1
|
Liu L, Zheng Z, Huang Y, Su H, Wu G, Deng Z, Li Y, Xie G, Li J, Zou F, Chen X. HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. Autophagy 2024. [PMID: 39461872 DOI: 10.1080/15548627.2024.2421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaling Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairou Su
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guibing Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuemei Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Deng G, Wang P, Su R, Sun X, Wu Z, Huang Z, Gu L, Yu H, Zhao Z, He Y, Huo M, Zhang C, Yin S. SPI1 +CD68 + macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies. J Immunother Cancer 2024; 12:e009983. [PMID: 39455096 DOI: 10.1136/jitc-2024-009983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have been demonstrated to be associated with tumor progression. However, the different subpopulations of TAMs and their roles in gastric cancer (GC) remain poorly understood. This study aims to assess the effects of Spi-1 proto-oncogene (SPI1)+CD68+ TAMs in GC. METHODS The distribution of SPI1+CD68+ TAMs in GC tissue was estimated by immunohistochemistry, immunofluorescence, and flow cytometry. Single-cell transcriptome analysis and multiplex fluorescence immunohistochemistry were applied to explore the role of SPI1+CD68+ TAMs in an immune contexture. SPI1 overexpression or knockdown cells were constructed to evaluate its role in macrophage polarization and angiogenesis in vitro and in vivo. Chromatin immunoprecipitation was used to verify the mechanism of SPI1 transcriptional function. The effect of combined antiangiogenic and immunotherapy was further validated using mouse peritoneal metastasis models. RESULTS Single-cell transcriptome analysis and immunohistochemistry demonstrated that SPI1 was expressed in macrophages, with a higher enrichment in metastatic lesions than in primary tumors. Higher SPI1+CD68+ TAMs infiltration was associated with poor overall survival. Mechanically, SPI1 promoted the M2-type macrophage polarization. SPI1 could bind to the promoter of vascular endothelial growth factor A and facilitate angiogenesis. Moreover, the level of SPI1+CD68+ TAMs infiltration was closely related to the efficacy of immunotherapy, especially when combined with antiangiogenic therapy. CONCLUSIONS The present study showed that SPI1+CD68+ TAMs are a promising biomarker for predicting prognosis, antiangiogenic drug sensitivity, and combination target of immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rishun Su
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuezeng Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhen Wu
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenzhen Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Gamage CDB, Kim JH, Zhou R, Park SY, Pulat S, Varlı M, Nam SJ, Kim H. Plectalibertellenone A suppresses colorectal cancer cell motility and glucose metabolism by targeting TGF-β/Smad and Wnt pathways. Biofactors 2024. [PMID: 39291722 DOI: 10.1002/biof.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death and represents a serious worldwide health problem. CRC metastasis decreases the survival rate of cancer patients, underscoring the need to identify novel anticancer agents and therapeutic targets. Here, we introduce Plectalibertellenone A (B) as a promising agent for the inhibition of CRC cell motility and glucose metabolism and explore its mechanism of action in CRC cells. Plectalibertellenone A suppressed TGF-β gene expression and the activation of the TGF-β/Smad signaling pathway, leading to reverse epithelial to mesenchymal transition (EMT) by modulating the expressions of EMT markers and transcriptional factors such as E-cadherin, N-cadherin, vimentin, Slug, Snail, Twist, and ZEB1/2. Furthermore, disruption of Wnt signaling inhibited CRC motility and glucose metabolism including glycolysis and oxidative phosphorylation, primarily affecting glycolytic enzymes, GLUT1, HK2, PKM2, LDHA, and HIF-1α under hypoxic condition. Therefore, Plectalibertellenone A is a potential drug candidate that can be developed into a promising anticancer treatment to prevent CRC metastasis and inhibit glucose metabolism.
Collapse
Affiliation(s)
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Woman University, Seoul, Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Woman University, Seoul, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| |
Collapse
|
5
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
6
|
Hung SK, Yu CC, Lin HY, Chiou WY, Lee MS, Lin RI, Lu MC. Targeting PADI2 as a potential therapeutic strategy against metastasis in oral cancer via suppressing EMT-mediated migration and invasion and CCL3/5-induced angiogenesis. Clin Exp Metastasis 2024:10.1007/s10585-024-10310-5. [PMID: 39215870 DOI: 10.1007/s10585-024-10310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive malignancy, with metastasis being the leading cause of death in patients. Unfortunately, therapeutic options for metastatic OSCC remain limited. Peptidylarginine deiminases (PADI) are implicated in various tumorigenesis and metastasis processes across multiple cancers. However, the role of PADI2, a type of PADI, in OSCC is not well understood. This study aimed to explore the impact of PADI2 on epithelial-mesenchymal transition (EMT), angiogenesis, and OSCC metastasis. The effect of PADI2 on EMT was evaluated using cell lines by Western blot analysis with shRNA targeting PADI2. In addition, the selective PADI2 inhibitor AFM32a was used to assess the effect of PADI2 on cancer metastasis and angiogenesis in animal models. Our findings indicated that PADI2 expression correlated with EMT changes, and PADI2 knockdown reversed these changes, reducing cell proliferation, cell migration, and invasion. PADI2 inhibition also diminished tube formation in HUVECs and decreased secretion of angiogenesis-related chemokines CCL3, CCL5 and CCL20. In a mouse model, AFM32a markedly reduced lung metastasis and production of CCL3 and CCL5. Our in vitro and in vivo studies suggested inhibiting PADI2 could prevent OSCC metastasis by impeding EMT and angiogenesis via AKT/mTOR signaling pathway. These results highlight PADI2 as a potential therapeutic target for combating OSCC metastasis.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Min-Sheng Road, Dalin, Chiayi, 62247, Taiwan.
| |
Collapse
|
7
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
8
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
9
|
Chung YH, Zhao Z, Jung E, Omole AO, Wang H, Sutorus L, Steinmetz NF. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308237. [PMID: 38430536 PMCID: PMC11095214 DOI: 10.1002/advs.202308237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 03/04/2024]
Abstract
The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
| | - Zhongchao Zhao
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Anthony O. Omole
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Hanyang Wang
- Department of BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Lucas Sutorus
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoLa JollaCA92093USA
- Center for Engineering in CancerUniversity of California, San DiegoLa JollaCA92093USA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
10
|
Yan M, Yang R, Li Q, Wang C, Chen J, Wu Z, Li H, Fan J. Anti-angiogenic and antitumor effects of anlotinib combined with bevacizumab for colorectal cancer. Transl Oncol 2024; 41:101887. [PMID: 38262112 PMCID: PMC10832611 DOI: 10.1016/j.tranon.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The progression and metastasis of tumors are typically accompanied by angiogenesis. Crucially, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a significant role in tumor-associated angiogenesis. In this study, the aim was to investigate the antitumor effect of combining bevacizumab (Bev) with anlotinib (An) on colorectal cancer (CRC). METHODS The CCK-8 assay, EdU assay, and Annexin V staining were conducted to evaluate the proliferation and apoptosis of CRC cells in vitro. The migration capability of CRC cells and HUVECs was assessed using the Transwell assay. Additionally, the tube formation capability of HUVECs was investigated. Furthermore, the antitumor and antiangiogenic effects were evaluated in the BALB/c mice model using immunohistochemistry, TUNEL staining, and 18F-FDG PET/CT imaging. Finally, we analyzed the inhibitory effect of Bev and/or An on related signaling effectors through western blotting. RESULTS The in vivo CRC mice model revealed that the combination of Bev + An significantly suppressed tumor formation and angiogenesis. Bev + An inhibited tumor glucose metabolism and increased the median survival period in tumor-bearing mice. Mechanistically, the expressions of VEGF, VEGFR2, PDGFR, and FGFR, as well as the phosphorylation levels of AKT, were inhibited after Bev+An treatment. In conclusion, the dual vertical targeting of VEGF and VEGFR in the CRC mice model strongly inhibited tumor growth and angiogenesis, with the suppression of the AKT signaling pathway playing a partial role.
