1
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
2
|
Qiao L, Zhuang Z, Wang Y, Xie K, Zhang X, Shen Y, Song J, Zhou S. Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects. PEST MANAGEMENT SCIENCE 2025. [PMID: 39865336 DOI: 10.1002/ps.8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase. However, the regulatory mechanisms of JH biosynthesis in corpora allata (CA) of adult insects remain largely unknown. RESULTS We observed that the mitochondrial abundance, as well as the levels of NADH (nicotinamide adenine dinucleotide, reduced form) and adenosine triphosphate (ATP), increased in the CA of previtellogenic adults, peaking during the vitellogenic stage. The transcripts of Nocturnin (Noct), which converts nicotinamide adenine dinucleotide phosphate (NADPH) to NADH for ATP production, were more abundant in the CA compared to those of other enzymes involved in conventional NADH-producing metabolic pathways. The developmental expression pattern of Noct was like that of ATP and NADH level. RNA interference-mediated knockdown of Noct caused a significant decrease of NADH and ATP contents, along with markedly reduced expression levels of 12 genes involved in JH biosynthesis pathway. Loss of Noct function resulted in remarkably reduced expression of vitellogenin, accompanied by arrested ovarian growth and oocyte maturation. CONCLUSION Our results demonstrated that Noct plays a crucial role in high levels of JH biosynthesis in adult insects via regulating NADH and ATP production. The findings reveal a previously unknown aspect of mitochondrial metabolism in JH biosynthesis and provide valuable information for developing pest control strategies targeting hormone pathways. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lintao Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Zitong Zhuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yage Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Kairui Xie
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Shen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Kato-Noguchi H, Kato M. Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules 2025; 30:411. [PMID: 39860280 PMCID: PMC11767948 DOI: 10.3390/molecules30020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species. Its infestation reduces species diversity and abundance in the natural ecosystems and reduces agricultural production. The life history characteristics of L. camara, such as its high reproductive ability and high adaptive ability to various environmental conditions, may contribute to its ability to infest and increase its population. Possible evidence of the compounds involved in the defense functions of L. camara against natural enemies, such as herbivore mammals and insects, parasitic nematodes, pathogenic fungi and bacteria, and the allelochemicals involved in its allelopathy against neighboring competitive plant species, have accumulated in the literature over three decades. Lantadenes A and B, oleanonic acid, and icterogenin are highly toxic to herbivore mammals, and β-humulene, isoledene, α-copaene thymol, and hexadecanoic acid have high insecticidal activity. β-Caryophyllene and cis-3-hexen-1-ol may function as herbivore-induced plant volatiles which are involved in sending warning signals to undamaged tissues and the next plants of the same species. Farnesol and farnesal may interrupt insect juvenile hormone biosynthesis and cause abnormal metamorphosis of insects. Several triterpenes, such as lantanolic acid, lantoic acid, pomolic acid, camarin, lantacin, camarinin, ursolic acid, and oleanonic acid, have demonstrated nematocidal activity. Lantadene A, β-caryophyllene, germacrene-D, β-curcumene, eicosapentaenoic acid, and loliolide may possess antimicrobial activity. Allelochemicals, such as caffeic acid, ferulic acid, salicylic acid, α-resorcylic acid, p-hydroxybenzoic acid, vanillic acid, unbelliferone, and quercetin, including lantadenes A and B and β-caryophyllene, suppress the germination and growth of neighboring plant species. These compounds may be involved in the defense functions and allelopathy and may contribute to L. camara's ability to infest and to expand its population as an invasive plant species in new habitats. This is the first review to focus on how compounds enhance the invasive characteristics of L. camara.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
4
|
Stathaki A, Alam RM, Köllner TG, O'Connor SE. Engineering of insect juvenile hormone III biosynthesis in the plant Nicotiana benthamiana. Metab Eng 2024; 88:77-84. [PMID: 39701408 DOI: 10.1016/j.ymben.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Juvenile hormones (JHs) are farnesoic acid-derived sesquiterpenoids that play a crucial role in regulating various developmental processes in insects. Based on these reported biological activities, JHs and their synthetic analogs have been utilized as insecticides with significant commercial success over the past years. Here we describe the engineering of the JH pathway of the yellow fever mosquito (Aedes aegypti) by transient gene expression in the plant Nicotiana benthamiana. This approach led to the successful production of JH III in N. benthamiana leaves at a concentration of ca. 10 μg/g fresh weight. The co-expression of a feedback-insensitive version of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Arabidopsis thaliana further increased the titer eight-fold from 10 to 80 μg/g fresh weight. Our efforts also revealed that the rich endogenous metabolic background of N. benthamiana can generate farnesoic acid, a key precursor to JH III, and thus, only 3 genes need to be expressed to provide high titers of this compound. Our study demonstrates the production of high titers of JH III in N. benthamina via heterologous expression of insect JH biosynthetic genes.
Collapse
Affiliation(s)
- Angeliki Stathaki
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
5
|
Song J, Li W, Gao L, Yan Q, Zhang X, Liu M, Zhou S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun Biol 2024; 7:1604. [PMID: 39623057 PMCID: PMC11612435 DOI: 10.1038/s42003-024-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Juvenile hormone (JH) represses insect metamorphosis and stimulates reproduction. JH titers are generally low in juveniles, drop to a nadir during metamorphosis, increase after eclosion and peak in vitellogenic phase. We found that Jhamt, a rate-limiting enzyme in JH biosynthesis, mirrors JH titer patterns in the migratory locust. Knocking down Jhamt reduced JH titers, led to precocious nymphal ecdysis, metamorphosis and impaired vitellogenesis. Jhamt is negatively regulated by miR-276 and positively by miR-182013-5p. miR-276 is abundant in late nymphal but low in adults, while miR-182013-5p shows the opposite pattern. In nymphs, miR-276 binds more to Jhamt, while in adults, miR-182013-5p dominates. Functionally, miR-276 reduced Jhamt and JH levels, shortening nymphal development and inhibiting Vg expression. Conversely, miR-182013-5p increased Jhamt and JH levels, prolonging nymphal development and enhancing Vg expression. Our findings identify miR-276 and miR-182013-5p as dual regulators in JH biosynthesis, acting as "brake" and "accelerator," respectively. This study provides new insights into JH titer fluctuations and miRNA regulation in insect metamorphosis and reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wanwan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Lulu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingzhi Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Jiménez-Florido P, Aquilino M, Buckley D, Bella JL, Planelló R. Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection. INSECT SCIENCE 2024. [PMID: 39614636 DOI: 10.1111/1744-7917.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.
Collapse
Affiliation(s)
- Patricia Jiménez-Florido
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Buckley
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Planelló
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
7
|
Wang N, Wang K, Lei L, Zhang L, Guo X, Xu B, Wang Y, Wang C. Juvenile hormone III improves honeybee resistance to imidacloprid by protecting the midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117280. [PMID: 39515199 DOI: 10.1016/j.ecoenv.2024.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Imidacloprid is one of the most commonly used insecticides and seriously threatens the survival of honeybees. Juvenile hormone III (JHIII), an important hormone in honeybees, plays a central role in the life cycle of honeybees; however, the mechanism by which JHIII responds to imidacloprid stress has not been determined. In this study, the resistance of Apis cerana cerana (Acc) to imidacloprid was greater than that of Apis mellifera (Am), and the application of JHIII significantly increased the resistance of both species of honeybees. RTqPCR revealed that two genes, juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (MFE), which are involved in JHIII biosynthesis, are key genes for improving resistance to imidacloprid via JHIII in honeybees. Silencing JHAMT and MFE with RNAi resulted in a lower content of JHIII in Acc and reduced resistance to imidacloprid. The exogenous application of JHIII compensated for the reduced resistance phenotype caused by gene silencing. Furthermore, histological examination of paraffin sections revealed that imidacloprid treatment caused loose intestinal cell arrangement, slight damage to columnar digestive cells and muscle cells, and chromatin condensation in basal layer cells. JHIII treatment reduced the degree of damage to the honeybee midgut cells and improved resistance to imidacloprid. The results of this study provide a new perspective and molecular basis for the study of the regulation of JHIII and the toxicity of imidacloprid in honeybees.
