1
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
2
|
de Souza Cabral A, Verdan M, Presciliano R, Silveira F, Correa T, Abreu F. Large-Scale Cultivation of Magnetotactic Bacteria and the Optimism for Sustainable and Cheap Approaches in Nanotechnology. Mar Drugs 2023; 21:60. [PMID: 36827100 PMCID: PMC9961000 DOI: 10.3390/md21020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB), a diverse group of marine and freshwater microorganisms, have attracted the scientific community's attention since their discovery. These bacteria biomineralize ferrimagnetic nanocrystals, the magnetosomes, or biological magnetic nanoparticles (BMNs), in a single or multiple chain(s) within the cell. As a result, cells experience an optimized magnetic dipolar moment responsible for a passive alignment along the lines of the geomagnetic field. Advances in MTB cultivation and BMN isolation have contributed to the expansion of the biotechnological potential of MTB in recent decades. Several studies with mass-cultured MTB expanded the possibilities of using purified nanocrystals and whole cells in nano- and biotechnology. Freshwater MTB were primarily investigated in scaling up processes for the production of BMNs. However, marine MTB have the potential to overcome freshwater species applications due to the putative high efficiency of their BMNs in capturing molecules. Regarding the use of MTB or BMNs in different approaches, the application of BMNs in biomedicine remains the focus of most studies, but their application is not restricted to this field. In recent years, environment monitoring and recovery, engineering applications, wastewater treatment, and industrial processes have benefited from MTB-based biotechnologies. This review explores the advances in MTB large-scale cultivation and the consequent development of innovative tools or processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Gandia D, Marcano L, Gandarias L, Villanueva D, Orue I, Abrudan RM, Valencia S, Rodrigo I, Ángel García J, Muela A, Fdez-Gubieda ML, Alonso J. Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023; 15:566-577. [PMID: 36563339 PMCID: PMC9982817 DOI: 10.1021/acsami.2c18435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Magnetotactic bacteria Magnetospirillum magneticum AMB-1 have been cultured using three different media: magnetic spirillum growth medium with Wolfe's mineral solution (MSGM + W), magnetic spirillum growth medium without Wolfe's mineral solution (MSGM - W), and flask standard medium (FSM). The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40-45 nm, but FSM bacteria present slightly longer subchains. In MSGM + W bacteria, Co2+ ions present in the medium substitute Fe2+ ions in octahedral positions with a total Co doping around 4-5%. In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM - W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM + W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey (∼105 K) and low temperature (∼40 K) transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner-Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria: below 35 mT, MSGM - W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM + W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate (SAR) of SAR/f ≈ 12 W g-1 kHz-1.
Collapse
Affiliation(s)
- David Gandia
- Basque
Center for Materials Applications and Nanostructures (BCMaterials)
UPV/EHU Science Park Leioa, Leioa48940, Spain
| | - Lourdes Marcano
- Departmento
de Física, Facultad de Ciencias,
Universidad de Oviedo, Oviedo33007, Spain
| | - Lucía Gandarias
- Departamento
de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Danny Villanueva
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Iñaki Orue
- SGIker
Medidas Magnéticas, Universidad del
País Vasco (UPV/EHU), Leioa48940, Spain
| | - Radu Marius Abrudan
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Street 15, Berlin12489, Germany
| | - Sergio Valencia
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Street 15, Berlin12489, Germany
| | - Irati Rodrigo
- Departamento
Física Aplicada, Universidad del
País Vasco (UPV/EHU), Eibar20600, Spain
| | - José Ángel García
- Departamento
Física Aplicada, Universidad del
País Vasco (UPV/EHU), Leioa48940, Spain
| | - Alicia Muela
- Departamento
de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Ma Luisa Fdez-Gubieda
- Basque
Center for Materials Applications and Nanostructures (BCMaterials)
UPV/EHU Science Park Leioa, Leioa48940, Spain
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Javier Alonso
- Departamento
CITIMAC, Universidad de Cantabria, Santander39005, Spain
| |
Collapse
|
4
|
Shimoshige H, Kobayashi H, Shimamura S, Miyazaki M, Maekawa T. Fundidesulfovibrio magnetotacticus sp. nov., a sulphate-reducing magnetotactic bacterium, isolated from sediments and freshwater of a pond. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulphate-reducing magnetotactic bacterium, designated strain FSS-1T, was isolated from sediments and freshwater of Suwa Pond located in Hidaka, Saitama, Japan. Strain FSS-1T was a motile, Gram-negative and curved rod-shaped bacterium that synthesizes bullet-shaped magnetite (Fe3O4) nanoparticles in each cell. Strain FSS-1T was able to grow in the range of pH 6.5–8.0 (optimum, pH 7.0), 22–34 °C (optimum, 28 °C) and with 0–8.0 g l−1 NaCl (optimum, 0–2.0 g l−1 NaCl). Strain FSS-1T grew well in the presence of 50 µM ferric quinate as an iron source. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. The major menaquinone was MK-7 (H2). Strain FSS-1T contained desulfoviridin, cytochrome c
3 and catalase, but did not contain oxidase. Strain FSS-1T used fumarate, lactate, pyruvate, malate, formate/acetate, succinate, tartrate, ethanol, 1-propanol, peptone, soytone and yeast extract as electron donors, while the strain used sulphate, thiosulphate and fumarate as electron acceptors. Fumarate was fermented in the absence of electron acceptors. Analysis of the 16S rRNA gene sequence showed that strain FSS-1T is a member of the genus
Fundidesulfovibrio
. The gene sequence showed 96.7, 95.0, 92.0, 91.2 and 91.4% similarities to the most closely related members of the genera
Fundidesulfovibrio putealis
B7-43T,
Fundidesulfovibrio butyratiphilus
BSYT,
Desulfolutivibrio sulfoxidireducens
DSM 107105T,
Desulfolutivibrio sulfodismutans
ThAc01T and
Solidesulfovibrio magneticus
RS-1T, respectively. The DNA G+C content of strain FSS-1T was 67.5 mol%. The average nucleotide identity value between strain FSS-1T and
F. putealis
B7-43T was 80.7 %. Therefore, strain FSS-1T represents a novel species within the genus
Fundidesulfovibrio
, for which the name Fundidesulfovibrio magnetotacticus sp. nov. is proposed (=JCM 32405T=DSM 110007T).
