1
|
Mohammad Karim A. Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus. Pharmaceutics 2024; 16:1442. [PMID: 39598565 PMCID: PMC11597675 DOI: 10.3390/pharmaceutics16111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder worldwide. There have been tremendous efforts to find a safe and prolonged effective therapy for its treatment. Peptide hormones, from certain organisms in the human body, as the pharmaceutical agents, have shown outstanding profiles of efficacy and safety in plasma glucose regulation. Their therapeutic promises have undergone intensive investigations via examining their physicochemical and pharmacokinetic properties. Their major drawback is their short half-life in vivo. To address this challenge, researchers have recently started to apply the state-of-the-art molecular self-assembly on peptide hormones to form nanofibrillar structures, as a smart nanotherapeutic drug delivery technique, to tremendously enhance their prolonged bioactivity in vivo. This revolutionary therapeutic approach would significantly improve patient compliance. First, this review provides a comprehensive summary on the pathophysiology of T2DM, various efforts to treat this chronic disorder, and the limitations and drawbacks of these treatment approaches. Next, this review lays out detailed insights on various aspects of peptide self-assembly: adverse effects, potential applications in nanobiotechnology, thermodynamics and kinetics of the process, as well as the molecular structures of the self-assembled configurations. Furthermore, this review elucidates the recent efforts on applying reversible human-derived peptide self-assembly to generate highly organized smart nanostructured drug formulations known as nanofibrils to regulate and prolong the bioactivity of the human gut hormone peptides in vivo to treat T2DM. Finally, this review highlights the future research directions to advance the knowledge on the state-of-the-art peptide self-assembly process to apply the revolutionary smart nanotherapeutics for treatment of chronic disorders such as T2DM with highly improved patient compliance.
Collapse
Affiliation(s)
- Alireza Mohammad Karim
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J. J. Thomson Avenue, Cambridge CB3 0FF, UK
| |
Collapse
|
2
|
Strach M, Koch F, Fiedler S, Liebeton K, Graumann PL. Protein secretion zones during overexpression of amylase within the Gram-positive cell wall. BMC Biol 2023; 21:206. [PMID: 37794427 PMCID: PMC10552229 DOI: 10.1186/s12915-023-01684-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Whereas the translocation of proteins across the cell membrane has been thoroughly investigated, it is still unclear how proteins cross the cell wall in Gram-positive bacteria, which are widely used for industrial applications. We have studied the secretion of α-amylase AmyE within two different Bacillus strains, B. subtilis and B. licheniformis. RESULTS We show that a C-terminal fusion of AmyE with the fluorescent reporter mCherry is secreted via discrete patches showing very low dynamics. These are visible at many places within the cell wall for many minutes. Expression from a high copy number plasmid was required to be able to see these structures we term "secretion zones". Zones corresponded to visualized AmyE activity on the surface of cells, showing that they release active enzymes. They overlapped with SecA signals but did not frequently co-localize with the secretion ATPase. Single particle tracking showed higher dynamics of SecA and of SecDF, involved in AmyE secretion, at the cell membrane than AmyE. These experiments suggest that SecA initially translocates AmyE molecules through the cell membrane, and then diffuses to a different translocon. Single molecule tracking of SecA suggests the existence of three distinct diffusive states of SecA, which change during AmyE overexpression, but increased AmyE secretion does not appear to overwhelm the system. CONCLUSIONS Because secretion zones were only found during the transition to and within the stationary phase, diffusion rather than passive transport based on cell wall growth from inside to outside may release AmyE and, thus, probably secreted proteins in general. Our findings suggest active transport through the cell membrane and slow, passive transition through the cell wall, at least for overexpressed proteins, in bacteria of the genus Bacillus.
Collapse
Affiliation(s)
- Manuel Strach
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Felicitas Koch
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Svenja Fiedler
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Klaus Liebeton
- BRAIN Biotech AG, Darmstädter Str. 34-36, Zwingenberg, 64673, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany.
| |
Collapse
|
3
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
4
|
Sokolova D, Smolarska A, Bartnik P, Rabalski L, Kosinski M, Narajczyk M, Krzyżanowska DM, Rajewska M, Mruk I, Czaplewska P, Jafra S, Czajkowski R. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci Rep 2023; 13:7534. [PMID: 37160956 PMCID: PMC10169776 DOI: 10.1038/s41598-023-34803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.
Collapse
Affiliation(s)
- Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Anna Smolarska
- Department of Cancer Biology, Institute of Biology, Warsaw, University of Life Sciences (SGGW), J. Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Przemysław Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Inez Mruk
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
5
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
6
|
Adamczyk M, Lewicka E, Szatkowska R, Nieznanska H, Ludwiczak J, Jasiński M, Dunin-Horkawicz S, Sitkiewicz E, Swiderska B, Goch G, Jagura-Burdzy G. Revealing biophysical properties of KfrA-type proteins as a novel class of cytoskeletal, coiled-coil plasmid-encoded proteins. BMC Microbiol 2021; 21:32. [PMID: 33482722 PMCID: PMC7821693 DOI: 10.1186/s12866-020-02079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02079-w.
