgression and genetic diversity in Lima bean (Phaseolus lunatus L.) in traditional Mayan milpas from Mexico. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0619-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Prendeville HR, Tenhumberg B, Pilson D. Effects of virus on plant fecundity and population dynamics. THE NEW PHYTOLOGIST 2014; 202:1346-1356. [PMID: 24571200 DOI: 10.1111/nph.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms are ubiquitous and thought to regulate host populations. Although microorganisms can be pathogenic and affect components of fitness, few studies have examined their effects on wild plant populations. As individual traits might not contribute equally to changes in population growth rate, it is essential to examine the entire life cycle to determine how microorganisms affect host population dynamics. In this study, we used data from common garden experiments with plants from three Cucurbita pepo populations exposed to three virus treatments. These data were used to parameterize a deterministic matrix model, which allowed us to estimate the effect of virus on components of fitness and population growth rate. Virus did not reduce fruit number, but population growth rates varied among virus treatments and wild C. pepo populations. The effect of virus on population growth rate depended on virus species and wild C. pepo population. Contributions of life-history transitions and life-history traits to population growth rates varied among populations and virus treatments. However, this population-virus interaction was not evident when examining individual components of fitness. Thus, caution must be used when interpreting the effects of changes in individual traits, as single traits do not always predict population-level change accurately.
Collapse
Affiliation(s)
- Holly R Prendeville
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Brigitte Tenhumberg
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Diana Pilson
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
20
|
Hartman Y, Hooftman DAP, Uwimana B, Schranz ME, van de Wiel CCM, Smulders MJM, Visser RGF, Michelmore RW, van Tienderen PH. Abiotic stress QTL in lettuce crop-wild hybrids: comparing greenhouse and field experiments. Ecol Evol 2014; 4:2395-409. [PMID: 25360276 PMCID: PMC4203288 DOI: 10.1002/ece3.1060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 11/11/2022] Open
Abstract
The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives.
Collapse
Affiliation(s)
- Yorike Hartman
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| | - Danny A P Hooftman
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands ; NERC, Centre for Ecology and Hydrology Wallingford, UK
| | - Brigitte Uwimana
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - M Eric Schranz
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| | - Clemens C M van de Wiel
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Marinus J M Smulders
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California Davis, California
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| |
Collapse
|
21
|
A stochastic cellular model with uncertainty analysis to assess the risk of transgene invasion after crop-wild hybridization: Oilseed rape and wild radish as a case study. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu Y, Wei W, Ma K, Li J, Liang Y, Darmency H. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:42-51. [PMID: 23987810 DOI: 10.1016/j.plantsci.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 06/02/2023]
Abstract
Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
23
|
Oke KB, Westley PAH, Moreau DTR, Fleming IA. Hybridization between genetically modified Atlantic salmon and wild brown trout reveals novel ecological interactions. Proc Biol Sci 2013; 280:20131047. [PMID: 23720549 DOI: 10.1098/rspb.2013.1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature.
Collapse
Affiliation(s)
- Krista B Oke
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada A1C 5S7.
| | | | | | | |
Collapse
|
24
|
Liu Y, Wei W, Ma K, Darmency H. Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in-vivo approach. Transgenic Res 2012; 22:747-56. [PMID: 23250587 DOI: 10.1007/s11248-012-9679-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
Introgression between transgenic, insect-resistant crops and their wild relatives could lead to a progressive increase of the frequency of resistant plants in wild populations. However, few studies help predict the impact on the population dynamics. To simulate the performance of introgressed insect-resistant plants of wild Brassica juncea, independently from the interspecific hybridization cost, healthy plants were cultivated in pure and mixed stands with damaged plants through cutting leaves in field experiments over two field seasons. As expected, resistant (healthy) plants held a competitive advantage when in competition with susceptible (damaged) plants. Individual biomass and seed production of both types of plants decreased as the percentage of resistant plants increased, so that the relative advantage of resistant plants increased. The combined effects of defoliation and competition on the individual performance of B. juncea were additive. Replacement series experiments confirmed this trend but did not show different seed output in pure stand of susceptible versus resistant plots. The total vegetative and reproductive production of mixed populations was not significantly different of that of pure populations. These results suggest that if a transgene for insect-resistance were to colonize wild populations, high herbivory of susceptible plant and low resource availability would facilitate the spread of resistant individuals. However, at the population level, the shift from an insect-susceptible to a predominantly resistant population would not result in exacerbated habitat colonization.