Collapse
Affiliation(s)
- Min Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Ronghao Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Qi Li
- Department of Oncology, the SanTai County People's Hospital, Santai 621100, PR China
| | - Chenjie Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Juan Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China.
| |
Collapse
|
11
|
Okwuone DDD, Morgan D, Gan GN. Exploring the function of myeloid cells in promoting metastasis in head and neck cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:108-119. [PMID: 38468824 PMCID: PMC10925485 DOI: 10.37349/etat.2024.00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Head and neck cancer (HNC) is a challenging disease that lacks effective treatment, particularly in the cases that spread locoregionally and metastasize distantly, dramatically reducing patient survival rates. Expanding the understanding of the mechanisms of the metastatic cascade is critical for creating more effective therapeutics that improve outcomes for HNC patients. A true grasp of cancer metastasis requires the consideration of all cell types that contribute to the inflammatory HNC microenvironment as drivers of this process. More emphasis now is being placed on exploring the roles of the different immune cells in cancer control, tumorigenesis and metastasis. Myeloid cells are the most numerous immune cell types in the body, and they are actively recruited and reprogrammed by tumor cells to behave in a variety of ways. These cells are remarkably diverse in phenotype and function, and the part they play in tumor spread greatly differs based on the cell type. This review will focus on summarizing the roles of macrophages, neutrophils, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs) in driving HNC metastasis by examining the current knowledge base and offering potential new routes through which to target and treat this deadly process.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gregory N. Gan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Kim DE, Roh HS, Kim GH, Bhang DH, Um SH, Singh R, Baek KH. S6K1 deficiency in tumor stroma impairs lung metastasis of melanoma in mice. Biochem Biophys Res Commun 2024; 696:149469. [PMID: 38194806 DOI: 10.1016/j.bbrc.2024.149469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Accumulating data suggest that ribosomal protein S6 kinase 1 (S6K1), an effector in the mammalian target of rapamycin (mTOR) pathway, plays pleiotropic roles in tumor progression. However, to date, while the tumorigenic function of S6K1 in tumor cells has been well elucidated, its role in the tumor stroma remains poorly understood. We recently showed that S6K1 mediates vascular endothelial growth factor A (VEGF-A) production in macrophages, thereby supporting tumor angiogenesis and growth. As macrophage-derived VEGF-A is crucial for both tumor cell intravasation and extravasation across the vascular endothelium, our previous findings suggest that stromal S6K1 signaling is required for tumor metastatic spread. Therefore, we aimed to determine the impact of host S6K1 depletion on tumor metastasis using a murine model of pulmonary metastasis (S6k1-/- mice implanted with B16F10 melanoma). The ablation of S6K1 in the host microenvironment significantly reduced the metastasized B16F10 melanoma cells on the lung surface in both spontaneous and intravenous lung metastasis mouse models without affecting the incidence of metastasis to distant lymph nodes. In addition, stromal S6K1 loss decreased the number of tumor cells circulating in the peripheral blood of mice bearing B16F10 xenografts without affecting the vascular leakage induced by VEGF-A in vivo. These observations demonstrate that S6K1 signaling in host cells other than endothelial cells is required to modulate the host microenvironment to facilitate the metastatic spread of tumors via blood circulation, thus revealing its novel role in the tumor stroma during tumor progression.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ga-Hee Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Sung Hee Um
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
13
|
Xu X, Zhu N, Zheng J, Peng Y, Zeng MS, Deng K, Duan C, Yuan Y. EBV abortive lytic cycle promotes nasopharyngeal carcinoma progression through recruiting monocytes and regulating their directed differentiation. PLoS Pathog 2024; 20:e1011934. [PMID: 38206974 PMCID: PMC10846743 DOI: 10.1371/journal.ppat.1011934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/06/2024] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Epstein-Barr virus (EBV) is associated with several types of human cancer including nasopharyngeal carcinoma (NPC). The activation of EBV to the lytic cycle has been observed in advanced NPC and is believed to contribute to late-stage NPC development. However, how EBV lytic cycle promotes NPC progression remains elusive. Analysis of clinical NPC samples indicated that EBV reactivation and immunosuppression were found in advanced NPC samples, as well as abnormal angiogenesis and invasiveness. To investigate the role of the EBV lytic cycle in tumor development, we established a system that consists of two NPC cell lines, respectively, in EBV abortive lytic cycle and latency. In a comparative analysis using this system, we found that the NPC cell line in EBV abortive lytic cycle exhibited the superior chemotactic capacity to recruit monocytes and polarized their differentiation toward tumor-associated macrophage (TAM)-like phenotype and away from DCs, compared to EBV-negative or EBV-latency NPC cells. EBV-encoded transcription activator ZTA is responsible for regulating monocyte chemotaxis and TAM phenotype by up-regulating the expression of GM-CSF, IL-8, and GRO-α. As a result, TAM induced by EBV abortive lytic cycle promotes NPC angiogenesis, invasion, and migration. Overall, this study elucidated the role of the EBV lytic life cycle in the late development of NPC and revealed a mechanism underlying the ZTA-mediated establishment of the tumor microenvironment (TME) that promotes NPC late-stage progression.
Collapse
Affiliation(s)
- Xiaoting Xu
- Laboratory of Clinical, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nannan Zhu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junming Zheng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingying Peng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chaohui Duan
- Laboratory of Clinical, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Yuan
- Institute for Advanced Medical Research, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
16
|
Jepson JM, O'Dea RD, Billingham J, Fadai NT. Pattern formation and travelling waves in a multiphase moving boundary model of tumour growth. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:327-347. [PMID: 37996089 DOI: 10.1093/imammb/dqad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
We employ the multiphase, moving boundary model of Byrne et al. (2003, Appl. Math. Lett., 16, 567-573) that describes the evolution of a motile, viscous tumour cell phase and an inviscid extracellular liquid phase. This model comprises two partial differential equations that govern the cell volume fraction and the cell velocity, together with a moving boundary condition for the tumour edge, and here we characterize and analyse its travelling-wave and pattern-forming behaviour. Numerical simulations of the model indicate that patterned solutions can be obtained, which correspond to multiple regions of high cell density separated by regions of low cell density. In other parameter regimes, solutions of the model can develop into a forward- or backward-moving travelling wave, corresponding to tumour growth or extinction, respectively. A travelling-wave analysis allows us to find the corresponding wave speed, as well as criteria for the growth or extinction of the tumour. Furthermore, a stability analysis of these travelling-wave solutions provides us with criteria for the occurrence of patterned solutions. Finally, we discuss how the initial cell distribution, as well as parameters related to cellular motion and cell-liquid drag, control the qualitative features of patterned solutions.