Collapse
Affiliation(s)
- M Adamczyk
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - E Lewicka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - R Szatkowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - H Nieznanska
- Nencki Institute of Experimental Biology PAS, Laboratory of Electron Microscopy, Pasteura 3, 02-093, Warsaw, Poland
| | - J Ludwiczak
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland.,Nencki Institute of Experimental Biology, Laboratory of Bioinformatics, Pasteura 3, 02-093, Warsaw, Poland
| | - M Jasiński
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - S Dunin-Horkawicz
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - E Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - B Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Goch
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
7
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Dersch S, Reimold C, Stoll J, Breddermann H, Heimerl T, Defeu Soufo HJ, Graumann PL. Polymerization of Bacillus subtilis MreB on a lipid membrane reveals lateral co-polymerization of MreB paralogs and strong effects of cations on filament formation. BMC Mol Cell Biol 2020; 21:76. [PMID: 33148162 PMCID: PMC7641798 DOI: 10.1186/s12860-020-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MreB is a bacterial ortholog of actin and forms mobile filaments underneath the cell membrane, perpendicular to the long axis of the cell, which play a crucial role for cell shape maintenance. We wished to visualize Bacillus subtilis MreB in vitro and therefore established a protocol to obtain monomeric protein, which could be polymerized on a planar membrane system, or associated with large membrane vesicles. RESULTS Using a planar membrane system and electron microscopy, we show that Bacillus subtilis MreB forms bundles of filaments, which can branch and fuse, with an average width of 70 nm. Fluorescence microscopy of non-polymerized YFP-MreB, CFP-Mbl and mCherry-MreBH proteins showed uniform binding to the membrane, suggesting that 2D diffusion along the membrane could facilitate filament formation. After addition of divalent magnesium and calcium ions, all three proteins formed highly disordered sheets of filaments that could split up or merge, such that at high protein concentration, MreB and its paralogs generated a network of filaments extending away from the membrane. Filament formation was positively affected by divalent ions and negatively by monovalent ions. YFP-MreB or CFP-Mbl also formed filaments between two adjacent membranes, which frequently has a curved appearance. New MreB, Mbl or MreBH monomers could add to the lateral side of preexisting filaments, and MreB paralogs co-polymerized, indicating direct lateral interaction between MreB paralogs. CONCLUSIONS Our data show that B. subtilis MreB paralogs do not easily form ordered filaments in vitro, possibly due to extensive lateral contacts, but can co-polymerise. Monomeric MreB, Mbl and MreBH uniformly bind to a membrane, and form irregular and frequently split up filamentous structures, facilitated by the addition of divalent ions, and counteracted by monovalent ions, suggesting that intracellular potassium levels may be one important factor to counteract extensive filament formation and filament splitting in vivo.
Collapse
Affiliation(s)
- Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Christian Reimold
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Joshua Stoll
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | | | - Thomas Heimerl
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Biologie, Karl-von-Frisch-Straße 10, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Hervé Joel Defeu Soufo
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany. .,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
9
|
Dersch S, Mehl J, Stuckenschneider L, Mayer B, Roth J, Rohrbach A, Graumann PL. Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct Adaptive Dynamics of MreB and of Cell Wall-Synthesis Enzymes. Front Microbiol 2020; 11:1946. [PMID: 32973704 PMCID: PMC7468405 DOI: 10.3389/fmicb.2020.01946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022] Open
Abstract
The movement of filamentous, actin-like MreB and of enzymes synthesizing the bacterial cell wall has been proposed to be highly coordinated. We have investigated the motion of MreB and of RodA and PbpH cell wall synthesis enzymes at 500 ms and at 20 ms time scales, allowing us to compare the motion of entire MreB filaments as well as of single molecules with that of the two synthesis proteins. While all three proteins formed assemblies that move with very similar trajectory orientation and with similar velocities, their trajectory lengths differed considerably, with PbpH showing shortest and MreB longest trajectories. These experiments suggest different on/off rates for RodA and PbpH at the putative peptidoglycan-extending machinery (PGEM), and during interaction with MreB filaments. Single molecule tracking revealed distinct slow-moving and freely diffusing populations of PbpH and RodA, indicating that they change between free diffusion and slow motion, indicating a dynamic interaction with the PGEM complex. Dynamics of MreB molecules and the orientation and speed of filaments changed markedly after induction of salt stress, while there was little change for RodA and PbpH single molecule dynamics. During the stress adaptation phase, cells continued to grow and extended the cell wall, while MreB formed fewer and more static filaments. Our results show that cell wall synthesis during stress adaptation occurs in a mode involving adaptation of MreB dynamics, and indicate that Bacillus subtilis cell wall extension involves an interplay of enzymes with distinct binding kinetics to sites of active synthesis.
