1
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
2
|
Cui D, Zhang Y, Zheng B, Chen L, Wei J, Lin D, Huang M, Du H, Chen Q. Pim1 is Critical in T-cell-independent B-cell Response and MAPK Activation in B Cells. J Mol Biol 2024; 436:168824. [PMID: 39505064 DOI: 10.1016/j.jmb.2024.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Pim family consists of three members that encode a distinct class of highly conserved serine/threonine kinases. In this study, we generated and examined mice with hematopoiesis-specific deletion of Pim1 and bone marrow (BM) chimeric mice with B-cell-specific targeted deletion of Pim1. Pim1 was expressed at all stages of B-cell development and hematopoietic-specific deletion of Pim1 altered B-cell development in BM, spleen and peritoneal. However, Pim1 deficiency did not affect T-cell development. Studies of BM chimeric mice showed that Pim1 is required in a cell-intrinsic manner to maintain normal B-cell development. Pim1 deficiency led to significant changes in B cell antibody responses. Additionally, Pim1 deficiency resulted in reduced B cell receptor (BCR)-induced cell proliferation and cell cycle progression. Examination of the various BCR-activated signaling pathways in Pim1-deficient B cells reveals defective activation of mitogen-activated protein kinases (MAPKs), which are known to regulate genes involved in cell proliferation and survival. qRT-PCR analysis of BCR-engaged B cells from Pim1-deficient B cells revealed reduced expression of cyclin-dependent kinase (CDK) and cyclin genes, including CDK2, CCNB1 and CCNE1. In conclusion, Pim1 plays a crucial role in B-cell development and B cell activation.
Collapse
Affiliation(s)
- Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Yongguang Zhang
- Center for Precision Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Danfeng Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Zheng Y, Yu M, Chen Y, Xue L, Zhu W, Fu G, Morris SW, Wen R, Wang D. CARD19, a Novel Regulator of the TAK1/NF-κB Pathway in Self-Reactive B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1222-1235. [PMID: 36961449 PMCID: PMC10156913 DOI: 10.4049/jimmunol.2200639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The caspase recruitment domain family member (CARD)11-Bcl10-Malt1 signalosome controls TGF-β-activated kinase 1 (TAK1) activation and regulates BCR-induced NF-κB activation. In this study, we discovered that CARD19 interacted with TAK1 and inhibited TAB2-mediated TAK1 ubiquitination and activation. Although CARD19 deficiency in mice did not affect B cell development, it enhanced clonal deletion, receptor editing, and anergy of self-reactive B cells, and it reduced autoantibody production. Mechanistically, CARD19 deficiency increased BCR/TAK1-mediated NF-κB activation, leading to increased expression of transcription factors Egr2/3, as well as the E3 ubiquitin ligases c-Cbl/Cbl-b, which are known inducers of B cell tolerance in self-reactive B cells. RNA sequencing analysis revealed that although CARD19 deficiency did not affect the overall Ag-induced gene expression in naive B cells, it suppressed BCR signaling and increased hyporesponsiveness of self-reactive B cells. As a result, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus. In summary, CARD19 negatively regulates BCR/TAK1-induced NF-κB activation and its deficiency increases Egr2/3 and c-Cbl/Cbl-b expression in self-reactive B cells, thereby enhancing B cell tolerance.
Collapse
Affiliation(s)
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Guoping Fu
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Zhang Y, Cui D, Huang M, Zheng Y, Zheng B, Chen L, Chen Q. NONO regulates B-cell development and B-cell receptor signaling. FASEB J 2023; 37:e22862. [PMID: 36906291 DOI: 10.1096/fj.202201909rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
The paraspeckle protein NONO is a multifunctional nuclear protein participating in the regulation of transcriptional regulation, mRNA splicing and DNA repair. However, whether NONO plays a role in lymphopoiesis is not known. In this study, we generated mice with global deletion of NONO and bone marrow (BM) chimeric mice in which NONO is deleted in all of mature B cells. We found that the global deletion of NONO in mice did not affect T-cell development but impaired early B-cell development in BM at pro- to pre-B-cell transition stage and B-cell maturation in the spleen. Studies of BM chimeric mice demonstrated that the impaired B-cell development in NONO-deficient mice is B-cell-intrinsic. NONO-deficient B cells displayed normal BCR-induced cell proliferation but increased BCR-induced cell apoptosis. Moreover, we found that NONO deficiency impaired BCR-induced activation of ERK, AKT, and NF-κB pathways in B cells, and altered BCR-induced gene expression profile. Thus, NONO plays a critical role in B-cell development and BCR-induced B-cell activation.
Collapse
Affiliation(s)
- Yongguang Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yongwei Zheng
- Guangzhou Bio-Gene Technology Co., Ltd, Guangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| |
Collapse
|
6
|
Sakashita K, Tsumoto K, Tomita M. Advanced hybridoma technology for selective production of high-affinity monoclonal antibodies through B-cell receptors. J Immunol Methods 2022; 511:113384. [PMID: 36372268 DOI: 10.1016/j.jim.2022.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
In general, it is difficult to raise novel monoclonal antibodies against relatively low-molecular weight antigen, and particularly those with high homology for the mouse protein. The optimized B-cell targeting (BCT) technique can overcome this limitation. The point of this advanced technology is the selection of sensitized B lymphocytes by the antigen through B-cell receptors (BCRs). This strict selection by specific and strong interaction between antigen and antibody enables the efficient production of monoclonal antibodies with high specificity and affinity. It also offers the condensation of sensitized target B lymphocytes to selectively generate hybridoma cells secreting desired monoclonal antibodies. In this study, several kinds of biotinylated human myoglobin (hMyo) were prepared to select sensitized B lymphocytes via BCRs. Biotinylated hMyo prepared by a 3.75- and 7.5-fold molar excess of N-hydroxysuccinimide (NHS)-biotin provided high antigenicity of 68-88%. B lymphocytes selected by these biotinylated antigens had an ELISA-positive rate >17 times higher than that with usual biotinylated antigen. Monoclonal antibodies generated by the optimized BCT technology by preselecting sensitized B lymphocytes with the target antigen were identified to specifically recognize lower antigenic epitopes in hMyo with high affinity, while this would be impossible by the polyethylene glycol (PEG) method. Furthermore, combination of these high-affinity monoclonal antibodies gave the best binding rate in an epitope binning assay. These outcomes could be attributed to the unique characteristic that BCRs on sensitized B lymphocytes themselves can select the target epitopes in the antigen. The BCRs may act as a strict sensor of B lymphocytes to precisely select the target epitopes, even though the number of immunized B lymphocytes is low.
