1
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Evans B, Spell E, Bernstein D. C. albicans UME7 deletion does not have major impacts on white opaque switching, filamentation, or virulence. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000826. [PMID: 37303958 PMCID: PMC10251200 DOI: 10.17912/micropub.biology.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
C. albicans is the most prevalent human fungal pathogen, and can be especially dangerous to immunocompromised individuals. One key aspect of C. albicans virulence is morphological plasticity. C. albicans can undergo a number of distinct morphological changes and these changes are controlled by complex transcriptional networks. The transcription factor Ume6 is an important member of these networks, playing an essential role mediating filamentation. C. albicans , however encodes a second UME6 homolog, UME7 . UME7 is highly conserved in the CTG fungal clade, but the role of UME7 in C. albicans biology is unknown. Here we truncate and delete C. albicans UME7 . We find Ume7 is dispensable for growth and filamentation. We also find that deletion does not have major consequences on virulence or white opaque switching. Our results suggest that under standard laboratory conditions deletion of UME7 does not have large effects on C. albicans phenotype leaving its role in C. albicans biology undefined.
Collapse
Affiliation(s)
- Ben Evans
- Biology, Ball State University, Muncie, Indiana, United States
| | - Evan Spell
- Biology, Ball State University, Muncie, Indiana, United States
| | | |
Collapse
|
4
|
Mao Y, Solis NV, Filler SG, Mitchell AP. Functional Dichotomy for a Hyphal Repressor in Candida albicans. mBio 2023; 14:e0013423. [PMID: 36883818 PMCID: PMC10127614 DOI: 10.1128/mbio.00134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nrg1 is a repressor of hypha formation and hypha-associated gene expression in the fungal pathogen Candida albicans. It has been well studied in the genetic background of the type strain SC5314. Here, we tested Nrg1 function in four other diverse clinical isolates through an analysis of nrg1Δ/Δ mutants, with SC5314 included as a control. In three strains, nrg1Δ/Δ mutants unexpectedly produced aberrant hyphae under inducing conditions, as assayed by microscopic observation and endothelial cell damage. The nrg1Δ/Δ mutant of strain P57055 had the most severe defect. We examined gene expression features under hypha-inducing conditions by RNA-sequencing (RNA-Seq) for the SC5314 and P57055 backgrounds. The SC5314 nrg1Δ/Δ mutant expressed six hypha-associated genes at reduced levels compared with wild-type SC5314. The P57055 nrg1Δ/Δ mutant expressed 17 hypha-associated genes at reduced levels compared with wild-type P57055, including IRF1, RAS2, and ECE1. These findings indicate that Nrg1 has a positive role in hypha-associated gene expression and that this role is magnified in strain P57055. Remarkably, the same hypha-associated genes affected by the nrg1Δ/Δ mutation in strain P57055 were also naturally expressed at lower levels in wild-type P57055 than those in wild-type SC5314. Our results suggest that strain P57055 is defective in a pathway that acts in parallel with Nrg1 to upregulate the expression of several hypha-associated genes. IMPORTANCE Hypha formation is a central virulence trait of the fungal pathogen Candida albicans. Control of hypha formation has been studied in detail in the type strain but not in other diverse C. albicans clinical isolates. Here, we show that the hyphal repressor Nrg1 has an unexpected positive role in hypha formation and hypha-associated gene expression, as revealed by the sensitized P57055 strain background. Our findings indicate that reliance on a single type strain limits understanding of gene function and illustrate that strain diversity is a valuable resource for C. albicans molecular genetic analysis.
Collapse
Affiliation(s)
- Yinhe Mao
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Brown AJP. Fungal resilience and host-pathogen interactions: Future perspectives and opportunities. Parasite Immunol 2023; 45:e12946. [PMID: 35962618 PMCID: PMC10078341 DOI: 10.1111/pim.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
We are constantly exposed to the threat of fungal infection. The outcome-clearance, commensalism or infection-depends largely on the ability of our innate immune defences to clear infecting fungal cells versus the success of the fungus in mounting compensatory adaptive responses. As each seeks to gain advantage during these skirmishes, the interactions between host and fungal pathogen are complex and dynamic. Nevertheless, simply compromising the physiological robustness of fungal pathogens reduces their ability to evade antifungal immunity, their virulence, and their tolerance against antifungal therapy. In this article I argue that this physiological robustness is based on a 'Resilience Network' which mechanistically links and controls fungal growth, metabolism, stress resistance and drug tolerance. The elasticity of this network probably underlies the phenotypic variability of fungal isolates and the heterogeneity of individual cells within clonal populations. Consequently, I suggest that the definition of the fungal Resilience Network represents an important goal for the future which offers the clear potential to reveal drug targets that compromise drug tolerance and synergise with current antifungal therapies.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
7
|
Fu C, Zhang X, Veri AO, Iyer KR, Lash E, Xue A, Yan H, Revie NM, Wong C, Lin ZY, Polvi EJ, Liston SD, VanderSluis B, Hou J, Yashiroda Y, Gingras AC, Boone C, O’Meara TR, O’Meara MJ, Noble S, Robbins N, Myers CL, Cowen LE. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat Commun 2021; 12:6497. [PMID: 34764269 PMCID: PMC8586148 DOI: 10.1038/s41467-021-26850-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound.
