1
|
Wu C, Gu Z, Li T, Yu J, Liu C, Fan W, Wang B, Jiang F, Zhang Q, Li W. The apple MdPTI1L kinase is phosphorylated by MdOXI1 during S-RNase-induced reactive oxygen species signaling in pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110824. [PMID: 33691959 DOI: 10.1016/j.plantsci.2021.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Apple (Malus domestica) exhibits classic S-RNase-mediated gametophytic self-incompatibility. Previous studies have shown that the S-RNase secreted from style cells could trigger signal transduction and defense responses mediated by Ca2+ and reactive oxygen species (ROS) after entering into the pollen tube. In this study, we investigated the downstream genes activated by ROS during S-RNase-mediated gametophytic self-incompatibility in pollen tubes. A substantial increase in ROS, as well as up-regulated expression of a serine-threonine protein kinase gene, OXIDATIVE SIGNAL-INDUCIBLE1 (MdOXI1), was detected in apple pollen tubes treated with self-S-RNase. A kinase assay-linked phosphoproteomics (KALIP) analysis suggested that MdOXI1 could bind and phosphorylate the downstream protein kinase Pto-interacting protein 1-like (MdPTI1L). The phosphorylation level of MdPTI1L was significantly reduced after silencing MdOXI1 with antisense oligonucleotides in the pollen tube. Silencing of either MdOXI1 or MdPTI1L alleviated the inhibitory effect of self-S-RNase on pollen tube growth. Our results thus indicate that MdPTI1L is phosphorylated by MdOXI1 in the pollen tube and participates in the ROS signaling pathway triggered by S-RNase.
Collapse
Affiliation(s)
- Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Singh NK, Paz E, Kutsher Y, Reuveni M, Lers A. Tomato T2 ribonuclease LE is involved in the response to pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:895-906. [PMID: 32352631 PMCID: PMC7280031 DOI: 10.1111/mpp.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 05/16/2023]
Abstract
T2 ribonucleases (RNases) are RNA-degrading enzymes that function in various cellular processes, mostly via RNA metabolism. T2 RNase-encoding genes have been identified in various organisms, from bacteria to mammals, and are most diverse in plants. The existence of T2 RNase genes in almost every organism suggests an important biological function that has been conserved through evolution. In plants, T2 RNases are suggested to be involved in phosphate scavenging and recycling, and are implicated in defence responses to pathogens. We investigated the function of the tomato T2 RNase LE, known to be induced by phosphate deficiency and wounding. The possible involvement of LE in pathogen responses was examined. Expression analysis showed LE induction during fungal infection and by stimuli known to be associated with pathogen inoculation, including oxalic acid and hydrogen peroxide. Analysis of LE-suppressed transgenic tomato lines revealed higher susceptibility to oxalic acid, a cell death-inducing factor, compared to the wild type. This elevated sensitivity of LE-suppressed lines was evidenced by visual signs of necrosis, and increased ion leakage and reactive oxygen species levels, indicating acceleration of cell death. Challenge of the LE-suppressed lines with the necrotrophic pathogen Botrytis cinerea resulted in accelerated development of disease symptoms compared to the wild type, associated with suppressed expression of pathogenesis-related marker genes. The results suggest a role for plant endogenous T2 RNases in antifungal activity.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Einat Paz
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Faculty of Agricultural, Food and Environment SciencesHebrew University of JerusalemRehovotIsrael
| | - Yaarit Kutsher
- Plant Science Institute, the Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Moshe Reuveni
- Plant Science Institute, the Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Amnon Lers
- Department of Postharvest Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
3
|
Roda F, Hopkins R. Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower. THE NEW PHYTOLOGIST 2019; 221:553-564. [PMID: 29992588 DOI: 10.1111/nph.15340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Selection to prevent interspecific mating can cause an increase or a decrease in self-pollination in sympatric populations. Characterizing the geographical variation in self and interspecific incompatibilities within a species can reveal if and how the evolution of self and interspecific mate choice are linked. We used controlled pollinations to characterize the variation in self and interspecific incompatibility across 29 populations of Phlox drummondii. We evaluated seed set from these pollinations and described the developmental timing of variation in pollen-pistil compatibility. There is extensive quantitative variation in self-incompatibility and interspecific-incompatibility with its close congener P. cuspidata. Phlox drummondii populations that co-occur and hybridize with P. cuspidata have significantly higher interspecific incompatibility and self-incompatibility than geographically isolated P. drummondii populations. The strength of self and interspecific incompatibility is significantly correlated among individuals and the strength of both incompatibilities is explained by the success of pollen adhesion to the stigma. The correlated strength of self and interspecific incompatibility across the range of P. drummondii and the concurrent developmental timing of the pollen-pistil interaction, suggests these incompatibilities have an overlapping molecular mechanism. The geographical distribution of variation in incompatibilities indicates that this mechanistic link between incompatibilities may affect the evolution of mate choice in plants.