Collapse
Affiliation(s)
- Kento Sakashita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan; Denka Company Limited, 1359-1 Kagamida Kigoshi Gosen-city, Niigata 959-1695, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan.
| |
Collapse
|
7
|
Hodgson R, Xu X, Anzilotti C, Deobagkar-Lele M, Crockford TL, Kepple JD, Cawthorne E, Bhandari A, Cebrian-Serrano A, Wilcock MJ, Davies B, Cornall RJ, Bull KR. NDRG1 is induced by antigen-receptor signaling but dispensable for B and T cell self-tolerance. Commun Biol 2022; 5:1216. [PMID: 36357486 PMCID: PMC9649591 DOI: 10.1038/s42003-022-04118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jessica D Kepple
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Katherine R Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Tanaka S, Ise W, Baba Y, Kurosaki T. Silencing and activating anergic B cells. Immunol Rev 2021; 307:43-52. [PMID: 34908172 DOI: 10.1111/imr.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.
Collapse
Affiliation(s)
- Shinya Tanaka
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wataru Ise
- Team of Host Defense, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
9
|
Goodnow CC. COVID-19, varying genetic resistance to viral disease and immune tolerance checkpoints. Immunol Cell Biol 2020; 99:177-191. [PMID: 33113212 PMCID: PMC7894315 DOI: 10.1111/imcb.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is a zoonosis like most of the great plagues sculpting human history, from smallpox to pandemic influenza and human immunodeficiency virus. When viruses jump into a new species the outcome of infection ranges from asymptomatic to lethal, historically ascribed to “genetic resistance to viral disease.” People have exploited these differences for good and bad, for developing vaccines from cowpox and horsepox virus, controlling rabbit plagues with myxoma virus and introducing smallpox during colonization of America and Australia. Differences in resistance to viral disease are at the core of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) crisis, yet our understanding of the mechanisms in any interspecies leap falls short of the mark. Here I review how the two key parameters of viral disease are countered by fundamentally different genetic mechanisms for resistance: (1) virus transmission, countered primarily by activation of innate and adaptive immune responses; and (2) pathology, countered primarily by tolerance checkpoints to limit innate and adaptive immune responses. I discuss tolerance thresholds and the role of CD8 T cells to limit pathological immune responses, the problems posed by tolerant superspreaders and the signature coronavirus evasion strategy of eliciting only short‐lived neutralizing antibody responses. Pinpointing and targeting the mechanisms responsible for varying pathology and short‐lived antibody were beyond reach in previous zoonoses, but this time we are armed with genomic technologies and more knowledge of immune checkpoint genes. These known unknowns must now be tackled to solve the current COVID‐19 crisis and the inevitable zoonoses to follow.
Collapse
Affiliation(s)
- Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Zhang H, Wang L, Chu Y. Reactive oxygen species: The signal regulator of B cell. Free Radic Biol Med 2019; 142:16-22. [PMID: 31185253 DOI: 10.1016/j.freeradbiomed.2019.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 02/09/2023]
Abstract
Reactive oxygen species (ROS) are indispensable for determining the fate of immune cells in both physiological and pathogenic environments, thus stimulating the interest of immunologists and clinicians. B cells are essential in maintaining immune homeostasis, and studies have indicated that ROS affect the maturation, activation and differentiation of B cells by controlling the signaling molecules in various molecular pathways. In the present review, we aimed to summarize the biological properties of ROS and the mechanisms by which ROS regulate B cell signaling pathways. We propose that ROS and their mediated signal transduction can be a new approach for manipulating B cell immune functions.
Collapse
Affiliation(s)
- Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Chen Y, Yu M, Zheng Y, Fu G, Xin G, Zhu W, Luo L, Burns R, Li QZ, Dent AL, Zhu N, Cui W, Malherbe L, Wen R, Wang D. CXCR5 +PD-1 + follicular helper CD8 T cells control B cell tolerance. Nat Commun 2019; 10:4415. [PMID: 31562329 PMCID: PMC6765049 DOI: 10.1038/s41467-019-12446-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/04/2019] [Indexed: 01/31/2023] Open
Abstract
Many autoimmune diseases are characterized by the production of autoantibodies. The current view is that CD4+ T follicular helper (Tfh) cells are the main subset regulating autoreactive B cells. Here we report a CXCR5+PD1+ Tfh subset of CD8+ T cells whose development and function are negatively modulated by Stat5. These CD8+ Tfh cells regulate the germinal center B cell response and control autoantibody production, as deficiency of Stat5 in CD8 T cells leads to an increase of CD8+ Tfh cells, resulting in the breakdown of B cell tolerance and concomitant autoantibody production. CD8+ Tfh cells share similar gene signatures with CD4+ Tfh, and require CD40L/CD40 and TCR/MHCI interactions to deliver help to B cells. Our study thus highlights the diversity of follicular T cell subsets that contribute to the breakdown of B-cell tolerance. B cell response and antibody production are generally facilitated by CD4+ follicular helper (Tfh) cells. Here the authors identify a subset of CXCR5+PD1+CD8+ Tfh cells that is normally suppressed by STAT5 signaling, so that STAT5 deficiency in mice increases the number of these CD8+ Tfh cells and induces concomitant production of autoantibodies.