Collapse
Affiliation(s)
- Simon Dersch
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Univetsität Marburg, Marburg, Germany
- Fachbereich Chemie, Philipps-Univetsität Marburg, Marburg, Germany
| | - Johanna Mehl
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lisa Stuckenschneider
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Univetsität Marburg, Marburg, Germany
- Fachbereich Chemie, Philipps-Univetsität Marburg, Marburg, Germany
| | - Benjamin Mayer
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Univetsität Marburg, Marburg, Germany
- Fachbereich Chemie, Philipps-Univetsität Marburg, Marburg, Germany
| | - Julian Roth
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Univetsität Marburg, Marburg, Germany
- Fachbereich Chemie, Philipps-Univetsität Marburg, Marburg, Germany
| |
Collapse
|
10
|
Chromosome Segregation in Bacillus subtilis Follows an Overall Pattern of Linear Movement and Is Highly Robust against Cell Cycle Perturbations. mSphere 2020; 5:5/3/e00255-20. [PMID: 32554717 PMCID: PMC7300352 DOI: 10.1128/msphere.00255-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle. Although several proteins have been identified that facilitate chromosome segregation in bacteria, no clear analogue of the mitotic machinery in eukaryotic cells has been identified. In order to investigate if recognizable patterns of segregation exist during the cell cycle, we tracked the segregation of duplicated origin regions in Bacillus subtilis for 60 min in the fastest practically achievable resolution, achieving 10-s intervals. We found that while separation occurred in random patterns, often including backwards movement, overall, segregation of loci near the origins of replication was linear for the entire cell cycle. Thus, the process of partitioning can be best described as directed motion. Simulations with entropy-driven separation of polymers synthesized by two polymerases show sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, showing that for Bacillus, segregation patterns can be modeled based on entropic forces. To test if obstacles for replication forks lead to an alteration of the partitioning pattern, we challenged cells with chemicals inducing DNA damage or blocking of topoisomerase activity. Both treatments led to a moderate slowing down of separation, but linear segregation was retained, showing that chromosome segregation is highly robust against cell cycle perturbation. IMPORTANCE We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle.
Collapse
|
11
|
Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. NANOSCALE 2020; 12:3731-3749. [PMID: 31993609 DOI: 10.1039/c9nr10700b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The actin cytoskeleton is required for the maintenance of the cell shape and viability of bacteria. It remains unknown to which extent nanoparticles (NPs) can orchestrate the mechanical instability by disrupting the cytoskeletal network in bacterial cells. Our work demonstrates that Au-Ag NPs disrupt the bacterial actin cytoskeleton specifically, fluidize the inner membrane and lead to killing of bacterial cells. In this study, we have tried to emphasize on the key parameters important for NP-cell interactions and found that the shape, specific elemental surface localization and enhanced electrostatic interaction developed due to the acquired partial positive charge by silver atoms in the aggregated NPs are some of the major factors contributing towards better NP interactions and subsequent cell death. In vivo studies in bacterial cells showed that the NPs exerted a mild perturbation of the membrane potential. However, its most striking effect was on the actin cytoskeleton MreB resulting in morphological changes in the bacterial cell shape from rods to predominantly spheres. Exposure to NPs resulted in the delocalization of MreB patches from the membrane but not the tubulin homologue FtsZ. Concomitant with the redistribution of MreB localization, a dramatic increase of membrane fluid regions was observed. Our studies reveal for the first time that Au-Ag NPs can mediate bacterial killing and disrupt the actin cytoskeletal functions in bacteria.
Collapse
Affiliation(s)
- Prajna Jena
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Gourab Bhattacharjee
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Biswarup Satpati
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Prasun Mukherjee
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
12
|
Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 2019; 5:126-140. [PMID: 31740763 DOI: 10.1038/s41564-019-0588-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.
Collapse
Affiliation(s)
| | | | | | | | - John Vollmers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Timo Kohn
- Radboud University, Nijmegen, The Netherlands
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Sonja Oberbeckmann
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | | | | | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | - Christian Jogler
- Radboud University, Nijmegen, The Netherlands. .,Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
13
|
Polarized Organization of the Cytoskeleton: Regulation by Cell Polarity Proteins. J Mol Biol 2018; 430:3565-3584. [DOI: 10.1016/j.jmb.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
|
14
|
Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2416-2427. [PMID: 29894683 DOI: 10.1016/j.bbamem.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three amphipathic cationic antimicrobial peptides (AMPs) were characterized by determining their effect on Gram-positive bacteria using Bacillus subtilis strain 168 as a model organism. These peptides were TC19 and TC84, derivatives of thrombocidin-1 (TC-1), the major AMPs of human blood platelets, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide based on human bactericidal permeability increasing protein (BPI). METHODS To elucidate the possible mode of action of the AMPs we performed a transcriptomic analysis using microarrays. Physiological analyses were performed using transmission electron microscopy (TEM), fluorescence microscopy and various B. subtilis mutants that produce essential membrane bound proteins fused to green fluorescent protein (GFP). RESULTS The transcriptome analysis showed that the AMPs induced a cell envelope stress response (cell membrane and cell wall). The cell membrane stress response was confirmed with the physiological observations that TC19, TC84 and BP2 perturb the membrane of B. subtilis. Using B. subtilis mutants, we established that the cell wall stress response is due to the delocalization of essential membrane bound proteins involved in cell wall synthesis. Other essential membrane proteins, involved in cell membrane synthesis and metabolism, were also delocalized due to alterations caused by the AMPs. CONCLUSIONS We showed that peptides TC19, TC84 and BP2 perturb the membrane causing essential proteins to delocalize, thus preventing the possible repair of the cell envelope after the initial interference with the membrane. GENERAL SIGNIFICANCE These AMPs show potential for eventual clinical application against Gram-positive bacterial cells and merit further application-oriented investigation.