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350- 15 8585, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| |
Collapse
|
5
|
Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022; 216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 01/13/2023]
Abstract
Magnetosomes intracellularly biomineralized by Magnetotactic bacteria (MTB) are membrane-enveloped nanoparticles of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4). MTB thrive in oxic-anoxic interface and exhibit magnetotaxis due to the presence of magnetosomes. Because of the unique characteristic and bionavigation inspiration of magnetosomes, MTB has been a subject of study focused on by biologists, medical pharmacologists, geologists, and physicists since the discovery. We herein first briefly review the features of MTB and magnetosomes. The recent insights into the process and mechanism for magnetosome biomineralization including iron uptake, magnetosome membrane invagination, iron mineralization and magnetosome chain assembly are summarized in detail. Additionally, the current research progress in biotechnological applications of magnetosomes is also elucidated, such as drug delivery, MRI image contrast, magnetic hyperthermia, wastewater treatment, and cell separation. This review would expand our understanding of biomineralization and biotechnological applications of bacterial magnetosomes.
Collapse
|
6
|
Jiang G, Fan D, Tian J, Xiang Z, Fang Q. Self-Confirming Magnetosomes for Tumor-Targeted T 1 /T 2 Dual-Mode MRI and MRI-Guided Photothermal Therapy. Adv Healthc Mater 2022; 11:e2200841. [PMID: 35579102 DOI: 10.1002/adhm.202200841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/29/2022]
Abstract
Nanomaterials as T1 /T2 dual-mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)-doped magnetosomes (MagMn) that not only can be used in T1 /T2 dual-mode MR imaging with self-confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI-guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both T1 and T2 MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI-guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gexuan Jiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiesheng Tian
- State Key Laboratories for Agro‐biotechnology and College of Biological Sciences China Agricultural University Beijing 100193 P. R. China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education) College of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Sino‐Danish Center for Education and Research Beijing 101408 China
| |
Collapse
|
7
|
Rajalakshmi A, Anjukam E, Ramesh M, Kavitha K, Puvanakrishnan R, Ramesh B. A novel colorimetric technique for estimating iron in magnetosomes of magnetotactic bacteria based on linear regression. Arch Microbiol 2022; 204:282. [PMID: 35471713 DOI: 10.1007/s00203-022-02901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Magnetotactic bacteria (MTB) use iron from their habitat to create magnetosomes, a unique organelle required for magnetotaxis. Due to a lack of cost-effective assay methods for estimating iron in magnetosomes, research on MTB and iron-rich magnetosomes is limited. A systemized assay was established in this study to quantify iron in MTB using ferric citrate colorimetric estimation. With a statistically significant R2 value of 0.9935, the iron concentration range and wavelength for iron estimation were optimized using linear regression. This colorimetric approach and the inductively coupled plasma optical emission spectrometry (ICP-OES) exhibited an excellent correlation R2 value of 0.961 in the validatory correlative study of the iron concentration in the isolated magnetotactic bacterial strains. In large-scale screening studies, this less-expensive strategy could be advantageous.
Collapse
Affiliation(s)
- Arumugam Rajalakshmi
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India
| | - Elamaran Anjukam
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India
| | - Manickam Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India
| | - Kuppuswamy Kavitha
- Research Department of Microbiology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India
| | - Rengarajulu Puvanakrishnan
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India
| | - Balasubramanian Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, 631561, India.
| |
Collapse
|
8
|
Pohl A, Young SAE, Schmitz TC, Farhadi D, Zarivach R, Faivre D, Blank KG. Magnetite-binding proteins from the magnetotactic bacterium Desulfamplus magnetovallimortis BW-1. NANOSCALE 2021; 13:20396-20400. [PMID: 34860229 DOI: 10.1039/d1nr04870h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetite-binding proteins are in high demand for the functionalization of magnetic nanoparticles. Binding analysis of six previously uncharacterized proteins from the magnetotactic Deltaproteobacterium Desulfamplus magnetovallimortis BW-1 identified two new magnetite-binding proteins (Mad10, Mad11). These proteins can be utilized as affinity tags for the immobilization of recombinant fusion proteins to magnetite.
Collapse
Affiliation(s)
- Anna Pohl
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Sarah A E Young
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Tara C Schmitz
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Daniel Farhadi
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Damien Faivre
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul lez Durance, France
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Mickoleit F, Rosenfeldt S, Toro-Nahuelpan M, Schaffer M, Schenk AS, Plitzko JM, Schüler D. High-Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium Rhodospirillum rubrum "magneticum". Adv Biol (Weinh) 2021; 5:e2101017. [PMID: 34296829 DOI: 10.1002/adbi.202101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/10/2021] [Indexed: 01/02/2023]
Abstract
Recently, the photosynthetic Rhodospirillum rubrum has been endowed with the ability of magnetosome biosynthesis by transfer and expression of biosynthetic gene clusters from the magnetotactic bacterium Magnetospirillum gryphiswaldense. However, the growth conditions for efficient magnetite biomineralization in the synthetic R. rubrum "magneticum", as well as the particles themselves (i.e., structure and composition), have so far not been fully characterized. In this study, different cultivation strategies, particularly the influence of temperature and light intensity, are systematically investigated to achieve optimal magnetosome biosynthesis. Reduced temperatures ≤16 °C and gradual increase in light intensities favor magnetite biomineralization at high rates, suggesting that magnetosome formation might utilize cellular processes, cofactors, and/or pathways that are linked to photosynthetic growth. Magnetosome yields of up to 13.6 mg magnetite per liter cell culture are obtained upon photoheterotrophic large-scale cultivation. Furthermore, it is shown that even more complex, i.e., oligomeric, catalytically active functional moieties like enzyme proteins can be efficiently expressed on the magnetosome surface, thereby enabling the in vivo functionalization by genetic engineering. In summary, it is demonstrated that the synthetic R. rubrum "magneticum" is a suitable host for high-yield magnetosome biosynthesis and the sustainable production of genetically engineered, bioconjugated magnetosomes.