Collapse
Affiliation(s)
- Jacob M Jepson
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Reuben D O'Dea
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - John Billingham
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nabil T Fadai
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
17
|
Liu Y, Li Y, Wu Y, Zhao Y, Hu X, Sun C. The long non-coding RNA NEAT1 promotes the progression of human ovarian cancer through targeting miR-214-3p and regulating angiogenesis. J Ovarian Res 2023; 16:219. [PMID: 37986114 PMCID: PMC10662279 DOI: 10.1186/s13048-023-01309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Angiogenesis and metastasis contributes substantially to the poor outcome of patients with ovarian cancer. We aimed to explore the role and mechanisms of the long non-coding RNA NEAT1 (nuclear enriched abundant transcript 1) in regulating angiogenesis and metastasis of human ovarian cancer. NEAT1 expression in human ovarian cancer tissues and cell lines including SKOV-3 and A2780 was investigated through in situ hybridization. Gene knockdown and overexpressing were achieved through lentivirus infection, transfection of plasmids or microRNA mimics. Cell viability was measured with the cell counting kit-8 assay, while apoptosis was determined by flow cytometry. Cell migration and invasion were evaluated by transwell experiments, and protein expression was determined by western blot assays or immunohistochemistry. Duo-luciferase reporter assay was employed to confirm the interaction between NEAT1 and target microRNA. In vivo tumor growth was evaluated in nude mice with xenografted SKOV-3/A2780 cells, and blood vessel formation in tumor was examined by histological staining. RESULTS NEAT1 was highly expressed in ovarian cancer tissues of patients and cell lines. MiR-214-3p was identified as a sponging target of NEAT1, and they antagonizedeach other in a reciprocal manner. NEAT1-overexpressing SKOV-3 and A2780 cells had significantly increased proliferation, reduced apoptosis, and augmented abilities of migration and invasion, while cells with NEAT1-knockdown displayed markedly attenuated traits of malignancies. Additionally, the levels of NEAT1 appeared to be positively correlated with the expression levels of angiogenesis-related molecules, including Semaphorin 4D (Sema4D), Sema4D receptor Plexin B1, T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1), and Rho-like GTPases Rac1/2/3. In the xenograft mouse model, more NEAT1 expression resulted in faster in vivo tumor growth, more blood vessel formation in tumor tissues, as well as higher expression levels of angiogenesis-related molecules and CD31. CONCLUSIONS NEAT1 promotes angiogenesis and metastasis in human ovarian cancer. NEAT1 and miR-214-3p are promising targets for developing therapeutics to treat human ovarian cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Yan Li
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yanzhi Wu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yiyue Zhao
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xi Hu
- Department of Reproduction, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chunyi Sun
- Department of Gynecology, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
18
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
19
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
20
|
Cai Y, Cheng Y, Wang Z, Li L, Qian Z, Xia W, Yu W. A novel metabolic subtype with S100A7 high expression represents poor prognosis and immuno-suppressive tumor microenvironment in bladder cancer. BMC Cancer 2023; 23:725. [PMID: 37543645 PMCID: PMC10403905 DOI: 10.1186/s12885-023-11182-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic heterogeneity of BLCA. METHODS The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related characteristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancerous samples was used to validate the prognostic value and immunological correlation of the biomarker. RESULTS BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated with poor prognosis and enhanced PD-L1 expression. CONCLUSIONS The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor microenvironment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights into the prognostic and therapeutic value of metabolic heterogeneity in BLCA.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Zhengtao Qian
- Department of Clinical laboratory, Changshu Medicine Examination Institute, No.36, Qingduntang Road, Suzhou, 215500, China.
| | - Wei Xia
- Department of IntensiveCareUnit, TheAffiliated Wuxi People's Hospital of NanjingMedicalUniversity, Wuxi, China.
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| | - Weiwei Yu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
21
|
Ye M, Chen J, Yu P, Hu C, Wang B, Bao J, Lu F, Zhong Y, Yan L, Kan J, Bai J, Tian Y, Tang Q. WTAP activates MAPK signaling through m6A methylation in VEGFA mRNA-mediated by YTHDC1 to promote colorectal cancer development. FASEB J 2023; 37:e23090. [PMID: 37428639 DOI: 10.1096/fj.202300344rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
N6-methyladenosine modification, especially Wilms tumor 1-associated protein (WTAP), is reportedly associated with a variety of cancers, including colorectal cancer (CRC). Angiogenesis also plays an important role in the occurrence and development of CRC. However, only a few studies have reported the biological mechanisms underlying this connection. Therefore, tissue microarray and public database were used to explore WTAP levels in CRC. Then, WTAP was down-regulated and over-expressed, respectively. CCK8, EdU, colony formation, and transwell experiments were performed to study the role of WTAP in CRC. Combined RNA sequencing and m6A RNA immunoprecipitation (MeRIP) sequencing, we found downstream molecules VEGFA. Moreover, a tube formation assay was executed for tumor angiogenesis. Finally, a subcutaneous tumorigenesis assay in nude mice was used to examine the tumor-promoting effect of WTAP in vivo. In the present study, WTAP was significantly upregulated in CRC cells and patients with CRC. Moreover, higher WTAP expression was observed in the TCGA and CPATC databases in CRC tissues. WTAP over-expression exacerbates cell proliferation, migration, invasion, and angiogenesis. Conversely, WTAP knockdown inhibited the malignant biological behavior of CRC cells. Mechanistically, WTAP positively regulated VEGFA, as identified using RNA sequencing and MeRIP sequencing. Moreover, we identified YTHDC1 as a downstream effector of the YTHDC1-VEGFA axis in CRC. Furthermore, increased WTAP expression activated the MAPK signaling pathway, which led to enhanced angiogenesis. In conclusion, our study revealed that the WTAP/YTHDC1/VEGFA axis promotes CRC development, especially angiogenesis, suggesting that it may act as a potential biomarker of CRC.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Bangting Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinxing Bao
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jingbao Kan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Huang C, Li H, Xu Y, Xu C, Sun H, Li Z, Ge Y, Wang H, Zhao T, Gao S, Wang X, Yang S, Sun P, Liu Z, Liu J, Chang A, Hao J. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal Transduct Target Ther 2023; 8:271. [PMID: 37443111 PMCID: PMC10344882 DOI: 10.1038/s41392-023-01478-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 07/15/2023] Open
Abstract
VEGF inhibitors are one of the most successful antiangiogenic drugs in the treatment of many solid tumors. Nevertheless, pancreatic adenocarcinoma (PAAD) cells can reinstate tumor angiogenesis via activation of VEGF-independent pathways, thereby conferring resistance to VEGF inhibitors. Bioinformatic analysis showed that BICC1 was one of the top genes involved in the specific angiogenesis process of PAAD. The analysis of our own cohort confirmed that BICC1 was overexpressed in human PAAD tissues and was correlated to increased microvessel density and tumor growth, and worse prognosis. In cells and mice with xenograft tumors, BICC1 facilitated angiogenesis in pancreatic cancer in a VEGF-independent manner. Mechanistically, as an RNA binding protein, BICC1 bounds to the 3'UTR of Lipocalin-2 (LCN2) mRNA and post-transcriptionally up-regulated LCN2 expression in PAAD cells. When its level is elevated, LCN2 binds to its receptor 24p3R, which directly phosphorylates JAK2 and activates JAK2/STAT3 signal, leading to increased production of an angiogenic factor CXCL1. Blocking of the BICC1/LCN2 signalling reduced the microvessel density and tumor volume of PAAD cell grafts in mice, and increased the tumor suppressive effect of gemcitabine. In conclusion, BICC1 plays a pivotal role in the process of VEGF-independent angiogenesis in pancreatic cancer, leading to resistance to VEGF inhibitors. BICC1/LCN2 signaling may serve as a promising anti-angiogenic therapeutic target for pancreatic cancer patients.