Collapse
Affiliation(s)
- Nana Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kunrong Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Longtao Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
8
|
Christen V, Jeker L, Lim KS, Menz MHM, Straub L. Insecticide exposure alters flight-dependent gene-expression in honey bees, Apis mellifera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177166. [PMID: 39471959 DOI: 10.1016/j.scitotenv.2024.177166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The increased reports of wild bee declines and annual losses of managed bees pose a significant threat to biodiversity and agricultural productivity. While these losses and declines are likely driven by various factors, the exposure of bees to agrochemicals has raised significant concern due to their ubiquitous use and potential adverse effects. Despite numerous studies suggesting neonicotinoids can negatively affect bees at the behavioral and molecular level, data linking these two factors remains sparse. Here we provide data on the impact of an acute dose of the neonicotinoid thiamethoxam on the flight performance and molecular transcription profiles of foraging honey bees (Apis mellifera). Using a controlled experimental design with tethered flight mills, we measured flight distance, duration, and speed, alongside the expression of genes involved in energy metabolism, hormone regulation, and biosynthesis. Acute thiamethoxam exposure resulted in hyperactive flight behavior but led to significant dysregulation of genes associated with oxidative phosphorylation, indicating potential disruptions in cellular energy production. These molecular changes were particularly evident when bees engaged in flight activities, suggesting that the combined stress of pesticide exposure and physical exertion exacerbates negative outcomes. Our study provides new insights into the molecular mechanisms underlying neonicotinoid-induced impairments in bee physiology that can help understand the potential long-term consequences of xenobiotic exposure on the foraging abilities of bees and ultimately fitness.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Ka S Lim
- Computational and Analytical Science, Rothamsted Research, Harpenden ALF 2JQ, UK
| | - Myles H M Menz
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia; Max Planck Institute of Animal Behavior, Department of Migration, Radolfzell, Germany
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
9
|
Lu S, de Sousa-Paula LC, Ribeiro JMC, Tirloni L. Exploring the longitudinal expression dynamics of midguts in adult female Amblyomma americanum ticks. BMC Genomics 2024; 25:996. [PMID: 39448894 PMCID: PMC11515579 DOI: 10.1186/s12864-024-10905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. RESULTS Our transcriptome analysis identified 15,599 putative DNA coding sequences (CDS), which were classified into 26 functional groups. Dimensional and differential expression analyses revealed four primary transcriptional profiles corresponding to unfed, slow-feeding, transitory (from slow- to rapid-feeding), and rapid-feeding stages. Additionally, comparing the current dataset with previously deposited transcriptome from other tick species allowed the identification of commonly expressed transcripts across different feeding stages. CONCLUSION Our findings provide a detailed temporal resolution of numerous metabolic pathways in the midgut of A. americanum adult females throughout the feeding process, highlighting the dynamic transcriptional regulation of the tick's midgut as feeding progresses. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge not only enhances our understanding of the physiological processes within the tick midgut but also opens up potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
10
|
Li H, Kong X, Fang Y, Hou J, Zhang W, Zhang Y, Wei J, Li X. Aphis craccivora (Hemiptera: Aphididae) synthesizes juvenile hormone III via a pathway involving epoxidation followed by esterification, potentially providing an epoxidation active site for the synthesis of juvenile hormone SB3. INSECT SCIENCE 2024. [PMID: 39365891 DOI: 10.1111/1744-7917.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear. This study was conducted on Aphis craccivora, and demonstrated that corpora allata, microsomes, Ac-CYP15C1, and Ac-JHAMT catalyze JH III production in vitro, establishing the pathway of epoxidation followed by esterification. These findings were further confirmed through RNA interference and molecular docking. The presence of JH III and JH SB3 in A. craccivora was identified, and their synthesis pathway was elucidated as follows: Ac-CYP15C1 oxidizes farnesic acid to JH A, followed by methylation to JH III by Ac-JHAMT, possibly providing an epoxidation site on the second carbon for JH SB3. This alteration may significantly contribute to the differentiation and functional diversification of JH types in insects.
Collapse
Affiliation(s)
- Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Kong
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Fang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Kayukawa T, Nagamine K, Inui T, Yokoi K, Kobayashi I, Nakao H, Ishikawa Y, Matsuo T. Dead ringer acts as a major regulator of juvenile hormone biosynthesis in insects. PNAS NEXUS 2024; 3:pgae435. [PMID: 39398620 PMCID: PMC11467689 DOI: 10.1093/pnasnexus/pgae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
In holometabolous insects, proper control of the production of juvenile hormone (JH), which maintains larval traits, is crucial for successful metamorphosis. JH is produced specifically in the corpora allata (CA) via the functioning of a set of JH biosynthetic enzymes (JHBEs). Expression of JHBE genes in the CA is coordinated except for JH acid methyltransferase (JHAMT), which functions in the last step of JH biosynthesis. Here, we sought to determine the mechanism that enables this coordinated expression, assuming the presence of a central regulator of JHBE genes. Comparison of transcriptomes in the CA during active and inactive stages revealed the presence of 3 transcription factors, whose expression patterns matched those of JHBE genes. We propose that one of these, Dead ringer (Dri), is the central up-regulator of CA-specific JHBE genes including JHAMT, based on the following findings: (ⅰ) Knockdown of Dri in the larvae caused precocious metamorphosis, which was rescued by the exogenous application of JH analog, and (ⅱ) knockdown of Dri decreased the expression of most CA-specific JHBE genes examined. Furthermore, RNAi-based reverse genetics indicated that Dri works most upstream in the control of CA-specific JHBE genes, and that shutdown of JHAMT, which occurs independent of other JHBE genes prior to the onset of metamorphosis, can be hypothetically explained by the presence of an unidentified repressor. Our study suggests that Dri, which has been known to regulate embryonic development in a wide range of animals, is conferred a new role in holometabolous insects, i.e. central regulation of CA-specific JHBE genes.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Keisuke Nagamine
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Tomohiro Inui
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Isao Kobayashi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Hajime Nakao
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Lu S, de Sousa Paula LC, Ribeiro JM, Tirloni L. Exploring midgut expression dynamics: longitudinal transcriptomic analysis of adult female Amblyomma americanum midgut and comparative insights with other hard tick species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614175. [PMID: 39372786 PMCID: PMC11451607 DOI: 10.1101/2024.09.20.614175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. Results We conducted a comprehensive longitudinal transcriptome analysis of the midgut in adult female A. americanum ticks across various feeding stages, including unfed, slow-feeding, and rapid-feeding phases. Our analysis revealed 15,599 putative DNA coding sequences (CDS) classified within 26 functional groups. Dimensional and differential expression analysis highlighted the dynamic transcriptional changes in the tick midgut as feeding progresses, particularly during the initial period of feeding and the transition from the slow-feeding to the rapid-feeding phase. Additionally, we performed an orthology analysis comparing our dataset with midgut transcriptomes from other hard ticks, such as Ixodes scapularis and Rhipicephalus microplus. This comparison allowed us to identify transcripts commonly expressed during different feeding phases across these three species. Conclusion Our findings provide a detailed temporal resolution of numerous metabolic pathways in A. americanum, emphasizing the dynamic transcriptional changes occurring in the tick midgut throughout the feeding process. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge has significant implications for future research aimed at deciphering the physiological pathways relevant within the tick midgut. It also offers potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C. de Sousa Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M.C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
13
|
Wu Z, Yan C, Xing K, Liu Y, Zhang C, Li H, Sun Y, Zhang J. Membrane-bound trehalase enhances cadmium tolerance by regulating cell apoptosis in Neocaridina denticulata sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173798. [PMID: 38844236 DOI: 10.1016/j.scitotenv.2024.173798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Trehalase gene is mainly expressed in the digestive circulatory system for regulating energy metabolism and chitin synthesis in insects, but it is significantly expressed in gill for immunomodulation in shrimp. However, its function in regulating immunity, particularly metal resistance in crustaceans has yet to be elucidated. In this study, one Tre2 gene (NdTre2) was isolated from Neocaridina denticulata sinensis. It could bind to Cd2+ and inhibit its toxicity. Spatiotemporal expression analysis showed that the expression of NdTre2 was highest in the gill and significantly reduced at 12 h after Cd2+ stimulation. The transcriptomic analysis of the gill after NdTre2 knockdown showed that the expression of genes synthetizing 20E was up-regulated and the increased 20E could further induce apoptosis by activating the intrinsic mitochondrial pathway, exogenous death receptor-ligand pathway, and MAPK pathway. In vitro, overexpressing NdTre2 enhanced the tolerance of E. coli in Cd2+ environment. In summary, these results indicate that NdTre2 plays an essential role in regulating immunity and chitin metabolism in N. denticulata sinensis.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
14
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612925. [PMID: 39314431 PMCID: PMC11419140 DOI: 10.1101/2024.09.13.612925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and mevalonate metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with developmental growth and hint at a conserved mechanism by which ERR and HNF4 homologs coordinately regulate metabolic gene expression.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Pujal D, Escudero J, Cabrera P, Bos L, Vargas-Chávez C, Fernández R, Bellés X, Maestro JL. Functional redundancy of the three insulin receptors of cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104161. [PMID: 39059715 DOI: 10.1016/j.ibmb.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear. The analysis of the sequences from different lineages did not detect positive selection as driving the divergence of InR1 and InR3, discarding neofunctionalization, and suggesting that there is no functional divergence between both gene copies. Using the cockroach Blattella germanica as a model, we have determined that BgInR2 is the gene with the highest expression levels in all the tissues analyzed, both in adult females and males, as well as in nymphs and embryos. BgInR3 is second in expression levels while BgInR1 is expressed at lower levels and only in some tissues. The selective depletion by RNAi of each of the three InRs, analyzed in terms of phenotype and fat body transcriptomic profiles, resulted in essentially redundant effects, with a magnitude approximately proportional to the level of expression of the respective InR. Therefore, the results indicate that the InR duplicates likely experienced a subfunctionalization process, by which the three InRs maintained similar functions but contributing to those functions proportionally to their expression levels.