Collapse
|
15
|
|
16
|
Mustafi M, Weisshaar JC. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli. mBio 2018; 9:e02143-17. [PMID: 29339430 PMCID: PMC5770553 DOI: 10.1128/mbio.02143-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022] Open
Abstract
In bacteria, elongation factor Tu is a translational cofactor that forms ternary complexes with aminoacyl-tRNA (aa-tRNA) and GTP. Binding of a ternary complex to one of four flexible L7/L12 units on the ribosome tethers a charged tRNA in close proximity to the ribosomal A site. Two sequential tests for a match between the aa-tRNA anticodon and the current mRNA codon then follow. Because one elongation cycle can occur in as little as 50 ms and the vast majority of aa-tRNA copies are not cognate with the current mRNA codon, this testing must occur rapidly. We present a single-molecule localization and tracking study of fluorescently labeled EF-Tu in live Escherichia coli Imaging at 2 ms/frame distinguishes 60% slowly diffusing EF-Tu copies (assigned as transiently bound to translating ribosome) from 40% rapidly diffusing copies (assigned as a mixture of free ternary complexes and free EF-Tu). Combining these percentages with copy number estimates, we infer that the four L7/L12 sites are essentially saturated with ternary complexes in vivo. The results corroborate an earlier inference that all four sites can simultaneously tether ternary complexes near the A site, creating a high local concentration that may greatly enhance the rate of testing of aa-tRNAs. Our data and a combinatorial argument both suggest that the initial recognition test for a codon-anticodon match occurs in less than 1 to 2 ms per aa-tRNA copy. The results refute a recent study (A. Plochowietz, I. Farrell, Z. Smilansky, B. S. Cooperman, and A. N. Kapanidis, Nucleic Acids Res 45:926-937, 2016, https://doi.org/10.1093/nar/gkw787) of tRNA diffusion in E. coli that inferred that aa-tRNAs arrive at the ribosomal A site as bare monomers, not as ternary complexes.IMPORTANCE Ribosomes catalyze translation of the mRNA codon sequence into the corresponding sequence of amino acids within the nascent polypeptide chain. Polypeptide elongation can be as fast as 50 ms per added amino acid. Each amino acid arrives at the ribosome as a ternary complex comprising an aminoacyl-tRNA (aa-tRNA), an elongation factor called EF-Tu, and GTP. There are 43 different aa-tRNAs in use, only one of which typically matches the current mRNA codon. Thus, ternary complexes must be tested very rapidly. Here we use fluorescence-based single-molecule methods that locate and track single EF-Tu copies in E. coli Fast and slow diffusive behavior determines the fraction of EF-Tu copies that are ribosome bound. We infer simultaneous tethering of ~4 ternary complexes to the ribosome, which may facilitate rapid initial testing for codon matching on a time scale of less than 1 to 2 ms per aa-tRNA.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Abstract
Glyceroglycolipids are very important in Gram-positive bacteria and cyanobacteria. In Bacillus subtilis, a model organism for the Gram-positive bacteria, the ugtP mutant, which lacks glyceroglucolipids, shows abnormal morphology. Lack of glucolipids has many consequences: abnormal localization of the cytoskeletal protein MreB and activation of some extracytoplasmic function (ECF) sigma factors (σM, σV and σX) in the log phase are two examples. Conversely, the expression of monoglucosyldiacylglycerol (MGlcDG) by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppresses the ugtP disruptant phenotype. Activation of ECF sigmas in the ugtP mutant is decreased by alMGS expression, and is suppressed to low levels by MgSO4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) are simultaneously expressed, σX activation is repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and that DGlcDG regulates σX activity. The activation of ECF sigmas is not accompanied by proteolysis of anti-σ. Thus, glyceroglucolipids may have the specific role of helping membrane proteins function by acting in the manner of chaperones.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
18
|
Vega-Cabrera LA, Guerrero A, Rodríguez-Mejía JL, Tabche ML, Wood CD, Gutiérrez-Rios RM, Merino E, Pardo-López L. Analysis of Spo0M function in Bacillus subtilis. PLoS One 2017; 12:e0172737. [PMID: 28234965 PMCID: PMC5325327 DOI: 10.1371/journal.pone.0172737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.
Collapse
Affiliation(s)
- Luz Adriana Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Luis Rodríguez-Mejía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - María Luisa Tabche
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Christopher D. Wood
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rosa-María Gutiérrez-Rios
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| |
Collapse
|
19
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|
20
|
Kuhn P, Draycheva A, Vogt A, Petriman NA, Sturm L, Drepper F, Warscheid B, Wintermeyer W, Koch HG. Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J Cell Biol 2016; 211:91-104. [PMID: 26459600 PMCID: PMC4602035 DOI: 10.1083/jcb.201502103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cotranslational transfer of nascent membrane proteins to the SecYEG translocon is facilitated by a reorientation of the SecY-bound signal recognition particle (SRP) receptor, FtsY, which accompanies the formation of a quaternary targeting complex consisting of SecYEG, FtsY, SRP, and the ribosome. Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lukas Sturm
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Rodrigues RC, Pocheron AL, Hernould M, Haddad N, Tresse O, Cappelier JM. Description of Campylobacter jejuni Bf, an atypical aero-tolerant strain. Gut Pathog 2015; 7:30. [PMID: 26594244 PMCID: PMC4653858 DOI: 10.1186/s13099-015-0077-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a leading cause of bacterial enteritis worldwide. This microaerophilic bacterium can survive in aerobic environments, suggesting it has protective mechanisms against oxidative stress. The clinical C. jejuni Bf strain is characterized by an increased resistance to oxygen. This study aimed to characterize the behavior of the clinical C. jejuni Bf strain under an aerobic atmosphere and in response to ROS-promoter agents. METHODS Growth was studied in both aerobic and microaerobic conditions using classic cultivable methods. Electronic microscopy and mreB gene expression were used to evaluate the morphology of this strain under aerobic conditions. The survival under oxidative stress was tested in the presence of different concentrations of hydrogen peroxide (H2O2) and paraquat (PQ). RESULTS The results showed that C. jejuni Bf strain can grow aerobically, unlike other strains of C. jejuni tested. Cells of C. jejuni Bf exposed to oxidative stress presented changes in morphology and the gene mreB, responsible for maintaining the bacillary cell morphology, was down-expressed. In aerobically acclimated conditions, C. jejuni Bf exhibited a higher survival rate of 52 % in the presence of H2O2 (1 mM) compared to the reference strain NCTC 11168. Concentrations above 1 mM PQ were lethal for the reference strain but not for C. jejuni Bf. CONCLUSIONS Taken together, these data highlight the resistance to oxidative stress conditions of C. jejuni Bf, indicating that this microorganism seems more adapted to survival in hostile environmental conditions.