Collapse
Affiliation(s)
- Ci Fu
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Xiang Zhang
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Amanda O. Veri
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Kali R. Iyer
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Emma Lash
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Alice Xue
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Huijuan Yan
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole M. Revie
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Cassandra Wong
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elizabeth J. Polvi
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Sean D. Liston
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Benjamin VanderSluis
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Jing Hou
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Yoko Yashiroda
- grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Anne-Claude Gingras
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Charles Boone
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Teresa R. O’Meara
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Matthew J. O’Meara
- grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Suzanne Noble
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole Robbins
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Leah E. Cowen
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
8
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Costa ACBP, Omran RP, Law C, Dumeaux V, Whiteway M. Signal-mediated localization of Candida albicans pheromone response pathway components. G3-GENES GENOMES GENETICS 2021; 11:6033596. [PMID: 33793759 PMCID: PMC8022970 DOI: 10.1093/g3journal/jkaa033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
A MAPK cascade consists of three kinases, (MEKK, MEK and MAPK), that are sequentially activated in response to a stimulus and serve to transmit signals. In C. albicans and in yeast, an MAPK cascade is linked to the pheromone pathway through a scaffold protein (Cst5 and Ste5, respectively). Cst5 is much shorter and lacks key domains compared to Ste5, so in C. albicans, other elements, in particular the MEKK Ste11, play key roles in controlling the associations and localizations of network components. Abstract Candida albicans opaque cells release pheromones to stimulate cells of opposite mating type to activate their pheromone response pathway. Although this fungal pathogen shares orthologous proteins involved in the process with Saccharomyces cerevisiae, the pathway in each organism has unique characteristics. We have used GFP-tagged fusion proteins to investigate the localization of the scaffold protein Cst5, as well as the MAP kinases Cek1 and Cek2, during pheromone response in C. albicans. In wild-type cells, pheromone treatment directed Cst5-GFP to surface puncta concentrated at the tips of mating projections. These puncta failed to form in cells defective in either the Gα or β subunits. However, they still formed in response to pheromone in cells missing Ste11, but with the puncta distributed around the cell periphery in the absence of mating projections. These puncta were absent from hst7Δ/Δ cells, but could be detected in the ste11Δ/Δ hst7Δ/Δ double mutant. Cek2-GFP showed a strong nuclear localization late in the response, consistent with a role in adaptation, while Cek1-GFP showed a weaker, but early increase in nuclear localization after pheromone treatment. Activation loop phosphorylation of both Cek1 and Cek2 required the presence of Ste11. In contrast to Cek2-GFP, which showed no localization signal in ste11Δ/Δ cells, Cek1-GFP showed enhanced nuclear localization that was pheromone independent in the ste11Δ/Δ mutant. The results are consistent with CaSte11 facilitating Hst7-mediated MAP kinase phosphorylation and also playing a potentially critical role in both MAP kinase and Cst5 scaffold localization.
Collapse
Affiliation(s)
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vanessa Dumeaux
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
10
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
11
|
A 'parameiosis' drives depolyploidization and homologous recombination in Candida albicans. Nat Commun 2019; 10:4388. [PMID: 31558727 PMCID: PMC6763455 DOI: 10.1038/s41467-019-12376-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is a conserved tenet of sexual reproduction in eukaryotes, yet this program is seemingly absent from many extant species. In the human fungal pathogen Candida albicans, mating of diploid cells generates tetraploid products that return to the diploid state via a non-meiotic process of depolyploidization known as concerted chromosome loss (CCL). Here, we report that recombination rates are more than three orders of magnitude higher during CCL than during normal mitotic growth. Furthermore, two conserved ‘meiosis-specific’ factors play central roles in CCL as SPO11 mediates DNA double-strand break formation while both SPO11 and REC8 regulate chromosome stability and promote inter-homolog recombination. Unexpectedly, SPO11 also promotes DNA repair and recombination during normal mitotic divisions. These results indicate that C. albicans CCL represents a ‘parameiosis’ that blurs the conventional boundaries between mitosis and meiosis. They also reveal parallels with depolyploidization in mammalian cells and provide potential insights into the evolution of meiosis. Mating of Candida albicans produces tetraploid products that return to the diploid state via a non-meiotic process known as concerted chromosome loss (CCL). Here, Anderson et al. show high recombination rates during CCL and identify factors that are essential for chromosome stability and recombination during CCL.
Collapse
|
12
|
Bentz ML, Sexton DJ, Welsh RM, Litvintseva AP. Phenotypic switching in newly emerged multidrug-resistant pathogen Candida auris. Med Mycol 2019; 57:636-638. [PMID: 30329075 DOI: 10.1093/mmy/myy100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Candida auris is an emerging, multidrug-resistant yeast that can spread rapidly in healthcare settings. Phenotypic switching has been observed in other Candida species and can potentially interfere with correct identification. The aim of this study is to address misidentification of C. auris by describing alternate phenotypes after broth enrichment and subculturing on CHROMagar Candida. Each isolate displayed different frequencies of phenotypic switching, suggesting a strain to strain variability. Increased knowledge of the multiple phenotypes of C. auris increases the chance of isolating and identifying C. auris by reducing the risk of discarding false negative alternate colony morphologies.