Collapse
Affiliation(s)
- Yuhong Chen
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Mei Yu
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Guoping Fu
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Gang Xin
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Wen Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lan Luo
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,Chinese PLA General Hospital, Beijing, China
| | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | | | - Renren Wen
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI, USA. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. .,Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed J 2019; 42:218-232. [PMID: 31627864 PMCID: PMC6818156 DOI: 10.1016/j.bj.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
CD22 is an inhibitory B cell co-receptor that recognizes sialic acid-containing glycoconjugates as ligands. Interactions with its glycan ligands are key to regulating the ability of CD22 to modulate B cell function, the most widely explored of which is antagonizing B cell receptor (BCR) signaling. Most importantly, interactions of CD22 with ligands on the same cell (cis) control the organization of CD22 on the cell surface, which minimizes co-localization with the BCR. In contrast with the modest ability of CD22 to intrinsically dampen BCR signaling, glycan ligands presented on another cell (trans) along with an antigen drawn CD22 and the BCR together within an immunological synapse, strongly inhibiting BCR signaling. New concepts are emerging for how CD22 controls B cell function, such as changes in glycosylation at different stages of B cell differentiation, specifically on GC B cells. Related to these changes, new players, such galectin-9, have been discovered that regulate cell surface nanoclusters of CD22. Roles of glycan ligands in controlling CD22 are the primary focus of this review as we highlight the ability of CD22 to modulate B cell function.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Chemistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
14
|
Rodrigues DB, Oliveira JM, Santos TC, Reis RL. Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. J Tissue Eng Regen Med 2018; 12:e1796-e1812. [DOI: 10.1002/term.2597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel B. Rodrigues
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| | - Tírcia C. Santos
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of Minho Avepark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
15
|
Yu M, Chen Y, Zeng H, Zheng Y, Fu G, Zhu W, Broeckel U, Aggarwal P, Turner A, Neale G, Guy C, Zhu N, Chi H, Wen R, Wang D. PLCγ-dependent mTOR signalling controls IL-7-mediated early B cell development. Nat Commun 2017; 8:1457. [PMID: 29133930 PMCID: PMC5684131 DOI: 10.1038/s41467-017-01388-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
The precise molecular mechanism underlying the regulation of early B cell lymphopoiesis is unclear. The PLCγ signaling pathway is critical for antigen receptor-mediated lymphocyte activation, but its function in cytokine signaling is unknown. Here we show that PLCγ1/PLCγ2 double deficiency in mice blocks early B cell development at the pre-pro-B cell stage and renders B cell progenitors unresponsive to IL-7. PLCγ pathway inhibition blocks IL-7-induced activation of mTOR, but not Stat5. The PLCγ pathway activates mTOR through the DAG/PKC signaling branch, independent of the conventional Akt/TSC/Rheb signaling axis. Inhibition of PLCγ/PKC-induced mTOR activation impairs IL-7-mediated B cell development. PLCγ1/PLCγ2 double-deficient B cell progenitors have reduced expression of genes related to B cell lineage, IL-7 signaling, and cell cycle. Thus, IL-7 receptor controls early B lymphopoiesis through activation of mTOR via PLCγ/DAG/PKC signaling, not via Akt/Rheb signaling.
Collapse
Affiliation(s)
- Mei Yu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yuhong Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yongwei Zheng
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Guoping Fu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wen Zhu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Interdisciplinary Program in Biomedical Sciences, Milwaukee, WI, 53226, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy Turner
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nan Zhu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Renren Wen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226, USA.
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China.
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
16
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Chang NH, Manion KP, Loh C, Pau E, Baglaenko Y, Wither JE. Multiple tolerance defects contribute to the breach of B cell tolerance in New Zealand Black chromosome 1 congenic mice. PLoS One 2017. [PMID: 28628673 PMCID: PMC5476272 DOI: 10.1371/journal.pone.0179506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lupus is characterized by a loss of B cell tolerance leading to autoantibody production. In this study, we explored the mechanisms underlying this loss of tolerance using B6 congenic mice with an interval from New Zealand Black chromosome 1 (denoted c1(96–100)) sufficient for anti-nuclear antibody production. Transgenes for soluble hen egg white lysozyme (sHEL) and anti-HEL immunoglobulin were crossed onto this background and various tolerance mechanisms examined. We found that c1(96–100) mice produced increased levels of IgM and IgG anti-HEL antibodies compared to B6 mice and had higher proportions of germinal center B cells and long-lived plasma cells, suggesting a germinal center-dependent breach of B cell anergy. Consistent with impaired anergy induction, c1(96–100) double transgenic B cells showed enhanced survival and CD86 upregulation. Hematopoietic chimeric sHEL mice with a mixture of B6 and c1(96–100) HEL transgenic B cells recapitulated these results, suggesting the presence of a B cell autonomous defect. Surprisingly, however, there was equivalent recruitment of B6 and c1(96–100) B cells into germinal centers and differentiation to splenic plasmablasts in these mice. In contrast, there were increased proportions of c1(96–100) T follicular helper cells and long-lived plasma cells as compared to their B6 counterparts, suggesting that both B and T cell defects are required to breach germinal center tolerance in this model. This possibility was further supported by experiments showing an enhanced breach of anergy in double transgenic mice with a longer chromosome 1 interval with additional T cell defects.
Collapse
Affiliation(s)
- Nan-Hua Chang
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Kieran P. Manion
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Christina Loh
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Pau
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Joan E. Wither
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
20
|
Dey-Rao R, Sinha AA. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genomics 2017; 18:109. [PMID: 28129744 PMCID: PMC5273810 DOI: 10.1186/s12864-017-3510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. METHODS We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. RESULTS Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. CONCLUSIONS We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional "hot spots" observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
21
|
Zhang L, Fang Y, Yang J, Kopeček J. Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 2016; 263:139-150. [PMID: 28024916 DOI: 10.1016/j.jconrel.2016.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023]
Abstract