Collapse
Affiliation(s)
- David Pujal
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Jorge Escudero
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Pol Cabrera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Laura Bos
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Carlos Vargas-Chávez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Rosa Fernández
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Xavier Bellés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José Luis Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
16
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
17
|
Zhou Z, Mang D, Smagghe G, Liu Y, Mu Y, Yang L, Wang X, Chen X. A Farnesyl Pyrophosphate Synthase Gene Is Expressed in Fat Body Regulates Cantharidin Synthesis in Male Epicauta impressicornis Blister Beetle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12935-12945. [PMID: 38822796 DOI: 10.1021/acs.jafc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Dingze Mang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Guy Smagghe
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Yangyang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China
| | - Yinlin Mu
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Lin Yang
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Xuewen Wang
- Health Science Center, University of North Texas, Fort Worth, Texas 76107, United States
| | - Xiangsheng Chen
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Gupta A, Kumar M, Zhang B, Tomar M, Walia AK, Choyal P, Saini RP, Potkule J, Burritt DJ, Sheri V, Verma P, Chandran D, Tran LSP. Improvement of qualitative and quantitative traits in cotton under normal and stressed environments using genomics and biotechnological tools: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111937. [PMID: 38043729 DOI: 10.1016/j.plantsci.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Maharishi Tomar
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Prince Choyal
- ICAR - Indian Institute of Soybean Research, Indore 452001, India
| | | | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Pooja Verma
- ICAR - Central Institute for Cotton Research, Nagpur, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerala, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
20
|
Zheng H, Yang Y, Hu Y, Shi J, Li Q, Wang Y, Xia Q, Guo P. Structural Characterization and Functional Analysis of Mevalonate Kinase from Tribolium castaneum (Red Flour Beetle). Int J Mol Sci 2024; 25:2552. [PMID: 38473803 DOI: 10.3390/ijms25052552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/β conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.
Collapse
Affiliation(s)
- Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Jiaxuan Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qiaohui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Zeng F, Jiang H, Xu H, Shen R, Wang D. Comparative Transcriptomics Analysis Reveals Rusty Grain Beetle's Aggregation Pheromone Biosynthesis Mechanism in Response to Starvation. INSECTS 2024; 15:137. [PMID: 38392556 PMCID: PMC10888681 DOI: 10.3390/insects15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Pheromones are the basis of insect aggregation, mating, and other behaviors. Cucujoid grain beetles produce macrocyclic lactones as aggregation pheromones, yet research on their biosynthesis at the molecular level remains limited. The rusty grain beetle, C. ferrugineus, is an important economic species in China. Although two aggregation pheromone components have been identified, their suspected biosynthesis via the MVA pathway and the FAS pathway lacks molecular elucidation. Previous evidence supports that starvation affects the production of aggregation pheromones. Therefore, we constructed comparative transcriptome libraries of pheromone production sites in C. ferrugineus under starvation stress and identified genes related to pheromone biosynthesis and hormone regulation. A total of 2665 genes were significantly differentially expressed, of which 2029 genes were down-regulated in starved beetles. Putative C. ferrugineus genes directly involved in pheromone biosynthesis were identified, as well as some genes related to the juvenile hormone (JH) pathway and the insulin pathway, both of which were depressed in the starved beetles, suggesting possible functions in pheromone biosynthesis and regulation. The identification of genes involved in macrolide lactone biosynthesis in vivo holds great significance, aiding in the elucidation of the synthesis and regulatory mechanisms of cucujoid grain beetle pheromones.
Collapse
Affiliation(s)
- Fangfang Zeng
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- Grain Storage and Logistics National Engineering Research Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Haixin Jiang
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- Grain Storage and Logistics National Engineering Research Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Haoqi Xu
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- Grain Storage and Logistics National Engineering Research Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Ruotong Shen
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- Grain Storage and Logistics National Engineering Research Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Dianxuan Wang
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- Grain Storage and Logistics National Engineering Research Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
22
|
Fang H, Zheng H, Yang Y, Hu Y, Wang Z, Xia Q, Guo P. Structural Insights into the Substrate Binding of Farnesyl Diphosphate Synthase FPPS1 from Silkworm, Bombyx mori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1787-1796. [PMID: 38214248 DOI: 10.1021/acs.jafc.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Farnesyl diphosphate synthase (FPPS) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway. Herein, we report the crystal structure of a type-I Lepidopteran FPPS from Bombyx mori (BmFPPS1) at 2.80 Å resolution. BmFPPS1 adopts an α-helix structure with a deep cavity at the center of the overall structure. Computational simulations combined with biochemical analysis allowed us to define the binding mode of BmFPPS1 to its substrates. Structural comparison revealed that BmFPPS1 adopts a structural pattern similar to that of type-II FPPS but exhibits a distinct substrate-binding site. These findings provide a structural basis for understanding substrate preferences and designing FPPS inhibitors. Furthermore, the expression profiles and RNA interference of BmFPPSs indicated that they play critical roles in the JH biosynthesis and larval-pupal metamorphosis. These findings enhance our understanding of the structural features of type-I Lepidopteran FPPS while providing direct evidence for the physiological role of BmFPPSs in silkworm development.