Collapse
Affiliation(s)
- Yongbo Liu
- State key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | | | | | | |
Collapse
|
25
|
van Hengstum T, Hooftman DAP, den Nijs HCM, van Tienderen PH. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses? AEROBIOLOGIA 2012; 28:325-335. [PMID: 22798704 PMCID: PMC3389241 DOI: 10.1007/s10453-011-9237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 11/04/2011] [Indexed: 06/01/2023]
Abstract
Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas van Hengstum
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | | | - Hans C. M. den Nijs
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Peter H. van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Kozub NO, Pilipenko LA, Sozinov IO, Blume YB, Sozinov OO. Genetically modified plants and plant protection problems: Progress and estimation of potential risks. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Liu YB, Tang ZX, Darmency H, Stewart CN, Di K, Wei W, Ma KP. The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea). PLoS One 2012; 7:e39705. [PMID: 22745814 PMCID: PMC3382164 DOI: 10.1371/journal.pone.0039705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories. METHODOLOGY/PRINCIPAL FINDINGS Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents. CONCLUSIONS Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.
Collapse
Affiliation(s)
- Yong-bo Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- UMR1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhi-xi Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Henri Darmency
- UMR1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kun Di
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- PetroChina Tarim Oilfield Company, Korler, Xinjiang, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ke-ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Uwimana B, D'Andrea L, Felber F, Hooftman DAP, Den Nijs HCM, Smulders MJM, Visser RGF, Van De Wiel CCM. A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe. Mol Ecol 2012; 21:2640-54. [PMID: 22512715 DOI: 10.1111/j.1365-294x.2012.05489.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion. In a basically selfing species, such as lettuce, assessing hybridization in natural populations may not be straightforward. Therefore, we analysed a uniquely large data set of plants genotyped with SSR (simple sequence repeat) markers with two programs for Bayesian population genetic analysis, STRUCTURE and NewHybrids. The data set comprised 7738 plants, including a complete genebank collection, which provided a wide coverage of cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed generations of a hybridization event or of one backcross after such an event, which is according to expectations for a basically selfing species. These advanced selfed generations could not be detected effectively with crop-specific alleles. In the northern part of Europe, where the expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we conclude that other mechanisms than crop/wild gene flow, such as an increase in disturbed habitats and/or climate warming, are more likely explanations for this expansion.
Collapse
|
29
|
Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, van Tienderen PH, Jansen J, McHale LK, Michelmore RW, Visser RGF, van de Wiel CCM. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC PLANT BIOLOGY 2012; 12:43. [PMID: 22448748 PMCID: PMC3384248 DOI: 10.1186/1471-2229-12-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/26/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). RESULTS Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. CONCLUSION As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking.
Collapse
Affiliation(s)
- Brigitte Uwimana
- Wageningen UR Plant Breeding, Postbus 386, 6700AJ Wageningen, the Netherlands
| | - Marinus JM Smulders
- Wageningen UR Plant Breeding, Postbus 16, 6700AA Wageningen, the Netherlands
| | - Danny AP Hooftman
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Yorike Hartman
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Johannes Jansen
- Wageningen UR Plant Biometris, Postbus 100, 6700AC Wageningen, the Netherlands
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California Davis, Davis, CA 95616-8816, USA
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Postbus 386, 6700AJ Wageningen, the Netherlands
| | | |
Collapse
|
30
|
Muraya MM, de Villiers S, Parzies HK, Mutegi E, Sagnard F, Kanyenji BM, Kiambi D, Geiger HH. Genetic structure and diversity of wild sorghum populations (Sorghum spp.) from different eco-geographical regions of Kenya. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:571-83. [PMID: 21643817 DOI: 10.1007/s00122-011-1608-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/26/2011] [Indexed: 05/23/2023]
Abstract
Wild sorghums are extremely diverse phenotypically, genetically and geographically. However, there is an apparent lack of knowledge on the genetic structure and diversity of wild sorghum populations within and between various eco-geographical regions. This is a major obstacle to both their effective conservation and potential use in breeding programs. The objective of this study was to assess the genetic diversity and structure of wild sorghum populations across a range of eco-geographical conditions in Kenya. Sixty-two wild sorghum populations collected from the 4 main sorghum growing regions in Kenya were genotyped using 18 simple sequence repeat markers. The study showed that wild sorghum is highly variable with the Coast region displaying the highest diversity. Analysis of molecular variance showed a significant variance component within and among wild sorghum populations within regions. The genetic structure of wild sorghum populations indicated that gene flow is not restricted to populations within the same geographic region. A weak regional differentiation was found among populations, reflecting human intervention in shaping wild sorghum genetic structure through seed-mediated gene flow. The sympatric occurrence of wild and cultivated sorghums coupled with extensive seed-mediated gene flow, suggests a potential crop-to-wild gene flow and vice versa across the regions. Wild sorghum displayed a mixed mating system. The wide range of estimated outcrossing rates indicate that some environmental conditions may exist where self-fertilisation is favoured while others cross-pollination is more advantageous.