Collapse
Affiliation(s)
- Meghan L Bentz
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, USA
| | - D Joseph Sexton
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, USA
| | - Rory M Welsh
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, USA
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Faure G, Jézéquel K, Roisné-Hamelin F, Bitard-Feildel T, Lamiable A, Marcand S, Callebaut I. Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1. Genome Biol Evol 2019; 11:572-585. [PMID: 30668669 PMCID: PMC6394760 DOI: 10.1093/gbe/evz010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2019] [Indexed: 12/22/2022] Open
Abstract
Sir4 is a core component of heterochromatin found in yeasts of the Saccharomycetaceae family, whose general hallmark is to harbor a three-loci mating-type system with two silent loci. However, a large part of the Sir4 amino acid sequences has remained unexplored, belonging to the dark proteome. Here, we analyzed the phylogenetic profile of yet undescribed foldable regions present in Sir4 as well as in Esc1, an Sir4-interacting perinuclear anchoring protein. Within Sir4, we identified a new conserved motif (TOC) adjacent to the N-terminal KU-binding motif. We also found that the Esc1-interacting region of Sir4 is a Dbf4-related H-BRCT domain, only present in species possessing the HO endonuclease and in Kluveryomyces lactis. In addition, we found new motifs within Esc1 including a motif (Esc1-F) that is unique to species where Sir4 possesses an H-BRCT domain. Mutagenesis of conserved amino acids of the Sir4 H-BRCT domain, known to play a critical role in the Dbf4 function, shows that the function of this domain is separable from the essential role of Sir4 in transcriptional silencing and the protection from HO-induced cutting in Saccharomyces cerevisiae. In the more distant methylotrophic clade of yeasts, which often harbor a two-loci mating-type system with one silent locus, we also found a yet undescribed H-BRCT domain in a distinct protein, the ISWI2 chromatin-remodeling factor subunit Itc1. This study provides new insights on yeast heterochromatin evolution and emphasizes the interest of using sensitive methods of sequence analysis for identifying hitherto ignored functional regions within the dark proteome.
Collapse
Affiliation(s)
- Guilhem Faure
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Kévin Jézéquel
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Florian Roisné-Hamelin
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexis Lamiable
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Stéphane Marcand
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,Sorbonne Université, UMR CNRS 7238, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,Sorbonne Université, UMR CNRS 7238, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| |
Collapse
|
14
|
Guan G, Tao L, Yue H, Liang W, Gong J, Bing J, Zheng Q, Veri AO, Fan S, Robbins N, Cowen LE, Huang G. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway. PLoS Biol 2019; 17:e2006966. [PMID: 30865631 PMCID: PMC6415874 DOI: 10.1371/journal.pbio.2006966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Halder V, Porter CBM, Chavez A, Shapiro RS. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans. Nat Protoc 2019; 14:955-975. [PMID: 30737491 DOI: 10.1038/s41596-018-0122-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
The study of fungal pathogens is of immediate importance, yet progress is hindered by the technical challenges of genetic manipulation. For Candida species, their inability to maintain plasmids, unusual codon usage, and inefficient homologous recombination are among the obstacles limiting efficient genetic manipulation. New advances in genomic biotechnologies-particularly CRISPR-based tools-have revolutionized genome editing for many fungal species. Here, we present a protocol for CRISPR-Cas9-based manipulation in Candida albicans using a modified gene-drive-based strategy that takes ~1 month to complete. We detail the generation of Candida-optimized Cas9-based plasmids for gene deletion, an efficient transformation protocol using C. albicans haploids, and an optimized mating strategy to generate homozygous single- and double-gene diploid mutants. We further describe protocols for quantifying cell growth and analysis pipelines to calculate fitness and genetic interaction scores for genetic mutants. This protocol overcomes previous limitations associated with genetic manipulation in C. albicans and advances researchers' ability to perform genetic analysis in this pathogen; the protocol also has broad applicability to other mating-competent microorganisms.
Collapse
Affiliation(s)
- Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
16
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
18
|
Affiliation(s)
- Kenneth H. Wolfe
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
19
|
Lombardi L, Turner SA, Zhao F, Butler G. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9. Sci Rep 2017; 7:8051. [PMID: 28808289 PMCID: PMC5556056 DOI: 10.1038/s41598-017-08500-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 01/04/2023] Open
Abstract
Candida parapsilosis is one of the most common causes of candidiasis, particularly in the very young and the very old. Studies of gene function are limited by the lack of a sexual cycle, the diploid genome, and a paucity of molecular tools. We describe here the development of a plasmid-based CRISPR-Cas9 system for gene editing in C. parapsilosis. A major advantage of the system is that it can be used in any genetic background, which we showed by editing genes in 20 different isolates. Gene editing is carried out in a single transformation step. The CAS9 gene is expressed only when the plasmid is present, and it can be removed easily from transformed strains. There is theoretically no limit to the number of genes that can be edited in any strain. Gene editing is increased by homology-directed repair in the presence of a repair template. Editing by non-homologous end joining (NHEJ) also occurs in some genetic backgrounds. Finally, we used the system to introduce unique tags at edited sites.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fang Zhao
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans. mSphere 2017; 2:mSphere00167-17. [PMID: 28808688 PMCID: PMC5549176 DOI: 10.1128/msphere.00167-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
Regulated erroneous protein translation (adaptive mistranslation) increases proteome diversity and produces advantageous phenotypic variability in the human pathogen Candida albicans. It also increases fitness in the presence of fluconazole, but the underlying molecular mechanism is not understood. To address this question, we evolved hypermistranslating and wild-type strains in the absence and presence of fluconazole and compared their fluconazole tolerance and resistance trajectories during evolution. The data show that mistranslation increases tolerance and accelerates the acquisition of resistance to fluconazole. Genome sequencing, array-based comparative genome analysis, and gene expression profiling revealed that during the course of evolution in fluconazole, the range of mutational and gene deregulation differences was distinctively different and broader in the hypermistranslating strain, including multiple chromosome duplications, partial chromosome deletions, and polyploidy. Especially, the increased accumulation of loss-of-heterozygosity events, aneuploidy, translational and cell surface modifications, and differences in drug efflux seem to mediate more rapid drug resistance acquisition under mistranslation. Our observations support a pivotal role for adaptive mistranslation in the evolution of drug resistance in C. albicans. IMPORTANCE Infectious diseases caused by drug-resistant fungi are an increasing threat to public health because of the high mortality rates and high costs associated with treatment. Thus, understanding of the molecular mechanisms of drug resistance is of crucial interest for the medical community. Here we investigated the role of regulated protein mistranslation, a characteristic mechanism used by C. albicans to diversify its proteome, in the evolution of fluconazole resistance. Such codon ambiguity is usually considered highly deleterious, yet recent studies found that mistranslation can boost adaptation in stressful environments. Our data reveal that CUG ambiguity diversifies the genome in multiple ways and that the full spectrum of drug resistance mechanisms in C. albicans goes beyond the traditional pathways that either regulate drug efflux or alter the interactions of drugs with their targets. The present work opens new avenues to understand the molecular and genetic basis of microbial drug resistance.