Collapse
Affiliation(s)
- Federico Roda
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| |
Collapse
|
4
|
Samils N, Oliva J, Johannesson H. Nuclear interactions in a heterokaryon: insight from the model Neurospora tetrasperma. Proc Biol Sci 2015; 281:rspb.2014.0084. [PMID: 24850920 DOI: 10.1098/rspb.2014.0084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A heterokaryon is a tissue type composed of cells containing genetically different nuclei. Although heterokaryosis is commonly found in nature, an understanding of the evolutionary implications of this phenomenon is largely lacking. Here, we use the filamentous ascomycete Neurospora tetrasperma to study the interplay between nuclei in heterokaryons across vegetative and sexual developmental stages. This fungus harbours nuclei of two opposite mating types (mat A and mat a) in the same cell and is thereby self-fertile. We used pyrosequencing of mat-linked SNPs of three heterokaryons to demonstrate that the nuclear ratio is consistently biased for mat A-nuclei during mycelial growth (mean mat A/mat a ratio 87%), but evens out during sexual development (ratio ranging from 40 to 57%). Furthermore, we investigated the association between nuclear ratio and expression of alleles of mat-linked genes and found that expression is coregulated to obtain a tissue-specific bias in expression ratio: during mycelial extension, we found a strong bias in expression for mat A-linked genes, that was independent of nuclear ratio, whereas at the sexual stage we found an expression bias for genes of the mat a nuclei. Taken together, our data indicate that nuclei cooperate to optimize the fitness of the heterokaryon, via both altering their nuclear ratios and coregulation genes expressed in the different nuclei.
Collapse
Affiliation(s)
- Nicklas Samils
- Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonàs Oliva
- Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Meng D, Gu Z, Li W, Wang A, Yuan H, Yang Q, Li T. Apple MdABCF assists in the transportation of S-RNase into pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:990-1002. [PMID: 24684704 DOI: 10.1111/tpj.12524] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/03/2014] [Accepted: 03/26/2014] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) is a reproductive isolation mechanism in flowering plants. Plants in the Solanaceae, Rosaceae and Plantaginaceae belong to the gametophytic self-incompatibility type. S-RNase, which is encoded by a female-specific gene located at the S locus, degrades RNA in the pollen tube and causes SI. Recent studies have provided evidence that S-RNase is transported non-selectively into the pollen tube, but have not specified how this transportation is accomplished. We show here that the apple (Malus domestica) MdABCF protein, which belongs to group F of the ABC transporter family, assists in transportation of S-RNase into the pollen tube. MdABCF is located in the pollen tube membrane and interacts with S-RNase. S-RNase was unable to enter the pollen tube when MdABCF was silenced by antisense oligonucleotide transfection. Our results show that MdABCF assists in transportation of either self or non-self S-RNase into the pollen tube. Moreover, MdABCF coordinates with the cytoskeleton to transport S-RNase. Blockage of S-RNase transport disrupts self-incompatibility in this system.
Collapse
Affiliation(s)
- Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-Tech, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
6
|
de Leeuw M, González A, Lanir A, Roiz L, Smirnoff P, Schwartz B, Shoseyov O, Almog O. The 1.8 Å Crystal Structure of ACTIBIND Suggests a Mode of Action for T2 Ribonucleases As Antitumorigenic Agents. J Med Chem 2012; 55:1013-20. [DOI: 10.1021/jm1015507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marina de Leeuw
- Department of Clinical Biochemistry,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ana González
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, MS 99, Menlo
Park, California 94025, United States
| | - Assaf Lanir
- Department of Clinical Biochemistry,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | - Orna Almog
- Department of Clinical Biochemistry,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
7
|
Hillwig MS, Kanobe C, Thornburg RW, Macintosh GC. Identification of S-RNase and peroxidase in petunia nectar. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:734-8. [PMID: 21093100 DOI: 10.1016/j.jplph.2010.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 05/10/2023]
Abstract
Previous SDS PAGE gel analysis of the floral nectars from petunia and tobacco plants revealed significant differences in the protein patterns. Petunia floral nectar was shown to contain a number of RNase activities by in gel RNase activity assay. To identify these proteins in more detail, the bands with RNase activity were excised from gel and subjected to trypsin digestion followed by LC-MS/MS analysis. This analysis revealed that S-RNases accumulate in nectar from Petunia hybrida, where they should carry out a biological function different from self-pollen rejection. In addition, other proteins were identified by the LC-MS/MS analysis. These proteins include a peroxidase, an endochitinase, and a putative fructokinase. Each of these proteins contained a secretory signal sequence that marked them as potential nectar proteins. We developed RT-PCR assays for each of these five proteins and demonstrated that each of these proteins was expressed in the petunia floral nectary. A discussion of the role of these proteins in antimicrobial activity in nectar is presented.