Collapse
Affiliation(s)
- Moses M Muraya
- Institute of Plant Breeding, Seed science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wesseler J, Scatasta S, Hadji Fall E. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. FRONTIERS OF ECONOMICS AND GLOBALIZATION 2011. [DOI: 10.1108/s1574-8715(2011)0000010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Chun YJ, Kim DI, Park KW, Kim HJ, Jeong SC, An JH, Cho KH, Back K, Kim HM, Kim CG. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. PLANTA 2011; 233:807-815. [PMID: 21212977 DOI: 10.1007/s00425-010-1339-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.
Collapse
Affiliation(s)
- Young Jin Chun
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheong-ri, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Londo JP, Bautista NS, Sagers CL, Lee EH, Watrud LS. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. ANNALS OF BOTANY 2010; 106:957-65. [PMID: 20852306 PMCID: PMC2990662 DOI: 10.1093/aob/mcq190] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS With the advent of transgenic crops, genetically modified, herbicide-resistant Brassica napus has become a model system for examining the risks and potential ecological consequences of escape of transgenes from cultivation into wild compatible species. Escaped transgenic feral B. napus and hybrids with compatible weedy species have been identified outside of agriculture and without the apparent selection for herbicide resistance. However, herbicide (glyphosate) exposure can extend beyond crop field boundaries, and a drift-level of herbicide could function as a selective agent contributing to increased persistence of transgenes in the environment. METHODS The effects of a drift level (0·1 × the field application rate) of glyphosate herbicide and varied levels of plant competition were examined on plant fitness-associated traits and gene flow in a simulated field plot, common garden experiment. Plants included transgenic, glyphosate-resistant B. napus, its weedy ancestor B. rapa, and hybrid and advanced generations derived from them. KEY RESULTS The results of this experiment demonstrate reductions in reproductive fitness for non-transgenic genotypes and a contrasting increase in plant fitness for transgenic genotypes as a result of glyphosate-drift treatments. Results also suggest that a drift level of glyphosate spray may influence the movement of transgenes among transgenic crops and weeds and alter the processes of hybridization and introgression in non-agronomic habitats by impacting flowering phenology and pollen availability within the community. CONCLUSIONS The results of this study demonstrate the potential for persistence of glyphosate resistance transgenes in weedy plant communities due to the effect of glyphosate spray drift on plant fitness. Additionally, glyphosate drift has the potential to change the gene-flow dynamics between compatible transgenic crops and weeds, simultaneously reducing direct introgression into weedy species while contributing to an increase in the transgenic seed bank.
Collapse
Affiliation(s)
- Jason P Londo
- National Research Council Associate, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | | | | | | | | |
Collapse
|
34
|
Floral genetic architecture: an examination of QTL architecture underlying floral (co)variation across environments. Genetics 2010; 186:1451-65. [PMID: 20837996 DOI: 10.1534/genetics.110.119982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL×QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL×QTL epistasis for floral traits were environment dependent.
