1
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
2
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Ajoge HO, Kohio HP, Paparisto E, Coleman MD, Wong K, Tom SK, Bain KL, Berry CC, Arts EJ, Barr SD. G-Quadruplex DNA and Other Non-Canonical B-Form DNA Motifs Influence Productive and Latent HIV-1 Integration and Reactivation Potential. Viruses 2022; 14:2494. [PMID: 36423103 PMCID: PMC9692945 DOI: 10.3390/v14112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of the HIV-1 genome into the host genome is an essential step in the life cycle of the virus and it plays a critical role in the expression, long-term persistence, and reactivation of HIV expression. To better understand the local genomic environment surrounding HIV-1 proviruses, we assessed the influence of non-canonical B-form DNA (non-B DNA) on the HIV-1 integration site selection. We showed that productively and latently infected cells exhibit different integration site biases towards non-B DNA motifs. We identified a correlation between the integration sites of the latent proviruses and non-B DNA features known to potently influence gene expression (e.g., cruciform, guanine-quadruplex (G4), triplex, and Z-DNA). The reactivation potential of latent proviruses with latency reversal agents also correlated with their proximity to specific non-B DNA motifs. The perturbation of G4 structures in vitro using G4 structure-destabilizing or -stabilizing ligands resulted in a significant reduction in integration within 100 base pairs of G4 motifs. The stabilization of G4 structures increased the integration within 300-500 base pairs from G4 motifs, increased integration near transcription start sites, and increased the proportion of latently infected cells. Moreover, we showed that host lens epithelium-derived growth factor (LEDGF)/p75 and cleavage and polyadenylation specificity factor 6 (CPSF6) influenced the distribution of integration sites near several non-B DNA motifs, especially G4 DNA. Our findings identify non-B DNA motifs as important factors that influence productive and latent HIV-1 integration and the reactivation potential of latent proviruses.
Collapse
Affiliation(s)
- Hannah O. Ajoge
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Hinissan P. Kohio
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Ermela Paparisto
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Macon D. Coleman
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Kemen Wong
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Sean K. Tom
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Katie L. Bain
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Charles C. Berry
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric J. Arts
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Stephen D. Barr
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| |
Collapse
|
4
|
Venus: An efficient virus infection detection and fusion site discovery method using single-cell and bulk RNA-seq data. PLoS Comput Biol 2022; 18:e1010636. [PMID: 36301997 PMCID: PMC9642901 DOI: 10.1371/journal.pcbi.1010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Early and accurate detection of viruses in clinical and environmental samples is essential for effective public healthcare, treatment, and therapeutics. While PCR detects potential pathogens with high sensitivity, it is difficult to scale and requires knowledge of the exact sequence of the pathogen. With the advent of next-gen single-cell sequencing, it is now possible to scrutinize viral transcriptomics at the finest possible resolution–cells. This newfound ability to investigate individual cells opens new avenues to understand viral pathophysiology with unprecedented resolution. To leverage this ability, we propose an efficient and accurate computational pipeline, named Venus, for virus detection and integration site discovery in both single-cell and bulk-tissue RNA-seq data. Specifically, Venus addresses two main questions: whether a tissue/cell type is infected by viruses or a virus of interest? And if infected, whether and where has the virus inserted itself into the human genome? Our analysis can be broken into two parts–validation and discovery. Firstly, for validation, we applied Venus on well-studied viral datasets, such as HBV- hepatocellular carcinoma and HIV-infection treated with antiretroviral therapy. Secondly, for discovery, we analyzed datasets such as HIV-infected neurological patients and deeply sequenced T-cells. We detected viral transcripts in the novel target of the brain and high-confidence integration sites in immune cells. In conclusion, here we describe Venus, a publicly available software which we believe will be a valuable virus investigation tool for the scientific community at large.
Collapse
|
5
|
Gao H, Ozantürk AN, Wang Q, Harlan GH, Schmitz AJ, Presti RM, Deng K, Shan L. Evaluation of HIV-1 latency reversal and antibody-dependent viral clearance by quantification of singly spliced HIV-1 vpu/ env mRNA. J Virol 2021; 95:JVI.02124-20. [PMID: 33762408 PMCID: PMC8139706 DOI: 10.1128/jvi.02124-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
The latent reservoir of HIV-1 is a major barrier for viral eradication. Potent HIV-1 broadly neutralizing antibodies (bNabs) have been used to prevent and treat HIV-1 infections in animal models and clinical trials. Combination of bNabs and latency-reversing agents (LRAs) is considered a promising approach for HIV-1 eradication. PCR-based assays that can rapidly and specifically measure singly spliced HIV-1 vpu/env mRNA are needed to evaluate the induction of the viral envelope production at the transcription level and bNab-mediated reservoir clearance. Here we reported a PCR-based method to accurately quantify the production of intracellular HIV-1 vpu/env mRNA. With the vpu/env assay, we determined the LRA combinations that could effectively induce vpu/env mRNA production in CD4+ T cells from ART-treated individuals. None of the tested LRAs were effective alone. A comparison between the quantitative viral outgrowth assay (Q-VOA) and the vpu/env assay showed that vpu/env mRNA production was closely associated with the reactivation of replication-competent HIV-1, suggesting that vpu/env mRNA was mainly produced by intact viruses. Finally, antibody-mediated in vitro killing in HIV-1-infected humanized mice demonstrated that the vpu/env assay could be used to measure the reduction of infected cells in tissues and was more accurate than the commonly used gag-based PCR assay which measured unspliced viral genomic RNA. In conclusion, the vpu/env assay allows convenient and accurate assessment of HIV-1 latency reversal and bNab-mediated therapeutic strategies.ImportanceHIV-1 persists in individuals on antiretroviral therapy (ART) due to the long-lived cellular reservoirs that contain dormant viruses. Recent discoveries of HIV-1-specific broadly neutralizing antibodies (bNabs) targeting HIV-1 Env protein rekindled the interest in antibody-mediated elimination of latent HIV-1. Latency-reversing agents (LRAs) together with HIV-1 bNabs is a possible strategy to clear residual viral reservoirs, which makes the evaluation of HIV-1 Env expression upon LRA treatment critical. We developed a PCR-based assay to quantify the production of intracellular HIV-1 vpu/env mRNA. Using patient CD4+ T cells, we found that induction of HIV-1 vpu/env mRNA required a combination of different LRAs. Using in vitro, ex vivo and humanized mouse models, we showed that the vpu/env assay could be used to measure antibody efficacy in clearing HIV-1 infection. These results suggest that the vpu/env assay can accurately evaluate HIV-1 reactivation and bNab-based therapeutic interventions.