Collapse
Affiliation(s)
- Melissa S Hillwig
- Interdepartmental Genetics Graduate Program, Iowa State University, USA
| | | | | | | |
Collapse
|
8
|
Hillwig MS, Liu X, Liu G, Thornburg RW, MacIntosh GC. Petunia nectar proteins have ribonuclease activity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2951-65. [PMID: 20460362 PMCID: PMC2892141 DOI: 10.1093/jxb/erq119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 05/22/2023]
Abstract
Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.
Collapse
Affiliation(s)
| | | | | | - Robert W. Thornburg
- To whom correspondence should be addressed: E-mail: Robert Thornburg: ; Gustavo MacIntosh:
| | - Gustavo C. MacIntosh
- To whom correspondence should be addressed: E-mail: Robert Thornburg: ; Gustavo MacIntosh:
| |
Collapse
|
9
|
McGowen MH, Vaillancourt RE, Pilbeam DJ, Potts BM. Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus. ANNALS OF BOTANY 2010; 105:737-45. [PMID: 20228085 PMCID: PMC2859912 DOI: 10.1093/aob/mcq036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS One of the major factors affecting the outcrossing rate in Eucalyptus globulus is thought to be the inherent self-incompatibility (SI) level of the female tree. SI in this species is mainly due to late-acting pre- and post-zygotic mechanisms operating in the ovary, and not S alleles. This study aimed to assess the phenotypic variation in SI levels within E. globulus and determine its genetic control and stability across pollination techniques, sites and seasons. METHODS SI levels were estimated for 105 genotypes originating from across the geographical range of E. globulus over multiple years of crossing. Separate grafted trees of some genotypes growing at the same and different sites allowed the genetic basis of the variation in SI to be tested and its stability across sites and seasons to be determined. The SI level of a tree was measured as the relative reduction in seeds obtained per flower pollinated following selfing compared with outcross pollinations. Thus, if seed set is the same, SI is 0 %, and if no self seed is set, SI is 100 %. KEY RESULTS The average SI in E. globulus was 91 % and genotypes ranged from 8 to 100 % SI. Most genotypes (>75 %) had SI levels >90 %. There were highly significant differences between genotypes and the within-site broad-sense heritability of percentage SI was high (H(2) = 0.80 +/- 0.13). However, there was evidence that growing site, and to a lesser extent season, can affect the expression of SI levels. Trees with low reproductive loads produced relatively more seed from selfed flowers. CONCLUSIONS There is a strong genetic basis to the phenotypic variation in SI in E. globulus within a site. However, the level of SI was affected, but to a lesser extent, by the environment, which in part may reflect the higher probability of selfed zygotes surviving on sites or in seasons where competition for resources is less.
Collapse
Affiliation(s)
- Marian H. McGowen
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - René E. Vaillancourt
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - David J. Pilbeam
- Southern Tree Breeding Association Inc., 2 Eleanor Street, PO Box 1811, Mount Gambier, South Australia, 5290, Australia
| | - Brad M. Potts
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- For correspondence. E-mail
| |
Collapse
|
10
|
RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Mol Genet Genomics 2010; 283:381-96. [PMID: 20182746 DOI: 10.1007/s00438-010-0524-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
Abstract
The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility, and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are less well understood. Although S-RNases have been subjects of many phylogenetic studies, few have included an extensive analysis of S-like RNases, and genome-wide analyses to determine the number of S-like RNases in fully sequenced plant genomes are missing. We characterized the eight RNase T2 genes present in the Oryza sativa genome; and we also identified the full complement of RNase T2 genes present in other fully sequenced plant genomes. Phylogenetics and gene expression analyses identified two classes among the S-like RNase subfamily. Class I genes show tissue specificity and stress regulation. Inactivation of RNase activity has occurred repeatedly throughout evolution. On the other hand, Class II seems to have conserved more ancestral characteristics; and, unlike other S-like RNases, genes in this class are conserved in all plant species analyzed and most are constitutively expressed. Our results suggest that gene duplication resulted in high diversification of Class I genes. Many of these genes are differentially expressed in response to stress, and we propose that protein characteristics, such as the increase in basic residues can have a defense role independent of RNase activity. On the other hand, constitutive expression and phylogenetic conservation suggest that Class II S-like RNases may have a housekeeping role.