Recently, we developed a new paradigm in macromolecular therapeutics that avoids the use of low molecular weight drugs. The activity of the "drug-free macromolecular therapeutics" is based on the biorecognition of complementary motifs at cell surface resulting in receptor crosslinking and apoptosis induction. The system is composed of two nanoconjugates: (1) a single-stranded morpholino oligonucleotide (MORF1) attached to an anti-CD20 Fab' fragment (Fab'-MORF1); (2) multiple copies of complementary oligonucleotide MORF2 grafted to a linear polymer of N-(2-hydroxypropyl)methacrylamide (HPMA) - P-(MORF2)x. The two conjugates crosslink CD20 antigens via MORF1-MORF2 hybridization at the surface of CD20+ malignant B-cells and induce apoptosis. Preclinical studies in a murine model of human non-Hodgkin's lymphoma showed cancer cells eradication and long-term survivors. The aim of this study was to determine the relationship between the detailed structure of the nanoconjugates and apoptosis induction in Raji cells to allow system optimization. The factors studied include the length of the MORF sequence, the valence of P-(MORF2)x (varying x), molecular weight of P-(MORF2)x, incorporation of a miniPEG spacer between Fab' and MORF1 and between polymer backbone and pendant MORF2, and comparison of two Fab' fragments, one from 1F5 antibody (Fab'1F5), the other from Rituximab (Fab'RTX). The results of apoptosis induction in human Burkitt's B-cell non-Hodgkin's lymphoma (NHL) Raji cells as determined using three apoptotic assays (Annexin V, Caspase 3, and TUNEL) indicated that: a) An improvement of apoptotic activity was observed for a 28 base pair MORF sequence when compared to MORFs composed of 20 and 25 base pairs. The differences depended on type of assay, concentration and exposure schedule (consecutive vs. premixed). b) The higher the valence of P-(MORF2)x the higher the levels of apoptosis. c) Higher molecular weight of P-(MORF2)x induced higher levels of apoptosis. d) A miniPEG8 spacer was effective in enhancing apoptotic levels in contrast to a miniPEG2 spacer. e) There was not a statistically significant difference when comparing Fab'1F5-MORF1 with Fab'RTX-MORF1.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Liu J, Wang Y, Sun X, Ji N, Sun S, Wang Y, Liu F, Cui Q, Wang C, Liu Y. Promoter methylation attenuates SHP1 expression and function in patients with primary central nervous system lymphoma. Oncol Rep 2016; 37:887-894. [DOI: 10.3892/or.2016.5308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
|
23
|
Yeomans A, Lemm E, Wilmore S, Cavell BE, Valle-Argos B, Krysov S, Hidalgo MS, Leonard E, Willis AE, Forconi F, Stevenson FK, Steele AJ, Coldwell MJ, Packham G. PEITC-mediated inhibition of mRNA translation is associated with both inhibition of mTORC1 and increased eIF2α phosphorylation in established cell lines and primary human leukemia cells. Oncotarget 2016; 7:74807-74819. [PMID: 27579538 PMCID: PMC5342703 DOI: 10.18632/oncotarget.11655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
Increased mRNA translation drives carcinogenesis and is an attractive target for the development of new anti-cancer drugs. In this work, we investigated effects of phenethylisothiocyanate (PEITC), a phytochemical with chemopreventive and anti-cancer activity, on mRNA translation. PEITC rapidly inhibited global mRNA translation in human breast cancer-derived MCF7 cells and mouse embryonic fibroblasts (MEFs). In addition to the known inhibitory effects of PEITC on mTORC1 activity, we demonstrate that PEITC increased eIF2α phosphorylation. PEITC also increased formation of stress granules which are typically associated with eIF2α phosphorylation and accumulation of translationally stalled mRNAs. Analysis of genetically modified MEFs demonstrated that optimal inhibition of global mRNA translation by PEITC was dependent on eIF2α phosphorylation, but not mTORC1 inhibition. We extended this study into primary leukemic B cells derived from patients with chronic lymphocytic leukaemia (CLL). CLL cells were stimulated in vitro with anti-IgM to mimic binding of antigen, a major driver of this leukemia. In CLL cells, PEITC increased eIF2α phosphorylation, inhibited anti-IgM-induced mTORC1 activation and decreased both basal and anti-IgM-induced global mRNA translation. PEITC also inhibited transcription and translation of MYC mRNA and accumulation of the MYC oncoprotein, in anti-IgM-stimulated cells. Moreover, treatment of CLL cells with PEITC and the BTK kinase inhibitor ibrutinib decreased anti-IgM-induced translation and induced cell death to a greater extent than either agent alone. Therefore, PEITC can inhibit both global and mRNA specific translation (including MYC) via effects on multiple regulatory pathways. Inhibition of mRNA translation may contribute to the chemopreventive and anti-cancer effects of PEITC.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Genes, myc
- Humans
- Isothiocyanates/pharmacology
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- MCF-7 Cells
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Phosphorylation/drug effects
- Protein Biosynthesis/drug effects
- RNA, Messenger/genetics
- Receptors, Antigen, B-Cell/metabolism
- Stress, Physiological
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Alison Yeomans
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Elizabeth Lemm
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sarah Wilmore
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Breeze E. Cavell
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
- Current Address: Public Health England, Porton Down, Salisbury, UK
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sergey Krysov
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
- Current Address: Bart's Cancer Institute, Queen Mary University of London, London, UK
| | - Marina Sanchez Hidalgo
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
- Current Address: Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Elodie Leonard
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
- Current Address: XPE Pharma and Science, Wavre, Belgium
| | | | - Francesco Forconi
- Haematology Oncology Group, Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Faculty of Medicine, Southampton, UK
- Department of Haematology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Freda K. Stevenson
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J. Steele
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark J. Coldwell
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Tanabe K, Inui S. Dominant negative form of alpha4 inhibits the BCR crosslinking-induced phosphorylation of Bcl-xL and apoptosis in an immature B cell line WEHI-231. Biomed Res 2016; 36:97-102. [PMID: 25876659 DOI: 10.2220/biomedres.36.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously demonstrated that c-Jun N-terminal kinase (JNK) phosphorylates serine 62 of Bcl-xL to induce the degradation of Bcl-xL and apoptosis in WEHI-231 cells upon BCR crosslinking. In order to elucidate the regulatory mechanisms underlying the phosphorylation of Bcl-xL, we prepared an assay system in which JNK phosphorylated Bcl-xL in HEK293T cells. Consequently, we found that a signal transduction molecule, alpha4, enhanced the phosphorylation of Bcl-xL by JNK, while the co-expression of C-terminal alpha4 (220-340) diminished the phosphorylation of Bcl-xL induced by JNK. Furthermore, full-length alpha4 associated with both JNK and Bcl-xL, whereas C-terminal alpha4 (220-340) associated only with Bcl-xL, not JNK. In addition, WEHI-231 cells transfected with the cDNA of C-terminal alpha4 (220-340) exhibited decreased phosphorylation of Bcl-xL and stronger resistance to apoptosis induced by BCR crosslinking. These results indicate that alpha4 is an important regulatory molecule of apoptosis induced by BCR crosslinking in WEHI-231 cells and that C-terminal alpha4 (220-340) functions as a dominant negative form.
Collapse
Affiliation(s)
- Kano Tanabe
- Department of Immunology and Hematology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University
| | | |
Collapse
|
26
|
Dengue Virus Directly Stimulates Polyclonal B Cell Activation. PLoS One 2015; 10:e0143391. [PMID: 26656738 PMCID: PMC4675537 DOI: 10.1371/journal.pone.0143391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/04/2015] [Indexed: 02/03/2023] Open
Abstract
Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients.
Collapse
|
27
|
Lyubchenko T, Zerbe GO. B cell receptor signaling-based index as a biomarker for the loss of peripheral immune tolerance in autoreactive B cells in rheumatoid arthritis. PLoS One 2014; 9:e102128. [PMID: 25057856 PMCID: PMC4109936 DOI: 10.1371/journal.pone.0102128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
This study examines the loss of peripherally induced B cell immune tolerance in Rheumatoid arthritis (RA) and establishes a novel signaling-based measure of activation in a subset of autoreactive B cells - the Induced tolerance status index (ITSI). Naturally occurring naïve autoreactive B cells can escape the “classical” tolerogenic mechanisms of clonal deletion and receptor editing, but remain peripherally tolerized through B cell receptor (BCR) signaling inhibition (postdevelopmental “receptor tuning” or anergy). ITSI is a statistical index that numerically determines the level of homology between activation patterns of BCR signaling intermediaries in B cells that are either tolerized or activated by auto antigen exposure, and thus quantifies the level of peripheral immune tolerance. The index is based on the logistic regression analysis of phosphorylation levels in a panel of BCR signaling proteins. Our results demonstrate a new approach to identifying autoreactive B cells based on their BCR signaling features.