Collapse
|
35
|
Bartz R, Heink U, Kowarik I. Proposed definition of environmental damage illustrated by the cases of genetically modified crops and invasive species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2010; 24:675-681. [PMID: 20015260 DOI: 10.1111/j.1523-1739.2009.01385.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The introduction of non-native plant species and the release of genetically modified (GM) crops can induce environmental changes at gene to ecosystem levels. Regulatory frameworks such as the Convention on Biological Diversity or the EU Deliberate Release Directive aim to prevent environmental damage but do not define the term. Although ecologists and conservationists often refer to environmental effects of GM crops or invasive species as damage, most authors do not disclose their normative assumptions or explain why some environmental impacts are regarded as detrimental and others are not. Thus far, a concise definition of environmental damage is missing and is necessary for a transparent assessment of environmental effects or risks. Therefore, we suggest defining environmental damage as a significant adverse effect on a biotic or abiotic conservation resource (i.e., a biotic or abiotic natural resource that is protected by conservational or environmental legislation) that has an impact on the value of the conservation resource, the conservation resource as an ecosystem component, or the sustainable use of the conservation resource. This definition relies on three normative assumptions: only concrete effects on a conservation resource can be damages; only adverse effects that lead to a decrease in the value of the conservation resource can be damages; and only significant adverse effects constitute damage to a conservation resource. Applying this definition within the framework of environmental risk assessment requires further normative determinations, for example, selection of a threshold to distinguish between adverse and significant adverse effects and approaches for assessing the environmental value of conservation resources. Such determinations, however, are not part of the definition of environmental damage. Rather they are part of the definition's operationalization through assessment procedures, which must be grounded in a comprehensible definition of environmental damage.
Collapse
Affiliation(s)
- Robert Bartz
- Institute of Ecology, Technical University of Berlin, D-12165 Berlin, Germany.
| | | | | |
Collapse
|
36
|
Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proc Natl Acad Sci U S A 2009; 106:19067-71. [PMID: 19858473 DOI: 10.1073/pnas.0905106106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness.
Collapse
|
37
|
Prendeville HR, Pilson D. Transgenic virus resistance in cultivated squash affects pollinator behaviour. J Appl Ecol 2009. [DOI: 10.1111/j.1365-2664.2009.01698.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
|
39
|
Warwick SI, Beckie HJ, Hall LM. Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 2009; 1168:72-99. [PMID: 19566704 DOI: 10.1111/j.1749-6632.2009.04576.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The main environmental concerns about genetically modified (GM) crops are the potential weediness or invasiveness in the crop itself or in its wild or weedy relatives as a result of transgene movement. Here we briefly review evidence for pollen- and seed-mediated gene flow from GM crops to non-GM or other GM crops and to wild relatives. The report focuses on the effect of abiotic and biotic stress-tolerance traits on plant fitness and their potential to increase weedy or invasive tendencies. An evaluation of weediness and invasive traits that contribute to the success of agricultural weeds and invasive plants was of limited value in predicting the effect of biotic and abiotic stress-tolerance GM traits, suggesting context-specific evaluation rather than generalizations. Fitness data on herbicide, insect, and disease resistance, as well as cold-, drought-, and salinity-tolerance traits, are reviewed. We describe useful ecological models predicting the effects of gene flow and altered fitness in GM crops and wild/weedy relatives, as well as suitable mitigation measures. A better understanding of factors controlling population size, dynamics, and range limits in weedy volunteer GM crop and related host or target weed populations is necessary before the effect of biotic and abiotic stress-tolerance GM traits can be fully assessed.