Collapse
Affiliation(s)
- Frank Mickoleit
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute (BPI)/Physical Chemistry 1, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Mauricio Toro-Nahuelpan
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany.,Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Miroslava Schaffer
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Anna S Schenk
- Bavarian Polymer Institute (BPI)/Physical Chemistry - Colloidal Systems, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Jürgen M Plitzko
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Dirk Schüler
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| |
Collapse
|
10
|
Mickoleit F, Jörke C, Geimer S, Maier DS, Müller JP, Demut J, Gräfe C, Schüler D, Clement JH. Biocompatibility, uptake and subcellular localization of bacterial magnetosomes in mammalian cells. NANOSCALE ADVANCES 2021; 3:3799-3815. [PMID: 34263139 PMCID: PMC8243654 DOI: 10.1039/d0na01086c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/15/2021] [Indexed: 05/03/2023]
Abstract
Magnetosomes represent biogenic, magnetic nanoparticles biosynthesized by magnetotactic bacteria. Subtle biological control on each step of biomineralization generates core-shell nanoparticles of high crystallinity, strong magnetization and uniform shape and size. These features make magnetosomes a promising alternative to chemically synthesized nanoparticles for many applications in the biotechnological and biomedical field, such as their usage as biosensors in medical diagnostics, as drug-delivery agents, or as contrast agents for magnetic imaging techniques. Thereby, the particles are directly applied to mammalian cells or even injected into the body. In the present work, we provide a comprehensive characterization of isolated magnetosomes as potential cytotoxic effects and particle uptake have not been well studied so far. Different cell lines including cancer cells and primary cells are incubated with increasing particle amounts, and effects on cell viability are investigated. Obtained data suggest a concentration-dependent biocompatibility of isolated magnetosomes for all tested cell lines. Furthermore, magnetosome accumulation in endolysosomal structures around the nuclei is observed. Proliferation rates are affected in the presence of increasing particle amounts; however, viability is not affected and doubling times can be restored by reducing the magnetosome concentration. In addition, we evidence magnetosome-cell interactions that are strong enough to allow for magnetic cell sorting. Overall, our study not only assesses the biocompatibility of isolated magnetosomes, but also evaluates effects on cell proliferation and the fate of internalized magnetosomes, thereby providing prerequisites for their future in vivo application as biomedical agents.
Collapse
Affiliation(s)
- Frank Mickoleit
- Dept. Microbiology, University of Bayreuth D-95447 Bayreuth Germany
| | - Cornelia Jörke
- Dept. Hematology and Medical Oncology, Jena University Hospital D-07747 Jena Germany
| | - Stefan Geimer
- Electron Microscopy, University of Bayreuth D-95447 Bayreuth Germany
| | - Denis S Maier
- Dept. Microbiology, University of Bayreuth D-95447 Bayreuth Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital D-07745 Jena Germany
| | - Johanna Demut
- Dept. Hematology and Medical Oncology, Jena University Hospital D-07747 Jena Germany
| | - Christine Gräfe
- Dept. Hematology and Medical Oncology, Jena University Hospital D-07747 Jena Germany
| | - Dirk Schüler
- Dept. Microbiology, University of Bayreuth D-95447 Bayreuth Germany
| | - Joachim H Clement
- Dept. Hematology and Medical Oncology, Jena University Hospital D-07747 Jena Germany
| |
Collapse
|
11
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
12
|
De Vincentiis S, Falconieri A, Mickoleit F, Cappello V, Schüler D, Raffa V. Induction of Axonal Outgrowth in Mouse Hippocampal Neurons via Bacterial Magnetosomes. Int J Mol Sci 2021; 22:4126. [PMID: 33923565 PMCID: PMC8072586 DOI: 10.3390/ijms22084126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.
Collapse
Affiliation(s)
- Sara De Vincentiis
- Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy; (S.D.V.); (A.F.)
| | - Alessandro Falconieri
- Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy; (S.D.V.); (A.F.)
| | - Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.M.); (D.S.)
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.M.); (D.S.)
| | - Vittoria Raffa
- Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy; (S.D.V.); (A.F.)
| |
Collapse
|
13
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
14
|
Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A, Maekawa T. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLoS One 2021; 16:e0248313. [PMID: 33705469 PMCID: PMC7951924 DOI: 10.1371/journal.pone.0248313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| |
Collapse
|
15
|
Busigny V, Mathon FP, Jézéquel D, Bidaud CC, Viollier E, Bardoux G, Bourrand JJ, Benzerara K, Duprat E, Menguy N, Monteil CL, Lefevre CT. Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environ Microbiol 2021; 24:721-736. [PMID: 33687779 DOI: 10.1111/1462-2920.15458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
Obtaining high biomass yields of specific microorganisms for culture-independent approaches is a challenge faced by scientists studying organism's recalcitrant to laboratory conditions and culture. This difficulty is highly decreased when studying magnetotactic bacteria (MTB) since their unique behaviour allows their enrichment and purification from other microorganisms present in aquatic environments. Here, we use Lake Pavin, a permanently stratified lake in the French Massif Central, as a natural laboratory to optimize collection and concentration of MTB that thrive in the water column and sediments. A method is presented to separate MTB from highly abundant abiotic magnetic particles in the sediment of this crater lake. For the water column, different sampling approaches are compared such as in situ collection using a Niskin bottle and online pumping. By monitoring several physicochemical parameters of the water column, we identify the ecological niche where MTB live. Then, by focusing our sampling at the peak of MTB abundance, we show that the online pumping system is the most efficient for fast recovering of large volumes of water at a high spatial resolution, which is necessary considering the sharp physicochemical gradients observed in the water column. Taking advantage of aerotactic and magnetic MTB properties, we present an efficient method for MTB concentration from large volumes of water. Our methodology represents a first step for further multidisciplinary investigations of the diversity, metagenomic and ecology of MTB populations in Lake Pavin and elsewhere, as well as chemical and isotopic analyses of their magnetosomes.