Collapse
MESH Headings
- Adult
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoantigens/genetics
- Autoantigens/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers/metabolism
- Clonal Anergy/genetics
- Clonal Deletion/genetics
- Female
- Gene Expression Regulation
- Humans
- Logistic Models
- Lymphocyte Activation
- Male
- Middle Aged
- Peripheral Tolerance/genetics
- Phosphorylation
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Severity of Illness Index
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Taras Lyubchenko
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| | - Gary O. Zerbe
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, Colorado, United States of America
| |
Collapse
|
28
|
Kajihara R, Sakamoto H, Tanabe K, Takemoto K, Tasaki M, Ando Y, Inui S. Protein phosphatase 6 controls BCR-induced apoptosis of WEHI-231 cells by regulating ubiquitination of Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2014; 192:5720-9. [PMID: 24808369 DOI: 10.4049/jimmunol.1302643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crosslinking BCR in the immature B cell line WEHI-231 causes apoptosis. We found that Bcl-xL was degraded by polyubiquitination upon BCR crosslinking and in this study explored the mechanism that controls the degradation of Bcl-xL. Ser(62) of Bcl-xL was phosphorylated by JNK to trigger polyubiquitination, and this was opposed by serine/threonine protein phosphatase 6 (PP6) that physically associated with Bcl-xL. We show BCR crosslinking decreased PP6 activity to allow Ser(62) phosphorylation of Bcl-xL. CD40 crosslinking rescues BCR-induced apoptosis, and we found PP6 associated with CD40 and PP6 activation in response to CD40. Our data suggest that PP6 activity is regulated to control apoptosis by modulating Ser(62) phosphorylation of Bcl-xL, which results in its polyubiquitination and degradation.
Collapse
Affiliation(s)
- Ryutaro Kajihara
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Hitomi Sakamoto
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Kano Tanabe
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Kazuki Takemoto
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Seiji Inui
- Department of Immunology and Hematology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan; and
| |
Collapse
|
29
|
|
30
|
Abstract
Though type 1 diabetes (T1D) is considered a T cell-mediated autoimmune disorder, recent evidence indicates that B cells play a critical role in disease. This conclusion is based in part on the success of anti-CD20 (rituximab) therapy, which by broadly depleting B cells delays disease progression in non-obese diabetic (NOD) mice and new-onset patients. B cell receptor (BCR) specificity to islet autoantigen is key. NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Although the operative disease-promoting B cell effector function remains undefined, islet-antigen reactive B cells function in antigen presentation to diabetogenic CD4 T cells. Other studies implicate B cells in antigen presentation to CD8 T cells. B cell participation in TID appears predicated on faulty B cell tolerance. Here, we review extant findings implicating B cells in T1D in mice and men.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Autoantibodies/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Humans
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice
- Mice, Inbred NOD
- Molecular Targeted Therapy
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Rituximab
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, P18-8100, Mail Stop 8333, RC1 N, Aurora, CO, 80045-2537, USA,
| | | |
Collapse
|
31
|
Rowland SL, Tuttle K, Torres RM, Pelanda R. Antigen and cytokine receptor signals guide the development of the naïve mature B cell repertoire. Immunol Res 2013; 55:231-40. [PMID: 22941591 DOI: 10.1007/s12026-012-8366-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immature B cells are generated daily in the bone marrow tissue. More than half of the newly generated immature B cells are autoreactive and bind a self-antigen, while the others are nonautoreactive. A selection process has evolved on the one hand to thwart development of autoreactive immature B cells and, on the other hand, to promote further differentiation of nonautoreactive immature B cells into transitional and mature B cells. These negative and positive selection events are carefully regulated by signals that emanate from the antigen receptor, whether antigen-mediated or tonic, and are influenced by signals that are generated by receptors that bind cytokines, chemokines, and other factors produced in the bone marrow tissue. These signals, therefore, are the predominant driving forces for the generation of a B cell population that is capable of protecting the body from infections while maintaining self-tolerance. Here, we review recent findings from our group and others that describe how tonic antigen receptor signaling and bone marrow cytokines regulate the selection of immature B cells.
Collapse
Affiliation(s)
- Sarah L Rowland
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | |
Collapse
|
32
|
Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, Pittaluga S, Matthews HF, Schmitz R, Jhavar S, Kuchen S, Kardava L, Wang W, Lamborn IT, Jing H, Raffeld M, Moir S, Fleisher TA, Staudt LM, Su HC, Lenardo MJ. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. ACTA ACUST UNITED AC 2012; 209:2247-61. [PMID: 23129749 PMCID: PMC3501355 DOI: 10.1084/jem.20120831] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline mutations in CARD11 that result in constitutive NF-κB activation and selective B cell expansion underlie congenital B cell lymphocytosis. Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)–induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis.
Collapse
Affiliation(s)
- Andrew L Snow
- Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu M, Chen Y, He Y, Podd A, Fu G, Wright JA, Kleiman E, Khan WN, Wen R, Wang D. Critical role of B cell lymphoma 10 in BAFF-regulated NF-κB activation and survival of anergic B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5185-93. [PMID: 23087406 DOI: 10.4049/jimmunol.1102952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anergy is a key physiological mechanism for restraining self-reactive B cells. A marked portion of peripheral B cells are anergic B cells that largely depend on BAFF for survival. BAFF activates the canonical and noncanonical NF-κB pathways, both of which are required for B cell survival. In this study we report that deficiency of the adaptor protein B cell lymphoma 10 (Bcl10) impaired the ability of BAFF to support B cell survival in vitro, and it specifically increased apoptosis in anergic B cells in vivo, dramatically reducing anergic B cells in mice. Bcl10-dependent survival of self-reactive anergic B cells was confirmed in the Ig hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model of B cell anergy. Furthermore, we found that BAFF stimulation induced Bcl10 association with IκB kinase β, a key component of the canonical NF-κB pathway. Consistently, Bcl10-deficient B cells were impaired in BAFF-induced IκBα phosphorylation and formation of nuclear p50/c-Rel complexes. Bcl10-deficient B cells also displayed reduced expression of NF-κB2/p100, severely reducing BAFF-induced nuclear accumulation of noncanonical p52/RelB complexes. Consequently, Bcl10-deficient B cells failed to express Bcl-x(L), a BAFF-induced NF-κB target gene. Taken together, these data demonstrate that Bcl10 controls BAFF-induced canonical NF-κB activation directly and noncanonical NF-κB activation indirectly. The BAFF-R/Bcl10/NF-κB signaling axis plays a critical role in peripheral B cell tolerance by regulating the survival of self-reactive anergic B cells.