Collapse
|
21
|
Marker Recycling in Candida albicans through CRISPR-Cas9-Induced Marker Excision. mSphere 2017; 2:mSphere00050-17. [PMID: 28317025 PMCID: PMC5352831 DOI: 10.1128/msphere.00050-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 01/30/2023] Open
Abstract
It is critical to be able to alter genes in order to elucidate their functions. These alterations often rely upon markers that allow selection for a rare cell in a population that has incorporated a piece of DNA. The number of alterations that can be accomplished is thus limited by the number of selection markers that are available. This limitation is circumvented by marker recycling strategies, in which a marker is eliminated after its initial use. Then, the marker can be used again. In this report, we describe a new marker recycling strategy that is enabled by recently developed CRISPR-Cas9 technology. We describe here a new approach to marker recycling, a controlled sequence of steps in which a genetic marker is selected and then lost. Marker recycling is important for genetic manipulation, because it allows a single selection marker to be used repeatedly. Our approach relies upon the ability of the CRISPR-Cas9 system to make a targeted double-strand break in DNA and the expectation that a double-strand break within a selection marker may promote recombination between directly repeated sequences that flank the marker. We call the approach CRISPR-Cas9-induced marker excision (CRIME). We tested the utility of this approach with the fungal pathogen Candida albicans, which is typically diploid. We used two selection markers, modified to include flanking direct repeats. In a proof-of-principle study, we created successive homozygous deletions in three genes through use of the two markers and had one of the markers available in the final strain for further selection and recycling. This strategy will accelerate the creation of multiple-mutant strains in C. albicans. CRISPR-Cas9 systems have been applied to many organisms, so the genetic design principles described here may be broadly applicable. IMPORTANCE It is critical to be able to alter genes in order to elucidate their functions. These alterations often rely upon markers that allow selection for a rare cell in a population that has incorporated a piece of DNA. The number of alterations that can be accomplished is thus limited by the number of selection markers that are available. This limitation is circumvented by marker recycling strategies, in which a marker is eliminated after its initial use. Then, the marker can be used again. In this report, we describe a new marker recycling strategy that is enabled by recently developed CRISPR-Cas9 technology.
Collapse
|
22
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Bommanavar SB, Gugwad S, Malik N. Phenotypic switch: The enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol 2017; 21:82-86. [PMID: 28479692 PMCID: PMC5406825 DOI: 10.4103/0973-029x.203781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida albicans represents the most common commensal and opportunistic fungal pathogen colonizing humans. As a member of the normal microflora, it is present on the skin and the mucous membranes of the upper respiratory tract, gastrointestinal tract and female genital tracts. It is therefore not transmitted. It lies in wait for a change in some aspect of the host physiology that normally suppress growth and invasiveness through an enigmatic phenomenon called Phenotypic Switch System or White-Opaque Transition. This system involves reversible and heritable switching between alternative cellular phenotypes. White–opaque switching in Candida albicans was first discovered in 1987. This was initially identified in strain WO-1. Switching has been demonstrated to occur at sites of infection and to occur between recurrent episodes of infection in select cases esp. AIDS and diabetes.
Collapse
Affiliation(s)
- Sushma Basavaraj Bommanavar
- Department of Oral Pathology and Microbiology and Forensic Odontology, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad, Maharashtra, India
| | - Sachin Gugwad
- Department of Pedodontics and Preventive Dentistry, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad, Maharashtra, India
| | - Neelima Malik
- Department of Oral and Maxillofacial Surgery, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad, Maharashtra, India
| |
Collapse
|
24
|
Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host-Pathogen Interaction: A Review. Int J Mol Sci 2016; 17:ijms17101643. [PMID: 27763544 PMCID: PMC5085676 DOI: 10.3390/ijms17101643] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.
Collapse
|
25
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
26
|
Abstract
Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.