Collapse
Affiliation(s)
- Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Lu T, Lu Y, Wang L, Liu Z, Miao S, Tai Y, Yang B. The serine/threonine kinase Akt gene affects fecundity by reducing Juvenile hormone synthesis in Liposcelis entomophila (Enderlein). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105583. [PMID: 37945269 DOI: 10.1016/j.pestbp.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023]
Abstract
The serine/threonine kinase Akt is an important component of the insulin signalling pathway (ISP) in regulating insect metabolism, growth, and reproduction. The psocid Liposcelis entomophila (Enderlein) is a distasteful stored products pest for its fecundity. However, the molecular mechanism of Akt that controls vitellogenesis and oviposition in L. entomophila remains obscure. In this study, the function of the Akt gene in the female reproduction of L. entomophila (designated as LeAkt) was characterized and investigated. LeAkt contains a 1587 bp open reading frame encoding a 529 amino acid protein that possesses a conserved Pleckstrin Homology domain (PH) and a Ser/Thr-type protein kinase (S_TKc) domain. The mRNA expression of LeAkt was the highest in female adult stages and peaked for 7-day female adults. In female adult tissues, LeAkt was highly expressed in the head and the ovary, indicating that LeAkt was closely correlated with female ovarian development. LeAkt transcription level was significantly suppressed by oral feeding on artificial diets mixed with dsRNA-LeAkt. RNAi-mediated silencing of LeAkt led to a severe inhibition of vitellogenein (Vg) expression and ovarian development, together with lower fecundity and hatchability compared to that of the normal feeding group, suggesting a critical role for LeAkt in L. entomophila reproduction. Further studies revealed that LeAkt silencing significantly decreased the mRNA levels of several signalling and biosynthetic genes in the juvenile hormone (JH) signalling pathway, such as methoprene-tolerant (LeMet), krüppel homolog 1 (LeKr-h1) and JH methyltransferase (LeJHAMT), leading to a severe inhibition of JH biosynthesis in L. entomophila female adults. These results suggested that LeAkt was affecting JH synthesis, thereby influencing Vg synthesis and ultimately L. entomophila reproduction.
Collapse
Affiliation(s)
- Ting Lu
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China; School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China.
| | - Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhipei Liu
- School of Food Science and Technology, The University of New South Wales, Australia
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yajie Tai
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Binbin Yang
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
24
|
Yu Y, Li T, Guo M, Xiong R, Yan D, Chen P. Possible Regulation of Larval Juvenile Hormone Titers in Bombyx mori by BmFAMeT6. INSECTS 2023; 14:644. [PMID: 37504649 PMCID: PMC10380277 DOI: 10.3390/insects14070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Juvenile hormone (JH) plays a vital role in the growth, development, and reproduction of insects and other arthropods. Previous experiments have suggested that BmFAMeT6 could affect the duration of the silk moth's larval stage. In this study, we established the BmFAMeT6 overexpression strain and BmFAMeT6 knockout strain using the GAL4/UAS binary hybrid system and CRISPR/Cas 9 system, respectively, and found that the larval stage of the overexpression strain was shorter, while the knockout strain was longer. Our results exhibited that both the JH titers and BmKr-h1 levels in the larvae of the third instar were reduced significantly by BmFAMeT6 overexpression, but were increased obviously by BmFAMeT6 knockout. In addition, injection of farnesoic acid induced changes in the JH I and JH II levels in the hemolymphs of larvae. This study is the first to directly reveal the role of BmFAMeT6 in the regulation of insect JH titers and the relationship between farnesoic acid and JH (JH I and JH II). This provides a new perspective on regulating the growth and development of insects such as Bombyx mori.
Collapse
Affiliation(s)
- Yang Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tian Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646099, China
| | - Meiwei Guo
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rong Xiong
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongshen Yan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Yuan H, Gao Z, Cai P, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y, Qiao H, Fu H. Deciphering Molecular Mechanisms Governing the Reproductive Molt of Macrobrachium nipponense: A Transcriptome Analysis of Ovaries across Various Molting Stages. Int J Mol Sci 2023; 24:11056. [PMID: 37446235 DOI: 10.3390/ijms241311056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
The relationship between molting and reproduction has received more attention in economically important crustacean decapods. Molting and reproduction are synergistic events in Macrobrachium nipponense, but the molecular regulatory mechanisms behind them are unclear. In the current study, we performed Illumina sequencing for the ovaries of M. nipponense during the molt cycle (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom). A total of 66.57 Gb of transcriptome data were generated through sequencing, resulting in the identification of 105,149 unigenes whose alignment ratio with the reference genome exceeded 87.57%. Differentially expressed genes (DEGs) were annotated through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases for gene classification and pathway analysis. A total of twenty-six molt-related DEGs were found, and their expression patterns were examined across various molting stages. The KEGG enrichment analysis revealed that the key pathways involved in regulating the molting process of M. nipponense primarily include the mTOR, insect hormone biosynthesis, TGF-beta, and Wnt signaling pathways. Our transcriptomic data suggest that these pathways crosstalk with each other to regulate the synthesis and degradation of ecdysone throughout the molt cycle. The current study has deepened our understanding of the molecular mechanisms of crustacean molting and will serve as a basis for future studies of crustaceans and other molting animals.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
26
|
Fiutek N, Couger MB, Pirro S, Roy SW, de la Torre JR, Connor EF. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. Int J Mol Sci 2023; 24:ijms24119613. [PMID: 37298563 DOI: 10.3390/ijms24119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.
Collapse
Affiliation(s)
- Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD 20817, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Edward F Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| |
Collapse
|
27
|
Faria GM, Lemos APA, Anholeti MC, Paiva SR, Amorim LMF. The bioprospecting potential of Clusia fluminensis Planch. & Triana: a scoping review. AN ACAD BRAS CIENC 2023; 95:e20211605. [PMID: 37132746 DOI: 10.1590/0001-3765202320211605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 05/04/2023] Open
Abstract
Many biological activities are described for the Clusiaceae family. Clusia fluminensis, a species from Brazilian flora, is mainly employed for ornamental purposes. This review aimed to depict the current knowledge of C. fluminensis from a bioprospecting standpoint. "Clusia fluminensis" search term was applied in Scopus, Web of Science, PubMed and Bireme databases according to PRISMA-ScR statement. Selected papers on Phytochemistry or Bioactivity followed hand searching procedures. Bioactivity preclinical studies considered in vitro or in vivo biological systems, treated with plant extracts or isolated compounds. The outcomes were compared with standard or no treatment control groups. Critical appraisal of individual trials considered completeness in the research fields. Our results showed that 81% of the selected papers presented high level of completeness, 69% revealed phytochemical parameters and 31% biological applications of plant extracts and isolated compounds. Polyisoprenylated benzophenones, terpenoids, sterols and phenolic compounds were identified. Antiviral, insecticidal and snake antivenom activities were reported. In conclusion, the phytochemical data reinforce the reported activities. Potential applications in personal care, nutritional supplementation and pharmaceutical, food, chemical or textile industries were also identified. Toxicological and phytochemical complementary studies may be required.
Collapse
Affiliation(s)
- Giselle M Faria
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| | - Ana Patricia A Lemos
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| | - Maria C Anholeti
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Farmácia e Administração Farmacêutica, Rua Dr. Mario Vianna, 523, Santa Rosa, 24241-001 Niterói, RJ, Brazil
| | - Selma R Paiva
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 111, São Domingos, 24210-201 Niterói, RJ, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Universidade Federal Fluminense, Faculdade de Farmácia, Rua Dr. Mario Vianna, 523, Santa Rosa, 24241-001 Niterói, RJ, Brazil
| | - Lidia M F Amorim
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| |
Collapse
|
28
|
Yang Z, Wang K, Liu S, Li X, Wang H, Wang L, Zhang H, Yu H. Identification and functional analysis of isopentenyl pyrophosphate isomerase genes in the whiteflies Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:16. [PMID: 37335595 DOI: 10.1093/jisesa/iead041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
The juvenile hormone (JH) plays a vital role in the regulation of a number of physiological processes, including development, reproduction, and ovarian maturation. Isopentenyl pyrophosphate isomerase (IPPI) is a key enzyme in the biosynthetic pathway of JH. In this study, we identified an isopentenyl pyrophosphate isomerase protein from Bemisia tabaci and named it BtabIPPI. The open reading frame (ORF) of BtabIPPI is 768 bp and encodes a protein of 255 amino acids that contains a conserved domain of the Nudix family. The temporal and spatial expression profiles showed that BtabIPPI was highly expressed in the female adults.RNA interference (RNAi)-mediated silencing of BtabIPPI reduced JH titers and the relative expression of vitellogenin receptor (VgR) and JH signaling pathway genes, resulting in a dramatic reduction in fecundity and hatchability. These results indicate that the BtabIPPI gene plays an important role in the female fecundity of B. tabaci. This study will broaden our understanding of the function of IPPI in regulating insect reproduction and provide a theoretical basis for targeting IPPI for pest control in the future.