Collapse
|
11
|
Lin X, Xie H, Xi Z, Hu Y, Zhao G, Duan L, Hao Z, Liu Z, Tang J. Identification and mapping of a thermo-sensitive genic self-incompatibility gene in maize. Genes Genomics 2009. [DOI: 10.1007/bf03191194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gleiser G, Verdú M, Segarra-Moragues JG, González-Martínez SC, Pannell JR. Disassortative mating, sexual specialization, and the evolution of gender dimorphism in heterodichogamous Acer opalus. Evolution 2008; 62:1676-1688. [PMID: 18384655 DOI: 10.1111/j.1558-5646.2008.00394.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In sexually polymorphic species, the morphs are maintained by frequency-dependent selection through disassortative mating. In heterodichogamous populations in which disassortative mating occurs between the protandrous and protogynous morphs, a decrease in female fitness in one morph is hypothesized to drive sexual specialization in the other morph, resulting in dimorphic populations. We test these ideas in a population of the heterodichogamous species, Acer opalus. We assessed both prospective gender of individuals in terms of their allocations and actual parentage using microsatellites; we found that most matings in A. opalus occur disassortatively. We demonstrate that the protogynous morph is maintained by frequency-dependent selection, but that maintenance of males versus protandrous individuals depends on their relative siring success, which changes yearly. Seeds produced later in the reproductive season were smaller than those produced earlier; this should compromise reproduction through ovules in protandrous individuals, rendering them male biased in gender. Time-dependent gender and paternity analyses indicate that the sexual morphs are specialized in their earlier sexual functions, mediated by the seasonal decrease in seed size. Our results confirm that mating patterns are context-dependent and change seasonally, suggesting that sexual specialization can be driven by seasonal effects on fitness gained through one of the two sexual functions.
Collapse
Affiliation(s)
- Gabriela Gleiser
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Camí de la Marjal s/n Apartado Oficial, 46470 Albal, Valencia, Spain.
| | | | | | | | | |
Collapse
|
13
|
de Leeuw M, Roiz L, Smirnoff P, Schwartz B, Shoseyov O, Almog O. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:716-9. [PMID: 17671376 PMCID: PMC2335156 DOI: 10.1107/s1744309107034483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/14/2007] [Indexed: 11/10/2022]
Abstract
ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 x 10(4) M(-1). Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 x 0.5 x 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3(1)21 space group, with unit-cell parameters a = 78, b = 78, c = 104 A.
Collapse
Affiliation(s)
- Marina de Leeuw
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Levava Roiz
- The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Patricia Smirnoff
- The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | - Oded Shoseyov
- The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Roiz L, Smirnoff P, Bar-Eli M, Schwartz B, Shoseyov O. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics. Cancer 2006; 106:2295-308. [PMID: 16586499 DOI: 10.1002/cncr.21878] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND ACTIBIND is an Aspergillus niger extracellular ribonuclease (T2-ribonuclease [RNase]) that possesses actin-binding activity. In plants, ACTIBIND inhibits the elongation and alters the orientation of pollen tubes by interfering with the intracellular actin network. The question rose whether ACTIBIND can also affect mammalian cancer development. METHODS Cell colony formation was performed in human colon (HT-29, Caco-2, RSB), breast (ZR-75-1), and ovarian (2780) cancer cells in the presence or absence of 1 muM ACTIBIND. In HT-29 and ZR-75-1 cells, the effect of ACTIBIND on cell migration was studied by microscopic observations and by invasion assay through Matrigel. Tube formation was assessed in human umbilical vein endothelial cells (HUVEC) in the presence of angiogenin or basic fibroblast growth factor (bFGF) (1 microg/mL each) following overnight incubation with 1 or 10 microM ACTIBIND. In an athymic mouse xenograft model, HT-29 cells were injected subcutaneously, followed by subcutaneous (0.4-8 mg/mouse/injection) or intraperitoneal (0.001-1 mg/mouse/injection) injections of ACTIBIND. In a rat dimethylhydrazine (DMH)-colorectal carcinogenesis model, ACTIBIND was released directly into the colon via osmotic micropumps (250 microg/rat/day) or given orally via microcapsules (1.6 mg/rat/day). Aberrant crypt foci, tumors in the distal colon, and tumor blood vessels were examined. RESULTS ACTIBIND had an anticlonogenic effect unrelated to its ribonuclease activity. It also inhibited angiogenin-induced HUVEC tube formation in a dose-responsive manner. ACTIBIND was found to bind actin in vitro. It also bound to cancer cell surfaces, leading to disruption of the internal actin network and inhibiting cell motility and invasiveness through Matrigel-coated filters. In mice, ACTIBIND inhibited HT-29 xenograft tumor development, given either as a subcutaneous or intraperitoneal treatment. In rats, ACTIBIND exerted preventive and therapeutic effects on developing colonic tumors induced by DMH. It also reduced the degree of tumor observation. CONCLUSIONS This study indicated that ACTIBIND is an effective antiangiogenic and anticarcinogenic factor.