Collapse
Affiliation(s)
- Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ayşe N Ozantürk
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Hokello J, Sharma AL, Tyagi M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020; 12:v12080868. [PMID: 32784426 PMCID: PMC7472175 DOI: 10.3390/v12080868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+ T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF-κB) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF-κB, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF-κB. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University-Western Campus, P.O Box 71, Bushenyi, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
7
|
Khan SZ, Gasperino S, Zeichner SL. Nuclear Transit and HIV LTR Binding of NF-κB Subunits Held by IκB Proteins: Implications for HIV-1 Activation. Viruses 2019; 11:v11121162. [PMID: 31888181 PMCID: PMC6949894 DOI: 10.3390/v11121162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
No effective therapy to eliminate the HIV latently infected cell reservoir has been developed. One approach, “shock and kill”, employs agents that activate HIV, subsequently killing the activated infected cells and/or virus. Shock and kill requires agents that safely and effectively activate HIV. One class of activation agents works through classical NF-κB pathways, but global NF-κB activators are non-specific and toxic. There exist two major IκBs: IκBα, and IκBε, which hold activating NF-κB subunits in the cytoplasm, releasing them for nuclear transit upon cell stimulation. IκBα was considered the main IκB responsible for gene expression regulation, including HIV activation. IκBε is expressed in cells constituting much of the latent HIV reservoir, and IκBε knockout mice have a minimal phenotype, suggesting that IκBε could be a valuable target for HIV activation and reservoir depletion. We previously showed that targeting IκBε yields substantial increases in HIV expression. Here, we show that IκBε holds c-Rel and p65 activating NF-κB subunits in the cytoplasm, and that targeting IκBε with siRNA produces a strong increase in HIV expression associated with enhanced c-Rel and p65 transit to the nucleus and binding to the HIV LTR of the activating NF-κBs, demonstrating a mechanism through which targeting IκBε increases HIV expression. The findings suggest that it may be helpful to develop HIV activation approaches, acting specifically to target IκBε and its interactions with the NF-κBs.
Collapse
Affiliation(s)
- Sohrab Z. Khan
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Sofia Gasperino
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Steven L. Zeichner
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
8
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
9
|
Targeted editing of the PSIP1 gene encoding LEDGF/p75 protects cells against HIV infection. Sci Rep 2019; 9:2389. [PMID: 30787394 PMCID: PMC6382798 DOI: 10.1038/s41598-019-38718-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
To fulfill a productive infection cycle the human immunodeficiency virus (HIV) relies on host-cell factors. Interference with these co-factors holds great promise in protecting cells against HIV infection. LEDGF/p75, encoded by the PSIP1 gene, is used by the integrase (IN) protein in the pre-integration complex of HIV to bind host-cell chromatin facilitating proviral integration. LEDGF/p75 depletion results in defective HIV replication. However, as part of its cellular function LEDGF/p75 tethers cellular proteins to the host-cell genome. We used site-specific editing of the PSIP1 locus using CRISPR/Cas to target the aspartic acid residue in position 366 and mutated it to asparagine (D366N) to disrupt the interaction with HIV IN but retain LEDGF/p75 cellular function. The resulting cell lines demonstrated successful disruption of the LEDGF/p75 HIV-IN interface without affecting interaction with cellular binding partners. In line with LEDGF/p75 depleted cells, D366N cells did not support HIV replication, in part due to decreased integration efficiency. In addition, we confirm the remaining integrated provirus is more silent. Taken together, these results support the potential of site-directed CRISPR/Cas9 mediated knock-in to render cells more resistant to HIV infection and provides an additional strategy to protect patient-derived T-cells against HIV-1 infection as part of cell-based therapy.
Collapse
|
10
|
Matsuda K, Kobayakawa T, Tsuchiya K, Hattori SI, Nomura W, Gatanaga H, Yoshimura K, Oka S, Endo Y, Tamamura H, Mitsuya H, Maeda K. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J Biol Chem 2018; 294:116-129. [PMID: 30413535 PMCID: PMC6322896 DOI: 10.1074/jbc.ra118.005798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Indexed: 01/25/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential strategy for curing cells of HIV-1 infection. Certain protein kinase C (PKC) activators have been previously reported to be LRAs because they can reverse HIV latency. In the present study, we examined the activities of a panel of benzolactam derivatives against cells latently infected with HIV. Using determination of p24 antigen in cell supernatants or altered intracellular GFP expression to measure HIV reactivation from latently infected cells along with a cytotoxicity assay, we found that some of the compounds exhibited latency-reversing activity, which was followed by enhanced release of HIV particles from the cells. One derivative, BL-V8-310, displayed activity in ACH-2 and J-Lat cells latently infected with HIV at a concentration of 10 nm or higher, which was superior to the activity of another highly active PKC activator, prostratin. These results were confirmed with peripheral blood cells from HIV-infected patients. We also found that these drugs up-regulate the expression of caspase 3 and enhance apoptosis specifically in latently HIV-infected cells. Moreover, combining BL-V8-310 with a bromodomain-containing 4 (BRD4) inhibitor, JQ1, not only enhanced HIV latency-reversing activity, but also reduced the effect on cytotoxic cytokine secretion from CD4+ T-cells induced by BL-V8-310 alone. Our results suggest that BL-V8-310 and its related benzolactam derivatives are potential LRA lead compounds that are effective in reversing HIV latency and reducing viral reservoirs in HIV-positive individuals with few adverse effects.
Collapse
Affiliation(s)
- Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Centre, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892-1868
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan.
| |
Collapse
|
11
|
Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Sci Rep 2017; 7:15611. [PMID: 29142313 PMCID: PMC5688118 DOI: 10.1038/s41598-017-15961-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small extracellular vesicles (EVs), released by a wide variety of cell types, carry donor origin-proteins, cytokines, and nucleic acids, transport these cargos to adjacent or distant specific recipient cells, and thereby regulate gene expression and activation of target cells. In this study, we isolated and identified exosomes in rhesus macaques, and investigated their effects on cell tropism and activation, especially their potential to reactivate HIV latency. The results indicated that plasma-derived exosomes preferentially fuse to TCR-activated T cells and autologous parent cells. Importantly, the uptake of exosomes, derived from IL-2 stimulated CD4+ T cells, effectively promoted reactivation of resting CD4+ T-cell, as indicated by an increased viral transcription rate in these cells. These findings provide premise for the potential application of exosome in the reactivation of HIV latency, in combination its use as functional delivery vehicles with antiretroviral therapy (ART).
Collapse
Affiliation(s)
- Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Blake Schouest
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA.