Collapse
Affiliation(s)
- Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Yang Xu
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chao Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
| |
Collapse
|
23
|
Wittig F, Henkel L, Prüser JL, Merkord J, Ramer R, Hinz B. Inhibition of Monoacylglycerol Lipase Decreases Angiogenic Features of Endothelial Cells via Release of Tissue Inhibitor of Metalloproteinase-1 from Lung Cancer Cells. Cells 2023; 12:1757. [PMID: 37443791 PMCID: PMC10340590 DOI: 10.3390/cells12131757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the well-described anticarcinogenic effects of endocannabinoids, the influence of the endocannabinoid system on tumor angiogenesis is still debated. In the present study, conditioned medium (CM) from A549 and H358 lung cancer cells treated with ascending concentrations of the monoacylglycerol lipase (MAGL) inhibitor JZL184 and 2-arachidonoylglycerol (2-AG), a prominent MAGL substrate, caused a concentration-dependent reduction in human umbilical vein endothelial cell (HUVEC) migration and tube formation compared with CM from vehicle-treated cancer cells. Comparative experiments with MAGL inhibitors JW651 and MJN110 showed the same results. On the other hand, the angiogenic properties of HUVECs were not significantly altered by direct stimulation with JZL184 or 2-AG or by exposure to CM of JZL184- or 2-AG-treated non-cancerous bronchial epithelial cells (BEAS-2B). Inhibition of HUVEC migration and tube formation by CM of JZL184- and 2-AG-treated A549 cells was abolished in the presence of the CB1 antagonist AM-251. Increased release of tissue inhibitor of metalloproteinase-1 (TIMP-1) from JZL184- or 2-AG-stimulated A549 or H358 cells was shown to exert an antiangiogenic effect on HUVECs, as confirmed by siRNA experiments. In addition, JZL184 caused a dose-dependent regression of A549 tumor xenografts in athymic nude mice, which was associated with a decreased number of CD31-positive cells and upregulation of TIMP-1-positive cells in xenograft tissue. In conclusion, our data suggest that elevation of 2-AG by MAGL inhibition leads to increased release of TIMP-1 from lung cancer cells, which mediates an antiangiogenic effect on endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.H.); (J.L.P.); (J.M.); (R.R.)
| |
Collapse
|
24
|
Ke H, Li Z, Li P, Ye S, Huang J, Hu T, Zhang C, Yuan M, Chen Y, Wu X, Lan P. Dynamic heterogeneity of colorectal cancer during progression revealed clinical risk-associated cell types and regulations in single-cell resolution and spatial context. Gastroenterol Rep (Oxf) 2023; 11:goad034. [PMID: 37360193 PMCID: PMC10290555 DOI: 10.1093/gastro/goad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Tumor heterogeneity is contributed by tumor cells and the microenvironment. Dynamics of tumor heterogeneity during colorectal cancer (CRC) progression have not been elucidated. Methods Eight single-cell RNA sequencing (scRNA-seq) data sets of CRC were included. Milo was utilized to reveal the differential abundance of cell clusters during progression. The differentiation trajectory was imputed by using the Palantir algorithm and metabolic states were assessed by using scMetabolism. Three spatial transcription sequencing (ST-seq) data sets of CRC were used to validate cell-type abundances and colocalization. Cancer-associated regulatory hubs were defined as communication networks affecting tumor biological behaviors. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemistry staining were performed for validation. Results TM4SF1+, SOX4+, and MKI67+ tumor cells; CXCL12+ cancer-associated fibroblasts; CD4+ resident memory T cells; Treg; IgA+ plasma cells; and several myeloid subsets were enriched in stage IV CRC, most of which were associated with overall survival of patients. Trajectory analysis indicated that tumor cells from patients with advanced-stage CRC were less differentiated, when metabolic heterogeneity showed a highest metabolic signature in terminal states of stromal cells, T cells, and myeloid cells. Moreover, ST-seq validated cell-type abundance in a spatial context and also revealed the correlation of immune infiltration between tertiary lymphoid structures and tumors followed by validation in our cohort. Importantly, analysis of cancer-associated regulatory hubs revealed a cascade of activated pathways including leukocyte apoptotic process, MAPK pathway, myeloid leukocyte differentiation, and angiogenesis during CRC progression. Conclusions Tumor heterogeneity was dynamic during progression, with the enrichment of immunosuppressive Treg, myeloid cells, and fibrotic cells. The differential state of tumor cells was associated with cancer staging. Assessment of cancer-associated regulatory hubs suggested impaired antitumor immunity and increased metastatic ability during CRC progression.
Collapse
Affiliation(s)
- Haoxian Ke
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhihao Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Peisi Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Junfeng Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Chi Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ming Yuan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yuan Chen
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology ,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
25
|
Liu J, Chao T, Liu Y, Gong C, Zhang Y, Xiong H. Heterocyclic Molecular Targeted Drugs and Nanomedicines for Cancer: Recent Advances and Challenges. Pharmaceutics 2023; 15:1706. [PMID: 37376154 DOI: 10.3390/pharmaceutics15061706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a top global public health concern. At present, molecular targeted therapy has emerged as one of the main therapies for cancer, with high efficacy and safety. The medical world continues to struggle with the development of efficient, extremely selective, and low-toxicity anticancer medications. Heterocyclic scaffolds based on the molecular structure of tumor therapeutic targets are widely used in anticancer drug design. In addition, a revolution in medicine has been brought on by the quick advancement of nanotechnology. Many nanomedicines have taken targeted cancer therapy to a new level. In this review, we highlight heterocyclic molecular-targeted drugs as well as heterocyclic-associated nanomedicines in cancer.
Collapse
Affiliation(s)
- Junxia Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200000, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
26
|
Yang H, Yue GGL, Yuen KK, Gao S, Leung PC, Wong CK, Lau CBS. Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154900. [PMID: 37269754 DOI: 10.1016/j.phymed.2023.154900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Patrinia villosa, a traditional medicinal herb commonly used for treating intestinal-related diseases, has been commonly prescribed by Chinese medicine practitioners as a key component herb to treat colon cancer, although its anti-tumor effect and mechanisms of action have not been fully elucidated. HYPOTHESIS/PURPOSE This study aimed to investigate the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract (PVW), and its underlying mechanisms. METHOD The chemical profile of PVW was analysed by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD) method. Cell-based functional assays MTT, BrdU, scratch, and transwell were conducted to evaluate the effects of PVW on human colon cancer HCT116 and murine colon26-luc cells, assessing cytotoxicity, cell proliferation, motility, and migration, respectively. Western blotting was performed to assess the effect of PVW on the expression of key intracellular signaling proteins. In vivo studies were conducted using zebrafish embryos and tumor-bearing mice to evaluate the anti-tumor, anti-angiogenesis, and anti-metastatic effects of PVW in colon cancer. RESULTS Five chemical markers were identified and quantified in PVW. PVW exhibited significant cytotoxicity and anti-proliferative activity, as well as inhibitory effects on cell motility and migration in both HCT116 and colon 26-luc cancer cells via modulating protein expressions of TGF-β R1, smad2/3, snail, E-cadherin, FAK, RhoA, and cofilin. PVW (0.01-0.1 mg/ml) could significantly decrease the length of subintestinal vessels of zebrafish embryos through decreasing mRNA expressions of FLT1, FLT4, KDRL, VEGFaa, VEGFc, and Tie1. PVW (> 0.05 mg/ml) also significantly suppressed colon cancer cells migration in the zebrafish embryos. Furthermore, oral administration of PVW (1.6 g/kg) significantly inhibited tumor growth by decreasing the expressions of tumor activation marker Ki-67 and CD 31 in tumor tissues of HCT116 tumor-bearing mice. PVW could also significantly inhibit lung metastasis in colon 26-luc tumor-bearing mice by modulating their tumor microenvironment, including immune cells populations (T cells and MDSCs), levels of cytokines (IL-2, IL-12, and IFN-γ), as well as increasing the relative abundance of gut microbiota. CONCLUSION This study revealed for the first time the anti-tumor and anti-metastatic effects of PVW through regulation of TGF-β-smad2/3-E-cadherin, and FAK-cofilin pathways in colon cancer. These findings provide scientific evidence to support the clinical use of P. villosa in patients with colon cancer.