Collapse
Affiliation(s)
- Levava Roiz
- Institute of Plant Science and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
15
|
Asmussen MA, Cartwright RA, Spencer HG. Frequency-dependent selection with dominance: a window onto the behavior of the mean fitness. Genetics 2005; 167:499-512. [PMID: 15166172 PMCID: PMC1470846 DOI: 10.1534/genetics.167.1.499] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selection in which fitnesses vary with the changing genetic composition of the population may facilitate the maintenance of genetic diversity in a wide range of organisms. Here, a detailed theoretical investigation is made of a frequency-dependent selection model, in which fitnesses are based on pairwise interactions between the two phenotypes at a diploid, diallelic, autosomal locus with complete dominance. The allele frequency dynamics are fully delimited analytically, along with all possible shapes of the mean fitness function in terms of where it increases or decreases as a function of the current allele frequency in the population. These results in turn allow possibly the first complete characterization of the dynamical behavior by the mean fitness through time under frequency-dependent selection. Here the mean fitness (i) monotonically increases, (ii) monotonically decreases, (iii) initially increases and then decreases, or (iv) initially decreases and then increases as equilibrium is approached. We analytically derive the exact initial and fitness conditions that produce each dynamic and how often each arises. Computer simulations with random initial conditions and fitnesses reveal that the potential decline in mean fitness is not negligible; on average a net decrease occurs 20% of the time and reduces the mean fitness by >17%.
Collapse
Affiliation(s)
- Marjorie A Asmussen
- Department of Genetics, University of Georgia, Athens, Georgia 30602-7223, USA
| | | | | |
Collapse
|
16
|
Guo GQGQ, Zheng GCGC. Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. J Theor Biol 2004; 229:139-46. [PMID: 15178192 DOI: 10.1016/j.jtbi.2004.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 03/12/2004] [Accepted: 03/12/2004] [Indexed: 11/30/2022]
Abstract
In oogamous reproduction of multicellular organisms, a striking phenomenon is the prevailing synchronous development of male germ cells connected by wide intercellular bridges (IBs, 0.1-2 microm), which is well conserved in both animal and plant species ranging from algae to human. In the literature, IBs are believed either to allow genetically segregated haploid spermatids to share diploid gene products after meiosis, or to mediate rapid transfer of some vital signals or nutrients. Although intercellular sharing of gene transcripts has experimental evidences, these hypotheses are still not satisfactory. To explore the unknown roles of IB, we assume that developing male germ cells may be especially sensitive to stochastic gene expression to become heterogeneous. To achieve best gamete quality, such heterogeneity must be eliminated so that relatively uniform gametes with normal functions can be produced. Development within a common syncytium may be the only way for this purpose. The process may require not only the intercellular exchange of a few molecular signals but also the mixing of protoplasm between the connected cells so that they have similar levels/states of mRNAs, proteins and organelles, which can be achieved only through wide IBs. This hypothesis can explain some quite intriguing aspects of male gametogenesis and provide unique predictions that can be tested experimentally.
Collapse
Affiliation(s)
- G-Q Guanq-Qin Guo
- Laboratory of cell biology, Lanzhou University, Lanzhou 730000, PR China. ,
| | | |
Collapse
|
17
|
Muirhead CA, Glass NL, Slatkin M. Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 2002; 161:633-41. [PMID: 12072460 PMCID: PMC1462126 DOI: 10.1093/genetics/161.2.633] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-species polymorphism, meaning the presence of alleles in different species that are more similar to each other than they are to alleles in the same species, has been found at loci associated with vegetative incompatibility in filamentous fungi. If individuals differ at one or more of these loci (termed het for heterokaryon), they cannot form stable heterokaryons after vegetative fusion. At the het-c locus in Neurospora crassa and related species there is clear evidence of trans-species polymorphism: three alleles have persisted for approximately 30 million years. We analyze a population genetic model of multilocus vegetative incompatibility and find the conditions under which trans-species polymorphism will occur. In the model, several unlinked loci determine the vegetative compatibility group (VCG) of an individual. Individuals of different VCGs fail to form productive heterokaryons, while those of the same VCG form viable heterokaryons. However, viable heterokaryon formation between individuals of the same VCG results in a loss in fitness, presumably via transfer of infectious agents by hyphal fusion or exploitation by aggressive genotypes. The result is a form of balancing selection on all loci affecting an individual's VCG. We analyze this model by making use of a Markov chain/strong selection, weak mutation (SSWM) approximation. We find that trans-species polymorphism of the type that has been found at the het-c locus is expected to occur only when the appearance of new incompatibility alleles is strongly constrained, because the rate of mutation to such alleles is very low, because the number of possible incompatibility alleles at each locus is restricted, or because the number of incompatibility loci is limited.