Collapse
Affiliation(s)
- Ramila Cristiane Rodrigues
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Anne-Lise Pocheron
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Mathieu Hernould
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Nabila Haddad
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Odile Tresse
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Jean-Michel Cappelier
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| |
Collapse
|
22
|
Jahn N, Brantl S, Strahl H. Against the mainstream: the membrane-associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability. Mol Microbiol 2015; 98:651-66. [PMID: 26234942 DOI: 10.1111/mmi.13146] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 01/09/2023]
Abstract
Toxin-antitoxin loci, which encode a toxic protein alongside with either RNA or a protein able to counteract the toxicity, are widespread among archaea and bacteria. These loci are implicated in persistence, and as addiction modules to ensure stable inheritance of plasmids and phages. In type I toxin-antitoxin systems, a small RNA acts as an antitoxin, which prevents the synthesis of the toxin. Most type I toxins are small hydrophobic membrane proteins generally assumed to induce pores, or otherwise permeabilise the cytoplasmic membrane and, as a result, induce cell death by energy starvation. Here we show that this mode of action is not a conserved property of type I toxins. The analysis of the cellular toxicity caused by Bacillus subtilis prophage SPβ-encoded toxin BsrG revealed that, surprisingly, it neither dissipates membrane potential nor affects cellular ATP-levels. In contrast, BsrG strongly interferes with the cell envelope biosynthesis, causes membrane invaginations together with delocalisation of the cell wall synthesis machinery and triggers autolysis. Furthermore, efficient inhibition of protein biosynthesis is observed. These findings question the simplistic assumption that small membrane targeting toxins generally act by permeabilising the membrane.
Collapse
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| | - Henrik Strahl
- Newcastle University, Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
23
|
Scheu PD, Steinmetz PA, Dempwolff F, Graumann PL, Unden G. Polar localization of a tripartite complex of the two-component system DcuS/DcuR and the transporter DctA in Escherichia coli depends on the sensor kinase DcuS. PLoS One 2014; 9:e115534. [PMID: 25549248 PMCID: PMC4280142 DOI: 10.1371/journal.pone.0115534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when expressed without DcuS, but co-localize with DcuS when co-expressed at appropriate levels. Thus, DcuS is required for location of DctA and DcuR at the poles and formation of tripartite DctA/DcuS/DcuR sensor/regulator complexes. Vice versa, DctA, DcuR and the alternative succinate transporter DauA were not essential for polar localization of DcuS, suggesting that the polar trapping occurs by DcuS. Cardiolipin, the high curvature at the cell poles, and the cytoskeletal protein MreB were not required for polar localization. In contrast, polar localization of DcuS required the presence of the cytoplasmic PAS(C) and the kinase domains of DcuS.
Collapse
Affiliation(s)
- Patrick D. Scheu
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
| | - Philipp A. Steinmetz
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
| | - Felix Dempwolff
- Microbiology, Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- Microbiology, Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
24
|
Whitehead MP, Eagles L, Hooley P, Brown MRW. Most bacteria synthesize polyphosphate by unknown mechanisms. MICROBIOLOGY (READING, ENGLAND) 2014; 160:829-831. [PMID: 24600028 DOI: 10.1099/mic.0.075366-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Michael P Whitehead
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | - Lawrence Eagles
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | - Paul Hooley
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | | |
Collapse
|
25
|
Olshausen PV, Defeu Soufo HJ, Wicker K, Heintzmann R, Graumann PL, Rohrbach A. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport? Biophys J 2014; 105:1171-81. [PMID: 24010660 DOI: 10.1016/j.bpj.2013.07.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022] Open
Abstract
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability.