Collapse
Affiliation(s)
- Huihai Yang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka-Ki Yuen
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
27
|
Milosevic V, Edelmann RJ, Winge I, Strell C, Mezheyeuski A, Knutsvik G, Askeland C, Wik E, Akslen LA, Östman A. Vessel size as a marker of survival in estrogen receptor positive breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06974-4. [PMID: 37222874 DOI: 10.1007/s10549-023-06974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Angiogenesis is crucial for tumor growth and is one of the hallmarks of cancer. In this study, we analyzed microvessel density, vessel median size, and perivascular a-SMA expression as prognostic biomarkers in breast cancer. METHODS Dual IHC staining was performed where alpha-SMA antibodies were used together with antibodies against the endothelial cell marker CD34. Digital images of stainings were analyzed to extract quantitative data on vessel density, vessel size, and perivascular alpha-SMA status. RESULTS The analyses in the discovery cohort (n = 108) revealed a statistically significant relationship between large vessel size and shorter disease-specific survival (p = 0.007, log-rank test; p = 0.01, HR 3.1; 95% CI 1.3-7.4, Cox-regression analyses). Subset analyses indicated that the survival association of vessel size was strengthened in ER + breast cancer. To consolidate these findings, additional analyses were performed on a validation cohort (n = 267) where an association between large vessel size and reduced survival was also detected in ER + breast cancer (p = 0.016, log-rank test; p = 0.02; HR 2.3, 95% CI 1.1-4.7, Cox-regression analyses). CONCLUSION Alpha-SMA/CD34 dual-IHC staining revealed breast cancer heterogeneity regarding vessel size, vessel density, and perivascular a-SMA status. Large vessel size was linked to shorter survival in ER + breast cancer.
Collapse
Affiliation(s)
- Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Askeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
28
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
29
|
Takeda M, Sakamoto H, Shibasaki N, Fukui T, Magaribuchi T, Sumiyoshi T, Utsunomiya N, Sawada A, Goto T, Kobayashi T, Ueda K, Yamasaki T, Ogawa O, Akamatsu S. Extracellular vesicles secreted from bone metastatic renal cell carcinoma promote angiogenesis and endothelial gap formation in bone marrow in a time-dependent manner in a preclinical mouse model. Front Oncol 2023; 13:1139049. [PMID: 37064121 PMCID: PMC10091619 DOI: 10.3389/fonc.2023.1139049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionBone is a major metastatic site of renal cell carcinoma (RCC). Recently, it is well recognized that bone metastatic tumor cells remodel bone marrow vasculature. However, the precise mechanism underlying cell-cell communication between bone metastatic RCC and the cells in bone marrow remains unknown. Extracellular vesicles (EVs) reportedly play crucial roles in intercellular communication between metastatic tumor cells and bone marrow. Therefore, we conducted the current study to clarify the histological alteration in vascular endothelium in bone marrow induced by EVs secreted from bone metastatic RCC cells as well as association between angiogenesis in bone marrow and bone metastasis formation.Materials and methodsWe established a bone metastatic RCC cell line (786-O BM) by in vivo selection and observed phenotypic changes in tissues when EVs were intravenously injected into immunodeficient mice. Proteomic analysis was performed to identify the protein cargo of EVs that could contribute to histological changes in bone. Tissue exudative EVs (Te-EVs) from cancer tissues of patients with bone metastatic RCC (BM-EV) and those with locally advanced disease (LA-EV) were compared for in vitro function and protein cargo.ResultsTreatment of mice with EVs from 786-O BM promoted angiogenesis in the bone marrow in a time-dependent manner and increased the gaps of capillary endothelium. 786-O BM EVs also promoted tube formation in vitro. Proteomic analysis of EVs identified aminopeptidase N (APN) as a candidate protein that enhances angiogenesis. APN knockdown in 786-O BM resulted in reduced angiogenesis in vitro and in vivo. When parental 786-O cells were intracardially injected 12 weeks after treatment with786-O BM EVs, more bone metastasis developed compared to those treated with EVs from parental 786-O cells. In patient samples, BM-EVs contained higher APN compared to LA-EV. In addition, BM-EVs promoted tube formation in vitro compared to LA-EVs.ConclusionEVs from bone metastatic RCC promote angiogenesis and gap formation in capillary endothelium in bone marrow in a time-dependent manner.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromasa Sakamoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noboru Shibasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Fukui
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Takayuki Sumiyoshi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriaki Utsunomiya
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuro Sawada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Shusuke Akamatsu,
| |
Collapse
|
30
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
31
|
Sharpe JL, Morgan J, Nisbet N, Campbell K, Casali A. Modelling Cancer Metastasis in Drosophila melanogaster. Cells 2023; 12:cells12050677. [PMID: 36899813 PMCID: PMC10000390 DOI: 10.3390/cells12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer metastasis, the process by which tumour cells spread throughout the body and form secondary tumours at distant sites, is the leading cause of cancer-related deaths. The metastatic cascade is a highly complex process encompassing initial dissemination from the primary tumour, travel through the blood stream or lymphatic system, and the colonisation of distant organs. However, the factors enabling cells to survive this stressful process and adapt to new microenvironments are not fully characterised. Drosophila have proven a powerful system in which to study this process, despite important caveats such as their open circulatory system and lack of adaptive immune system. Historically, larvae have been used to model cancer due to the presence of pools of proliferating cells in which tumours can be induced, and transplanting these larval tumours into adult hosts has enabled tumour growth to be monitored over longer periods. More recently, thanks largely to the discovery that there are stem cells in the adult midgut, adult models have been developed. We focus this review on the development of different Drosophila models of metastasis and how they have contributed to our understanding of important factors determining metastatic potential, including signalling pathways, the immune system and the microenvironment.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jason Morgan
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Nicholas Nisbet
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (K.C.); (A.C.)
| | - Andreu Casali
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Correspondence: (K.C.); (A.C.)
| |
Collapse
|
32
|
Huang Y. Targeting glycolysis for cancer therapy using drug delivery systems. J Control Release 2023; 353:650-662. [PMID: 36493949 DOI: 10.1016/j.jconrel.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
There is close crosstalk between cancer metabolism and immunity. Cancer metabolism regulation is a promising therapeutic target for cancer immunotherapy. Warburg effect is characterized by abnormal glucose metabolism that includes common features of increased glucose uptake and lactate production. The aerobic glycolysis can reprogram the cancer cells and promote the formation of a suppressive immune microenvironment. As a case in point, lactate plays an essential role in tumorigenesis, which is the end product of glycolysis as well as serves as a fuel supporting cancer cell survival. Meanwhile, it is also an important immune regulator that drives immunosuppression in tumors. Immunometabolic therapy is to intervene tumor metabolism and regulate the related metabolites that participate in the innate and acquired immunity, thereby reinstalling the immune balance and eliciting anticancer immune responses. In this contribution to the Orations - New Horizons of the Journal of controlled Release I will provide an overview of glucose metabolism in tumors and its effects on drug resistance and tumor metastasis, and present the advance of glycolysis-targeting therapy strategies with drug delivery techniques, as well as discuss the challenges in glycolysis-targeting immunometabolic therapy.