Collapse
Affiliation(s)
- Christina A Muirhead
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | | | |
Collapse
|
18
|
Hugot K, Ponchet M, Marais A, Ricci P, Galiana E. A tobacco S-like RNase inhibits hyphal elongation of plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:243-50. [PMID: 11952127 DOI: 10.1094/mpmi.2002.15.3.243] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) NE gene expression is induced in tobacco leaves in response to Phytophthora parasitica. Using antibodies directed against RNase NE, we demonstrate that RNase NE is extracellular at the early steps of the interaction, while the fungal tip growth is initiated in the apoplastic compartment. After production in Pichia pastoris and biochemical purification, we show that the S-like RNase NE inhibits hyphal growth from P. parasitica zoospores and from Fusarium oxysporum conidia in vitro. Conversion into an enzymatically inactive form after mutagenesis of the active site-histidine 97 residue to phenylalanine leads to the suppression of this activity, suggesting that RNase NE inhibits the elongation of germ tubes by degradation of microbial RNAs. Exogenous application of RNase NE in the extracellular space of leaves inhibits the development of P. parasitica. Based on its induction by inoculation, its localization, and its activity against two plant pathogens, we propose that RNase NE participates in tobacco defense mechanisms by a direct action on hyphal development in the extracellular space. The RNase activity-dependent antimicrobial activity of the S-like RNase NE shares similarities with the only other biological activity demonstrated for plant RNases, the inhibition of elongation of pollen tubes by the S-RNase in gametophytic self-incompatibility, suggesting a functional link between self and nonself interactions in plants.
Collapse
|
19
|
McGee JD, Hamer JE, Hodges TK. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:877-86. [PMID: 11437261 DOI: 10.1094/mpmi.2001.14.7.877] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A partial cDNA with homology to the PR-10 class of pathogenesis-related proteins was used to screen a rice genomic library. One 16-kb genomic clone contained three genes with PR-10 similarity. These genes, RPR10a, RPR10b, and RPR10c, were arranged in tandem and separated by approximately 2.5 kb. RPR10a cDNA was obtained by reverse transcription-polymerase chain reaction, and sequence analysis revealed that RPR10a and RPR10b encode predicted proteins of 158 and 160 amino acids, respectively, and share 71% amino acid identity. RPR10c appears to be a nonfunctional pseudogene. Gene-specific probes were used to study transcript accumulations of the three RPR10 genes in rice plants following inoculation with Magnaporthe grisea. RPR10a transcripts were induced from a low basal level within 12 h after inoculation and showed a second higher level induction at 48 h, which continued throughout the 144 h it was examined. In addition, RPR10a was induced strongly by salicylic and jasmonic acid applications to rice plants. Transcripts of RPR10b also were enhanced by M. grisea, but were not strongly visible until 48 h after inoculation. Tissue prints of M. grisea-infected rice leaves when the RPR10a-specific probe was used indicate that RPR10a is expressed most strongly in a localized fashion in response to the pathogen.
Collapse
Affiliation(s)
- J D McGee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
20
|
Bernd-Souza R, Sa MGD, Ellis D, McCown B. A rat pancreatic ribonuclease fused to a late cotton pollen promoter severely reduces pollen viability in tobacco plants. Genet Mol Biol 2000. [DOI: 10.1590/s1415-47572000000200032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of an animal RNase fused to the late cotton pollen-specific promoter G9 in a plant system were investigated. Expression of the chimeric genes G9-uidA and G9-RNase in tobacco plants showed that the 1.2-kb promoter fragment of the G9 gene was sufficient to maintain tissue and temporal specificity in a heterologous system. GUS (beta-glucuronidase) expression was detected only in pollen from anther stage 6 through anthesis, with maximal GUS activity in pollen from stage 10 anthers. Investigating the effects of the rat RNase on pollen viability at stage 10, we found that pollen viability was reduced from 79 to 8% and from 89 to 40%, in pollen germination and fluoresceine diacetate assays, respectively, in one G9-RNase transgenic line, suggesting a lethal effect of the RNase gene. This indicates that the rat RNase produces deleterious effects in this plant system and may be useful for engineering male sterility.