| |
Collapse
|
12
|
Boehm D, Ott M. Flow Cytometric Analysis of Drug-induced HIV-1 Transcriptional Activity in A2 and A72 J-Lat Cell Lines. Bio Protoc 2017; 7:e2290. [PMID: 28835903 DOI: 10.21769/bioprotoc.2290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The main obstacle to eradicating HIV-1 from patients is post-integration latency (Finzi et al., 1999). Antiretroviral treatments target only actively replicating virus, while latent infections that have low or no transcriptional activity remain untreated (Sedaghat et al., 2007). A combination of antiretroviral treatments with latency-purging strategies may accelerate the depletion of latent reservoirs and lead to a cure (Geeraert et al., 2008). Current strategies to reactivate HIV-1 from latency include use of prostratin, a non-tumor-promoting phorbol ester (Williams et al., 2004), BET inhibitors (Filippakopoulos et al., 2010; Delmore et al., 2011), and histone deacetylase (HDAC) inhibitors, such as suberoylanilidehydroxamic acid (i.e., SAHA or Vorinostat) (Kelly et al., 2003; Archin et al., 2009; Contreras et al., 2009; Edelstein et al., 2009). As the mechanisms of HIV-1 latency are diverse, effective reactivation may require combinatorial strategies (Quivy et al., 2002). The following protocol describes a flow cytometry-based method to quantify transcriptional activation of the HIV-1 long terminal repeat (LTR) upon drug treatment. This protocol is optimized for studying latently HIV-1-infected Jurkat (J-Lat) cell lines that contain a GFP cassette. J-Lats that contain a different reporter, for example Luciferase, can be treated with drugs as described but have to be analyzed differently.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Geddes VEV, José DP, Leal FE, Nixon DF, Tanuri A, Aguiar RS. HTLV-1 Tax activates HIV-1 transcription in latency models. Virology 2017; 504:45-51. [PMID: 28152383 DOI: 10.1016/j.virol.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Abstract
HIV-1 latency is a major obstacle to HIV-1 eradication. Coinfection with HTLV-1 has been associated with faster progression to AIDS. HTLV-1 encodes the transactivator Tax which can activate both HTLV-1 and HIV-1 transcription. Here, we demonstrate that Tax activates HIV transcription in latent CD4+ T cells. Tax promotes the activation of P-TEFb, releasing CDK9 and Cyclin T1 from inactive forms, promoting transcription elongation and reactivation of latent HIV-1. Tax mutants lacking interaction with the HIV-1-LTR promoter were not able to activate P-TEFb, with no subsequent activation of latent HIV. In HIV-infected primary resting CD4+ T cells, Tax-1 reactivated HIV-1 transcription up to five fold, confirming these findings in an ex vivo latency model. Finally, our results confirms that HTLV-1/Tax hijacks cellular partners, promoting HIV-1 transcription, and this interaction should be further investigated in HIV-1 latency studies in patients with HIV/HTLV-1 co-infection.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Diego Pandeló José
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Universidade Federal do Triângulo Mineiro, campus Iturama, Minas Gerais, 38280-000, Brazil
| | - Fabio E Leal
- Instituto Nacional de Cancer, Programa de Oncovirologia, Rio de Janeiro, Brazil
| | - Douglas F Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
14
|
Brogdon J, Ziani W, Wang X, Veazey RS, Xu H. In vitro effects of the small-molecule protein kinase C agonists on HIV latency reactivation. Sci Rep 2016; 6:39032. [PMID: 27941949 PMCID: PMC5150635 DOI: 10.1038/srep39032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
The persistence of latently HIV-infected cellular reservoirs represents the major obstacle to virus eradication in patients under antiretroviral therapy (ART). Cure strategies to eliminate these reservoirs are thus needed to reactivate proviral gene expression in latently infected cells. In this study, we tested optimal concentrations of PKC agonist candidates (PEP005/Ingenol-3-angelate, prostratin, bryostatin-1, and JQ1) to reactivate HIV latency in vitro, and examined their effects on cell survival, activation and epigenetic histone methylation after treatment alone or in combination in cell line and isolated CD4 T cells from SIV-infected macaques. The results showed that PKC agonists increased cell activation with different degrees of latency reactivation, concomitant with reduced levels of histone methylation. With increasing concentrations, prostratin and byrostain-1 treatment rapidly reduced cell survival and cell activation. The PKC agonist combinations, or in combination with JQ1, led to modest levels of synergistic reactivation of HIV. Remarkably, PEP005 treatment alone caused marked reactivation of HIV latency, similar to PMA stimulation. These findings suggested that PEP005 alone, as indicated its lower cytotoxicity and lower effective dose inducing maximal reactivation, might be a candidate for effectively reactivating HIV latency as part of a therapeutic strategy for HIV infection.
Collapse
Affiliation(s)
- Jessica Brogdon
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA 70433, USA
| |
Collapse
|
15
|
Ercan S. Docking and Molecular Dynamics Calculations of Some Previously Studied and newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2016. [DOI: 10.18596/jotcsa.287327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
17
|
Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal. EBioMedicine 2015; 3:108-121. [PMID: 26870822 PMCID: PMC4739437 DOI: 10.1016/j.ebiom.2015.11.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022] Open
Abstract
Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. BAF complex inhibitors (BAFi's) activate latent HIV-1 in cell line models of latency. BAFi's in combination with HDAC inhibitors and PKC activators synergistically activate latent HIV-1. The BAFi's PYR and CAPE reverse HIV-1 latency in primary cell models of latency and in cells obtained from HIV-1 patients.
Access to Combination antiretroviral therapy (cART) has made HIV-1 infection a chronic disease. However, cART is not curative, as a small number of infected cells harboring silent virus with potential to renew the infection persist despite cART. Efforts to cure HIV-1 include activation of these latent cells, making them susceptible to immune clearance. Here we describe the activity of BAF inhibitors in HIV-1 activation in in vitro models of HIV-1 latency as well as in cells obtained from HIV-1 infected patient volunteers. Our data highlight the clinical potential of BAF inhibitors for inclusion in combinatorial therapy to reverse HIV-1 latency.
Collapse
Key Words
- BAF complex
- BAF, BRG-Brahma Associated Factors
- BAF250a, BAF Associated Factor 250 a
- BAFi, BAF inhibitor
- BRG-1, Brahma Related Gene 1
- CAPE, caffeic acid phenetyl esther
- ChIP, Chromatin Immunoprecipitation
- Chromatin remodeling
- CycA, Cyclophilin A
- DHS-1, DNase Hypersensitive Site 1
- ES cells, embryonic stem cells
- FAIRE, Formaldehyde Assisted Isolation of Regulatory Elements
- FBS, Fetal Bovine Serum
- GFP, Green Fluorescent Protein
- HDAC, histone deacetylase
- HIV
- HIV-1, human immunodeficiency virus type 1
- IFNß, Interferon beta
- IL10, Interleukin 10
- IL12, Interleukin 12
- IL4, Interleukin 4
- IL6, Interleukin 6
- INI-1, Integrase Interactor 1
- IRES, Internal Ribosome Entry Site
- IκB-α, Inhibitor of NF-κB – alpha
- LRA, latency reversal agent
- LTR, Long Terminal Repeat
- Latency
- MIP26, Major Intrinsic Protein
- MMP9, Matrix Metallopeptidase 9
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of activated B cells
- PBMC, peripheral blood mononuclear cell
- PBS, Phosphate Buffered Saline
- PKC, Protein Kinase C
- PYR, Pyrimethamine
- RT-qPCR, Reverse Transcriptase, quantitative Polymerase Chain Reaction
- SAHA, Suberoylanilide Hydroxamic Acid
- SD, Standard Deviation
- SOCS3, Suppressor Of Cytokine Signaling 3
- TGF-ß, Transforming Growth Factor beta
- TLR2, Toll-like Receptor 2
- bp, base pairs
- cART, combination Antiretroviral Therapy
- latency reversal agents
- nuc, nucleosome
- siRNA, small interfering RNA
Collapse
|
18
|
Geissler R, Hauber I, Funk N, Richter A, Behrens M, Renner I, Chemnitz J, Hofmann-Sieber H, Baum H, van Lunzen J, Boch J, Hauber J, Behrens SE. Patient-adapted, specific activation of HIV-1 by customized TAL effectors (TALEs), a proof of principle study. Virology 2015; 486:248-54. [PMID: 26474371 DOI: 10.1016/j.virol.2015.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/30/2015] [Accepted: 09/24/2015] [Indexed: 11/15/2022]
Abstract
The major obstacle to cure infections with human immunodeficiency virus (HIV-1) is integrated proviral genomes, which are not eliminated by antiretroviral therapies (ART). Treatment approaches with latency-reversing agents (LRAs) aim at inducing provirus expression to tag latently-infected cells for clearance through viral cytopathic effects or cytotoxic T cell (CTL) responses. However, the currently tested LRAs reveal evident drawbacks as gene expression is globally induced and viral outgrowth is insecure. Here, we present transcription activator-like effector (TALE) proteins as potent tools to activate HIV-1 specifically. The large variety of circulating HIV-1 strains and, accordingly, integrated proviruses was addressed by the programmable DNA-specificity of TALEs. Using customized engineered TALEs, a substantial transcription activation and viral outgrowth was achieved with cells obtained from different HIV-1 patients. Our data suggest that TALEs may be useful tools in future strategies aimed at removing HIV-1 reservoirs.