Collapse
Affiliation(s)
- Suzanne I Warwick
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Centre, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
40
|
Laughlin KD, Power AG, Snow AA, Spencer LJ. Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:1091-101. [PMID: 19688918 DOI: 10.1890/08-0105.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of crops genetically engineered for pathogen resistance has raised concerns that crop-to-wild gene flow could release wild or weedy relatives from regulation by the pathogens targeted by the transgenes that confer resistance. Investigation of these risks has also raised questions about the impact of gene flow from conventional crops into wild plant populations. Viruses in natural plant populations can play important roles in plant fecundity and competitive interactions. Here, we show that virus-resistance transgenes and conventional crop genes can increase fecundity of wild plants under virus pressure. We asked how gene flow from a cultivated squash (Cucurbita pepo) engineered for virus resistance would affect the fecundity of wild squash (C. pepo) in the presence and absence of virus pressure. A transgenic squash cultivar was crossed and backcrossed with wild C. pepo from Arkansas. Wild C. pepo, transgenic backcross plants, and non-transgenic backcross plants were compared in field plots in Ithaca, New York, USA. The second and third generations of backcrosses (BC2 and BC3) were used in 2002 and 2003, respectively. One-half of the plants were inoculated with zucchini yellow mosaic virus (ZYMV), and one-half of the plants were maintained as healthy controls. Virus pressure dramatically decreased the fecundity of wild C. pepo plants and non-transgenic backcross plants relative to transgenic backcross plants, which showed continued functioning of the virus-resistance transgene. In 2002, non-transgenic backcross fecundity was slightly higher than wild C. pepo fecundity under virus pressure, indicating a possible benefit of conventional crop alleles, but they did not differ in 2003 when fecundity was lower in both groups. We detected no fitness costs of the transgene in the absence of the virus. If viruses play a role in the population dynamics of wild C. pepo, we predict that gene flow from transgenic, virus-resistant squash and, to a much lesser extent, conventionally bred squash would increase C. pepo fecundity. Studies such as this one, in combination with documentation of the probability of crop-to-wild gene flow and surveys of virus incidence in wild populations, can provide a solid basis for environmental risk assessments of crops genetically engineered for virus resistance.
Collapse
Affiliation(s)
- Karen D Laughlin
- Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
41
|
Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol Adv 2009; 27:1083-1091. [PMID: 19463932 DOI: 10.1016/j.biotechadv.2009.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pollen-mediated gene flow is the major pathway for transgene escape from GM rice to its wild relatives. Transgene escape to wild Oryza species having AA-genome will occur if GM rice is released to environments with these wild Oryza species. Transgenes may persist to and spread in wild populations after gene flow, resulting unwanted ecological consequences. For assessing the potential consequences caused by transgene escape, it is important to understand the actual gene flow frequencies from GM rice to wild relatives, transgene expression and inheritance in the wild relatives, as well as fitness changes that brought to wild relatives by the transgenes. This article reviews studies on transgene escape from rice to its wild relatives via gene flow and its ecological consequences. A framework for assessing potential ecological consequences caused by transgene escape from GM rice to its wild relatives is discussed based on studies of gene flow and fitness changes.
Collapse
|
42
|
|
43
|
Reuter H, Menzel G, Pehlke H, Breckling B. Hazard mitigation or mitigation hazard? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:529-535. [PMID: 18839232 DOI: 10.1007/s11356-008-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/21/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM AND SCOPE Transgenic oilseed rape (Brassica napus L.; OSR) is estimated to be environmentally and economically problematic because volunteers and ferals occur frequently and because of its hybridisation potential with several wild and weedy species. A proposed mitigation strategy aims to reduce survival, in particular in conventional OSR crops, by coupling the transgenic target modification with a dwarfing gene to reduce competitive fitness. Our study allowed us to access potential ecological implications of this strategy. MATERIALS AND METHODS On a large scale (>500 km(2)), we recorded phenological and population parameters of oilseed rape plants for several years in rural and urban areas of Northern Germany (Bremen and surroundings). The characterising parameter were analysed for differences between wild and cultivated plants. RESULTS In rural areas, occurrences of feral and volunteer OSR together had an average density of 1.19 populations per square kilometre, in contrast to urban areas where we found 1.68 feral populations per square kilometre on average. Throughout the survey, the vegetation cover at the locations with feral OSR ranged from less than 10% to 100%. Our investigations gave clear empirical evidence that feral OSR was, on average, at least 41% smaller than cultivated OSR, independent of phenological state after onset of flowering. DISCUSSION The findings can be interpreted as phenotypic adaptation of feral OSR plants. Therefore, it must be asked whether dwarfing could be interpreted as an improvement of pre-adaptation to feral environments. In most of the sites where feral plants occurred, germination and establishment were in locations with disturbed vegetation cover, allowing initial growth without competition. Unless feral establishment of genetically modified dwarfed traits are specifically studied, it would not be safe to assume that the mitigation strategy of dwarfing also reduces dispersal in feral environments. CONCLUSIONS AND RECOMMENDATIONS With respect to OSR, we argue that the proposed mitigation approach could increase escape and persistence of transgene varieties rather than reducing them. We conclude that the development of effective hazard mitigation measures in the risk evaluation of genetically modified organisms requires thorough theoretical and empirical ecological analyses rather than assumptions about abstract fitness categories that apply only in parts of the environment where the plant can occur.