Collapse
Affiliation(s)
- Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, China; Shanghai Institute of Materia Medica Chinese Academy of Science, China.
| |
Collapse
|
33
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
34
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Christensen BC, Salas LA. HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data. J Transl Med 2022; 20:516. [DOI: 10.1186/s12967-022-03736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understanding its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methylation-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods lack accuracy and specificity to tumor type and include limited identification of individual cell types.
Results
We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We demonstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not capture.
Conclusion
We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens providing high-resolution profiles enabling to study of clinical and biological implications of variation and composition of the tumor microenvironment.
Collapse
|
35
|
Braman N, Prasanna P, Bera K, Alilou M, Khorrami M, Leo P, Etesami M, Vulchi M, Turk P, Gupta A, Jain P, Fu P, Pennell N, Velcheti V, Abraham J, Plecha D, Madabhushi A. Novel Radiomic Measurements of Tumor-Associated Vasculature Morphology on Clinical Imaging as a Biomarker of Treatment Response in Multiple Cancers. Clin Cancer Res 2022; 28:4410-4424. [PMID: 35727603 PMCID: PMC9588630 DOI: 10.1158/1078-0432.ccr-21-4148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/14/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The tumor-associated vasculature (TAV) differs from healthy blood vessels by its convolutedness, leakiness, and chaotic architecture, and these attributes facilitate the creation of a treatment-resistant tumor microenvironment. Measurable differences in these attributes might also help stratify patients by likely benefit of systemic therapy (e.g., chemotherapy). In this work, we present a new category of computational image-based biomarkers called quantitative tumor-associated vasculature (QuanTAV) features, and demonstrate their ability to predict response and survival across multiple cancer types, imaging modalities, and treatment regimens involving chemotherapy. EXPERIMENTAL DESIGN We isolated tumor vasculature and extracted mathematical measurements of twistedness and organization from routine pretreatment radiology (CT or contrast-enhanced MRI) of a total of 558 patients, who received one of four first-line chemotherapy-based therapeutic intervention strategies for breast (n = 371) or non-small cell lung cancer (NSCLC, n = 187). RESULTS Across four chemotherapy-based treatment strategies, classifiers of QuanTAV measurements significantly (P < 0.05) predicted response in held out testing cohorts alone (AUC = 0.63-0.71) and increased AUC by 0.06-0.12 when added to models of significant clinical variables alone. Similarly, we derived QuanTAV risk scores that were prognostic of recurrence-free survival in treatment cohorts who received surgery following chemotherapy for breast cancer [P = 0.0022; HR = 1.25; 95% confidence interval (CI), 1.08-1.44; concordance index (C-index) = 0.66] and chemoradiation for NSCLC (P = 0.039; HR = 1.28; 95% CI, 1.01-1.62; C-index = 0.66). From vessel-based risk scores, we further derived categorical QuanTAV high/low risk groups that were independently prognostic among all treatment groups, including patients with NSCLC who received chemotherapy only (P = 0.034; HR = 2.29; 95% CI, 1.07-4.94; C-index = 0.62). QuanTAV response and risk scores were independent of clinicopathologic risk factors and matched or exceeded models of clinical variables including posttreatment response. CONCLUSIONS Across these domains, we observed an association of vascular morphology on CT and MRI-as captured by metrics of vessel curvature, torsion, and organizational heterogeneity-and treatment outcome. Our findings suggest the potential of shape and structure of the TAV in developing prognostic and predictive biomarkers for multiple cancers and different treatment strategies.
Collapse
Affiliation(s)
- Nathaniel Braman
- Case Western Reserve University, Cleveland, OH
- Picture Health, Cleveland, OH
| | - Prateek Prasanna
- Case Western Reserve University, Cleveland, OH
- Stony Brook University, New York, NY
| | - Kaustav Bera
- Case Western Reserve University, Cleveland, OH
- University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | | | - Patrick Leo
- Case Western Reserve University, Cleveland, OH
| | - Maryam Etesami
- Yale School of Medicine, Department of Radiology & Biomedical Imaging, New Haven, CT
| | - Manasa Vulchi
- The Cleveland Clinic Foundation (CCF), Cleveland, OH
| | - Paulette Turk
- The Cleveland Clinic Foundation (CCF), Cleveland, OH
| | - Amit Gupta
- University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Prantesh Jain
- University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Pingfu Fu
- Case Western Reserve University, Cleveland, OH
| | | | | | - Jame Abraham
- The Cleveland Clinic Foundation (CCF), Cleveland, OH
| | - Donna Plecha
- University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anant Madabhushi
- Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland Veterans Medical Center, Cleveland, OH
| |
Collapse
|
36
|
Muldoon A, Kabeer A, Cormier J, Saksena MA, Fang Q, Carp SA, Deng B. Method to improve the localization accuracy and contrast recovery of lesions in separately acquired X-ray and diffuse optical tomographic breast imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:5295-5310. [PMID: 36425617 PMCID: PMC9664870 DOI: 10.1364/boe.470373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 05/11/2023]
Abstract
Near-infrared diffuse optical tomography (DOT) has the potential to improve the accuracy of breast cancer diagnosis and aid in monitoring the response of breast tumors to chemotherapy by providing hemoglobin-based functional imaging. The use of structural lesion priors derived from clinical breast imaging methods, such as mammography, can improve recovery of tumor optical contrast; however, accurate lesion prior placement is essential to take full advantage of prior-guided DOT image reconstruction. Simultaneous optical and anatomical imaging may not always be possible or desired, which can make the accurate registration of the lesion prior challenging. In this paper, we present a three-step lesion prior scanning approach to facilitate improved accuracy in lesion localization based on the optical contrast quantified by the total hemoglobin concentration (HbT) for non-simultaneous multimodal DOT and digital breast tomosynthesis (DBT) imaging. In three challenging breast cancer patient cases, where no clear optical contrast was present initially, we have demonstrated consistent improvement in the recovered HbT lesion contrast by utilizing this method.
Collapse
Affiliation(s)
- Ailis Muldoon
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Aiza Kabeer
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jayne Cormier
- Breast Imaging Division, Department of Radiology,
Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mansi A. Saksena
- Breast Imaging Division, Department of Radiology,
Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Stefan A. Carp
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Bin Deng
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Kim CW, Lee HK, Nam MW, Lee G, Choi KC. The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. Life Sci 2022; 310:121009. [PMID: 36181862 DOI: 10.1016/j.lfs.2022.121009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Metastatic prostate cancers have a high mortality rate. KiSS1 was originally identified as a metastasis suppressor gene in metastatic melanoma and breast cancer, but its role in prostate cancer has been contradictory. This study was therefore undertaken to investigate the effects of KiSS1 overexpression on the growth and migration of human metastatic prostate cancer cells. We first tested the effect of KiSS1 overexpression on the growth and migration of DU145 human metastatic prostate cancer cells in vitro. DU145 cells were infected with the culture medium of 293T cells, which produce lentivirus particles containing KiSS1. A 2.5-fold increase in proliferation of KiSS1-overexpressing cancer cells was observed, and these cells formed tumor spheroids about 3 times larger than the vector control group. qPCR and immunoblotting revealed the association between increased cell growth and regulation of the PI3K/Akt and cell cycle genes, and also that increases in β-catenin and CD133 contribute to tumor aggregation. KiSS1 overexpression resulted in upregulation of the β-arrestin1/2 and Raf-MEK-ERK-NF-κB pathways via KiSS1R. Moreover, the migration and invasion of KiSS1-overexpressing cells were determined to be faster than the control group, along with 1.6-fold increased metastatic colonization of the KiSS1-overexpressing cancer cells. These were associated to the regulation of EMT gene expressions, such as E-cadherin and N-cadherin, and the upregulation of MMP9. In a xenograft mouse model inoculated with DU145 cells infected GFP or KiSS1 via a lentiviral vector, KiSS1 statistically significantly increased the tumor growth, with upregulation of PCNA and Ki-67 in the tumor tissues. In addition, KiSS1 increased the angiogenic capacity by upregulating VEGF-A and CD31, both in vitro and in vivo. Taken together, our results indicate that KiSS1 not only induces prostate cancer proliferation, but also promotes metastasis by increasing the migration, invasion, and angiogenesis of malignant cells.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
38
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
39
|
Xie H, Li W, Liu H, Chen Y, Ma M, Wang Y, Luo Y, Song D, Hou Q, Lu W, Bai Y, Li B, Ma J, Huang C, Yang T, Liu Z, Zhao X, Ding P. Erythrocyte Membrane-Coated Invisible Acoustic-Sensitive Nanoparticle for Inducing Tumor Thrombotic Infarction by Precisely Damaging Tumor Vascular Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201933. [PMID: 35789094 DOI: 10.1002/smll.202201933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.