Collapse
Affiliation(s)
- Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - François P Mathon
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Eric Viollier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Gérard Bardoux
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Jean-Jacques Bourrand
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
16
|
Tan SM, Ismail MH, Cao B. Biodiversity of magnetotactic bacteria in the tropical marine environment of Singapore revealed by metagenomic analysis. ENVIRONMENTAL RESEARCH 2021; 194:110714. [PMID: 33422504 DOI: 10.1016/j.envres.2021.110714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Most studies on the diversity of magnetotactic bacteria (MTB) have been conducted on samples obtained from the Northern or the Southern hemispheres. The diversity of MTB in tropical Asia near the geo-equator, with a close-to-zero geomagnetic inclination, weak magnetic field and constantly high seawater temperature has never been explored. This study aims to decipher the diversity of MTB in the marine environment of Singapore through shotgun metagenomics. Although MTB has been acknowledged to be ubiquitous in aquatic environments, we did not observe magnetotactic behaviour in the samples. However, we detected the presence and determined the diversity of MTB through bioinformatic analyses. Metagenomic analysis suggested majority of the MTB in the seafloor sediments represents novel MTB taxa that cannot be classified at the species level. The relative abundance of MTB (~0.2-1.69%) in the samples collected from the marine environment of Singapore was found to be substantially lower than studies for other regions. In contrast to other studies, the genera Magnetovibrio and Desulfamplus, but not Magnetococcus, were the dominant MTB. Additionally, we recovered 3 MTB genomic bins that are unclassified at the species level, with Magnetovibrio blakemorei being the closest-associated genome. All the recovered genomic bins contain homologs of at least 5 of the 7 mam genes but lack homologs for mamI, a membrane protein suggested to take part in the magenetosome invagination. This study fills in the knowledge gap of MTB biodiversity in the tropical marine environment near the geo-equator. Our findings will facilitate future research efforts aiming to unravel the ecological roles of MTB in the tropical marine environments as well as to bioprospecting novel MTB that have been adapted to tropical marine environments for biotechnological applications.
Collapse
Affiliation(s)
- Shi Ming Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, N1-01C-69, 639798, Singapore.
| |
Collapse
|
17
|
Niu W, Zhang Y, Liu J, Wen T, Miao T, Basit A, Jiang W. OxyR controls magnetosome formation by regulating magnetosome island (MAI) genes, iron metabolism, and redox state. Free Radic Biol Med 2020; 161:272-282. [PMID: 33075503 DOI: 10.1016/j.freeradbiomed.2020.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
Magnetospirillum gryphiswaldense MSR-1 uses chains of magnetosomes, membrane-enveloped magnetite (Fe(II)Fe(III)2O4) nanocrystals, to align along magnetic field. The process of magnetosome biomineralization requires a precise biological control of redox conditions to maintain a balanced amounts of ferric and ferrous iron. Here, we identified functions of the global regulator OxyR (MGMSRv2_4250, OxyR-4250) in MSR-1 during magnetosome formation. OxyR deletion mutant ΔoxyR-4250 displayed reduced magnetic response, and increased levels of intracellular ROS (reactive oxygen species). OxyR-4250 protein upregulated expression of six antioxidant genes (ahpC1, ahpC2, katE, katG, sodB, trxA), four iron metabolism-related regulator genes (fur, irrA, irrB, irrC), a bacterioferritin gene (bfr), and a DNA protection gene (dps). OxyR-4250 was shown, for the first time, to directly regulate magnetosome island (MAI) genes mamGFDC, mamXY, and feoAB1 operons. Taken together, our findings indicate that OxyR-4250 helps maintain a proper redox environment for magnetosome formation by eliminating excess ROS, regulating iron homeostasis and participating in regulation of Fe2+/Fe3+ ratio within the magnetosome vesicle through regulating MAI genes.
Collapse
Affiliation(s)
- Wei Niu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunpeng Zhang
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, Beijing, 102209, China
| | - Junquan Liu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tong Wen
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Ting Miao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Abdul Basit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X, Knight R, Bazylinski DA, Roberts AP, Pan Y. Expanding magnetic organelle biogenesis in the domain Bacteria. MICROBIOME 2020; 8:152. [PMID: 33126926 PMCID: PMC7602337 DOI: 10.1186/s40168-020-00931-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The discovery of membrane-enclosed, metabolically functional organelles in Bacteria has transformed our understanding of the subcellular complexity of prokaryotic cells. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Magnetosomes, as nano-sized magnetic sensors in MTB, facilitate cell navigation along the local geomagnetic field, a behaviour referred to as magnetotaxis or microbial magnetoreception. Recent discovery of novel MTB outside the traditionally recognized taxonomic lineages suggests that MTB diversity across the domain Bacteria are considerably underestimated, which limits understanding of the taxonomic distribution and evolutionary origin of magnetosome organelle biogenesis. RESULTS Here, we perform the most comprehensive metagenomic analysis available of MTB communities and reconstruct metagenome-assembled MTB genomes from diverse ecosystems. Discovery of MTB in acidic peatland soils suggests widespread MTB occurrence in waterlogged soils in addition to subaqueous sediments and water bodies. A total of 168 MTB draft genomes have been reconstructed, which represent nearly a 3-fold increase over the number currently available and more than double the known MTB species at the genome level. Phylogenomic analysis reveals that these genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. Phylogenetic analyses of core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. CONCLUSIONS These findings expand the taxonomic and phylogenetic diversity of MTB across the domain Bacteria and shed new light on the origin and evolution of microbial magnetoreception. Potential biogenesis of the magnetosome organelle in the close descendants of the last bacterial common ancestor has important implications for our understanding of the evolutionary history of bacterial cellular complexity and emphasizes the biological significance of the magnetosome organelle. Video Abstract.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, L69 7ZE, Liverpool, UK
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, ACT, Canberra, 2601, Australia
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Keren-Paz A, Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N Biotechnol 2020; 56:9-15. [DOI: 10.1016/j.nbt.2019.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023]
|
20
|
Mickoleit F, Lanzloth C, Schüler D. A Versatile Toolkit for Controllable and Highly Selective Multifunctionalization of Bacterial Magnetic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906922. [PMID: 32187836 DOI: 10.1002/smll.201906922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Their unique material characteristics, i.e. high crystallinity, strong magnetization, uniform shape and size, and the ability to engineer the enveloping membrane in vivo make bacterial magnetosomes highly interesting for many biomedical and biotechnological applications. In this study, a versatile toolkit is developed for the multifunctionalization of magnetic nanoparticles in the magnetotactic bacterium Magnetospirillum gryphiswaldense, and the use of several abundant magnetosome membrane proteins as anchors for functional moieties is explored. High-level magnetosome display of cargo proteins enables the generation of engineered nanoparticles with several genetically encoded functionalities, including a core-shell structure, magnetization, two different catalytic activities, fluorescence and the presence of a versatile connector that allows the incorporation into a hydrogel-based matrix by specific coupling reactions. The resulting reusable magnetic composite demonstrates the high potential of synthetic biology for the production of multifunctional nanomaterials, turning the magnetosome surface into a platform for specific versatile display of functional moieties.