Collapse
Affiliation(s)
- Rene Geissler
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Ilona Hauber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nancy Funk
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Annekatrin Richter
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Martina Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Ivonne Renner
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Heidi Baum
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Jan van Lunzen
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany; University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg, Germany
| | - Jens Boch
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany
| | - Joachim Hauber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Halle/Saale, Germany.
| |
Collapse
|
19
|
Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF, Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond) 2015; 10:2325-37. [PMID: 26252052 DOI: 10.2217/nnm.15.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To assess the involvement of ABCG2 in the pharmacokinetics of efavirenz in the blood-brain barrier (BBB) and investigate a nanotechnology strategy to overcome its overexpression under a model of chronic oral administration. Materials & methods A model of chronic efavirenz (EFV) administration was established in male Sprague-Dawley rats treated with a daily oral dose over 5 days. Then, different treatments were conducted and drug concentrations in plasma and brain measured. RESULTS Chronic treatment with oral EFV led to the overexpression of ABCG2 in the BBB that was reverted after a brief washout period. Moreover, gefitinib and the polymeric amphiphile Tetronic(®) 904 significantly inhibited the activity of the pump and potentiated the accumulation of EFV in CNS. The same effect was observed when the drug was administered within mixed micelles containing TetronicT904 as the main component. CONCLUSION Tetronic 904-containing polymeric micelles overcame the overexpression of ABCG2 in the BBB caused by chronic administration of EFV then boosting its penetration into the CNS.
Collapse
Affiliation(s)
- Martín I Roma
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Diego A Chiappetta
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Stefania S Di Gennaro
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan M Minoia
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillermo F Bramuglia
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Modesto C Rubio
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science & Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roxana N Peroni
- Pharmacology Research Institute, University of Buenos Aires & National Science Research Council (CONICET), Buenos Aires, Argentina.,Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. J Virol 2015. [PMID: 26223636 DOI: 10.1128/jvi.01692-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.
Collapse
|
21
|
Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 2015; 21:4186-98. [PMID: 25174930 DOI: 10.2174/0929867321666140826114135] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated. What underlies these events is, in part, poor ART penetrance into each organ across tissue barriers, viral mutation and the longevity of infected cells. We posit that one means to improve these disease outcomes is through nanotechnology. To this end, this review discusses a broad range of cutting-edge nanomedicines and nanomedicine platforms that are or can be used to improve ART delivery. Discussion points include how polymer-drug conjugates, dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles can be harnessed to best yield cell-based delivery systems. When completely developed, such nanomedicine platforms have the potential to clear reservoirs of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
22
|
A new model for post-integration latency in macroglial cells to study HIV-1 reservoirs of the brain. AIDS 2015; 29:1147-59. [PMID: 26035317 DOI: 10.1097/qad.0000000000000691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Macroglial cells like astrocytes are key targets for the formation of HIV-1 reservoirs in the brain. The 'shock-and-kill' HIV-1 cure strategy proposes eradication of reservoirs by clinical treatment with latency reversing agents (LRAs). However, virus activation may endanger the brain, due to limited cell turnover, viral neurotoxicity and poor penetration of antiretroviral drugs. Since the brain is not accessible to clinical sampling, we established an experimental model to investigate the LRA effects on HIV-1 latency in macroglial reservoirs. DESIGN Human neural stem cells (HNSC.100) were used to generate a system that models HIV-1 transcriptional latency in proliferating progenitor, as well as differentiated macroglial cell populations and latency-modulating effects of LRAs and compounds targeting HIV-1 transcription were analysed. METHODS HNSCs were infected with pseudotyped Env-defective HIV-1 viruses. HIV-1 DNA and RNA levels were quantified by qPCR. Expression of latent GFP-reporter viruses was analysed by confocal microscopy and flow cytometry. NF-κB signalling was investigated by confocal microscopy and chromatin immunoprecipitation. RESULTS Two of the eight well known LRAs (tumour necrosis factor-alpha, suberoylanilide hydroxamic acid) reactivated HIV-1 in latently infected HNSCs. Tumour necrosis factor-alpha reactivated HIV-1 in progenitor and differentiated populations, whereas suberoylanilide hydroxamic acid was more potent in progenitors. Pre-treatment with inhibitors of key HIV-1 transcription factors (NF-κB, Cdk9) suppressed HIV-1 reactivation. CONCLUSION We conclude that latent HIV-1 in macroglial reservoirs can be activated by selected LRAs. Identification of small molecules that suppress HIV-1 reactivation supports functional cure strategies. We propose using the HNSC model to develop novel strategies to enforce provirus quiescence in the brain.
Collapse
|
23
|
Khan SZ, Hand N, Zeichner SL. Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 2015; 12:42. [PMID: 25980942 PMCID: PMC4469242 DOI: 10.1186/s12977-015-0169-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Despite much work, safe and effective approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1 remain an elusive goal. Patients infected with HIV-1 treated with cytotoxic agents or bone marrow transplantation can experience decreases in the reservoir of HIV-1 latently infected cells. Other viruses capable of long-term latency, such as herpesviruses, can sense host cell apoptosis and respond by initiating replication. These observations suggest that other viruses capable of long-term latency, like HIV-1, might also sense when its host cell is about to undergo apoptosis and respond by initiating replication. Results Pro-monocytic (U1) and lymphoid (ACH-2) HIV-1 persistently infected cell lines were treated with cytotoxic drugs – doxorubicin, etoposide, fludarabine phosphate, or vincristine – and activation of latent HIV-1 was evaluated using assays for HIV-1 RNA and p24 production. Both cell lines showed dose-dependent increases in apoptosis and associated HIV-1 activation following exposure to the cytotoxic agents. Pretreatment of the cells with the pan-caspase inhibitor Z-VAD-FMK prior to exposure to the cytotoxic agents inhibited apoptosis and viral activation. Direct exposure of the latently infected cell lines to activated caspases also induced viral replication. HIV-1 virions produced in association with host cell apoptosis were infectious. Conclusions The results indicate that latent HIV-1 can sense when its host cell is undergoing apoptosis and responds by completing its replication cycle. The results may help explain why patients treated with cytotoxic regimens for bone marrow transplantation showed reductions in the reservoir of latently infected cells. The results also suggest that the mechanisms that HIV-1 uses to sense and respond to host cell apoptosis signals may represent helpful new targets for approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1.
Collapse
Affiliation(s)
- Sohrab Z Khan
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Nicholas Hand
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA.
| | - Steven L Zeichner
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. .,Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA. .,Department of Pediatrics, The George Washington University, School of Medicine, Washington, DC, USA.