Collapse
Affiliation(s)
- Hauke Reuter
- Department of General and Theoretical Ecology, Centre for Environmental Research and Sustainable Technology (UFT), University of Bremen, P. O. Box 330440, 28334 Bremen, Germany.
| | | | | | | |
Collapse
|
44
|
D'Hertefeldt T, Jørgensen RB, Pettersson LB. Long-term persistence of GM oilseed rape in the seedbank. Biol Lett 2008; 4:314-7. [PMID: 18381261 DOI: 10.1098/rsbl.2008.0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coexistence between genetically modified (GM) and non-GM plants is a field of rapid development and considerable controversy. In crops, it is increasingly important to understand and predict the GM volunteer emergence in subsequent non-GM crops. Theoretical models suggest recruitment from the seedbank over extended periods, but empirical evidence matching these predictions has been scarce. Here, we provide evidence of long-term GM seed persistence in conventional agriculture. Ten years after a trial of GM herbicide-tolerant oilseed rape, emergent seedlings were collected and tested for herbicide tolerance. Seedlings that survived the glufosinate herbicide (15 out of 38 volunteers) tested positive for at least one GM insert. The resulting density was equivalent to 0.01 plants m-2, despite complying with volunteer reduction recommendations. These results are important in relation to debating and regulating coexistence of GM and non-GM crops, particularly for planting non-GM crops after GM crops in the same field.
Collapse
|
45
|
Hooftman DAP, Oostermeijer JGB, Marquard E, den Nijs H(JC. Modelling the consequences of cropwild relative gene flow: a sensitivity analysis of the effects of outcrossing rates and hybrid vigour breakdown inLactuca. J Appl Ecol 2008. [DOI: 10.1111/j.1365-2664.2008.01508.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 2008; 3:e2118. [PMID: 18461164 PMCID: PMC2346550 DOI: 10.1371/journal.pone.0002118] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022] Open
Abstract
Background Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. Methodology/Principal Findings We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. Conclusions/Significance Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.
Collapse
Affiliation(s)
- L. LaReesa Wolfenbarger
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Steven E. Naranjo
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, Arizona, United States of America
- * E-mail:
| | - Jonathan G. Lundgren
- USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States of America
| | - Royce J. Bitzer
- Department of Entomology, Iowa State University, Iowa, United States of America
| | - Lidia S. Watrud
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, Oregon, United States of America
| |
Collapse
|
47
|
Abstract
Whether the potential costs associated with broad-scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve containment of engineered genetic elements in the context of large scale agricultural production? In a previous study, Warwick et al. (2003) documented transgene escape via gene flow from herbicide resistant (HR) canola (Brassica napus) into neighbouring weedy B. rapa populations (Fig. 1) in two agricultural fields in Quebec, Canada. In a follow-up study in this issue of Molecular Ecology, Warwick et al. (2008) show that the transgene has persisted and spread within the weedy population in the absence of selection for herbicide resistance. Certainly a trait like herbicide resistance is expected to spread when selected through the use of the herbicide, despite potentially negative epistatic effects on fitness. However, Warwick et al.'s findings suggest that direct selection favouring the transgene is not required for its persistence. So is there any hope of preventing transgene escape into the wild?
Collapse
Affiliation(s)
- Katrina M Dlugosch
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 2K8
| | | |
Collapse
|
48
|
Peltzer DA, Ferriss S, FitzJohn RG. Predicting weed distribution at the landscape scale: using naturalizedBrassicaas a model system. J Appl Ecol 2008. [DOI: 10.1111/j.1365-2664.2007.01410.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Schoen DJ, Reichman JR, Ellstrand NC. Transgene Escape Monitoring, Population Genetics, and the Law. Bioscience 2008. [DOI: 10.1641/b580112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
50
|
HOOFTMAN DANNYAP, JONG MAAIKEJDE, OOSTERMEIJER JGERARDB, DEN NIJS HANS(JCM. Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 2007. [DOI: 10.1111/j.1365-2664.2007.01341.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|