Collapse
Affiliation(s)
- Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| | - Clarissa Lanzloth
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany
| |
Collapse
|
21
|
Mickoleit F, Jérôme V, Freitag R, Schüler D. Bacterial Magnetosomes as Novel Platform for the Presentation of Immunostimulatory, Membrane-Bound Ligands in Cellular Biotechnology. ACTA ACUST UNITED AC 2020; 4:e1900231. [PMID: 32293150 DOI: 10.1002/adbi.201900231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/16/2020] [Indexed: 01/25/2023]
Abstract
Cell-cell interactions involving specific membrane proteins are critical triggers in cellular development. Ex vivo strategies to mimic these effects currently use soluble proteins or (recombinant) presenter cells, albeit with mixed results. A promising alternative are bacterial magnetosomes, which can be selectively transformed into cell-free membrane-protein presenters by genetic engineering. In this study, the human CD40 Ligand (CD40L), a key ligand for B cell activation, is expressed on the particle surface. Functionality is demonstrated on sensor cells expressing the human CD40 receptor. Binding of CD40L magnetosomes to these cells triggers a signaling cascade leading to the secretion of embryonic alkaline phosphatase. Concomitantly, the CD40-CD40L interaction is strong enough to allow cell recovery by magnetic sorting. Overall, this study demonstrates the potential of magnetosomes as promising cell-free tools for cellular biotechnology, based on the display of membrane-bound target molecules, thereby creating a biomimetic interaction.
Collapse
Affiliation(s)
- Frank Mickoleit
- Department Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Valérie Jérôme
- Department Process Biotechnology, University of Bayreuth, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Ruth Freitag
- Department Process Biotechnology, University of Bayreuth, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Dirk Schüler
- Department Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447, Bayreuth, Germany
| |
Collapse
|
22
|
Wen T, Zhang Y, Geng Y, Liu J, Basit A, Tian J, Li Y, Li J, Ju J, Jiang W. Epsilon-Fe 2O 3 is a novel intermediate for magnetite biosynthesis in magnetotactic bacteria. Biomater Res 2019; 23:13. [PMID: 31388439 PMCID: PMC6679552 DOI: 10.1186/s40824-019-0162-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/18/2019] [Indexed: 01/26/2023] Open
Abstract
Background Natural biological magnetite nanoparticles are widely distributed from microorganisms to humans. It is found to be very important in organisms, especially in navigation. Moreover, purified magnetite nanoparticles also have potential applications in bioengineering and biomedicine. Magnetotactic bacteria (MTB) is considered one of the most abundant species around the world which can form intracellular membrane enveloped magnetic nanoparticles, referred to as magnetosomes. To our knowledge, the biomineralization of magnetosome in MTB involves a serious of genes located on a large unstable genomic region named magnetosome island, which specially exists in MTB. The magnetite core of magnetosome formed via a Fe (III) ion intermediates, for instance, α-Fe2O3 and ferrihydrite. Though the biosynthesis of magnetosome represents a general biomineralization mechanism of biogenic magnetite, knowledge of magnetosome biosynthesis and biomineralization remains very limited. Method Cells used in this study were cultured in a 7.5-L bioreactor, samples for intermediate capture were taken each certain time interval after the generation of magnetosome biosynthesis condition. High-resolution transmission electron microscopy were used to analyze the detailed structure of magnetosomes. The parameters of the crystal structures were obtained by Fast Fourier Transform analyses. Results In this study, we identified a novel intermediate phase, ε-Fe2O3, during the magnetite maturation process in MTB via kinetic analysis. Unlike α-Fe2O3, which has been reported as a precursor during magnetosome biosynthesis in MTB before, ε-Fe2O3, due to its thermal instability, is a rare phase with scarce natural abundance. This finding confirmed that ε-Fe2O3 is an important novel intermediate during the biomineralization of magnetosome in MTB, and shed new light on the magnetosome biosynthesis pathway. Electronic supplementary material The online version of this article (10.1186/s40824-019-0162-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Wen
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China.,Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030 People's Republic of China
| | - Yunpeng Zhang
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China.,Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, Beijing, 102209 People's Republic of China
| | - Yuanyuan Geng
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Junquan Liu
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Abdul Basit
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jiesheng Tian
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Ying Li
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jilun Li
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jing Ju
- 2College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
| | - Wei Jiang
- 1State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
23
|
Lin W, Kirschvink JL, Paterson GA, Bazylinski DA, Pan Y. On the origin of microbial magnetoreception. Natl Sci Rev 2019; 7:472-479. [PMID: 34692062 PMCID: PMC8288953 DOI: 10.1093/nsr/nwz065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/15/2022] Open
Abstract
A broad range of organisms, from prokaryotes to higher animals, have the ability to sense and utilize Earth's geomagnetic field—a behavior known as magnetoreception. Although our knowledge of the physiological mechanisms of magnetoreception has increased substantially over recent decades, the origin of this behavior remains a fundamental question in evolutionary biology. Despite this, there is growing evidence that magnetic iron mineral biosynthesis by prokaryotes may represent the earliest form of biogenic magnetic sensors on Earth. Here, we integrate new data from microbiology, geology and nanotechnology, and propose that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated ROS would have been a major environmental challenge for life on early Earth. This iron-based system could have later been co-opted as a magnetic sensor for magnetoreception in microorganisms, suggesting an origin of microbial magnetoreception as the result of the evolutionary process of exaptation.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152–8551, Japan
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Mickoleit F, Schüler D. Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
25
|
Mickoleit F, Altintoprak K, Wenz NL, Richter R, Wege C, Schüler D. Precise Assembly of Genetically Functionalized Magnetosomes and Tobacco Mosaic Virus Particles Generates a Magnetic Biocomposite. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37898-37910. [PMID: 30360046 DOI: 10.1021/acsami.8b16355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Magnetosomes represent magnetic nanoparticles with unprecedented characteristics. Both their crystal morphology and the composition of the enveloping membrane can be manipulated by genetic means, allowing the display of functional moieties on the particle surface. In this study, we explore the generation of a new biomaterial assembly by coupling magnetosomes with tobacco mosaic virus (TMV) particles, both functionalized with complementary recognition sites. TMV consists of single-stranded RNA encapsidated by more than 2100 coat proteins, which enable chemical modification via functional groups. Incubation of EmGFP- or biotin-decorated TMV particles with magnetosomes genetically functionalized with GFP-binding nanobodies or streptavidin, respectively, results in the formation of magnetic, mesoscopic, strand-like biocomposites. TMV facilitates the agglomeration of magnetosomes by providing a scaffold. The size of the TMV-magnetosome mesostrands can be adjusted by varying the TMV-magnetosome particle ratios. The versatility of this novel material combination is furthermore demonstrated by coupling magnetosomes and terminal, 5'-functionalized TMV particles with high molecular precision, which results in "drumstick"-like TMV-magnetosome complexes. In summary, our approaches provide promising strategies for the generation of new biomaterial assemblies that could be used as scaffold for the introduction of further functionalities, and we foresee a broad application potential in the biomedical and biotechnological field.