Collapse
Affiliation(s)
- Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Di Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chi Huang
- Ultrasound Department of Shengjing Hospital, China Medical University, Shenyang, 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, 04401, USA
| | - Zhining Liu
- Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
40
|
López-Cortés A, Prathap L, Ortiz-Prado E, Kyriakidis NC, León Cáceres Á, Armendáriz-Castillo I, Vera-Guapi A, Yumiceba V, Simbaña-Rivera K, Echeverría-Garcés G, García-Cárdenas JM, Pérez-Villa A, Guevara-Ramírez P, Abad-Sojos A, Bautista J, Puig San Andrés L, Varela N, Guerrero S. The close interaction between hypoxia-related proteins and metastasis in pancarcinomas. Sci Rep 2022; 12:11100. [PMID: 35773405 PMCID: PMC9246854 DOI: 10.1038/s41598-022-15246-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Many primary-tumor subregions exhibit low levels of molecular oxygen and restricted access to nutrients due to poor vascularization in the tissue, phenomenon known as hypoxia. Hypoxic tumors are able to regulate the expression of certain genes and signaling molecules in the microenvironment that shift it towards a more aggressive phenotype. The transcriptional landscape of the tumor favors malignant transformation of neighboring cells and their migration to distant sites. Herein, we focused on identifying key proteins that participate in the signaling crossroads between hypoxic environment and metastasis progression that remain poorly defined. To shed light on these mechanisms, we performed an integrated multi-omics analysis encompassing genomic/transcriptomic alterations of hypoxia-related genes and Buffa hypoxia scores across 17 pancarcinomas taken from the PanCancer Atlas project from The Cancer Genome Atlas consortium, protein-protein interactome network, shortest paths from hypoxia-related proteins to metastatic and angiogenic phenotypes, and drugs involved in current clinical trials to treat the metastatic disease. As results, we identified 30 hypoxia-related proteins highly involved in metastasis and angiogenesis. This set of proteins, validated with the MSK-MET Project, could represent key targets for developing therapies. The upregulation of mRNA was the most prevalent alteration in all cancer types. The highest frequencies of genomic/transcriptomic alterations and hypoxia score belonged to tumor stage 4 and positive metastatic status in all pancarcinomas. The most significantly associated signaling pathways were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. The interactome network revealed high-confidence interactions among hypoxic and metastatic proteins. The analysis of shortest paths revealed several ways to spread metastasis and angiogenesis from hypoxic proteins. Lastly, we identified 23 drugs enrolled in clinical trials focused on metastatic disease treatment. Six of them were involved in advanced-stage clinical trials: aflibercept, bevacizumab, cetuximab, erlotinib, ipatasertib, and panitumumab.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, 170302, Quito, Ecuador.
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas, 170124, Quito, Ecuador.
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 600077, Chennai, India
| | - Esteban Ortiz-Prado
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
| | | | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, 69117, Heidelberg, Germany
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Instituto Nacional de Investigación en Salud Pública, 170136, Quito, Ecuador
- Facultad de Ingenierías y Ciencias Aplicadas, Universidad Internacional SEK, 170302, Quito, Ecuador
| | - Antonella Vera-Guapi
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Verónica Yumiceba
- Institut Für Humangenetik Lübeck, Universität Zu Lübeck, 23562, Lübeck, Germany
| | - Katherine Simbaña-Rivera
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Patricia Guevara-Ramírez
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | | | | | | | - Nelson Varela
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, 8320000, Santiago, Chile
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador.
| |
Collapse
|
41
|
de Arruda Nascimento E, de Lima Coutinho L, da Silva CJ, de Lima VLAG, Dos Santos Aguiar J. In vitro anticancer properties of anthocyanins: A systematic review. Biochim Biophys Acta Rev Cancer 2022; 1877:188748. [PMID: 35714889 DOI: 10.1016/j.bbcan.2022.188748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Anthocyanins have been associated with beneficial effects on human health. Cancer has been one of the main public health issues due to its aggressiveness and high mortality rate. This systematic review aimed to address recent research (from January 2000 to September 2021) on the anticancer activity of anthocyanins assessed by in vitro assays. The selected studies revealed that anthocyanins have anticancer potential by inhibiting cancer cell viability and proliferation, controlling cell cycle, and promoting apoptosis.
Collapse
Affiliation(s)
| | | | - Cleber José da Silva
- Universidade Federal de Pernambuco, Department of Antibiotics, 50740-525 Recife, PE, Brazil.
| | | | | |
Collapse
|
42
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
43
|
Köhler LHF, Reich S, Begemann G, Schobert R, Biersack B. 2-Amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles with Microtubule-Disruptive, Centrosome-Declustering, and Antiangiogenic Effects in vitro and in vivo. ChemMedChem 2022; 17:e202200064. [PMID: 35226402 PMCID: PMC9311119 DOI: 10.1002/cmdc.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Indexed: 12/02/2022]
Abstract
A series of fifteen 2-amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles (1 a-o) were synthesized via a three-component reaction of 4-hydroxycoumarin, malononitrile, and diversely substituted benzaldehydes or pyridine carbaldehydes. The compounds were tested for anticancer activities against a panel of eight human tumor cell lines. A few derivatives with high antiproliferative activities and different cancer cell specificity were identified and investigated for their modes of action. They led to microtubule disruption, centrosome de-clustering and G2/M cell cycle arrest in 518 A2 melanoma cells. They also showed anti-angiogenic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Leonhard H. F. Köhler
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Sebastian Reich
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Gerrit Begemann
- Department of BiologyUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
44
|
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S, Ishii T, Wakayama Y, Hasegawa U, Tsujita K, Yokokawa R, Miura T, Itoh T, Tsujita K, Mochizuki N, Fukuhara S. Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nat Commun 2022; 13:2594. [PMID: 35551172 PMCID: PMC9098626 DOI: 10.1038/s41467-022-30197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is regulated in coordinated fashion by chemical and mechanical cues acting on endothelial cells (ECs). However, the mechanobiological mechanisms of angiogenesis remain unknown. Herein, we demonstrate a crucial role of blood flow-driven intraluminal pressure (IP) in regulating wound angiogenesis. During wound angiogenesis, blood flow-driven IP loading inhibits elongation of injured blood vessels located at sites upstream from blood flow, while downstream injured vessels actively elongate. In downstream injured vessels, F-BAR proteins, TOCA1 and CIP4, localize at leading edge of ECs to promote N-WASP-dependent Arp2/3 complex-mediated actin polymerization and front-rear polarization for vessel elongation. In contrast, IP loading expands upstream injured vessels and stretches ECs, preventing leading edge localization of TOCA1 and CIP4 to inhibit directed EC migration and vessel elongation. These data indicate that the TOCA family of F-BAR proteins are key actin regulatory proteins required for directed EC migration and sense mechanical cell stretching to regulate wound angiogenesis. Chemical and mechanical cues coordinately regulate angiogenesis. Here, the authors show that blood flow-driven intraluminal pressure regulates wound angiogenesis. Findings indicate that TOCA family of F-BAR proteins act as actin regulators required for endothelial cell migration and sense mechanical cell stretching to regulate wound angiogenesis.