Collapse
Affiliation(s)
- Philipp V Olshausen
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Strahl H, Bürmann F, Hamoen LW. The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 2014; 5:3442. [PMID: 24603761 PMCID: PMC3955808 DOI: 10.1038/ncomms4442] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. The formation of lipid domains in eukaryotic cells is controlled by the cortical actin cytoskeleton. Here, the authors show that the bacterial actin homologue MreB has a comparable activity, influencing the formation of regions of increased fluidity that determine the distribution of membrane proteins.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK
| | - Frank Bürmann
- Max Planck Institute of Biochemistry, Chromosome Organization and Dynamics, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Leendert W Hamoen
- 1] Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle NE2 4AX, UK [2] Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
27
|
Yan B, Zhang W, Lu F, Chen Z, Han B, Jiang L. Safety of polyethylene glycol recombinant human granulocyte colony-stimulating factor in treating non-small cell lung cancer patients at I b stage. ASIAN PAC J TROP MED 2013; 6:912-5. [DOI: 10.1016/s1995-7645(13)60163-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/15/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
|
28
|
Hensel M, Klingauf J, Piehler J. Imaging the invisible: resolving cellular microcompartments by superresolution microscopy techniques. Biol Chem 2013; 394:1097-113. [DOI: 10.1515/hsz-2012-0324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/18/2013] [Indexed: 12/20/2022]
Abstract
Abstract
Unraveling the spatio-temporal organization of dynamic cellular microcompartments requires live cell imaging techniques capable of resolving submicroscopic structures. While the resolution of traditional far-field fluorescence imaging techniques is limited by the diffraction barrier, several fluorescence-based microscopy techniques providing sub-100 nm resolution have become available during the past decade. Here, we briefly introduce the optical principles of these techniques and compare their capabilities and limitations with respect to spatial and temporal resolution as well as live cell capabilities. Moreover, we summarize how these techniques contributed to a better understanding of plasma membrane microdomains, the dynamic nanoscale organization of neuronal synapses and the sub-compartmentation of microorganisms. Based on these applications, we highlight complementarity of these techniques and their potential to address specific challenges in the context of dynamic cellular microcompartments, as well as the perspectives to overcome current limitations of these methods.
Collapse
|
29
|
Lin L, Thanbichler M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken) 2013; 70:409-23. [PMID: 23852773 DOI: 10.1002/cm.21126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Abstract
Bacteria possess a diverse set of cytoskeletal proteins that mediate key cellular processes such as morphogenesis, cell division, DNA segregation, and motility. Similar to eukaryotic actin or tubulin, many of them require nucleotide binding and hydrolysis for proper polymerization and function. However, there is also a growing number of bacterial cytoskeletal elements that assemble in a nucleotide-independent manner, including intermediate filament-like structures as well several classes of bacteria-specific polymers. The members of this group form stable scaffolds that have architectural roles or act as localization factors recruiting other proteins to distinct positions within the cell. Here, we highlight the elements that constitute the nucleotide-independent cytoskeleton of bacteria and discuss their biological functions in different species.
Collapse
Affiliation(s)
- Lin Lin
- Max Planck Research Group "Prokaryotic Cell Biology", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Faculty of Biology, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
30
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
31
|
Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 2013; 89:1084-98. [PMID: 23869552 PMCID: PMC3817527 DOI: 10.1111/mmi.12335] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Centre for Bacterial Cell Biology, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | | | | | | |
Collapse
|
32
|
Chiou PY, Luo CH, Chang KC, Lin NT. Maintenance of the cell morphology by MinC in Helicobacter pylori. PLoS One 2013; 8:e71208. [PMID: 23936493 PMCID: PMC3731275 DOI: 10.1371/journal.pone.0071208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
In the model organism Escherichia coli, Min proteins are involved in regulating the division of septa formation. The computational genome analysis of Helicobacter pylori, a gram-negative microaerophilic bacterium causing gastritis and peptic ulceration, also identified MinC, MinD, and MinE. However, MinC (HP1053) shares a low identity with those of other bacteria and its function in H. pylori remains unclear. In this study, we used morphological and genetic approaches to examine the molecular role of MinC. The results were shown that an H. pylori mutant lacking MinC forms filamentous cells, while the wild-type strain retains the shape of short rods. In addition, a minC mutant regains the short rods when complemented with an intact minCHp gene. The overexpression of MinCHp in E. coli did not affect the growth and cell morphology. Immunofluorescence microscopy revealed that MinCHp forms helix-form structures in H. pylori, whereas MinCHp localizes at cell poles and pole of new daughter cell in E. coli. In addition, co-immunoprecipitation showed MinC can interact with MinD but not with FtsZ during mid-exponential stage of H. pylori. Altogether, our results show that MinCHp plays a key role in maintaining proper cell morphology and its function differs from those of MinCEc.
Collapse
Affiliation(s)
- Pei-Yu Chiou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Hung Luo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- * E-mail: (K-CC); (N-TL)
| | - Nien-Tsung Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Microbiology, Tzu Chi University, Hualien, Taiwan
- * E-mail: (K-CC); (N-TL)
| |
Collapse
|
33
|
Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 2013; 24:2340-9. [PMID: 23783036 PMCID: PMC3727927 DOI: 10.1091/mbc.e12-10-0728] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/09/2023] Open
Abstract
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
Collapse
Affiliation(s)
- Christian Reimold
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Felix Dempwolff
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
34
|
Abstract
The perspective of the cytoskeleton as a feature unique to eukaryotic organisms was overturned when homologs of the eukaryotic cytoskeletal elements were identified in prokaryotes and implicated in major cell functions, including growth, morphogenesis, cell division, DNA partitioning, and cell motility. FtsZ and MreB were the first identified homologs of tubulin and actin, respectively, followed by the discovery of crescentin as an intermediate filament-like protein. In addition, new elements were identified which have no apparent eukaryotic counterparts, such as the deviant Walker A-type ATPases, bactofilins, and several novel elements recently identified in streptomycetes, highlighting the unsuspected complexity of cytostructural components in bacteria. In vivo multidimensional fluorescence microscopy has demonstrated the dynamics of the bacterial intracellular world, and yet we are only starting to understand the role of cytoskeletal elements. Elucidating structure-function relationships remains challenging, because core cytoskeletal protein motifs show remarkable plasticity, with one element often performing various functions and one function being performed by several types of elements. Structural imaging techniques, such as cryo-electron tomography in combination with advanced light microscopy, are providing the missing links and enabling scientists to answer many outstanding questions regarding prokaryotic cellular architecture. Here we review the recent advances made toward understanding the different roles of cytoskeletal proteins in bacteria, with particular emphasis on modern imaging approaches.