Collapse
Affiliation(s)
- Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Department of Plant Protection, College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongliang Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
29
|
Hossain KR, Turkewitz DR, Holt SA, Le Brun AP, Valenzuela SM. Sterol Structural Features' Impact on the Spontaneous Membrane Insertion of CLIC1 into Artificial Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3286-3300. [PMID: 36821411 DOI: 10.1021/acs.langmuir.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background: A membrane protein interaction with lipids shows distinct specificity in terms of the sterol structure. The structure of the sterol's polar headgroup, steroidal rings, and aliphatic side chains have all been shown to influence protein membrane interactions, including the initial binding and subsequent oligomerization to form functional channels. Previous studies have provided some insights into the regulatory role that cholesterol plays in the spontaneous membrane insertion of the chloride intracellular ion channel protein, CLIC1. However, the manner in which cholesterol interacts with CLIC1 is yet largely unknown. Method: In this study, the CLIC1 interaction with different lipid:sterol monolayers was studied using the Langmuir trough and neutron reflectometry in order to investigate the structural features of cholesterol essential for the spontaneous membrane insertion of the CLIC1 protein. Molecular docking simulations were also performed to study the binding affinities between CLIC1 and the different sterol molecules. Results: This study, for the first time, highlights the vital role of the free sterol 3β-OH group as an essential structural requirement for the interaction of CLIC1 with cholesterol. Furthermore, the presence of additional hydroxyl groups, methylation of the sterol skeleton, and the structure of the sterol alkyl side chain have also been shown to modulate the magnitude of CLIC1 interaction with sterols and hence their spontaneous membrane insertion. This study also reports the ability of CLIC1 to interact with other naturally existing sterol molecules. General Significance: Like the sterol molecules, CLIC proteins are evolutionarily conserved with almost all vertebrates expressing six CLIC proteins (CLIC1-6), and CLIC-like proteins are also present in invertebrates and have also been reported in plants. This discovery of CLIC1 protein interaction with other natural sterols and the sterol structural requirements for CLIC membrane insertion provide key information to explore the feasibility of exploiting these properties for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- Khondker R Hossain
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Daniel R Turkewitz
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL Hub), Faculty of Science, University of Technology Sydney, , Sydney, New South Wales 2007, Australia
| |
Collapse
|
30
|
Abstract
Integration between animal reproduction and symbiont inheritance is fundamental in symbiosis biology, but the underlying molecular mechanisms are largely unknown. Vitellogenin (Vg) is critical for oogenesis, and it is also a pathogen pattern recognition molecule in some animals. Previous studies have shown that Vg is involved in the regulation of symbiont abundance and transmission. However, the mechanisms by which an insect and its symbiont contribute to the function of Vg and how Vg impacts the persistence of insect-microbe symbiosis remain largely unclear. Symbionts are transovarially transmitted via maternal inheritance of the bacteriocytes in the whitefly Bemisia tabaci. Surprisingly, Vg is localized in bacteriocytes of whiteflies. Vg could be synthesized in whitefly bacteriocytes by the gene Vg expressed in these cells or exported into bacteriocytes from hemolymph via the Vg receptor. We further found that the juvenile hormone and "Candidatus Portiera aleyrodidarum" (here termed Portiera) control the level and localization of Vg in whiteflies. Immunocapture PCR revealed interactions between Vg and Portiera. Suppressing Vg expression reduced Portiera abundance as well as whitefly oogenesis and fecundity. Thus, we reveal that Vg facilitated the persistence of whitefly-bacteriocyte symbiont associations. This study will provide insight into the key role of Vg in the coevolution of insect reproduction and symbiont inheritance. IMPORTANCE Intracellular heritable symbionts have been incorporated into insect reproductive and developmental biology by various mechanisms. All Bemisia tabaci species harbor the obligate symbiont Portiera in specialized insect cells called bacteriocytes. We report that the whitefly juvenile hormone and Portiera determined vitellogenin (Vg) localization in bacteriocytes of whiteflies. In turn, Vg affected whitefly fecundity as well as fitness and transmission of the symbiont. Our findings show that Vg, a multifunctional protein, is indispensable for symbiont integration into the reproduction and development of insects. This reflects the outcome of long-term coevolution of the insect-microbe symbiosis.
Collapse
|
31
|
Cohen ZP, Perkin LC, Sim SB, Stahlke AR, Geib SM, Childers AK, Smith TPL, Suh C. Insight into weevil biology from a reference quality genome of the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae). G3 (BETHESDA, MD.) 2023; 13:jkac309. [PMID: 36454104 PMCID: PMC9911062 DOI: 10.1093/g3journal/jkac309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
The boll weevil, Anthonomus grandis grandis Boheman, is one of the most historically impactful insects due to its near destruction of the US cotton industry in the early 20th century. Contemporary efforts to manage this insect primarily use pheromone baited traps for detection and organophosphate insecticides for control, but this strategy is not sustainable due to financial and environmental costs. We present a high-quality boll weevil genome assembly, consisting of 306 scaffolds with approximately 24,000 annotated genes, as a first step in the identification of gene targets for novel pest control. Gene content and transposable element distribution are similar to those found in other Curculionidae genomes; however, this is the most contiguous and only assembly reported to date for a member in the species-rich genus Anthonomus. Transcriptome profiles across larval, pupal, and adult life stages led to identification of several genes and gene families that could present targets for novel control strategies.
Collapse
Affiliation(s)
- Zachary P Cohen
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, Agricultural Research Service, 2771 F and B Road, College Station, TX 77845, USA
| | - Lindsey C Perkin
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, Agricultural Research Service, 2771 F and B Road, College Station, TX 77845, USA
| | - Sheina B Sim
- Tropical Crop and Commodity Protection Research Unit, U.S. Pacific Basin Agricultural Research Center, USDA, Agricultural Research Service, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Amanda R Stahlke
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, U.S. Pacific Basin Agricultural Research Center, USDA, Agricultural Research Service, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Anna K Childers
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Timothy P L Smith
- Genetics and Breeding Research Unit, U.S. Meat Animal Research Center, USDA, Agricultural Research Service, State Spur 18D, Clay Center, NE 68933, USA
| | - Charles Suh
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, Agricultural Research Service, 2771 F and B Road, College Station, TX 77845, USA
| |
Collapse
|
32
|
Semchuchot W, Chotwiwatthanakun C, Santimanawong W, Kruangkum T, Thaijongrak P, Withyachumnarnkul B, Vanichviriyakit R. Sesquiterpenoid pathway in the mandibular organ of Penaeus monodon: Cloning, expression, characterization of PmJHAMT and its alteration response to eyestalk ablation. Gen Comp Endocrinol 2023; 331:114176. [PMID: 36410448 DOI: 10.1016/j.ygcen.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Methyl farnesoate (MF), a crustacean equivalent of juvenile hormone (JH) of insects, is known to be produced from the mandibular organ (MO). This study reports transcriptome analysis of Penaeus monodon MO and identifies putative genes encoding enzymes in the sesquiterpenoid pathway. A total of 44,490,420 clean reads were obtained and utilized for subsequent analysis. De novo assembly created 31,201 transcripts and 31,167 unigenes. To archive the functional annotation, all unigenes were annotated with KOG, KEGG, and GO. Putative genes encoding enzymes and regulatory proteins involved in the sesquiterpenoid pathway were obtained from the MO transcriptome data based on the conserved domains and sequence homology. They included S-adenosylmethionine synthetase, farnesyl pyrophosphate synthase, short chain dependent dehydrogenase/reductase (SDR), NAD(P) + -dependent aldehyde dehydrogenase, S-adenosylmethionine-dependent methyltransferases or juvenile hormone acid-O-methyl transferase (JHAMT), farnesoic acid O-methyl transferase (FAMeT), juvenile hormone binding protein, cytochrome C/P-450 family 15 (CRYP15A1)/methylfarnesoate epoxidase (MFE), juvenile hormone epoxide hydrolase (JHEH), and juvenile hormone esterase (JHE). We first identified and characterized JHAMT orthologs inP. monodon(PmJHAMT). The complete cDNA sequence ofPmJHAMTconsisted of 1,221 nt encoded 271 amino acids with a conserved S-adenosyl methionine (SAM) binding domain. Phylogenetic analysis clusteredPmJHAMTinto the group JHAMT with the same clade of the crabPortunus trituberculausJHAMT. Moreover, the predicted three-dimensional structure of PmJHAMT showed remarkable similarity with the recent crystal structure ofthe Bombyx moriJHAMT homodimer. RT-PCR analysis revealed that PmJHAMT was exclusively expressed in MO and initially expressed at stage 3 postlarvae. In situ hybridization with a specific probe to PmJHAMT validated the specific expression of this gene in MO cells. Finally, we evaluated the regulation of MO by eyestalk inhibitory peptides. Diminishing MO inhibitory hormone through unilateral eyestalk ablation resulted in a significantly higher expression ofPmJHAMTin MO by quantitative PCR. This result indicated that the eyestalk inhibitory hormone inhibited MF synthesis byPmJHAMTgene suppression in the MO. This finding provides insight into the crustacean sesquiterpenoid pathway and improves our understanding of crustacean endocrinology.