Collapse
|
27
|
Scaduto CM, Bennett RJ. Candida albicans the chameleon: transitions and interactions between multiple phenotypic states confer phenotypic plasticity. Curr Opin Microbiol 2015; 26:102-8. [PMID: 26189047 DOI: 10.1016/j.mib.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
Abstract
The ability of microbial cells to exist in multiple states is a ubiquitous property that promotes adaptation and survival. This phenomenon has been extensively studied in the opportunistic pathogen Candida albicans, which can transition between multiple phenotypic states in response to environmental signals. C. albicans normally exists as a commensal in the human body, but can also cause debilitating mucosal infections or life-threatening systemic infections. The ability to switch between cellular forms contributes to C. albicans' capacity to infect different host niches, and strictly regulates the program of sexual mating. We review the unique properties associated with different phenotypic states, as well as how interactions between cells in different states can further augment microbial behavior.
Collapse
Affiliation(s)
| | - Richard J Bennett
- Brown University, 171 Meeting St, Providence, RI 02912, United States.
| |
Collapse
|
28
|
Pendrak ML, Roberts DD. Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions. PLoS One 2015; 10:e0126919. [PMID: 26039220 PMCID: PMC4454550 DOI: 10.1371/journal.pone.0126919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022] Open
Abstract
Transitions between yeast and hyphae are essential for Candida albicans pathogenesis. The genetic programs that regulate its hyphal development can be distinguished by embedded versus aerobic surface agar invasion. Hbr1, a regulator of white-opaque switching, is also a positive and negative regulator of hyphal invasion. During embedded growth at 24°C, an HBR1/hbr1 strain formed constitutively filamentous colonies throughout the matrix, resembling EFG1 null colonies, and a subset of long unbranched hyphal aggregates enclosed in a spindle-shaped capsule. Inhibition of adenylate cyclase with farnesol perturbed the filamentation of HBR1/hbr1 cells producing cytokinesis-defective hyphae whereas farnesol treated EFG1 null cells produced abundant opaque-like cells. Point mutations in the Hbr1 ATP-binding domain caused distinct filamentation phenotypes including uniform radial hyphae, hyphal sprouts, and massive yeast cell production. Conversely, aerobic surface colonies of the HBR1 heterozygote on Spider and GlcNAc media lacked filamentation that could be rescued by growth under low (5%) O2. Consistent with these morphogenesis defects, the HBR1 heterozygote exhibited attenuated virulence in a mouse candidemia model. These data define Hbr1 as an ATP-dependent positive and negative regulator of hyphal development that is sensitive to hypoxia.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 2A33, Bethesda, MD, 20892-1500, United States of America
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 2A33, Bethesda, MD, 20892-1500, United States of America
| |
Collapse
|
29
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
30
|
Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 2015; 4:e00662. [PMID: 25646566 PMCID: PMC4383195 DOI: 10.7554/elife.00662] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is both a member of the healthy human microbiome
and a major pathogen in immunocompromised individuals. Infections are typically
treated with azole inhibitors of ergosterol biosynthesis often leading to drug
resistance. Studies in clinical isolates have implicated multiple mechanisms in
resistance, but have focused on large-scale aberrations or candidate genes, and do
not comprehensively chart the genetic basis of adaptation. Here, we leveraged
next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients.
We detected newly selected mutations, including single-nucleotide polymorphisms
(SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events
were commonly associated with acquired resistance, and SNPs in 240 genes may be
related to host adaptation. Conversely, most aneuploidies were transient and did not
correlate with drug resistance. Our analysis also shows that isolates also varied in
adherence, filamentation, and virulence. Our work reveals new molecular mechanisms
underlying the evolution of drug resistance and host adaptation. DOI:http://dx.doi.org/10.7554/eLife.00662.001 Nearly all humans are infected with the fungus Candida albicans. In
most people, the infection does not produce any symptoms because their immune system
is able to counteract the fungus' attempts to spread around the body. However, if the
balance between fungal attack and body defence fails, the fungus is able to spread,
which can lead to serious disease that is fatal in 42% of cases. How does C. albicans outcompete the body's defences to cause
disease? This is a pertinent question because the most effective antifungal
medicines—including the drug fluconazole—do not kill the fungus; they
only stop it from growing. This gives the fungus time to develop resistance to the
drug by becoming able to quickly replace the fungal proteins the drug destroys, or to
efficiently remove the drug from its cells. In this study, Ford et al. studied the changes that occur in the DNA of C.
albicans over time in patients who are being treated with fluconazole.
Ford et al. took 43 samples of C. albicans from 11 patients with
weakened immune systems. The experiments show that the fungus samples collected early
on were more sensitive to the drug than the samples collected later. In most cases, the genetic data suggest that the infections begin with a single
fungal cell; the cells in the later samples are its offspring. Despite this, there is
a lot of genetic variation between samples from the same patient, which indicates
that the fungus is under pressure to become more resistant to the drug. There were
240 genes—including those that can alter the surface on the fungus cells to
make it better at evading the host immune system—in which small changes
occurred over time in three or more patients. Laboratory tests revealed that many of
these genes are likely important for the fungus to survive in an animal host in the
presence of the drug. C. albicans cells usually have two genetically distinct copies of
every gene. Ford et al. found that for some genes—including some that make
surface components or are involved in expelling drugs from cells—the loss of
genetic information from one copy, so that both copies become identical, is linked to
resistance to fluconazole. However, the gain of whole or partial
chromosomes—which contain large numbers of genes—is not linked to
resistance, but may provide additional genetic material for generating diversity in
the yeast population that may help the cells to evolve resistance in the future. These experiments have identified many new candidate genes that are important for
drug resistance and evading the host immune system, and which could be used to guide
the development of new therapeutics to treat these life-threatening infections. DOI:http://dx.doi.org/10.7554/eLife.00662.002
Collapse
Affiliation(s)
- Christopher B Ford
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jason M Funt
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Luca Issi
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | | | | | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Bi Yu Li
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Theodore C White
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, United States
| | - Christina Cuomo
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Aviv Regev
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
31
|
Muzzey D, Schwartz K, Weissman JS, Sherlock G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 2015; 14:R97. [PMID: 24025428 PMCID: PMC4054093 DOI: 10.1186/gb-2013-14-9-r97] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 12/31/2022] Open
Abstract
Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution.