Collapse
|
35
|
McGregor JE, Staniewicz LTL, Guthrie Neé Kirk SE, Donald AM. Environmental scanning electron microscopy in cell biology. Methods Mol Biol 2013; 931:493-516. [PMID: 23027020 DOI: 10.1007/978-1-62703-056-4_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.
Collapse
Affiliation(s)
- J E McGregor
- The School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
36
|
Dempwolff F, Wischhusen HM, Specht M, Graumann PL. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 2012; 12:298. [PMID: 23249255 PMCID: PMC3551649 DOI: 10.1186/1471-2180-12-298] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022] Open
Abstract
Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB), indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at the cell membrane, where they assemble even in the absence of any bacterial cofactor.
Collapse
Affiliation(s)
- Felix Dempwolff
- Mikrobiologie, Fachbereich für Biologie, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | | | | | | |
Collapse
|
37
|
Marshall WF, Young KD, Swaffer M, Wood E, Nurse P, Kimura A, Frankel J, Wallingford J, Walbot V, Qu X, Roeder AHK. What determines cell size? BMC Biol 2012; 10:101. [PMID: 23241366 PMCID: PMC3522064 DOI: 10.1186/1741-7007-10-101] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Matthew Swaffer
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Elizabeth Wood
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Paul Nurse
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
- Laboratory of Yeast Genetics and Biology, The Rockeller University, 1230 York Avenue, New York, NY 10065, USA
- The Francis Crick Institute, Euston Road 215, London, NW1 2BE, UK
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Frankel
- Department of Biology, University of Iowa, 129 E. Jefferson Street, Iowa City, IA 52242, USA
| | - John Wallingford
- HHMI & Molecular Cell and Developmental Biology, University of Texas, Austin, 78712, USA
| | - Virginia Walbot
- Virginia WalbotDepartment of Biology, Stanford University, Stanford, CA 72205, USA
| | - Xian Qu
- Xian Qu, Cornell University, 244 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| | - Adrienne HK Roeder
- Cornell University, 239 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Jain I, Lacoste D, Panda D, Padinhateeri R. History-dependent depolymerization of actin filaments. Biochemistry 2012; 51:7580-7. [PMID: 22934895 DOI: 10.1021/bi300629f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depolymerizing cytoskeletal filaments are involved in cell division, cell motility, and other cellular functions. Understanding the dynamics of depolymerization is as important as understanding the dynamics of polymerization. We study nonequilibrium depolymerization of actin filaments using a simple two-state model. We show that the polymerization history influences the dynamics of depolymerization as well as the length fluctuations during depolymerization. We also simulate depolymerization under different experimentally feasible conditions. Under conditions of constant concentration, we show that the depolymerization happens in two regimes. Under the conditions of mass conservation, the depolymerization can have three regimes.
Collapse
Affiliation(s)
- Ishutesh Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | |
Collapse
|
39
|
Chien AC, Zareh SKG, Wang YM, Levin PA. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 2012; 86:594-610. [PMID: 22931116 DOI: 10.1111/mmi.12007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/20/2022]
Abstract
How cells co-ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient-rich conditions. In nutrient-rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient-poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient-dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co-ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high-affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP-glc-dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP•UgtP and UgtP•FtsZ, fine-tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size.
Collapse
Affiliation(s)
- An-Chun Chien
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
40
|
Hoshino S, Hayashi I. Filament formation of the FtsZ/tubulin-like protein TubZ from the Bacillus cereus pXO1 plasmid. J Biol Chem 2012; 287:32103-12. [PMID: 22847006 DOI: 10.1074/jbc.m112.373803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable maintenance of low-copy-number plasmids requires partition (par) systems that consist of a nucleotide hydrolase, a DNA-binding protein, and a cis-acting DNA-binding site. The FtsZ/tubulin-like GTPase TubZ was identified as a partitioning factor of the virulence plasmids pBtoxis and pXO1 in Bacillus thuringiensis and Bacillus anthracis, respectively. TubZ exhibits high GTPase activity and assembles into polymers both in vivo and in vitro, and its "treadmilling" movement is required for plasmid stability in the cell. To investigate the molecular mechanism of pXO1 plasmid segregation by TubZ filaments, we determined the crystal structures of Bacillus cereus TubZ in apo-, GDP-, and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-bound forms at resolutions of 2.1, 1.9, and 3.3 Å, respectively. Interestingly, the slowly hydrolyzable GTP analog GTPγS was hydrolyzed to GDP in the crystal. In the post-GTP hydrolysis state, GDP-bound B. cereus TubZ forms a dimer by the head-to-tail association of individual subunits in the asymmetric unit, which is similar to the protofilament formation of FtsZ and B. thuringiensis TubZ. However, the M loop interacts with the nucleotide-binding site of the adjacent subunit and stabilizes the filament structure in a different manner, which indicates that the molecular assembly of the TubZ-related par systems is not stringently conserved. Furthermore, we show that the C-terminal tail of TubZ is required for association with the DNA-binding protein TubR. Using a combination of crystallography, site-directed mutagenesis, and biochemical analysis, our results provide the structural basis of the TubZ polymer that may drive DNA segregation.