Collapse
Affiliation(s)
- Wanita Semchuchot
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Wanida Santimanawong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prawporn Thaijongrak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Boonsirm Withyachumnarnkul
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science and Industrial Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
33
|
Jin M, Liu B, Zheng W, Liu C, Liu Z, He Y, Li X, Wu C, Wang P, Liu K, Wu S, Liu H, Chakrabarty S, Yuan H, Wilson K, Wu K, Fan W, Xiao Y. Chromosome-level genome of black cutworm provides novel insights into polyphagy and seasonal migration in insects. BMC Biol 2023; 21:2. [PMID: 36600240 PMCID: PMC9814246 DOI: 10.1186/s12915-022-01504-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.
Collapse
Affiliation(s)
- Minghui Jin
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bo Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weigang Zheng
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Conghui Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), Hongkong, 999077 China
| | - Zhenxing Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuan He
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaokang Li
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chao Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ping Wang
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- grid.411407.70000 0004 1760 2614School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Shigang Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Swapan Chakrabarty
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibin Yuan
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Kenneth Wilson
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, LAI 4YQ UK
| | - Kongming Wu
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Wei Fan
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
34
|
Yang M, Li G, Yu L, Du S, Jiang D, Chu X, Wang K, Wu S, Wang R, Zhang F, Hu X. Temperature and metal ions regulate larval diapause termination via the 20-hydroxyecdysone and juvenile hormone pathways in Monochamus alternatus. PEST MANAGEMENT SCIENCE 2023; 79:437-446. [PMID: 36177945 DOI: 10.1002/ps.7212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diapause allows insects to survive harsh environments, and its termination is crucial for their normal development after diapause. However, little is known about the regulatory pathways and signals involved in insect diapause termination. RESULTS We discovered that high temperature (25 °C) influenced larval diapause termination in Monochamus alternatus. Likewise, metal ions (Ca2+ ) promoted diapause termination by reducing diapause duration. We combined transcriptomic and metabolomic analyses to investigate changes in gene expression and metabolism in diapause-terminated larvae treated with high temperature (MaHt) and metal ions (MaCa). Hormone biosynthesis and metabolism contained the highest proportion of significant differentially expressed genes (DEGs) in the two groups. 20-hydroxyecdysone (20E) and juvenile hormone (JH) were closely related to diapause termination in M. alternatus. RNA interference (RNAi) experiments verified that 20E biosynthesis (CYP314a1) and degradation (CYP18a1), JH biosynthesis (FOHSDR-1) and degradation (JHEH) genes affected the larval diapause duration significantly. In addition, dysfunction of CYP314a1 resulted in increased larval mortality (P < 0.01), reduced pupation rate and emergence rate (P < 0.05). Enzyme-linked immunosorbent assay (ELISA) analysis showed that the ecdysone content decreased after dsCYP314a1 injection and JH content increased after dsJHEH injection. CONCLUSION The results indicate that genes CYP314a1, CYP18a1, FOHSDR-1 and JHEH mediated 20E and JH biosynthesis and degradation to regulate diapause termination in M. alternatus. We elucidated the molecular mechanism underlying the regulation of diapause termination and provided a basis for the prevention and control of M. alternatus infestation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Du
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Derstine N, Galbraith D, Villar G, Amsalem E. Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100056. [PMID: 37124651 PMCID: PMC10130613 DOI: 10.1016/j.cris.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Pheromones regulating social behavior are one of the most explored phenomena in social insects. However, compound identity, biosynthesis and their genetic basis are known in only a handful of species. Here we examined the gene expression associated with pheromone biosynthesis of two main chemical classes: esters and terpenes, using the social bee Bombus impatiens. We conducted chemical and RNA-seq analyses of the Dufour's gland, an exocrine gland producing a plethora of pheromones regulating social behavior in hymenopteran species. The Dufour's gland contains mostly long-chained hydrocarbons, terpenes and esters that signal reproductive and social status in several bee species. In bumble bees, the Dufour's gland contains queen- and worker-specific esters, in addition to terpenes and terpene-esters only found in gynes and queens. These compounds are assumed to be synthesized de novo in the gland, however, their genetic basis is unknown. A whole transcriptome gene expression analysis of the gland in queens, gynes, queenless and queenright workers showed distinct transcriptomic profiles, with thousands of differentially expressed genes between the groups. Workers and queens express genes associated with key enzymes in the biosynthesis of wax esters, while queens and gynes preferentially express key genes in terpene biosynthesis. Overall, our data demonstrate gland-specific regulation of chemical signals associated with social behavior and identifies candidate genes and pathways regulating caste-specific chemical signals in social insects.
Collapse
|
36
|
Du H, Ge R, Zhang L, Zhang J, Chen K, Li C. Transcriptome-wide identification of development related genes and pathways in Tribolium castaneum. Genomics 2023; 115:110551. [PMID: 36566947 DOI: 10.1016/j.ygeno.2022.110551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The growth and development in Tribolium castaneum were poorly understood at the transcriptome level. Currently, we identified 15,756, 9941 and 10,080 differentially expressed transcripts between late eggs VS early larvae, late larvae VS early pupae, and late pupae VS early adults of T. castaneum by RNA-seq, which was confirmed by qRT-PCR analysis on nine genes expression. Functional enrichment analysis indicated that DNA replication, cell cycle and insect hormone biosynthesis significantly enriched differentially expressed genes. The transcription of DNA replication and cell cycle genes decreased after hatching but increased after pupation. The juvenile hormone (JH) and ecdysteroid biosynthesis genes decreased after hatching, and the JH degradation genes were stimulated after pupation and eclosion while the ecdysteroid degradation gene CYP18A1 decreased after pupation. Silencing CYP18A1 elevated the titer of ecdysteroids and caused developmental arrest at the late larval stage. This study promotes the understanding of insect growth and development.
Collapse
Affiliation(s)
- Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
37
|
Tong D, Zhang L, Wu N, Xie D, Fang G, Coates BS, Sappington TW, Liu Y, Cheng Y, Xia J, Jiang X, Zhan S. The oriental armyworm genome yields insights into the long-distance migration of noctuid moths. Cell Rep 2022; 41:111843. [PMID: 36543122 DOI: 10.1016/j.celrep.2022.111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.