| |
Collapse
|
24
|
Adhikary RR, More P, Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. NANOSCALE 2015; 7:7520-7534. [PMID: 25874901 DOI: 10.1039/c5nr01285f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Collapse
Affiliation(s)
- Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | |
Collapse
|
25
|
Pilakka-Kanthikeel S, Raymond A, Atluri VSR, Sagar V, Saxena SK, Diaz P, Chevelon S, Concepcion M, Nair M. Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a. J Neuroinflammation 2015; 12:66. [PMID: 25890101 PMCID: PMC4410490 DOI: 10.1186/s12974-015-0285-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/18/2015] [Indexed: 11/16/2022] Open
Abstract
Background Although highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality in HIV patients, virus continues to reside in the central nervous system (CNS) reservoir. Hence, a complete eradication of virus remains a challenge. HIV productively infects microglia/macrophages, but astrocytes are generally restricted to HIV infection. The relative importance of the possible replication blocks in astrocytes, however, is yet to be delineated. A recently identified restriction factor, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), restricts HIV infection in resting CD4+T cells and in monocyte-derived dendritic cells. However, SAMHD1 expression and HIV-1 restriction activity regulation in the CNS cells are unknown. Though, certain miRNAs have been implicated in HIV restriction in resting CD4+T cells, their role in the CNS HIV restriction and their mode of action are not established. We hypothesized that varying SAMHD1 expression would lead to restricted HIV infection and host miRNAs would regulate SAMHD1 expression in astrocytes. Results We found increased SAMHD1 expression and decreased miRNA expression (miR-181a and miR-155) in the astrocytes compared to microglia. We report for the first time that miR-155 and miR-181a regulated the SAMHD1 expression. Overexpression of these cellular miRNAs increased viral replication in the astrocytes, through SAMHD1 modulation. Reactivation of HIV replication was accompanied by decrease in SAMHD1 expression. Conclusions Here, we provide a proof of concept that increased SAMHD1 in human astrocytes is in part responsible for the HIV restriction, silencing of which relieves this restriction. At this time, this concept is of theoretical nature. Further experiments are needed to confirm if HIV replication can be reactivated in the CNS reservoir.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Andrea Raymond
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Venkata Subba Rao Atluri
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Vidya Sagar
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Patricia Diaz
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Semithe Chevelon
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Michael Concepcion
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
26
|
Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep 2015; 5:7701. [PMID: 25572573 PMCID: PMC4287722 DOI: 10.1038/srep07701] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Despite prolonged antiretroviral therapy, HIV-1 persists as transcriptionally inactive proviruses. The HIV-1 latency remains a principal obstacle in curing AIDS. It is important to understand mechanisms by which HIV-1 latency is established to make the latent reservoir smaller. We present a molecular characterization of distinct populations at an early phase of infection. We developed an original dual-color reporter virus to monitor LTR kinetics from establishment to maintenance stage. We found that there are two ways of latency establishment i.e., by immediate silencing and slow inactivation from active infection. Histone covalent modifications, particularly polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation, appeared to dominate viral transcription at the early phase. PRC2 also contributes to time-dependent LTR dormancy in the chronic phase of the infection. Significant differences in sensitivity against several stimuli were observed between these two distinct populations. These results will expand our understanding of heterogeneous establishment of HIV-1 latency populations.
Collapse
|
27
|
Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 2014; 462-463:328-39. [PMID: 25014309 DOI: 10.1016/j.virol.2014.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/21/2022]
Abstract
The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART.
Collapse
|
28
|
Treatment of chronically FIV-infected cats with suberoylanilide hydroxamic acid. Antiviral Res 2014; 108:74-8. [PMID: 24954265 DOI: 10.1016/j.antiviral.2014.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring, large animal model of lentiviral-induced immunodeficiency syndrome, and has been used as a model of HIV pathogenesis and therapeutic interventions. HIV reservoirs in the form of latent virus remain the primary roadblock to viral eradication and cure, and FIV has been previously established an animal model of lentiviral latency. The goal of this study was to determine whether administration of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) to aviremic, chronically FIV-infected cats would induce latent viral reactivation in vivo. A proof-of-concept experiment in a Transwell co-culture system demonstrated the ability of SAHA to reactivate latent virus which was replication competent and able to infect naïve cells. Oral SAHA (250mg/m(2)) was administered with food to four asymptomatic, experimentally FIV-infected cats and one uninfected control cat, and a limited pharmacokinetic and pharmacodynamic analysis was performed. A statistically significant increase in cell-associated FIV RNA was detected in the cat with the greatest serum SAHA exposure, and cell-free viral RNA was detected at one time point in the three cats that achieved the highest levels of SAHA in serum. Interestingly, there was a significant decrease in viral DNA burden at 2h post drug administration in the same three cats. Though the sample size is small and the drug response was modest, this study provides evidence that in vivo treatment of FIV-infected cats with the HDACi SAHA can induce viral transcriptional reactivation, which may be dependent upon the concentration of SAHA achieved in blood. Importantly, alternative putative antilatency therapy drugs, and multimodal drug combinations, could be studied in this in vivo system. The FIV/cat model provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus in vivo.
Collapse
|
29
|
Genetically modified hematopoietic stem cell transplantation for HIV-1-infected patients: can we achieve a cure? Mol Ther 2013; 22:257-264. [PMID: 24220323 DOI: 10.1038/mt.2013.264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/07/2013] [Indexed: 12/27/2022] Open
Abstract
The cure of a human immunodeficiency virus (HIV)-1-infected patient following allogeneic transplantation from a CCR5-null donor and potential cure of two patients transplanted with CCR5 wild-type hematopoietic stem cells (HSC) have provided renewed optimism that a potential alternative to conventional antiretroviral therapy (ART) is forthcoming. While allogeneic grafts have thus far suggested complete eradication of viral reservoirs, it has yet to be observed following autologous HSC transplantation. Development of curative autologous transplantation strategies would significantly increase the number of treatable patients, eliminating the need for matched donors and reducing the risks of adverse events. Recent studies suggest gene therapy may provide a mechanism for developing curative therapies. Expression of cellular/artificial restriction factors or disruption of CCR5 has been shown to limit viral replication and provide protection of genetically modified cells. However, significant obstacles remain with regards to the depletion of established viral reservoirs in an autologous transplantation setting devoid of the "allo-effect". Here, we discuss results from early-stage clinical trials and recent findings in animal models of gene modified HSC transplantation. Finally, we propose innovative combination therapies that may aid in the reduction and/or elimination of viral reservoirs in HIV-1-infected patients and promote the artificial development of a natural controller phenotype.
Collapse
|
30
|
McBride K, Xu Y, Bailey M, Seddiki N, Suzuki K, Murray JM, Gao Y, Yan C, Cooper DA, Kelleher AD, Koelsch KK, Zaunders J. The majority of HIV type 1 DNA in circulating CD4+ T lymphocytes is present in non-gut-homing resting memory CD4+ T cells. AIDS Res Hum Retroviruses 2013; 29:1330-9. [PMID: 23971972 DOI: 10.1089/aid.2012.0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Memory CD4(+) T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4(+) T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4(+) T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4(+) T cell subsets of memory CD45RO(+) cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4(+) T cells sorted into integrin β7(+) vs. β7(-), CD25(+)CD127(low) Treg vs. CD127(high), and activated CD38(+) vs. CD38(-). More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO(+) memory CD4(+) T cells. Less than 10% was found in highly purified Tregs or CD38(+) activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4(+) T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4(+) T cells.