Collapse
Affiliation(s)
- Shota Hoshino
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | |
Collapse
|
41
|
Yakhnina AA, Gitai Z. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus. Mol Microbiol 2012; 85:1090-104. [PMID: 22804814 DOI: 10.1111/j.1365-2958.2012.08159.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors.
Collapse
Affiliation(s)
- Anastasiya A Yakhnina
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | | |
Collapse
|
42
|
Staniewicz L, Donald AM, Stokes DJ, Thomson N, Sivaniah E, Grant A, Bulmer D, Khan A. The application of STEM and in situ controlled dehydration to bacterial systems using ESEM. SCANNING 2012; 34:237-246. [PMID: 22689513 DOI: 10.1002/sca.21000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/19/2011] [Indexed: 06/01/2023]
Abstract
Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and ΔmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the ΔmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type.
Collapse
Affiliation(s)
- Lech Staniewicz
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sonkaria S, Fuentes G, Verma C, Narang R, Khare V, Fischer A, Faivre D. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK. PLoS One 2012; 7:e34189. [PMID: 22586444 PMCID: PMC3346761 DOI: 10.1371/journal.pone.0034189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 12/22/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22%) and actin (18%), the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM) imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.
Collapse
Affiliation(s)
- Sanjiv Sonkaria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Souza WD. Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 2012; 107:283-93. [DOI: 10.1590/s0074-02762012000300001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brasil; Instituto Nacional de Metrologia, Brasil
| |
Collapse
|
45
|
Ikeda N, Karlyshev AV. Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni. Eur J Microbiol Immunol (Bp) 2012; 2:41-9. [PMID: 24611120 DOI: 10.1556/eujmi.2.2012.1.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/09/2023] Open
Abstract
In certain conditions Campylobacter jejuni cells are capable of changing their cell shape from a typically spiral to a coccoid form (CF). By similarity to other bacteria, the latter was initially considered to be a viable but non-culturable form capable of survival in unfavourable conditions. However, subsequent studies with C. jejuni and closely related bacteria Helicobacter pylori suggested that CF represents a non-viable, degenerative form. Until now, the issue on whether the CF of C. jejuni is viable and infective is highly controversial. Despite some preliminary experiments on characterization of CF cells, neither biochemical mechanisms nor genetic determinants involved in C. jejuni cell shape changes have been characterized. In this review, we highlight known molecular mechanisms and genes involved in CF formation in other bacteria. Since orthologous genes are also present in C. jejuni, we suggest that CF formation in these bacteria is also a regulated and genetically determined process. A possible significance of CF in the lifestyle of this important bacterial pathogen is discussed.
Collapse
Affiliation(s)
- N Ikeda
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| | - A V Karlyshev
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| |
Collapse
|
46
|
Cytoskeletal proteins of actinobacteria. Int J Cell Biol 2012; 2012:905832. [PMID: 22481946 PMCID: PMC3296230 DOI: 10.1155/2012/905832] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/06/2011] [Accepted: 10/23/2011] [Indexed: 11/19/2022] Open
Abstract
Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of the basic physiology of certain bacterial models, little is known about Actinobacteria, an ancient group of Eubacteria. Here we review current knowledge on the cytoskeletal elements required for bacterial cell growth and cell division, focusing on actinobacterial genera such as Mycobacterium, Corynebacterium, and Streptomyces. These include some of the deadliest pathogens on earth but also some of the most prolific producers of antibiotics and antitumorals.
Collapse
|
47
|
Krupka M, Rivas G, Rico AI, Vicente M. Key role of two terminal domains in the bidirectional polymerization of FtsA protein. J Biol Chem 2012; 287:7756-65. [PMID: 22247552 DOI: 10.1074/jbc.m111.311563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of two different truncations involving either the 1C domain or the simultaneous absence of the S12-13 β-strands of the FtsA protein from Streptococcus pneumoniae, located at opposite terminal sides in the molecular structure, suggests that they are essential for ATP-dependent polymerization. These two truncated proteins are not able to polymerize themselves but can be incorporated to some extent into the FtsA(+) polymers during the assembling process. Consequently, they block the growth of the FtsA(+) polymers and slow down the polymerization rate. The combined action of the two truncated proteins produces an additive effect on the inhibition of FtsA(+) polymerization, indicating that each truncation affects a different interaction site within the FtsA molecule.
Collapse
Affiliation(s)
- Marcin Krupka
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CNB-CSIC), C/ Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Localized synthesis of the outer envelope from Thermus thermophilus. Extremophiles 2012; 16:267-75. [DOI: 10.1007/s00792-011-0427-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
49
|
Li Z, Garner AL, Gloeckner C, Janda KD, Carlow CK. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy. PLoS Negl Trop Dis 2011; 5:e1411. [PMID: 22140592 PMCID: PMC3226453 DOI: 10.1371/journal.pntd.0001411] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/19/2011] [Indexed: 11/17/2022] Open
Abstract
The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).
Collapse
Affiliation(s)
- Zhiru Li
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, USA
| | | | | | | | | |
Collapse
|
50
|
Dempwolff F, Reimold C, Reth M, Graumann PL. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system. PLoS One 2011; 6:e27035. [PMID: 22069484 PMCID: PMC3206058 DOI: 10.1371/journal.pone.0027035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/09/2011] [Indexed: 11/25/2022] Open
Abstract
Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.
Collapse
Affiliation(s)
- Felix Dempwolff
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Christian Reimold
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Michael Reth
- Immunbiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- Bioss, Universität Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- Bioss, Universität Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|