Collapse
|
21
|
Abstract
The transmission of signals across the plasma membrane of cells plays an integral part in cell communication in unicellular and complex organisms. Protein kinases and their activators serve key roles in this process, and a number of paradigms have been established to describe their mode of action. Signalling in plant cells appears to shuffle these paradigms - as evidenced by two recent reports on the development of the Arabidopsis meristem.
Collapse
Affiliation(s)
- B D Kohorn
- Dept of Botany/Developmental Cell and Molecular Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Parry S, Newbigin E, Craik D, Nakamura KT, Bacic A, Oxley D. Structural analysis and molecular model of a self-incompatibility RNase from wild tomato. PLANT PHYSIOLOGY 1998; 116:463-469. [PMID: 9489006 PMCID: PMC35102 DOI: 10.1104/pp.116.2.463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 10/14/1997] [Indexed: 05/22/2023]
Abstract
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.
Collapse
Affiliation(s)
- S Parry
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Saupe SJ, Glass NL. Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain. Genetics 1997; 146:1299-309. [PMID: 9258675 PMCID: PMC1208076 DOI: 10.1093/genetics/146.4.1299] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In filamentous fungi, the ability to form a productive heterokaryon with a genetically dissimilar individual is controlled by specific loci termed het loci. Only strains homozygous for all het loci can establish a heterokaryon. In Neurospora crassa, 11 loci, including the mating-type locus, regulate the capacity to form heterokaryons. An allele of the het-c locus (het-cOR) of N. crassa has been previously characterized and encodes a nonessential 966 amino acid glycine-rich protein. Herein, we describe the genetic and molecular characterization of two hei-c alleles, het-cPA and het-cOR, that have a different specificity from that of het-cOR, showing that vegetative incompatibility is mediated by multiple alleles at het-c. By constructing chimeric alleles, we show that het-c specificity is determined by a highly variable domain of 34-48 amino acids in length. In this regard, het-c is similar to loci that regulate recognition in other species, such as the (S) self-incompatibility locus in plants, the sexual compatibility locus in basidiomycetes and the major histocompatibility complex (MHC) genes in vertebrates.
Collapse
Affiliation(s)
- S J Saupe
- Botany Department, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
24
|
Richman AD, Kao TH, Schaeffer SW, Uyenoyama MK. S-allele sequence diversity in natural populations of Solanum carolinense (Horsenettle). Heredity (Edinb) 1995; 75 ( Pt 4):405-15. [PMID: 7591834 DOI: 10.1038/hdy.1995.153] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
S-allele diversity in Solanum carolinense was surveyed in two natural populations, located in Tennessee and North Carolina, with a molecular assay to determine the genotype of individual plants. A total of 13 different S-alleles were identified and sequenced. There is high overlap between the two populations sampled, with 10 alleles shared in common, one allele found only in Tennessee, and two found only in North Carolina. The number of alleles in this species appears to be extremely low compared with other species with gametophytic self-incompatibility. Sequence comparisons show that most alleles are extremely different one from another in their primary sequence and a phylogenetic analysis indicates extensive trans-specific evolution of S-lineages. In addition, some alleles appear to be derived much more recently. The implications of these observations are discussed in the light of recent theoretical results on S-allele population diversity and persistence.
Collapse
Affiliation(s)
- A D Richman
- Department of Zoology, Duke University, Durham, NC 27708-0325, USA
| | | | | | | |
Collapse
|
25
|
Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W. A molecular method for S-allele identification in apple based on allele-specific PCR. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:691-698. [PMID: 24169899 DOI: 10.1007/bf00223298] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1995] [Accepted: 02/24/1995] [Indexed: 06/02/2023]
Abstract
cDNA sequences corresponding to two self-incompatibility alleles (S-alleles) of the apple cv 'Golden Delicious' have previously been described, and now we report the identification of three additional S-allele cDNAs of apple, one of which was isolated from a pistil cDNA library of cv 'Idared' and two of which were obtained by reverse transcription-PCR (RT-PCR) on pistil RNA of cv 'Queen's Cox'. A comparison of the deduced amino acid sequences of these five S-allele cDNAs revealed an average homology of 69%. Based on the nucleotide sequences of these S-allele cDNAs, we developed a molecular technique for the diagnostic identification of the five different S-alleles in apple cultivars. The method used consists of allele-specific PCR amplification of genomic DNA followed by digestion of the amplification product with an allele-specific restriction endonuclease. Analysis of a number of apple cultivars with known S-phenotype consistently showed coincidence of phenotypic and direct molecular data of the S-allele constitution of the cultivars. It is concluded that the S-allele identification approach reported here provides a rapid and useful method to determine the S-genotype of apple cultivars.