Collapse
Affiliation(s)
- Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan. .,Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan.
| | - Yuichiro Arima
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasuyuki Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiology, Graduate School of Medicine, Nagoya University, Nagoya City, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
45
|
Shi S, Chen Y, Yao X. NGA-Inspired Nanorobots-Assisted Detection of Multifocal Cancer. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2787-2797. [PMID: 33055049 DOI: 10.1109/tcyb.2020.3024868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose a new framework of computing-inspired multifocal cancer detection procedure (MCDP). Under the rubric of MCDP, the tumor foci to be detected are regarded as solutions of the objective function, the tissue region around the cancer areas represents the parameter space, and the nanorobots loaded with contrast medium molecules for cancer detection correspond to the optimization agents. The process that the nanorobots detect tumors by swimming in the high-risk tissue region can be regarded as the process that the agents search for the solutions of an objective function in the parameter space with some constraints. For multimodal optimization (MMO) aiming to locate multiple optimal solutions in a single simulation run, the niche technology has been widely used. Specifically, the niche genetic algorithm (NGA) has been shown to be particularly effective in solving MMO. It can be used to identify the global optima of multiple hump functions in a running, effectively keep the diversity of the population, and prematurely avoid the genetic algorithm. Learning from the optimization procedure of NGA, we propose the NGA-inspired MCDP in order to locate the tumor targets efficiently while taking into account realistic in vivo propagation and controlling of nanorobots, which is different from the use scenario of the standard NGA. To improve the performance of the MCDP, we also modify the crossover operator of the original NGA from crossing within a population to crossing between two populations. Finally, we present comprehensive numerical examples to demonstrate the effectiveness of the NGA-inspired MCDP when the biological objective function is associated with the blood flow velocity profile caused by tumor-induced angiogenesis.
Collapse
|
46
|
Upregulation of PNCK Promotes Metastasis and Angiogenesis via Activating NF-κB/VEGF Pathway in Nasopharyngeal Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8541582. [PMID: 35535310 PMCID: PMC9078829 DOI: 10.1155/2022/8541582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Background Distant metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). Thus, the identification of the molecular mechanisms and the development of novel therapeutic strategies are important. Previous studies suggest that PNCK promotes tumor growth by suppressing PI3K/AKT/mTOR signaling in NPC. However, the underlying regulatory mechanism of PNCK for NPC invasion and metastasis remains unclear. Methods The PNCK expression level was evaluated in nonmetastatic and metastatic NPC specimens by mRNA sequencing and immunohistochemistry. In vitro migration and invasion and in vivo nude mouse metastasis model and zebrafish model were used to evaluate the effects of PNCK ectopic expression on the metastatic ability of NPC cells. Gene set enrichment and western blot analyses were used to investigate the PNCK downstream signaling pathway. Results Human metastatic NPC samples showed elevated PNCK expression at both mRNA and protein levels. Upregulated PNCK promoted in vitro NPC cell migration, invasion, and the formation of lung metastases; the vascular-labeled fluorescence signal increased in the in vivo zebrafish model. Mechanistically, pathway analysis showed that the upregulation of PNCK may promote cell metastasis by activating the NF-κB/VEGF signaling pathway. Conclusions These findings revealed the specific critical role of PNCK in promoting NPC metastasis and angiogenesis, which suggested that PNCK may have implications as a potential therapeutic target for individualized NPC treatment.
Collapse
|
47
|
Sadhukhan S, Mishra PK. A multi-layered hybrid model for cancer cell invasion. Med Biol Eng Comput 2022; 60:1075-1098. [DOI: 10.1007/s11517-022-02514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022]
|
48
|
Li J, Chen D, Shen M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne) 2022; 9:869010. [PMID: 35402443 PMCID: PMC8984105 DOI: 10.3389/fmed.2022.869010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases that accounts for numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic signaling activation, significantly contribute to CRC progression and metastasis. Recent accumulating evidence suggests that the CRC microenvironment also profoundly promotes or represses this process. As the roles of the tumor microenvironment (TME) in CRC progression and metastasis is gradually uncovered, the importance of these non-cell-autonomous signaling pathways is appreciated. However, we are still at the beginning of this TME function exploring process. In this review, we summarize the current understanding of the TME in CRC progression and metastasis by focusing on the gut microbiota and host cellular and non-cellular components. We also briefly discuss TME-remodeling therapies in CRC.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dawei Chen
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
- *Correspondence: Minhong Shen,
| |
Collapse
|
49
|
Contino KF, Yadav H, Shiozawa Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol 2022; 197:114916. [PMID: 35041811 PMCID: PMC8858876 DOI: 10.1016/j.bcp.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota, an often forgotten organ, have a tremendous impact on human health. It has long been known that the gut microbiota are implicated in cancer development, and more recently, the gut microbiota have been shown to influence cancer metastasis to distant organs. Although one of the most common sites of distant metastasis is the bone, and the skeletal system has been shown to be a subject of interactions with the gut microbiota to regulate bone homeostasis, little research has been done regarding how the gut microbiota control the development of bone metastasis. This review will discuss the mechanisms through which the gut microbiota and derived microbial compounds (i) regulate gastrointestinal cancer disease progression and metastasis, (ii) influence skeletal remodeling and potentially modulate bone metastasis, and (iii) affect and potentially enhance immunotherapeutic treatments for bone metastasis.
Collapse
Affiliation(s)
- Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair and Institute for Microbiome, University of South Florida, Tampa, FL 33612, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
50
|
Shi DD, Guo JA, Hoffman HI, Su J, Mino-Kenudson M, Barth JL, Schenkel JM, Loeffler JS, Shih HA, Hong TS, Wo JY, Aguirre AJ, Jacks T, Zheng L, Wen PY, Wang TC, Hwang WL. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol 2022; 23:e62-e74. [PMID: 35114133 PMCID: PMC9516432 DOI: 10.1016/s1470-2045(21)00596-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
With increasing attention on the essential roles of the tumour microenvironment in recent years, the nervous system has emerged as a novel and crucial facilitator of cancer growth. In this Review, we describe the foundational, translational, and clinical advances illustrating how nerves contribute to tumour proliferation, stress adaptation, immunomodulation, metastasis, electrical hyperactivity and seizures, and neuropathic pain. Collectively, this expanding knowledge base reveals multiple therapeutic avenues for cancer neuroscience that warrant further exploration in clinical studies. We discuss the available clinical data, including ongoing trials investigating novel agents targeting the tumour-nerve axis, and the therapeutic potential for repurposing existing neuroactive drugs as an anti-cancer approach, particularly in combination with established treatment regimens. Lastly, we discuss the clinical challenges of these treatment strategies and highlight unanswered questions and future directions in the burgeoning field of cancer neuroscience.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jimmy A Guo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah I Hoffman
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|