Collapse
Affiliation(s)
- Mei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jeelall YS, Wang JQ, Law HD, Domaschenz H, Fung HKH, Kallies A, Nutt SL, Goodnow CC, Horikawa K. Human lymphoma mutations reveal CARD11 as the switch between self-antigen-induced B cell death or proliferation and autoantibody production. ACTA ACUST UNITED AC 2012; 209:1907-17. [PMID: 23027925 PMCID: PMC3478930 DOI: 10.1084/jem.20112744] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CARD11 signaling determines whether antigen stimulation induces B cells to proliferate or die. Self-tolerance and immunity are actively acquired in parallel through a poorly understood ability of antigen receptors to switch between signaling death or proliferation of antigen-binding lymphocytes in different contexts. It is not known whether this tolerance-immunity switch requires global rewiring of the signaling apparatus or if it can arise from a single molecular change. By introducing individual CARD11 mutations found in human lymphomas into antigen-activated mature B lymphocytes in mice, we find here that lymphoma-derived CARD11 mutations switch the effect of self-antigen from inducing B cell death into T cell–independent proliferation, Blimp1-mediated plasmablast differentiation, and autoantibody secretion. Our findings demonstrate that regulation of CARD11 signaling is a critical switch governing the decision between death and proliferation in antigen-stimulated mature B cells and that mutations in this switch represent a powerful initiator for aberrant B cell responses in vivo.
Collapse
Affiliation(s)
- Yogesh S Jeelall
- Department of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kitabatake M, Toda T, Kuwahara K, Igarashi H, Ohtsuji M, Tsurui H, Hirose S, Sakaguchi N. Transgenic overexpression of G5PR that is normally augmented in centrocytes impairs the enrichment of high-affinity antigen-specific B cells, increases peritoneal B-1a cells, and induces autoimmunity in aged female mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1193-201. [PMID: 22753944 DOI: 10.4049/jimmunol.1102774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate signals that control B cell selection, we examined expression of G5PR, a regulatory subunit of the serine/threonine protein phosphatase 2A, which suppresses JNK phosphorylation. G5PR is upregulated in activated B cells, in Ki67-negative centrocytes at germinal centers (GCs), and in purified B220(+)Fas(+)GL7(+) mature GC B cells following Ag immunization. G5PR rescues transformed B cells from BCR-mediated activation-induced cell death by suppression of late-phase JNK activation. In G5PR-transgenic (G5PR(Tg)) mice, G5PR overexpression leads to an augmented generation of GC B cells via an increase in non-Ag-specific B cells and a consequent reduction in the proportion of Ag-specific B cells and high-affinity Ab production after immunization with nitrophenyl-conjugated chicken γ-globulin. G5PR overexpression impaired the affinity-maturation of Ag-specific B cells, presumably by diluting the numbers of high-affinity B cells. However, aged nonimmunized female G5PR(Tg) mice showed an increase in the numbers of peritoneal B-1a cells and the generation of autoantibodies. G5PR overexpression did not affect the proliferation of B-1a and B-2 cells but rescued B-1a cells from activation-induced cell death in vitro. G5PR might play a pivotal role in B cell selection not only for B-2 cells but also for B-1 cells in peripheral lymphoid organs.
Collapse
Affiliation(s)
- Masahiro Kitabatake
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liubchenko GA, Appleberry HC, Holers VM, Banda NK, Willis VC, Lyubchenko T. Potentially autoreactive naturally occurring transitional T3 B lymphocytes exhibit a unique signaling profile. J Autoimmun 2012; 38:293-303. [PMID: 22365785 DOI: 10.1016/j.jaut.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 12/01/2022]
Abstract
B lymphocytes exhibit phenotypic differences that correlate with their developmental or functional stages and affect humoral immune responses. One recently described subset of naturally occurring immature transitional type 3 (T3) B lymphocytes is believed to consist of potentially autoimmune cells whose signaling properties have not been studied in detail. This study characterizes intracellular signaling in T3 B cells in wildtype C57BL/6 mice. Protein phosphorylation and Ca(2+) responses upon B-cell antigen receptor (BCR) engagement were measured by multicolor flow cytometry. We observed high baseline signaling activity and reduced BCR-mediated responses in T3 cells, which confirmed their anergy - a functional state in which lymphocytes recognize chronically present self-antigens but cannot produce immune response due to intrinsic signaling inhibition. Our results also revealed a previously unknown T3-specific phosphorylation pattern of 24 key signaling molecules involved in BCR signal transduction. These characteristics reflect the balance between stimulatory and inhibitory BCR signaling pathways in anergy. Results obtained in the collagen-induced arthritis model demonstrate the loss of anergy in T3 B cells during the onset of the disease. Our findings provide rationale for further investigating alterations in B-cell signaling patterns as earliest functional biomarkers of changes in the immune tolerance of autoreactive B cells.
Collapse
Affiliation(s)
- Ganna A Liubchenko
- Division of Rheumatology, University of Colorado Denver School of Medicine, Mail Stop B115, 1775 Aurora Ct., Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zanoni I, Bodio C, Broggi A, Ostuni R, Caccia M, Collini M, Venkatesh A, Spreafico R, Capuano G, Granucci F. Similarities and differences of innate immune responses elicited by smooth and rough LPS. Immunol Lett 2011; 142:41-7. [PMID: 22207037 DOI: 10.1016/j.imlet.2011.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022]
Abstract
The lipopolysaccharide is the major component of Gram-negative bacteria outer membrane. LPS comprises three covalently linked regions: the lipid A, the rough core oligosaccharide, and the O-antigenic side chain determining serotype specificity. Wild-type LPS (sLPS) contains the O-antigenic side chain and is referred to as smooth. Rough LPS (rLPS) does not contain the O-side chain. Most wt bacteria and especially wt Enterobacteriaceae express prevalently the sLPS form although some truncated rLPS molecules always reach the external membrane. The two sLPS and rLPS forms are used almost indistinctly to study the effects on innate immune cells. Nevertheless, there is evidence that their mechanism of action may be different. For instance, while sLPS requires CD14 for the initiation of both MyD88-dependent and independent signal transduction pathways at least at low doses, rLPS leads to MyD88-dependent responses in the absence of CD14 even at low doses. Here we have identified additional differences in the signaling capacity of the two LPS species in the mouse. We have found that rLPS, diversely from sLPS, is capable of activating in dendritic cells (DCs) the Ca(2+)/calcineurin and NFAT pathway in a CD14-independent manner, moreover it is also capable per se of activating the inflammasome and eliciting IL-1β secretion independent of the presence of additional stimuli required instead for sLPS. The ability of rLPS of activating the inflammasome in vitro has as a direct consequence a higher efficiency of rLPS-exposed DCs in activating natural killer (NK) cells compared to sLPS-exposed DCs. However, diversely from possible predictions, we found that the different efficiencies of the two LPS species in eliciting innate responses are almost nullified in vivo. Therefore, sLPS and rLPS induce nearly similar in vivo innate responses but with different mechanisms of signaling.