Collapse
Affiliation(s)
- G A Janssens
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, W. de Croylaan 42, B-3001, Leuven, Belgium
| | | | | | | |
Collapse
|
26
|
Saupe S, Turcq B, Bégueret J. Sequence diversity and unusual variability at the het-c locus involved in vegetative incompatibility in the fungus Podospora anserina. Curr Genet 1995; 27:466-71. [PMID: 7586034 DOI: 10.1007/bf00311217] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The het-c locus of the filamentous fungus Podospora anserina controls heterokaryon formation through genetic interaction with alleles of the unlinked loci het-e and het-d. We have isolated four wild-type and two mutant alleles of the het-c locus. A comparison of the predicted proteins encoded by the different wild-type alleles revealed an unusual high level of amino-acid replacements compared to silent polymorphisms but only one amino-acid difference is sufficient to modify the specificity of het-c alleles. Chimeric genes constructed in vitro may exhibit a new specificity different from that of any known wild-type allele.
Collapse
Affiliation(s)
- S Saupe
- Laboratoire de Génétique, UPR CNRS 9026, Université de Bordeaux II, Talence, France
| | | | | |
Collapse
|
27
|
Abstract
The stability of ribonuclease T2 (RNase T2) from Aspergillus oryzae against guanidine hydrochloride and heat was studied by using CD and fluorescence. RNase T2 unfolded and refolded reversibly concomitant with activity, but the unfolding and refolding rates were very slow (order of hours). The free energy change for unfolding of RNase T2 in water was estimated to be 5.3 kcal.mol-1 at 25 degrees C by linear extrapolation method. From the thermal unfolding experiment in 20 mM sodium phosphate buffer at pH 7.5, the Tm and the enthalpy change of RNase T2 were found to be 55.3 degrees C and 119.1 kcal.mol-1, respectively. From these equilibrium and kinetic studies, it was found that the stability of RNAse T2 in the native state is predominantly due to the slow rate of unfolding.
Collapse
Affiliation(s)
- Y Kawata
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | |
Collapse
|
28
|
Broothaerts W, Janssens GA, Proost P, Broekaert WF. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. PLANT MOLECULAR BIOLOGY 1995; 27:499-511. [PMID: 7894015 DOI: 10.1007/bf00019317] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Complementary DNA clones representing two alleles of the self-incompatibility (S) locus of apple (Malus x domestica Borkh.) have been isolated and characterised. One of the alleles corresponds to a 29 kDa ribonuclease (S-RNase) that was purified from pistil tissue. On northern blots, both cDNAs hybridized to a transcript that was only present in pistils and not in the other plant tissues analysed. Corresponding genomic sequences, amplified by PCR, were found to contain a single intron of 138 bp and 1100 bp respectively. Comparison of both sequences shows that the cDNAs encode mature proteins containing 65% of identical residues. Eight invariable cysteine residues, conserved regions around two histidines thought to play a role in RNA catalysis, and a number of other distinct residues are conserved between the apple S-RNases and similar proteins in the family Solanaceae. As this is the first report of sequences of S-alleles from a species belonging to a family that is not related with the Solanaceae, the structural features of S-RNases deduced from a comparison of their sequences are discussed.
Collapse
Affiliation(s)
- W Broothaerts
- F.A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
29
|
Sari-Gorla M, Binelli G, Enrico Pé M, Villa M. Detection of genetic factors controlling pollen–style interaction in maize. Heredity (Edinb) 1995. [DOI: 10.1038/hdy.1995.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Kowyama Y, Kunz C, Lewis I, Newbigin E, Clarke AE, Anderson MA. Self-compatibility in aLycopersicon peruvianum variant (LA2157) is associated with a lack of style S-RNase activity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:859-64. [PMID: 24186189 DOI: 10.1007/bf01253997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/1993] [Accepted: 12/21/1993] [Indexed: 05/23/2023]
Abstract
A series of crosses between a naturally-occurring self-compatible accession ofLycopersicon peruvianum and a closely-related self-incompatible accession were used to demonstrate that the mutation to self-compatibility is located at the S-locus. Progeny of the crosses contain abundant style proteins of about 30 kDa that segregate with the S6and S7-alleles from the SI parent and the Sc-allele from the SC parent. The S6and S7-associated proteins have ribonuclease activity whereas the Sc-associated protein is not an active ribonuclease. This finding indicates that S-RNases are determinants of self-incompatibility in the style and that the ribonuclease activity is essential for their function.
Collapse
Affiliation(s)
- Y Kowyama
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, 3052, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|