Collapse
|
32
|
Goranov AI, Madhani HD. Functional profiling of human fungal pathogen genomes. Cold Spring Harb Perspect Med 2014; 5:a019596. [PMID: 25377143 DOI: 10.1101/cshperspect.a019596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach.
Collapse
Affiliation(s)
- Alexi I Goranov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
33
|
Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci U S A 2014; 111:E4851-8. [PMID: 25349420 DOI: 10.1073/pnas.1416014111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.
Collapse
|
34
|
Abstract
Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity.
Collapse
Affiliation(s)
- Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
35
|
Heitman J, Carter DA, Dyer PS, Soll DR. Sexual reproduction of human fungal pathogens. Cold Spring Harb Perspect Med 2014; 4:4/8/a019281. [PMID: 25085958 DOI: 10.1101/cshperspect.a019281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dee A Carter
- School of Molecular Bioscience, University of Sydney, Sydney NSW 2006, Australia
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - David R Soll
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Shahana S, Childers DS, Ballou ER, Bohovych I, Odds FC, Gow NAR, Brown AJP. New Clox Systems for rapid and efficient gene disruption in Candida albicans. PLoS One 2014; 9:e100390. [PMID: 24940603 PMCID: PMC4062495 DOI: 10.1371/journal.pone.0100390] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
Precise genome modification is essential for the molecular dissection of Candida albicans, and is yielding invaluable information about the roles of specific gene functions in this major fungal pathogen of humans. C. albicans is naturally diploid, unable to undergo meiosis, and utilizes a non-canonical genetic code. Hence, specialized tools have had to be developed for gene disruption in C. albicans that permit the deletion of both target alleles, and in some cases, the recycling of the Candida-specific selectable markers. Previously, we developed a tool based on the Cre recombinase, which recycles markers in C. albicans with 90–100% efficiency via site-specific recombination between loxP sites. Ironically, the utility of this system was hampered by the extreme efficiency of Cre, which prevented the construction in Escherichia coli of stable disruption cassettes carrying a methionine-regulatable CaMET3p-cre gene flanked by loxP sites. Therefore, we have significantly enhanced this system by engineering new Clox cassettes that carry a synthetic, intron-containing cre gene. The Clox kit facilitates efficient transformation and marker recycling, thereby simplifying and accelerating the process of gene disruption in C. albicans. Indeed, homozygous mutants can be generated and their markers resolved within two weeks. The Clox kit facilitates strategies involving single marker recycling or multi-marker gene disruption. Furthermore, it includes the dominant NAT1 marker, as well as URA3, HIS1 and ARG4 cassettes, thereby permitting the manipulation of clinical isolates as well as genetically marked strains of C. albicans. The accelerated gene disruption strategies afforded by this new Clox system are likely to have a profound impact on the speed with which C. albicans pathobiology can be dissected.
Collapse
Affiliation(s)
- Shahida Shahana
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Elizabeth R. Ballou
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Iryna Bohovych
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Frank C. Odds
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.
Collapse
|
38
|
Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W, Cao C, Zhang Q, Zhong J, Huang G. Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation. PLoS Biol 2014; 12:e1001830. [PMID: 24691005 PMCID: PMC3972085 DOI: 10.1371/journal.pbio.1001830] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
This study describes a novel “white-gray-opaque” tristable phenotypic switching system in the human fungal pathogen Candida albicans, revealing additional complexity in this organism's ability to adapt to changing environments. Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus. The capacity of the yeast Candida albicans to grow in several cellular forms—a phenomenon known as phenotypic plasticity—is critical for its survival and for its ability to thrive and cause infection in the human host. In this study, we report a novel form of C. albicans, the “gray” phenotype, which may enhance fitness and confer an adaptive advantage for this important pathogenic yeast in certain host environments. The gray cell type, together with the previously discovered “white” and “opaque” cell types, forms a tristable phenotypic switching system. The three phenotypes differ in their cellular and colony appearance, their global transcriptional profiles, their production of secreted aspartyl proteinases (enzymes that degrade host tissues and release nutrients), and their virulence in different infection models. Moreover, gray cells exhibit a level of mating competency that is intermediate between that of white and opaque cells. We further demonstrate that two key transcriptional regulators, Wor1 and Efg1, play central roles in the regulation of the “white-gray-opaque” tristable transitions. Our study reveals a multi-stable and heritable switching system, indicating that the adoption of distinct morphological forms in response to environmental change could be much more elaborate than previously thought.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California, United States of America
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Soll DR. The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol 2014; 6:22993. [PMID: 24455104 PMCID: PMC3895265 DOI: 10.3402/jom.v6.22993] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 11/14/2022] Open
Abstract
The "white-opaque" transition in Candida albicans was discovered in 1987. For the next fifteen years, a significant body of knowledge accumulated that included differences between the cell types in gene expression, cellular architecture and virulence in cutaneous and systemic mouse models. However, it was not until 2002 that we began to understand the role of switching in the life history of this pathogen, the role of the mating type locus and the molecular pathways that regulated it. Then in 2006, both the master switch locus WORI and the pheromone-induced white cell biofilm were discovered. Since that year, a number of new observations on the regulation and biology of switching have been made that have significantly increased the perceived complexity of this fascinating phenotypic transition.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology and College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Yáñez-Carrillo P, Robledo-Márquez KA, Ramírez-Zavaleta CY, De Las Peñas A, Castaño I. The mating type-like loci of Candida glabrata. Rev Iberoam Micol 2014; 31:30-4. [DOI: 10.1016/j.riam.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022] Open
|
41
|
Abstract
Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.