Collapse
Affiliation(s)
- Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The ability of HIV to infect quiescent CD4+ T cells has been a topic of intense debate. While early studies suggested that the virus could not infect this particular T cell subset, subsequent studies using more sensitive protocols demonstrated that these cells could inefficiently support HIV infection. Additional studies showed that the kinetics of infection in quiescent cells was delayed and multiple stages of the viral life cycle were marred by inefficiencies. Despite that, proviral DNA has been found in these cells presenting them as a potential viral reservoir. Therefore, a better understanding of the relationship between HIV and quiescent T cells may lead to further advances in the field of HIV.
Collapse
Affiliation(s)
- Dimitrios N Vatakis
- Department of Medicine, Division of Hematology/Oncology, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
39
|
Heisterberg MV, Menné T, Andersen KE, Avnstorp C, Kristensen B, Kristensen O, Kaaber K, Laurberg G, Henrik Nielsen N, Sommerlund M, Thormann J, Veien NK, Vissing S, Johansen JD. Deodorants are the leading cause of allergic contact dermatitis to fragrance ingredients*. Contact Dermatitis 2011; 64:258-64. [DOI: 10.1111/j.1600-0536.2011.01889.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Quách TD, Manjarrez-Orduño N, Adlowitz DG, Silver L, Yang H, Wei C, Milner ECB, Sanz I. Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. THE JOURNAL OF IMMUNOLOGY 2011; 186:4640-8. [PMID: 21398610 DOI: 10.4049/jimmunol.1001946] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
B cell anergy represents an important mechanism of peripheral immunological tolerance for mature autoreactive B cells that escape central tolerance enforced by receptor editing and clonal deletion. Although well documented in mice, the extent of its participation in human B cell tolerance remains to be fully established. In this study, we characterize the functional behavior of strictly defined human naive B cells separated on the basis of their surface IgM (sIgM) expression levels. We demonstrate that cells with lower sIgM levels (IgM(lo)) are impaired in their ability to flux calcium in response to either anti-IgM or anti-IgD cross-linking and contain a significantly increased frequency of autoreactive cells compared with naive B cells with higher levels of sIgM. Phenotypically, in healthy subjects, IgM(lo) cells are characterized by the absence of activation markers, reduction of costimulatory molecules (CD19 and CD21), and increased levels of inhibitory CD22. Functionally, IgM(lo) cells display significantly weaker proliferation, impaired differentiation, and poor Ab production. In aggregate, the data indicate that hyporesponsiveness to BCR cross-linking associated with sIgM downregulation is present in a much larger fraction of all human naive B cells than previously reported and is likely to reflect a state of anergy induced by chronic autoantigen stimulation. Finally, our results indicate that in systemic lupus erythematosus patients, naive IgM(lo) cells display increased levels of CD95 and decreased levels of CD22, a phenotype consistent with enhanced activation of autoreactive naive B cells in this autoimmune disease.
Collapse
Affiliation(s)
- Tâm D Quách
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mihaylova N, Tchorbanov A. New Biotechnologycal Approaches for Immunotherapy of Autoimmune Diseases. BIOTECHNOL BIOTEC EQ 2011. [DOI: 10.5504/bbeq.2011.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Chan TD, Gardam S, Gatto D, Turner VM, Silke J, Brink R. In vivo control of B-cell survival and antigen-specific B-cell responses. Immunol Rev 2010; 237:90-103. [PMID: 20727031 DOI: 10.1111/j.1600-065x.2010.00942.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted modification of the mouse genome provides the capability to manipulate complex physiological processes in a precise and controlled manner. Investigation of B-lymphocyte biology has benefited not only from the targeted modification of genes controlling B-cell survival and responsiveness, but also from the manipulation of antigen specificity made possible by targeting endogenous immunoglobulin loci. In this review, we discuss recent results obtained from our laboratory using gene-targeted mouse models to investigate the in vivo regulation of B-cell survival and responsiveness. The control of BAFF-dependent survival signals by the TRAF2- and TRAF3-signaling proteins is discussed as is the potential involvement of these molecules in B-lineage malignancies. We also outline the development and use of the SW(HEL) model for analyzing antigen-specific B-cell responses in vivo. This includes insights into the control of early decision-making during T-dependent B-cell differentiation, the affinity maturation and plasma cell differentiation of germinal center B cells, and the identification of EBI2 as a key regulator of B-cell migration and differentiation.