Collapse
Affiliation(s)
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | | | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems , University of Stuttgart , D-70569 Stuttgart , Germany
| | | |
Collapse
|
26
|
Kerans FFA, Lungaro L, Azfer A, Salter DM. The Potential of Intrinsically Magnetic Mesenchymal Stem Cells for Tissue Engineering. Int J Mol Sci 2018; 19:E3159. [PMID: 30322202 PMCID: PMC6214112 DOI: 10.3390/ijms19103159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
The magnetization of mesenchymal stem cells (MSC) has the potential to aid tissue engineering approaches by allowing tracking, targeting, and local retention of cells at the site of tissue damage. Commonly used methods for magnetizing cells include optimizing uptake and retention of superparamagnetic iron oxide nanoparticles (SPIONs). These appear to have minimal detrimental effects on the use of MSC function as assessed by in vitro assays. The cellular content of magnetic nanoparticles (MNPs) will, however, decrease with cell proliferation and the longer-term effects on MSC function are not entirely clear. An alternative approach to magnetizing MSCs involves genetic modification by transfection with one or more genes derived from Magnetospirillum magneticum AMB-1, a magnetotactic bacterium that synthesizes single-magnetic domain crystals which are incorporated into magnetosomes. MSCs with either or mms6 and mmsF genes are followed by bio-assimilated synthesis of intracytoplasmic magnetic nanoparticles which can be imaged by magnetic resonance (MR) and which have no deleterious effects on MSC proliferation, migration, or differentiation. The stable transfection of magnetosome-associated genes in MSCs promotes assimilation of magnetic nanoparticle synthesis into mammalian cells with the potential to allow MR-based cell tracking and, through external or internal magnetic targeting approaches, enhanced site-specific retention of cells for tissue engineering.
Collapse
Affiliation(s)
- Fransiscus F A Kerans
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Lisa Lungaro
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Asim Azfer
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Donald M Salter
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
27
|
Ren E, Lei Z, Wang J, Zhang Y, Liu G. Magnetosome Modification: From Bio-Nano Engineering Toward Nanomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Biology; School of Life Sciences; Xiamen University; Xiamen 361102 China
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
28
|
Chen H, Zhang SD, Chen L, Cai Y, Zhang WJ, Song T, Wu LF. Efficient Genome Editing of Magnetospirillum magneticum AMB-1 by CRISPR-Cas9 System for Analyzing Magnetotactic Behavior. Front Microbiol 2018; 9:1569. [PMID: 30065707 PMCID: PMC6056624 DOI: 10.3389/fmicb.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of microorganisms capable of using geomagnetic fields for navigation. This magnetotactic behavior can help microorganisms move toward favorable habitats for optimal growth and reproduction. A comprehensive understanding of the magnetotactic mechanism at molecular levels requires highly efficient genomic editing tools, which remain underdeveloped in MTB. Here, we adapted an engineered CRISPR-Cas9 system for efficient inactivation of genes in a widely used MTB model strain, Magnetospirillum magneticum AMB-1. By combining a nuclease-deficient Cas9 (dCas9) and single-guide RNA (sgRNA), a CRISPR interference system was successfully developed to repress amb0994 expression. Furthermore, we constructed an in-frame deletion mutant of amb0994 by developing a CRISPR-Cas9 system. This mutant produces normal magnetosomes; however, its response to abrupt magnetic field reversals is faster than wild-type strain. This behavioral difference is probably a consequence of altered flagella function, as suggested with our dynamics simulation study by modeling M. magneticum AMB-1 cell as an ellipsoid. These data indicate that, Amb0994 is involved in the cellular response to magnetic torque changes via controlling flagella. In summary, this study, besides contributing to a better understanding of magnetotaxis mechanism, demonstrated the CRISPR-(d)Cas9 system as a useful genetic tool for efficient genome editing in MTB.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Sheng-Da Zhang
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Linjie Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jia Zhang
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
- Deep-Sea Microbial Cell Biology, Department of Deep Sea Sciences, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
- Aix Marseille Univ, Centre National de la Recherche Scientifique, LCB, Marseille, France
| |
Collapse
|
29
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME JOURNAL 2018; 12:1508-1519. [PMID: 29581530 PMCID: PMC5955933 DOI: 10.1038/s41396-018-0098-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth's magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and "Candidatus Lambdaproteobacteria" classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Mickoleit F, Borkner CB, Toro-Nahuelpan M, Herold HM, Maier DS, Plitzko JM, Scheibel T, Schüler D. In Vivo Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides. Biomacromolecules 2018; 19:962-972. [PMID: 29357230 DOI: 10.1021/acs.biomac.7b01749] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.