Collapse
Affiliation(s)
- Kristin McBride
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Yin Xu
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Michelle Bailey
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Nabila Seddiki
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Kazuo Suzuki
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - John M. Murray
- Department of Mathematics, University of New South Wales, Sydney, Australia
| | - Yuan Gao
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Celine Yan
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - David A. Cooper
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Kersten K. Koelsch
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - John Zaunders
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| |
Collapse
|
31
|
Imperiale JC, Bevilacqua G, Rosa PDTVE, Sosnik A. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method. Drug Dev Ind Pharm 2013; 40:1607-15. [DOI: 10.3109/03639045.2013.838581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Sharma H, Sanchez TW, Neamati N, Detorio M, Schinazi RF, Cheng X, Buolamwini JK. Synthesis, docking, and biological studies of phenanthrene β-diketo acids as novel HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2013; 23:6146-51. [PMID: 24091080 DOI: 10.1016/j.bmcl.2013.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
In the present study we report the synthesis of halogen-substituted phenanthrene β-diketo acids as new HIV-1 integrase inhibitors. The target phenanthrenes were obtained using both standard thermal- and microwave-assisted synthesis. 4-(6-Chlorophenanthren-2-yl)-2,4-dioxobutanoic acid (18) was the most active compound of the series, inhibiting both 3'-end processing (3'-P) and strand transfer (ST) with IC50 values of 5 and 1.3 μM, respectively. Docking studies revealed two predominant binding modes that were distinct from the binding modes of raltegravir and elvitegravir, and suggest a novel binding region in the IN active site. Moreover, these compounds are predicted not to interact significantly with some of the key amino acids (Q148 and N155) implicated in viral resistance. Therefore, this series of compounds can further be investigated for a possible chemotype to circumvent resistance to clinical HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, Suite 327, Memphis 38163, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Bichel K, Price AJ, Schaller T, Towers GJ, Freund SMV, James LC. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 2013; 10:81. [PMID: 23902822 PMCID: PMC3750474 DOI: 10.1186/1742-4690-10-81] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. Results Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positioned to allow single-bond resonance stabilisation of exposed capsid residue P90. NMR exchange experiments demonstrate that NUP358 is an active isomerase, which efficiently catalyzes cis-trans isomerization of the HIV-1 capsid. In contrast, the distantly related feline lentivirus FIV can bind NUP358 but is neither isomerized by it nor requires it for infection. Conclusion Isomerization by NUP358 may be preserved by HIV-1 to target the nuclear pore and synchronize nuclear entry with capsid uncoating.
Collapse
Affiliation(s)
- Katsiaryna Bichel
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
34
|
Latent HIV-1 can be reactivated by cellular superinfection in a Tat-dependent manner, which can lead to the emergence of multidrug-resistant recombinant viruses. J Virol 2013; 87:9620-32. [PMID: 23804632 DOI: 10.1128/jvi.01165-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir represents an important source of genetic diversity that could contribute to viral evolution and multidrug resistance following latent virus reactivation. This could occur by superinfection of a latently infected cell. We asked whether latent viruses might be reactivated when their host cells are superinfected, and if so, whether they could contribute to the generation of recombinant viruses. Using populations of latently infected Jurkat cells, we found that latent viruses were efficiently reactivated upon superinfection. Pathways leading to latent virus reactivation via superinfection might include gp120-CD4/CXCR4-induced signaling, modulation of the cellular environment by Nef, and/or the activity of Tat produced upon superinfection. Using a range of antiviral compounds and genetic approaches, we show that gp120 and Nef are not required for latent virus reactivation by superinfection, but this process depends on production of functional Tat by the superinfecting virus. In a primary cell model of latency in unstimulated CD4 T cells, superinfection also led to latent virus reactivation. Drug-resistant latent viruses were also reactivated following superinfection in Jurkat cells and were able to undergo recombination with the superinfecting virus. Under drug-selective pressure, this generated multidrug-resistant recombinants that were identified by unique restriction digestion band patterns and by population-level sequencing. During conditions of poor drug adherence, treatment interruption or treatment failure, or in drug-impermeable sanctuary sites, reactivation of latent viruses by superinfection or other means could provide for the emergence or spread of replicatively fit viruses in the face of strong selective pressures.
Collapse
|
35
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
36
|
Martinez-Colom A, Lasarte S, Fernández-Pineda A, Relloso M, Muñoz-Fernández MA. A new chimeric protein represses HIV-1 LTR-mediated expression by DNA methylase. Antiviral Res 2013; 98:394-400. [PMID: 23588231 DOI: 10.1016/j.antiviral.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/19/2022]
Abstract
Once the human immunodeficiency virus (HIV) genome is inserted into the host genome, the virus cannot be removed, which results in latency periods and makes it difficult to eradicate. The majority of strategies to eradicate HIV have been based on preventing virus latency, thereby enabling antiretroviral drugs to act against HIV replication. Another innovative strategy is permanently silencing the integrated virus to prevent the spread of infection. Epigenetic processes are natural mechanisms that can silence viral replication. We describe a new chimeric protein (IN3b) that consists of a HIV-1 integrase domain, which recognises the HIV long terminal repeat (LTR) and the catalytic domain of DNA methyltransferase DNMT3b. Our objective was to silence HIV replication by the specific delivery of the catalytic methyltransferase domain to the LTR promoter to induce its methylation. We found that our IN3b chimeric protein was expressed in the nucleus and decreased LTR-associated HIV genome expression and HIV replication. Therefore, the IN3b chimeric protein may be an effective tool against HIV replication and maybe used in a new line of research to induce or maintain HIV latency.
Collapse
Affiliation(s)
- Alberto Martinez-Colom
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
McNamara LA, Onafuwa-Nuga A, Sebastian NT, Riddell J, Bixby D, Collins KL. CD133+ hematopoietic progenitor cells harbor HIV genomes in a subset of optimally treated people with long-term viral suppression. J Infect Dis 2013; 207:1807-16. [PMID: 23554378 DOI: 10.1093/infdis/jit118] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hematopoietic progenitor cells (HPCs) in the bone marrow of human immunodeficiency virus (HIV)-infected individuals have been proposed as a persistent reservoir of virus. However, some studies have suggested that HIV genomes detected in HPCs arise from T-cell contamination. METHODS CD133-sorted HPCs and CD133-depleted bone marrow cells were purified from bone marrow specimens obtained from 11 antiretroviral-treated donors in whom the HIV load had been <48 copies/mL for at least 6 months. CD133 and CD3 expression on the cells was assessed by flow cytometry. HIV DNA was quantified by real-time polymerase chain reaction analysis. RESULTS HIV genomes were detected in CD133-sorted samples from 6 donors, including 2 in whom viral loads were undetectable for >8 years. CD3(+) T cells represented <1% of cells in all CD133-sorted samples. For 5 of 6 CD133-sorted samples with detectable HIV DNA, the HIV genomes could not be explained by contaminating CD3(+) T cells. Donors with detectable HIV DNA in HPCs received their diagnosis significantly more recently than the remaining donors but had had undetectable viral loads for similar periods. CONCLUSIONS HIV genomes can be detected in CD133-sorted cells from a subset of donors with long-term viral suppression and, in most cases, cannot be explained by contamination with CD3(+) T cells.
Collapse
Affiliation(s)
- Lucy A McNamara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
38
|
Boutimah F, Eekels JJM, Liu YP, Berkhout B. Antiviral strategies combining antiretroviral drugs with RNAi-mediated attack on HIV-1 and cellular co-factors. Antiviral Res 2013; 98:121-9. [PMID: 23439083 DOI: 10.1016/j.antiviral.2013.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022]
Abstract
To improve the care of HIV-1/AIDS patients there is a critical need to develop tools capable of blocking viral evolution and circumventing therapy-associated problems. An emerging solution is gene therapy either as a stand-alone approach or as an adjuvant to pharmacological drug regimens. Combinatorial RNAi by multiplexing antiviral RNAi inhibitors through vector-mediated delivery has recently shown significant superiority over conventional mono-therapies. Viral as well as cellular co-factor targets have been identified, but they are generally attacked separately. Here, we hypothesized that a mixture of shRNAs directed against highly conserved viral RNA sequences and the mRNAs of cellular components that are involved in HIV replication could restrict mutational escape by enhanced synergistic inhibition. We screened for potent silencer cocktails blending inhibitors acting scattered along the viral replication cycle. The results show enhanced and extended suppression of viral replication for some combinations. To further explore the power of combinatorial approaches, we tested the influence of RNAi-mediated knockdown on the activity of conventional antiretroviral drugs (fusion, RT, integrase and protease inhibitors). We compared the fold-change in IC₅₀ (FCIC₅₀) of these drugs in cell lines stably expressing anti-HIV and anti-host shRNAs and measured increased values that are up by several logs for some combinations. We show that high levels of additivity and synergy can be obtained by combining gene therapy with conventional drugs. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.