Collapse
|
42
|
Connolly LA, Riccombeni A, Grózer Z, Holland LM, Lynch DB, Andes DR, Gácser A, Butler G. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol 2013; 90:36-53. [PMID: 23895281 PMCID: PMC3912905 DOI: 10.1111/mmi.12345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/30/2022]
Abstract
Efg1 (a member of the APSES family) is an important regulator of hyphal growth and of the white-to-opaque transition in Candida albicans and very closely related species. We show that in Candida parapsilosis Efg1 is a major regulator of a different morphological switch at the colony level, from a concentric to smooth morphology. The rate of switching is at least 20-fold increased in an efg1 knockout relative to wild type. Efg1 deletion strains also have reduced biofilm formation, attenuated virulence in an insect model, and increased sensitivity to SDS and caspofungin. Biofilm reduction is more dramatic in in vitro than in in vivo models. An Efg1 paralogue (Efh1) is restricted to Candida species, and does not regulate concentric-smooth phenotype switching, biofilm formation or stress response. We used ChIP-seq to identify the Efg1 regulon. A total of 931 promoter regions bound by Efg1 are highly enriched for transcription factors and regulatory proteins. Efg1 also binds to its own promoter, and negatively regulates its expression. Efg1 targets are enriched in binding sites for 93 additional transcription factors, including Ndt80. Our analysis suggests that Efg1 has an ancient role as regulator of development in fungi, and is central to several regulatory networks.
Collapse
Affiliation(s)
- Leona A Connolly
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Alessandro Riccombeni
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Zsuzsana Grózer
- Department of Microbiology, University of SzegedH-6726, Szeged Kozep fasor 52, Hungary
| | - Linda M Holland
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Denise B Lynch
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - David R Andes
- Departments of Medicine and Microbiology and Immunology, University of WisconsinMadison, WI, USA
| | - Attila Gácser
- Department of Microbiology, University of SzegedH-6726, Szeged Kozep fasor 52, Hungary
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| |
Collapse
|
43
|
Gómez-Raja J, Larriba G. Reprint of Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 95:448-54. [PMID: 24055541 DOI: 10.1016/j.mimet.2013.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
44
|
Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet 2013; 45:1088-91. [PMID: 23892606 PMCID: PMC3758371 DOI: 10.1038/ng.2710] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
Among ~5,000,000 fungal species,1Candida albicans is exceptional in its lifelong association with humans, either within the gastrointestinal microbiome or as an invasive pathogen.2 Opportunistic infections are generally ascribed to defective host immunity 3 but may require specific microbial programs. Here, we report that exposure of C. albicans to the mammalian gut triggers a developmental switch, driven by the Wor1 transcription factor, to a commensal cell type. Wor1 expression was previously observed only in rare genetic backgrounds,4–6 where it controls a white-opaque switch for mating.4–7 We show that passage of wild-type cells through the murine gastrointestinal tract triggers WOR1 expression and a novel phenotypic switch. The resulting GUT (Gastrointestinally-IndUced Transition) cells differ morphologically and functionally from previously defined cell types, including opaque, and express a transcriptome that is optimized for the digestive tract. The white-GUT switch illuminates how a microorganism utilizes distinct genetic programs to transition between commensalism and invasive pathogenesis.
Collapse
Affiliation(s)
- Kalyan Pande
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
45
|
Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. EUKARYOTIC CELL 2013; 12:1293-304. [PMID: 23873866 DOI: 10.1128/ec.00137-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The multisubunit eukaryotic Mediator complex integrates diverse positive and negative gene regulatory signals and transmits them to the core transcription machinery. Mutations in individual subunits within the complex can lead to decreased or increased transcription of certain subsets of genes, which are highly specific to the mutated subunit. Recent studies suggest a role for Mediator in epigenetic silencing. Using white-opaque morphological switching in Candida albicans as a model, we have shown that Mediator is required for the stability of both the epigenetic silenced (white) and active (opaque) states of the bistable transcription circuit driven by the master regulator Wor1. Individual deletions of eight C. albicans Mediator subunits have shown that different Mediator subunits have dramatically diverse effects on the directionality, frequency, and environmental induction of epigenetic switching. Among the Mediator deletion mutants analyzed, only Med12 has a steady-state transcriptional effect on the components of the Wor1 circuit that clearly corresponds to its effect on switching. The MED16 and MED9 genes have been found to be among a small subset of genes that are required for the stability of both the white and opaque states. Deletion of the Med3 subunit completely destabilizes the opaque state, even though the Wor1 transcription circuit is intact and can be driven by ectopic expression of Wor1. The highly impaired ability of the med3 deletion mutant to mate, even when Wor1 expression is ectopically induced, reveals that the activation of the Wor1 circuit can be decoupled from the opaque state and one of its primary biological consequences.