Collapse
Affiliation(s)
| | | | - Mauricio Toro-Nahuelpan
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | | - Jürgen M Plitzko
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | |
Collapse
|
32
|
Kiani B, Faivre D, Klumpp S. Self-organization and stability of magnetosome chains-A simulation study. PLoS One 2018; 13:e0190265. [PMID: 29315342 PMCID: PMC5760029 DOI: 10.1371/journal.pone.0190265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attachment of the magnetosomes to the filament and their magnetic interactions. We show that the filamentous backbone is crucial for the robust assembly of the magnetic particles into a linear chain, which in turn is key for the functionality of the chain in cellular orientation and magnetically directed swimming. In addition, we simulate the response to an external magnetic field that is rotated away from the axis of the filament, an experimental method used to probe the mechanical stability of the chain. The competition between alignment along the filament and alignment with the external fields leads to the rupture of a chain if the applied field exceeeds a threshold value. These observations are in agreement with previous experiments at the population level. Beyond that, our simulations provide a detailed picture of chain rupture at the single cell level, which is found to happen through two abrupt events, which both depend on the field strength and orientation. The re-formation of the chain structure after such rupture is found to be strongly sped up in the presence of a magnetic field parallel to the filament, an observation that may also be of interest for the design of self-healing materials. Our simulations underline the dynamic nature of the magnetosome chain. More generally, they show the rich complexity of self-assembly in systems with competing driving forces for alignment.
Collapse
Affiliation(s)
- Bahareh Kiani
- Department Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm 14424 Potsdam, Germany
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- * E-mail: (BK); (SK)
| | - Damien Faivre
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Stefan Klumpp
- Department Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm 14424 Potsdam, Germany
- Institute for Nonlinear Dynamics, Georg August University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
- * E-mail: (BK); (SK)
| |
Collapse
|
33
|
Nudelman H, Perez Gonzalez T, Kolushiva S, Widdrat M, Reichel V, Peigneux A, Davidov G, Bitton R, Faivre D, Jimenez-Lopez C, Zarivach R. The importance of the helical structure of a MamC-derived magnetite-interacting peptide for its function in magnetite formation. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:10-20. [PMID: 29372895 DOI: 10.1107/s2059798317017491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023]
Abstract
Biomineralization is the process of mineral formation by organisms and involves the uptake of ions from the environment in order to produce minerals, with the process generally being mediated by proteins. Most proteins that are involved in mineral interactions are predicted to contain disordered regions containing large numbers of negatively charged amino acids. Magnetotactic bacteria, which are used as a model system for iron biomineralization, are Gram-negative bacteria that can navigate through geomagnetic fields using a specific organelle, the magnetosome. Each organelle comprises a membrane-enveloped magnetic nanoparticle, magnetite, the formation of which is controlled by a specific set of proteins. One of the most abundant of these proteins is MamC, a small magnetosome-associated integral membrane protein that contains two transmembrane α-helices connected by an ∼21-amino-acid peptide. In vitro studies of this MamC peptide showed that it forms a helical structure that can interact with the magnetite surface and affect the size and shape of the growing crystal. Our results show that a disordered structure of the MamC magnetite-interacting component (MamC-MIC) abolishes its interaction with magnetite particles. Moreover, the size and shape of magnetite crystals grown in in vitro magnetite-precipitation experiments in the presence of this disordered peptide were different from the traits of crystals grown in the presence of other peptides or in the presence of the helical MIC. It is suggested that the helical structure of the MamC-MIC is important for its function during magnetite formation.
Collapse
Affiliation(s)
- Hila Nudelman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Teresa Perez Gonzalez
- Departamento de Microbiologia, Campus de Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Sofiya Kolushiva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marc Widdrat
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Victoria Reichel
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Ana Peigneux
- Departamento de Microbiologia, Campus de Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ronit Bitton
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiologia, Campus de Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
34
|
Mickoleit F, Schüler D. Generation of Multifunctional Magnetic Nanoparticles with Amplified Catalytic Activities by Genetic Expression of Enzyme Arrays on Bacterial Magnetosomes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Frank Mickoleit
- Department Microbiology; University of Bayreuth; Universitätsstraße 30 95447 Bayreuth Germany
| | - Dirk Schüler
- Department Microbiology; University of Bayreuth; Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
35
|
Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:345-356. [PMID: 28557300 DOI: 10.1111/1758-2229.12550] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-bounded crystals of magnetite (Fe3 O4 ) and/or greigite (Fe3 S4 ) called magnetosomes. MTB play important roles in the geochemical cycling of iron, sulfur, nitrogen and carbon. Significantly, they also represent an intriguing model system not just for the study of microbial biomineralization but also for magnetoreception, prokaryotic organelle formation and microbial biogeography. Here we review current knowledge on the ecology of and biomineralization by MTB, with an emphasis on more recent reports of unexpected ecological and phylogenetic findings regarding MTB. In this study, we conducted a search of public metagenomic databases and identified six novel magnetosome gene cluster-containing genomic fragments affiliated with the Deltaproteobacteria and Gammaproteobacteria classes of the Proteobacteria phylum, the Nitrospirae phylum and the Planctomycetes phylum from the deep subseafloor, marine oxygen minimum zone, groundwater biofilm and estuary sediment, thereby extending our knowledge on the diversity and distribution of MTB as well deriving important information as to their ecophysiology. We point out that the increasing availability of sequence data will facilitate researchers to systematically explore the ecology and biomineralization of MTB even further.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
36
|
Talib A, Khan Z, Bokhari H, Hidayathula S, Jilani G, Khan AA. Respiring cellular nano-magnets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:526-531. [PMID: 28866196 DOI: 10.1016/j.msec.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 05/30/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Magnetotactic bacteria provide an interesting example for the biosynthesis of magnetic (Fe3O4 or Fe3S4) nanoparticles, synthesized through a process known as biologically controlled mineralization, resulting in complex monodispersed, and nanostructures with unique magnetic properties. In this work, we report a novel aerobic bacterial strain isolated from sludge of an oil refinery. Microscopic and staining analysis revealed that it was a gram positive rod with the capability to thrive in a medium (9K) supplemented, with Fe2+ ions at an acidic pH (~3.2). The magnetic behaviour of these cells was tested by their alignment towards a permanent magnet, and later on confirmed by magnetometry analysis. The X-ray diffraction studies proved the cellular biosynthesis of magnetite nanoparticles inside the bacteria. This novel, bio-nano-magnet, could pave the way for green synthesis of magnetic nanoparticles to be used in industrial and medical applications such as MRI, magnetic hyperthermia and ferrofluids.