Collapse
Affiliation(s)
- Dandan Tong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Thomas W Sappington
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jixing Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
39
|
Zhang L, Xu H, Zhang Y, Zhang H, Wang Z, Guo P, Zhao P. Structural characterization and functional analysis of juvenile hormone acid methyltransferase JHAMT3 from the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103863. [PMID: 36341863 DOI: 10.1016/j.ibmb.2022.103863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone acid methyltransferase (JHAMT) is a rate-limiting enzyme of juvenile hormone (JH) biosynthesis in insects. It transfers the methyl group of S-adenosyl methionine to either the carboxyl group of JH acids or farnesoic acid to produce JH. Six JHAMT paralogues have been identified in the silkworm (Bombyx mori); among them, JHAMT1 and JHAMT2 display a methyltransferase activity. Here, the three-dimensional crystal structure of inactive JHAMT3 and the binary complex of JHAMT3 with its cofactor S-adenosyl-l-homocysteine were determined through X-ray crystallization. Comparative structural analysis revealed that JHAMT3 adopted a similar structural pattern to that of functional JHAMT2, which comprised one core Rossmann fold domain and one substrate-binding domain. Similar to JHAMT2, JHAMT3 underwent a conformational change at the Rossmann fold domain because of cofactor binding, which promoted ligand accommodation. However, it exhibited a relatively rigid substrate-binding pocket compared with that of JHAMT2. JHAMT3 was also highly expressed in the silk gland of fourth- and fifth-instar B. mori larvae. The results of expression profiling combined with activity analysis suggested that JHAMT3 might function as a binding protein of JH acids for the regulation of JH acid titers. These findings provide a structural basis for enhancing the understanding of the physiological function of JHAMT3 and a rational framework for the development of potent and specific inhibitors of JHAMT family members.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Haiyang Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yunshi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Huan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, 400716, China.
| |
Collapse
|
40
|
Aygün S, Düzlü Ö, Yıldırım A. Molecular Characterization and Expression Analysis of the Sterol-carrier Protein-2 Fragment in Anopheles sacharovi Generations. TURKIYE PARAZITOLOJII DERGISI 2022; 46:312-321. [PMID: 36444407 DOI: 10.4274/tpd.galenos.2022.68553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective It was aimed to characterize the sterol carrier protein-2 (SCP-2) gene in Anopheles sacharovi using molecular methods for the first time, and to reveal the expression levels of An. sacharovi in the developmental stages and female generation in different tissues such as salivary gland, midgut and adipose tissue. Methods The adult female An. sacharovi collected from the Sultan Sazlığı region and the development stages in the insectarium constituted the study material. cDNA isolation was performed following total RNA extraction from An. sacharovi strains. The 216 bp fragment of the SCP-2 gene was amplified with optimized primers in cDNA templates and was sequenced. Genetic characterization of the sequences was provided in silico analysis. Results Twelve of the SCP-2 nucleotide sequences of 14 isolates included in the sequence analysis were 100% identical and the SCP-2 sequences of the other two isolates that were homologous to each other showed a single nucleotide change at base 183. The 216 bp fragment of the SCP-2 gene region was found encoding the 72 amino acid chain. SCP-2 gene sequences clustered the isolates monophyletically on the basis of mosquito species and strains, and that Anopheles sacharovi isolates formed a subcluster together with Anopheles stephensi and Anopheles funestus within the Anopheles cluster in phylogenetic analysis. Because of q-polymerase chain reaction-mediated expression analysis, SCP-2 gene was expressed highest in adult males, followed by an adult female, ss L4, L3, L2, L1, and pupal stages, respectively. In adult female tissues, the SCP-2 gene was expressed the highest in the fat body, followed by the midgut and salivary glands, respectively. Conclusion SCP2, which is an important vaccine candidate or target drug site for Anopheles sacharovi with high vector potential, was firstly characterized in this study and the developmental stages and expression differences in the tissues of the mosquito were revealed.
Collapse
Affiliation(s)
- Sümeyye Aygün
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Önder Düzlü
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Alparslan Yıldırım
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| |
Collapse
|
41
|
Liu M, Wu Z, Yan C, Liu Y, Xing K, Zhang J, Sun Y. Ovarian transcriptome and metabolic responses of RNAi-mediated farnesyl pyrophosphate synthase knockdown in Neocaridina denticulata sinensis. Genomics 2022; 114:110484. [PMID: 36126831 DOI: 10.1016/j.ygeno.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Methyl farnesoate (MF) is considered the equivalent of JH in crustaceans and plays an essential role in many crucial physiological processes. It is believed that farnesyl pyrophosphate synthase (FPPS) plays an essential role in the biosynthesis of mevalonate, which is a branch of the JH/MF pathway. The full-length cDNA of FPPS (NdFPPS) from Neocaridina denticulata sinensis was isolated and characterized, and the deduced amino acid of NdFPPS contained a polyprenyl_synt domain. In addition to its ubiquitous tissue expression, NdFPPS was significantly expressed in the ovary. In vivo gene silencing with dsRNA interference was performed to further investigate the function of NdFPPS. An ovarian transcriptomic analysis of dsNdFPPS experimental and control groups was used to compare, annotate, and classify differentially expressed genes (DEGs). A total of 9230 DEGs were identified in the experimental and control groups based on FPKM values, of which 5082 were up-regulated genes and 4148 were down-regulated genes. 761 GO terms and 102 KEGG pathways were enriched for the DEGs. Our results suggest that NdFPPS might play an important role in ovarian development, however, further functional study is needed to elucidate physiological role of NdFPPS in reproduction.
Collapse
Affiliation(s)
- Mengfei Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Zixuan Wu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
42
|
Zhou QH, Zhang Q, Yang RL, Yuan GR, Wang JJ, Dou W. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase disrupts larval development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105285. [PMID: 36464328 DOI: 10.1016/j.pestbp.2022.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.
Collapse
Affiliation(s)
- Qi-Hao Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
43
|
Zhang H, Liu J, Wang H, Fang H, Zhao P, Xia Q, Guo P. Structural insights into the substrate binding of phosphomevalonate kinase from the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103849. [PMID: 36209956 DOI: 10.1016/j.ibmb.2022.103849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Phosphomevalonate kinase (PMK) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway that catalyzes the phosphorylation of mevalonate 5-phosphate into mevalonate 5-diphosphate in the mevalonate pathway. Herein, we report the crystal structure of insect PMK from Bombyx mori (BmPMK) at a resolution of 1.60 Å. The overall structure of BmPMK adopts a compact α/β conformation with two parts: the core and lid regions. The interface between the core and lid regions forms a continuous and negatively charged groove to accommodate the substrates. Using computational simulation combined with site-directed mutagenesis and biochemical analysis, we define the binding mode of BmPMK with the cofactor and the substrate, which provides a structural basis for understanding the catalytic mechanism and the design of inhibitors of PMK. Moreover, BmPMK showed the optimal enzyme activity at pH 8.0, and the optimal temperature was 30 °C, using mevalonate 5-phosphate as the substrate. The expression profiles and kinetic analyses of BmPMK indicated that it plays critical role in the control of JH biosynthesis in silkworms. Collectively, these findings provide a better understanding of the structural and biochemical features of insect PMK.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jie Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hanlin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Huan Fang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
44
|
Yang Z, Wu Y, Yan Y, Xu G, Yu N, Liu Z. Regulation of juvenile hormone and ecdysteroid analogues on the development of the predatory spider, Pardosa pseudoannulata, and its regulatory mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113847. [PMID: 35809399 DOI: 10.1016/j.ecoenv.2022.113847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Insecticides harm the beneficial organisms, such as predatory spiders, through direct killing or regulation of the development and reproduction. In this study, the bioassay showed that the treatment of juvenile hormone (JH) analogue fenoxycarb delayed the moulting of Pardosa pseudoannulata, a dominant predatory spider in paddy fields. In order to figure out the regulatory mechanism of fenoxycarb on the spider development, we systematically analyzed JH biosynthesis in P. pseudoannulata. All genes involved in JH biosynthesis pathway were retrieved from the genome of P. pseudoannulata, except for CYP15A1. The absence of CYP15A1 was in agreement with the identification of methyl farnesoate (MF) rather than JH III in the spider. The delayed moulting and decreased expression of JH biosynthesis-related genes in the MF-applied spiderlings supported that MF was an active JH. Fenoxycarb treatment significantly upregulated the transcriptional level of JH biosynthesis-related genes and consequently delayed the spiderling moulting. In the spider development, ecdysteroid played the opposite role, in contrast to MF, to accelerate the development, as our previous study. Here we found that the treatment of ecdysteroid analogue tebufenozide accelerated P. pseudoannulata spiderling moulting, which resulted from the expressional suppression of ecdysteroid biosynthesis-related genes. In total, the JH and ecdysteroid analogues affected the development of P. pseudoannulata by the expressional regulation of biosynthesis-related genes, which would be helpful for the evaluation of hormone analogue insecticides in environmental safety, and useful for the protection and application of P. pseudoannulate and related spider species.