Collapse
Affiliation(s)
- Fatima Boutimah
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam-CINIMA, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Donahue DA, Wainberg MA. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013; 10:11. [PMID: 23375003 PMCID: PMC3571915 DOI: 10.1186/1742-4690-10-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023] Open
Abstract
Latently infected cells represent the major barrier to either a sterilizing or a functional HIV-1 cure. Multiple approaches to reactivation and depletion of the latent reservoir have been attempted clinically, but full depletion of this compartment remains a long-term goal. Compared to the mechanisms involved in the maintenance of HIV-1 latency and the pathways leading to viral reactivation, less is known about the establishment of latent infection. This review focuses on how HIV-1 latency is established at the cellular and molecular levels. We first discuss how latent infection can be established following infection of an activated CD4 T-cell that undergoes a transition to a resting memory state and also how direct infection of a resting CD4 T-cell can lead to latency. Various animal, primary cell, and cell line models also provide insights into this process and are discussed with respect to the routes of infection that result in latency. A number of molecular mechanisms that are active at both transcriptional and post-transcriptional levels have been associated with HIV-1 latency. Many, but not all of these, help to drive the establishment of latent infection, and we review the evidence in favor of or against each mechanism specifically with regard to the establishment of latency. We also discuss the role of immediate silent integration of viral DNA versus silencing of initially active infections. Finally, we discuss potential approaches aimed at limiting the establishment of latent infection.
Collapse
Affiliation(s)
- Daniel A Donahue
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada.
| | | |
Collapse
|
40
|
Targeting IκB proteins for HIV latency activation: the role of individual IκB and NF-κB proteins. J Virol 2013; 87:3966-78. [PMID: 23365428 DOI: 10.1128/jvi.03251-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Latently infected cell reservoirs represent the main barrier to HIV eradication. Combination antiretroviral therapy (cART) effectively blocks viral replication but cannot purge latent provirus. One approach to HIV eradication could include cART to block new infections plus an agent to activate latent provirus. NF-κB activation induces HIV expression, ending latency. Before activation, IκB proteins sequester NF-κB dimers in the cytoplasm. Three canonical IκBs, IκBα, IκBβ, and IκBε, exist, but the IκB proteins' role in HIV activation regulation is not fully understood. We studied the effects on HIV activation of targeting IκBs by single and pairwise small interfering RNA (siRNA) knockdown. After determining the relative abundance of the IκBs, the relative abundance of NF-κB subunits held by the IκBs, and the kinetics of IκB degradation and resynthesis following knockdown, we studied HIV activation by IκB knockdown, in comparison with those of known HIV activators, tumor necrosis factor alpha (TNF-α), tetradecanoyl phorbol acetate (TPA), and trichostatin A (TSA), in U1 monocytic and J-Lat 10.6 lymphocytic latently infected cells. We found that IκBα knockdown activated HIV in both U1 and J-Lat 10.6 cells, IκBβ knockdown did not activate HIV, and, surprisingly, IκBε knockdown produced the most HIV activation, comparable to TSA activation. Our data show that HIV reactivation can be triggered by targeting two different IκB proteins and that IκBε may be an effective target for HIV latency reactivation in T-cell and macrophage lineages. IκBε knockdown may offer attractive therapeutic advantages for HIV activation because it is not essential for mammalian growth and development and because new siRNA delivery strategies may target siRNAs to HIV latently infected cells.
Collapse
|
41
|
Engineered DNA modifying enzymes: components of a future strategy to cure HIV/AIDS. Antiviral Res 2012; 97:211-7. [PMID: 23267832 DOI: 10.1016/j.antiviral.2012.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Despite phenomenal advances in AIDS therapy transforming the disease into a chronic illness for most patients, a routine cure for HIV infections remains a distant goal. However, a recent example of HIV eradication in a patient who had received CCR5-negative bone marrow cells after full-body irradiation has fuelled new hopes for a cure for AIDS. Here, we review new HIV treatment strategies that use sophisticated genome engineering to target HIV infections. These approaches offer new ways to tackle the infection, and alone or in conjunction with already established treatments, promise to transform HIV into a curable disease.
Collapse
|
42
|
Chiappetta DA, Hocht C, Opezzo JAW, Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond) 2012; 8:223-37. [PMID: 23173734 DOI: 10.2217/nnm.12.104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM To investigate the intranasal administration of poly(ethylene oxide)-poly(propylene oxide) polymeric micelles loaded with high payloads of the first-line antiretroviral drug efavirenz for targeting to the CNS. METHODS & MATERIALS The effect of micellar size and composition and drug payload was assessed, employing simple micelles made of a highly hydrophilic copolymer, poloxamer F127, loaded with 20 mg/ml drug and mixed micelles containing 75% of a poloxamine of intermediate hydrophobicity, T904, and 25% F127 loaded with 20 and 30 mg/ml drug. F127 confers high physical stability, while T904 substantially improves the encapsulation capacity of the micelles. RESULTS The bioavailability of the drug in the CNS was increased fourfold and the relative exposure index (ratio between the area under the curve in the CNS and plasma) was increased fivefold with respect to the same system administered intravenously. CONCLUSION These findings demonstrate the potential of this scalable and cost-viable strategy to address the HIV sanctuary in the CNS.
Collapse
Affiliation(s)
- Diego A Chiappetta
- The Group of Biomaterials & Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St, 6th Floor, Buenos Aires CP1113, Argentina
| | | | | | | |
Collapse
|
43
|
McNamara LA, Collins KL. Interferon alfa therapy: toward an improved treatment for HIV infection. J Infect Dis 2012; 207:201-3. [PMID: 23105145 DOI: 10.1093/infdis/jis667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
McDonnel SJ, Sparger EE, Luciw PA, Murphy BG. Pharmacologic reactivation of latent feline immunodeficiency virus ex vivo in peripheral CD4+ T-lymphocytes. Virus Res 2012; 170:174-9. [PMID: 23073179 DOI: 10.1016/j.virusres.2012.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 12/28/2022]
Abstract
FIV establishes a latent infection in peripheral CD4+ T-cells, and the latent FIV promoter is associated with deacetylated, methylated histones, consistent with a restrictive chromatin structure. Here we explored the use of 5 histone-modifying agents - 4 histone deacetylase inhibitors (HDACi) and 1 histone methyltransferase inhibitor (HMTi) - to reactivate latent FIV ex vivo. All compounds tested were able to alter histone lysine residue modifications in feline cells, both globally and at the FIV promoter locally. When latently FIV-infected peripheral CD4+ T-cells were cultured ex vivo in the presence of these inhibitors, viral transcription was significantly activated relative to no treatment controls. Transcriptional reactivation of virus mediated by the HDACi suberoylanilide hydroxamic acid (SAHA) was dose-dependent, detected after as little as 1h of exposure, and resulted in virion formation as evidenced by supernatant reverse transcriptase activity. A synergistic effect was not found when SAHA was combined with HMTi under the conditions tested. At low therapeutically relevant concentrations in primary feline PBMC, SAHA was found to be minimally cytotoxic and non-immune activating. HDACi and HMTi can reactivate latent FIV ex vivo, and SAHA, also known as the anticancer drug Vorinostat, in particular is a promising candidate for in vivo use because of its efficacy, potency, and relative safety. Use of the FIV/cat model of lentiviral latency to explore in vivo treatment with SAHA and other anti-latency therapeutics will allow investigations that are either ethically or logistically not addressable in patients persistently infected with human immunodeficiency virus (HIV-1).