Collapse
Affiliation(s)
- Tyani D Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Basten A, Silveira PA. B-cell tolerance: mechanisms and implications. Curr Opin Immunol 2010; 22:566-74. [PMID: 20829011 DOI: 10.1016/j.coi.2010.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/07/2010] [Indexed: 11/26/2022]
Abstract
Advances in our knowledge of the spectrum of B-cell activities combined with the remarkable clinical efficacy of B-cell inhibitors in autoimmunity and transplantation settings serve to re-emphasise the importance of tolerance to self and foreign antigens in the B-cell repertoire. In particular, new information is emerging about the molecular mechanisms involved in B-cell tolerance induction and identification of B-cell selective defects that contribute to the pathogenesis of autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Antony Basten
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | | |
Collapse
|
44
|
Fang Y, Rowe T, Leon AJ, Banner D, Danesh A, Xu L, Ran L, Bosinger SE, Guan Y, Chen H, Cameron CC, Cameron MJ, Kelvin DJ. Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J Virol 2010; 84:8369-88. [PMID: 20534862 PMCID: PMC2919000 DOI: 10.1128/jvi.02305-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 05/30/2010] [Indexed: 02/05/2023] Open
Abstract
The 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODN-adjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN-alpha2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freund's adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas Rowe
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Banner
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Danesh
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luoling Xu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Longsi Ran
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven E. Bosinger
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Guan
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Honglin Chen
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cheryl C. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding author. Mailing address: Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China. Phone and fax: (86)-754-88573991. E-mail:
| |
Collapse
|
45
|
Abstract
Development, survival, and activation of B lymphocytes are controlled by signals emanating from the B-cell antigen receptor (BCR). The BCR has an autonomous signaling function also known as tonic signaling that allows for long-term survival of B cells in the immune system. Upon binding of antigen to the BCR, the tonic signal is amplified and diversified, leading to alteration in gene expression and B-cell activation. The spleen tyrosine kinase (Syk) intimately cooperates with the signaling subunits of the BCR and plays a central role in the amplification and diversification of BCR signals. In this review, we discuss the molecular mechanisms by which Syk activity is inhibited and activated at the BCR. Importantly, Syk acts not only as a kinase that phosphorylates downstream substrates but also as an adapter that can bind to a diverse set of signaling proteins. Depending on its interactions and localization, Syk can signal opposing cell fate decisions such as proliferation or differentiation of B cells.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Centre for Biological Signaling Studies (Bioss) and Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max-Planck Institute for Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
46
|
Mohapatra SS, Qazi M, Hellermann G. Immunotherapy for allergies and asthma: present and future. Curr Opin Pharmacol 2010; 10:276-88. [PMID: 20573547 DOI: 10.1016/j.coph.2010.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/18/2010] [Accepted: 05/29/2010] [Indexed: 02/04/2023]
Abstract
Allergen immunotherapy (IT) is a proven approach for treating allergic rhinitis and allergic asthma that has been practiced since 1911 and has undergone significant development in the past two decades. As currently practiced, IT involves subcutaneous or sublingual administration of allergens, both methods of which have been extensively investigated. In addition to allergen IT, a number of additional nonspecific IT approaches are being used or are in phase II/phase III clinical trials, which may be available in clinics within the next one to three years. Such therapies include anti-IgE antibodies and the soluble IL-4 receptor. Other experimental IT approaches are at the preclinical research stage and may proceed to clinical trials and the clinic within the next five to ten years. This review discusses the pros and cons of recent developments in both currently practiced and experimental IT approaches.
Collapse
Affiliation(s)
- Shyam S Mohapatra
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida College of Medicine, Tampa, FL, USA.
| | | | | |
Collapse
|
47
|
|
48
|
Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M, Nguyen A, Yeh S, Delarosa D, Leong SR, Wong T, Chen Y, Ultsch M, Luis E, Ramani SR, Jackman J, Gonzalez L, Dennis MS, Chuntharapai A, DeForge L, Meng YG, Xu M, Eigenbrot C, Lee WP, Refino CJ, Balazs M, Wu LC. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 2010; 120:2218-29. [PMID: 20458139 DOI: 10.1172/jci40141] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 03/17/2010] [Indexed: 11/17/2022] Open
Abstract
IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE. This segment is known as the M1' domain, and using genetically modified mice that contain the human M1' domain inserted into the mouse IgE locus, we demonstrated that M1'-specific antibodies reduced serum IgE and IgE-producing plasma cells in vivo, without affecting other immunoglobulin isotypes. M1'-specific antibodies were effective when delivered prophylactically and therapeutically in mouse models of immunization, allergic asthma, and Nippostrongylus brasiliensis infection, likely by inducing apoptosis of IgE-producing B cells. In addition, we generated a humanized M1'-specific antibody that was active on primary human cells in vivo, as determined by its reduction of serum IgE levels and IgE plasma cell numbers in a human PBMC-SCID mouse model. Thus, targeting of human IgE-producing B cells with apoptosis-inducing M1'-specific antibodies may be a novel treatment for asthma and allergy.
Collapse
Affiliation(s)
- Hans D Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu GJ, Yuan F, Du MH, Han HT, Lu LQ, Yan L, Zhang WX, Wang XP, Sun P, Li ZD. Early embryonic blood cells collect antigens and induce immunotolerance in the hatched chicken. Poult Sci 2010; 89:457-63. [PMID: 20181860 DOI: 10.3382/ps.2009-00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier experimental data in our laboratory showed that introduction of an exogenous protein into early chicken embryonic blood leads to immunotolerance of hatched chicken to that protein. However, the underlying mechanism is yet unknown. In the present study, we show that the blood cells collecting circulating antigen might contribute to the establishment of immunotolerance. In this experiment, most of the chicken embryo blood cells took up injected fluorescein isothiocyanate-BSA at approximately embryonic d 3. At the same stage, 1 microL of embryo blood was taken out and incubated with BSA. After being loaded with BSA in vitro and washed, these cells were injected back into the original embryo. The BSA-specific lymphocytes were depleted in chickens whose early embryo cells had been loaded with BSA, as evidenced by a significant decrease in anti-BSA antibody after challenge with BSA when the chickens were 3 wk old. In addition, by direct injection of BSA to embryonic d 3 embryo blood, the hatched chickens had decreased amounts of anti-trinitrophenol antibody after the chickens were challenged with trinitrophenol-BSA, indicating that the helper function of BSA-specific T cells was impaired. In conclusion, these observations suggest that some early embryo blood cells possibly collect and store antigen for the establishment of self-tolerance before the maturation of B and T cells.
Collapse
Affiliation(s)
- G J Wu
- Department of Biochemistry and Molecular Biology, College of Biology Science, and State Key Laboratory for Agrobiotechnology, China Agricultural University, 100193 Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Browne CD, Del Nagro CJ, Cato MH, Dengler HS, Rickert RC. Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 2009; 31:749-60. [PMID: 19896393 DOI: 10.1016/j.immuni.2009.08.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 06/15/2009] [Accepted: 08/21/2009] [Indexed: 01/01/2023]
Abstract
Anergy is a critical physiologic mechanism to sensor self-reactive B cells. However, a biochemical understanding of how anergy is achieved and maintained is lacking. Herein, we investigated the role of the phosphoinositide 3-kinase (PI3K) lipid product PI(3,4,5)P(3) in B cell anergy. We found reduced generation of PI(3,4,5)P(3) in anergic B cells, which was attributable to reduced phosphorylation of the PI3K membrane adaptor CD19, as well as increased expression of the inositol phosphatase PTEN. Sustained production of PI(3,4,5)P(3) in B cells, achieved through conditional deletion of Pten, resulted in failed tolerance induction and abundant autoantibody production. In contrast to wild-type immature B cells, B cell receptor engagement of PTEN-deficient immature B cells resulted in activation and proliferation, indicating a central defect in early B cell responsiveness. These findings establish repression of the PI3K signaling pathway as a necessary condition to avert the generation, activation, and persistence of self-reactive B cells.
Collapse
Affiliation(s)
- Cecille D Browne
- Program of Inflammatory Disease Research, Infectious and Inflammatory Disease Center & Program of Signal Transduction, Cancer Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|