Collapse
Affiliation(s)
- Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Guangming Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, PR China.
| |
Collapse
|
45
|
Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2022; 23:ijms23169451. [PMID: 36012717 PMCID: PMC9409210 DOI: 10.3390/ijms23169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.
Collapse
|
46
|
Lipids and Fatty Acids in Some Mesopelagic Fish Species: General Characteristics and Peculiarities of Adaptive Response to Deep-Water Habitat. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The lipid and fatty acid composition of muscles of mesopelagic fish species Lampanyctus macdonaldi, Bathylagus euryops, Serrivomer beanii, Scopelogadus beanii in the Irminger Sea at deep range were studied. The contents of the total lipids (TLs), total phospholipids (PLs), monoacylglycerols (MAGs), diacylglycerols (DAGs), triacylglycerols (TAGs), cholesterol (Chol), Chol esters, non-esterified fatty acids (NEFAs), and wax esters were determined by HPTLC; the PL classes were determined by HPLC; and fatty acids (FAs) were determined using GC. It was found significant differences in lipid profile of the studied fishes: Chol esters and waxes were dominant in L. macdonaldii and S. beanii, fish species with diel vertical migrations (DVM), while TAGs were prevalent in B. euryops and Sc. Beanii—non-migratory species. It was revealed the species-specific differences in FAs profiles of the studied fish. Along with this, it was detected the similarity of FAs in fish, which is associated with food sources. A comparative analysis of lipids and FAs among L. macdonaldi and S. beanii collected in the Irminger Sea and L. alatus and S. beanii collected in the Tropic Seamount revealed similar biochemical strategies for the accumulation of certain lipids characterized the mesopelagic inhabit despite latitude differences of the area of study.
Collapse
|
47
|
Feng Q, Liu M, Cheng Y, Wu X. Comparative Transcriptome Analysis Reveals the Process of Ovarian Development and Nutrition Metabolism in Chinese Mitten Crab, Eriocheir Sinensis. Front Genet 2022; 13:910682. [PMID: 35685440 PMCID: PMC9171014 DOI: 10.3389/fgene.2022.910682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian development is a key physiological process that holds great significance in the reproduction of the Chinese mitten crab (Eriocheir sinensis), which is an economically important crab species for aquaculture. However, there is limited knowledge for the regulatory mechanisms of ovarian development. To study the molecular mechanisms of its ovarian development, transcriptome analysis was performed in the ovary and hepatopancreas of E. sinensis during ovarian stages I (oogonium proliferation), II (endogenous vitellogenesis), and III (exogenous vitellogenesis). The results showed that 5,520 and 226 genes were differentially expressed in the ovary and hepatopancreas, respectively. For KEGG enrichment analysis, the differentially expressed genes in the ovary were significantly clustered in phototransduction-fly, phagosome, and ECM-receptor interaction. Significantly enriched pathways in the hepatopancreas included fatty acid biosynthesis, fatty acid metabolism, and riboflavin metabolism. Further analysis showed that 25 genes and several pathways were mainly involved in oogenesis, including the ubiquitin-proteasome pathway, cyclic AMP-protein kinase A signaling pathway, and mitogen-activated protein kinase signaling pathway. Twenty-five candidate genes involved in vitellogenesis and endocrine regulation were identified, such as vitellogenin, vitellogenin receptor, estrogen sulfotransferase, ecdysone receptor, prostaglandin reductase 1, hematopoietic prostaglandin D synthase and juvenile hormone acid O-methyltransferase. Fifty-six genes related to nutritional metabolism were identified, such as fatty acid synthase, long-chain-fatty-acid-CoA ligase 4, 1-acyl-sn-glycerol-3-phosphate acyltransferase 4, fatty acid-binding protein, and glycerol-3-phosphate acyltransferase 1. These results highlight the genes involved in ovarian development and nutrition deposition, which enhance our understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiangmei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Meimei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang, China
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
48
|
So WL, Kai Z, Qu Z, Bendena WG, Hui JHL. Rethinking Sesquiterpenoids: A Widespread Hormone in Animals. Int J Mol Sci 2022; 23:ijms23115998. [PMID: 35682678 PMCID: PMC9181382 DOI: 10.3390/ijms23115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
The sesquiterpenoid hormone juvenile hormone (JH) controls development, reproduction, and metamorphosis in insects, and has long been thought to be confined to the Insecta. While it remains true that juvenile hormone is specifically synthesized in insects, other types or forms of sesquiterpenoids have also been discovered in distantly related animals, such as the jellyfish. Here, we combine the latest literature and annotate the sesquiterpenoid biosynthetic pathway genes in different animal genomes. We hypothesize that the sesquiterpenoid hormonal system is an ancestral system established in an animal ancestor and remains widespread in many animals. Different animal lineages have adapted different enzymatic routes from a common pathway, with cnidarians producing farnesoic acid (FA); non-insect protostomes and non-vertebrate deuterostomes such as cephalochordate and echinoderm synthesizing FA and methyl farnesoate (MF); and insects producing FA, MF, and JH. Our hypothesis revolutionizes the current view on the sesquiterpenoids in the metazoans, and forms a foundation for a re-investigation of the roles of this important and yet neglected type of hormone in different animals.
Collapse
Affiliation(s)
- Wai Lok So
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenpeng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Zhe Qu
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William G. Bendena
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (W.G.B.); (J.H.L.H.)
| | - Jerome H. L. Hui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (W.G.B.); (J.H.L.H.)
| |
Collapse
|
49
|
Temporal Expression Profiles Reveal Potential Targets during Postembryonic Development of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae). INSECTS 2022; 13:insects13050453. [PMID: 35621788 PMCID: PMC9143129 DOI: 10.3390/insects13050453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830) is a species of medical and forensic importance. In order to investigate the molecular mechanism during postembryonic development and identify specific genes that may serve as potential targets, transcriptome analysis was used to investigate its gene expression dynamics from the larval to pupal stages, based on our previous de novo-assembled genome of S. peregrina. Totals of 2457, 3656, 3764, and 2554 differentially expressed genes were identified. The specific genes encoding the structural constituent of cuticle were significantly differentially expressed, suggesting that degradation and synthesis of cuticle-related proteins might actively occur during metamorphosis. Molting (20-hydroxyecdysone, 20E) and juvenile (JH) hormone pathways were significantly enriched, and gene expression levels changed in a dynamic pattern during the developmental stages. In addition, the genes in the oxidative phosphorylation pathway were significantly expressed at a high level during the larval stage, and down-regulated from the wandering to pupal stages. Weighted gene co-expression correlation network analysis (WGCNA) further demonstrated the potential regulation mechanism of tyrosine metabolism in the process of puparium tanning. Moreover, 10 consistently up-regulated genes were further validated by qRT-PCR. The utility of the models was then examined in a blind study, indicating the ability to predict larval development. The developmental, stage-specific gene profiles suggest novel molecular markers for age prediction of forensically important flies.
Collapse
|
50
|
Cloning, expression analysis and RNAi of farnesoic acid O-methylransferase gene from Neocaridina denticulata sinensis. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110719. [PMID: 35150858 DOI: 10.1016/j.cbpb.2022.110719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023]
Abstract
Methyl farnesoate (MF) is an essential endocrine hormone in crustaceans, which can promote the occurrence of crustaceans molting, control morphogenesis, affect gonad development, and regulate the stress stimulation to the external environment. The farnesoic acid O-methyltransferase (FAMeT) is a key rate-limiting enzyme in MF synthesis, catalyzing the conversion of farnesoic acid (FA) into MF. Neocaridina denticulata sinensis [Decapoda] is a suitable animal model for studying crustaceans because it can reproduce many times under artificial control and has a short reproductive cycle. According to its transcriptomic and genomic information, the full-length cDNA sequence of FAMeT from N. denticulata sinensis (NdFAMeT) was cloned and the characterization of its deduced amino acid sequence was also analyzed. The relative expression of NdFAMeT in different tissues was determined. The NdFAMeT protein was recombinantly expressed in E. coli and its enzyme activity was determined. After gene knockdown by RNAi technology, the protein activity of shrimp was decreased and the individual phenotype was also observed.
Collapse
|