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
45
|
Craig RB, Summa CM, Corti M, Pincus SH. Anti-HIV double variable domain immunoglobulins binding both gp41 and gp120 for targeted delivery of immunoconjugates. PLoS One 2012; 7:e46778. [PMID: 23056448 PMCID: PMC3464217 DOI: 10.1371/journal.pone.0046778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022] Open
Abstract
Background Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.
Collapse
Affiliation(s)
- Ryan B. Craig
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Christopher M. Summa
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Department of Computer Sciences, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Miriam Corti
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Seth H. Pincus
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Rydze RT, Bhattarai N, Stapleton JT. GB virus C infection is associated with a reduced rate of reactivation of latent HIV and protection against activation-induced T-cell death. Antivir Ther 2012; 17:1271-9. [PMID: 22951385 DOI: 10.3851/imp2309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND GB virus C (GBV-C) coinfection is associated with reduced immune activation and a block in CD4(+) T-cell proliferation following interleukin-2 (IL-2) therapy in HIV-infected individuals. We examined peripheral blood mononuclear cells (PBMCs) from HIV-infected subjects with and without GBV-C viraemia to determine if GBV-C correlated with reactivation of latent HIV, T-cell proliferation or T-cell survival following in vitro activation with phytohaemagglutinin A and IL-2 (PHA/IL-2). METHODS HIV-infected subjects whose HIV viral load was suppressed on combination antiretroviral therapy (cART) for >6 months were studied. PBMCs were cultured with and without PHA/IL-2 and monitored for HIV reactivation, proliferation and survival. GBV-C viraemia and in vitro replication were detected by real-time RT-PCR. HIV reactivation was determined by measuring HIV p24 antigen in culture supernatants. Proliferation was measured by counting viable cells and survival measured by flow cytometry. RESULTS Of 49 HIV-infected individuals, 26 had GBV-C viraemia. Significantly less HIV reactivation and PBMC proliferation following in vitro activation with PHA/IL-2 was observed in samples from GBV-C viraemic subjects compared with non-viraemic controls. Following 5 weeks in culture, GBV-C replication was associated with preservation of CD4(+) and CD8(+) T-cells compared with non-viraemic controls. CONCLUSIONS GBV-C appears to inhibit immune activation and IL-2 signalling pathways, which might contribute to a reduction in reactivation of latent HIV from cellular reservoirs. In addition, GBV-C viraemia was associated with a reduction in activation-induced T-cell death. GBV-C-associated T-cell effects could contribute to the observed protective effect of GBV-C coinfection in HIV-infected individuals.
Collapse
Affiliation(s)
- Robert T Rydze
- The Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | | | | |
Collapse
|
47
|
Seremeta KP, Chiappetta DA, Sosnik A. Poly(ε-caprolactone), Eudragit® RS 100 and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces 2012; 102:441-9. [PMID: 23010128 DOI: 10.1016/j.colsurfb.2012.06.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 06/24/2012] [Indexed: 10/28/2022]
Abstract
The design of simple and scalable drug delivery systems to target the central nervous system (CNS) could represent a breakthrough in the addressment of the HIV-associated neuropathogenesis. The intranasal (i.n.) route represents a minimally invasive strategy to surpass the blood-brain barrier, though it demands the use of appropriate nanocarriers bearing high drug payloads and displaying sufficiently long residence time. The present work explored the development of submicron particles made of poly(ε-caprolactone) (PCL), Eudragit(®) RS 100 (RS a copolymer of ethylacrylate, methylmethacrylate and methacrylic acid esterified with quaternary ammonium groups) and their blends, loaded with the first-choice antiretroviral efavirenz (EFV) as an approach to fine tune the particle size and the release kinetics. Particles displaying hydrodynamic diameters between 90 and 530 nm were obtained by two methods: nanoprecipitation and emulsion/solvent diffusion/evaporation. In general, the former resulted in smaller particles and narrower size distributions. The encapsulation efficiency was greater than 94%, the drug weight content approximately 10% and the yield in the 72.5-90.0% range. The highly positive surface (>+30 mV) rendered the suspensions physically stable for more than one month. In vitro release assays indicated that the incorporation of the poly(methacrylate) into the composition reduced the burst effect and slowed the release rate down with respect to pure poly(ε-caprolactone) particles. The analysis of the release profile indicated that, in all cases, the kinetics adjusted well to the Higuchi model with R(adj)(2) values >0.9779. These findings suggested that the release was mainly controlled by diffusion. In addition, when data were analyzed by the Korsmeyer-Peppas model, n values were in the 0.520-0.587 range, indicating that the drug release was accomplished by the combination of two phenomena: diffusion and polymer chain relaxation. Based on ATR/FT-IR analysis that investigated drug/polymer matrix interactions, the potential role of the hydrophobic interactions of C-F groups of EFV with carbonyl groups in the backbone of PCL and poly(methacrylate) could be ruled out. The developed EFV-loaded particles appear as a useful platform to investigate the intranasal administration to increase the bioavailability in the CNS.
Collapse
Affiliation(s)
- Katia P Seremeta
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín St., Buenos Aires CP1113, Argentina
| | | | | |
Collapse
|
48
|
Latent HIV-1 infection occurs in multiple subsets of hematopoietic progenitor cells and is reversed by NF-κB activation. J Virol 2012; 86:9337-50. [PMID: 22718820 DOI: 10.1128/jvi.00895-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ability of HIV-1 to establish a latent infection presents a barrier to curing HIV. The best-studied reservoir of latent virus in vivo is resting memory CD4(+) T cells, but it has recently been shown that CD34(+) hematopoietic progenitor cells (HPCs) can also become latently infected by HIV-1 in vitro and in vivo. CD34(+) cells are not homogenous, however, and it is not yet known which types of CD34(+) cells support a latent infection. Furthermore, the mechanisms through which latency is established in this cell type are not yet known. Here we report the development of a primary cell model for latent HIV-1 infection in HPCs. We demonstrate that in this model, latent infection can be established in all subsets of HPCs examined, including HPCs with cell surface markers consistent with immature hematopoietic stem and progenitor cells. We further show that the establishment of latent infection in these cells can be reversed by tumor necrosis factor alpha (TNF-α) through an NF-κB-dependent mechanism. In contrast, we do not find evidence for a role of positive transcription elongation factor b (P-TEFb) in the establishment of latent infection in HPCs. Finally, we demonstrate that prostratin and suberoylanilide hydroxamic acid (SAHA), but not hexamethylene bisacetamide (HMBA) or 5-aza-2'-deoxycytidine (Aza-CdR), reactivate latent HIV-1 in HPCs. These findings illuminate the mechanisms through which latent infection can be established in HPCs and suggest common pathways through which latent virus could be reactivated in both HPCs and resting memory T cells to eliminate latent reservoirs of HIV-1.
Collapse
|
49
|
Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes. Viruses 2012; 4:878-88. [PMID: 22754653 PMCID: PMC3386631 DOI: 10.3390/v4050878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 12/23/2022] Open
Abstract
Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 103 CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.
Collapse
|
50
|
Latently Infected Cell Activation: A Way to Reduce the Size of the HIV Reservoir? Bull Math Biol 2012; 74:1651-72. [DOI: 10.1007/s11538-012-9729-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|