Collapse
|
46
|
Maguire SL, ÓhÉigeartaigh SS, Byrne KP, Schröder MS, O’Gaora P, Wolfe KH, Butler G. Comparative genome analysis and gene finding in Candida species using CGOB. Mol Biol Evol 2013; 30:1281-91. [PMID: 23486613 PMCID: PMC3649674 DOI: 10.1093/molbev/mst042] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Candida Gene Order Browser (CGOB) was developed as a tool to visualize and analyze synteny relationships in multiple Candida species, and to provide an accurate, manually curated set of orthologous Candida genes for evolutionary analyses. Here, we describe major improvements to CGOB. The underlying structure of the database has been changed significantly. Genomic features are now based directly on genome annotations rather than on protein sequences, which allows non-protein features such as centromere locations in Candida albicans and tRNA genes in all species to be included. The data set has been expanded to 13 species, including genomes of pathogens (C. albicans, C. parapsilosis, C. tropicalis, and C. orthopsilosis), and those of xylose-degrading species with important biotechnological applications (C. tenuis, Scheffersomyces stipitis, and Spathaspora passalidarum). Updated annotations of C. parapsilosis, C. dubliniensis, and Debaryomyces hansenii have been incorporated. We discovered more than 1,500 previously unannotated genes among the 13 genomes, ranging in size from 29 to 3,850 amino acids. Poorly conserved and rapidly evolving genes were also identified. Re-analysis of the mating type loci of the xylose degraders suggests that C. tenuis is heterothallic, whereas both Spa. passalidarum and S. stipitis are homothallic. As well as hosting the browser, the CGOB website (http://cgob.ucd.ie) gives direct access to all the underlying genome annotations, sequences, and curated orthology data.
Collapse
Affiliation(s)
- Sarah L. Maguire
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | - Kevin P. Byrne
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Markus S. Schröder
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Peadar O’Gaora
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kenneth H. Wolfe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Geraldine Butler
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Gómez-Raja J, Larriba G. Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 94:47-53. [PMID: 23631908 DOI: 10.1016/j.mimet.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
48
|
Abstract
Biofilm formation by Candida albicans on medically implanted devices poses a significant clinical challenge. Here, we compared biofilm-associated gene expression in two clinical C. albicans isolates, SC5314 and WO-1, to identify shared gene regulatory responses that may be functionally relevant. Among the 62 genes most highly expressed in biofilms relative to planktonic (suspension-grown) cells, we were able to recover insertion mutations in 25 genes. Twenty mutants had altered biofilm-related properties, including cell substrate adherence, cell-cell signaling, and azole susceptibility. We focused on one of the most highly upregulated genes in our biofilm proles, RHR2, which specifies the glycerol biosynthetic enzyme glycerol-3-phosphatase. Glycerol is 5-fold-more abundant in biofilm cells than in planktonic cells, and an rhr2Δ/Δ strain accumulates 2-fold-less biofilm glycerol than does the wild type. Under in vitro conditions, the rhr2Δ/Δ mutant has reduced biofilm biomass and reduced adherence to silicone. The rhr2Δ/Δ mutant is also severely defective in biofilm formation in vivo in a rat catheter infection model. Expression profiling indicates that the rhr2Δ/Δ mutant has reduced expression of cell surface adhesin genes ALS1, ALS3, and HWP1, as well as many other biofilm-upregulated genes. Reduced adhesin expression may be the cause of the rhr2Δ/Δ mutant biofilm defect, because overexpression of ALS1, ALS3, or HWP1 restores biofilm formation ability to the mutant in vitro and in vivo. Our findings indicate that internal glycerol has a regulatory role in biofilm gene expression and that adhesin genes are among the main functional Rhr2-regulated genes. Candida albicans is a major fungal pathogen, and infection can arise from the therapeutically intractable biofilms that it forms on medically implanted devices. It stands to reason that genes whose expression is induced during biofilm growth will function in the process, and our analysis of 25 such genes confirms that expectation. One gene is involved in synthesis of glycerol, a small metabolite that we find is abundant in biofilm cells. The impact of glycerol on biofilm formation is regulatory, not solely metabolic, because it is required for expression of numerous biofilm-associated genes. Restoration of expression of three of these genes that specify cell surface adhesins enables the glycerol-synthetic mutant to create a biofilm. Our findings emphasize the significance of metabolic pathways as therapeutic targets, because their disruption can have both physiological and regulatory consequences.
Collapse
|
49
|
Tsai PW, Chen YT, Hsu PC, Lan CY. Study of Candida albicans and its interactions with the host: A mini review. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
50
|
Tscherner M, Stappler E, Hnisz D, Kuchler K. The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis inCandida albicans. Mol Microbiol 2012; 86:1197-214. [DOI: 10.1111/mmi.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Michael Tscherner
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Eva Stappler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Denes Hnisz
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Karl Kuchler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| |
Collapse
|