Collapse
Affiliation(s)
- Ayesha Talib
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Zanib Khan
- Department of Microbiology, Government Post Graduate College No. 2, Mandian, Abbottabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Syed Hidayathula
- College of Pharmacy, King Saud University, 11362 Riyadh, Saudi Arabia
| | - Ghulam Jilani
- Department of Soil Sciences, Pir Mehr Ali Shah ARID Agriculture University, Shamsabad, Murree Road, Rawalpindi, Pakistan
| | - Abid Ali Khan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan.
| |
Collapse
|
37
|
Zahn C, Keller S, Toro-Nahuelpan M, Dorscht P, Gross W, Laumann M, Gekle S, Zimmermann W, Schüler D, Kress H. Measurement of the magnetic moment of single Magnetospirillum gryphiswaldense cells by magnetic tweezers. Sci Rep 2017; 7:3558. [PMID: 28620230 PMCID: PMC5472611 DOI: 10.1038/s41598-017-03756-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Magnetospirillum gryphiswaldense is a helix-shaped magnetotactic bacterium that synthesizes iron-oxide nanocrystals, which allow navigation along the geomagnetic field. The bacterium has already been thoroughly investigated at the molecular and cellular levels. However, the fundamental physical property enabling it to perform magnetotaxis, its magnetic moment, remains to be elucidated at the single cell level. We present a method based on magnetic tweezers; in combination with Stokesian dynamics and Boundary Integral Method calculations, this method allows the simultaneous measurement of the magnetic moments of multiple single bacteria. The method is demonstrated by quantifying the distribution of the individual magnetic moments of several hundred cells of M. gryphiswaldense. In contrast to other techniques for measuring the average magnetic moment of bacterial populations, our method accounts for the size and the helical shape of each individual cell. In addition, we determined the distribution of the saturation magnetic moments of the bacteria from electron microscopy data. Our results are in agreement with the known relative magnetization behavior of the bacteria. Our method can be combined with single cell imaging techniques and thus can address novel questions about the functions of components of the molecular magnetosome biosynthesis machinery and their correlation with the resulting magnetic moment.
Collapse
Affiliation(s)
- C Zahn
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - S Keller
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - M Toro-Nahuelpan
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - P Dorscht
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - W Gross
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - M Laumann
- Theoretical Physics I, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - S Gekle
- Biofluid Simulation and Modeling, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - W Zimmermann
- Theoretical Physics I, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - D Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - H Kress
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
38
|
Abstract
Membrane proteins play crucial roles in cellular processes and are often important pharmacological drug targets. The hydrophobic properties of these proteins make full structural and functional characterization challenging because of the need to use detergents or other solubilizing agents when extracting them from their native lipid membranes. To aid membrane protein research, new methodologies are required to allow these proteins to be expressed and purified cheaply, easily, in high yield and to provide water soluble proteins for subsequent study. This mini review focuses on the relatively new area of water soluble membrane proteins and in particular two innovative approaches: the redesign of membrane proteins to yield water soluble variants and how adding solubilizing fusion proteins can help to overcome these challenges. This review also looks at naturally occurring membrane proteins, which are able to exist as stable, functional, water soluble assemblies with no alteration to their native sequence.
Collapse
|
39
|
|
40
|
Zhang Y, Wen T, Guo F, Geng Y, Liu J, Peng T, Guan G, Tian J, Li Y, Li J, Ju J, Jiang W. The Disruption of an OxyR-Like Protein Impairs Intracellular Magnetite Biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front Microbiol 2017; 8:208. [PMID: 28261169 PMCID: PMC5308003 DOI: 10.3389/fmicb.2017.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria synthesize intracellular membrane-enveloped magnetite bodies known as magnetosomes which have been applied in biotechnology and medicine. A series of proteins involved in ferric ion transport and redox required for magnetite formation have been identified but the knowledge of magnetosome biomineralization remains very limited. Here, we identify a novel OxyR homolog (named OxyR-Like), the disruption of which resulted in low ferromagnetism and disfigured nano-sized iron oxide crystals. High resolution-transmission electron microscopy showed that these nanoparticles are mainly composed of magnetite accompanied with ferric oxide including α-Fe2O3 and 𝜀-Fe2O3. Electrophoretic mobility shift assay and DNase I footprinting showed that OxyR-Like binds the conserved 5'-GATA-N{9}-TATC-3' region within the promoter of pyruvate dehydrogenase (pdh) complex operon. Quantitative real-time reverse transcriptase PCR indicated that not only the expression of pdh operon but also genes related to magnetosomes biosynthesis and tricarboxylic acid cycle decreased dramatically, suggesting a link between carbon metabolism and magnetosome formation. Taken together, our results show that OxyR-Like plays a key role in magnetosomes formation.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tong Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Fangfang Guo
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tao Peng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Guohua Guan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jiesheng Tian
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Ying Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jilun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| |
Collapse
|
41
|
Origin of microbial biomineralization and magnetotaxis during the Archean. Proc Natl Acad Sci U S A 2017; 114:2171-2176. [PMID: 28193877 DOI: 10.1073/pnas.1614654114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.
Collapse
|
42
|
X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc Natl Acad Sci U S A 2016; 113:13396-13401. [PMID: 27821762 DOI: 10.1073/pnas.1612034113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria produce iron-rich magnetic nanoparticles that are enclosed by membrane invaginations to form magnetosomes so they are able to sense and act upon Earth's magnetic field. In Magnetospirillum and other magnetotactic bacteria, to combine their magnetic moments, magnetosomes align along filaments formed by a bacterial actin homolog, MamK. Here, we present the crystal structure of a nonpolymerizing mutant of MamK from Magnetospirillum magneticum AMB-1 at 1.8-Å resolution, revealing its close similarity to actin and MreB. The crystals contain AMPPNP-bound monomeric MamK in two different conformations. To investigate conformational changes associated with polymerization, we used unmodified MamK protein and cryo-EM with helical 3D reconstruction in RELION to obtain a density map and a fully refined atomic model of MamK in filamentous form at 3.6-Å resolution. The filament is parallel (polar) double-helical, with a rise of 52.2 Å and a twist of 23.8°. As shown previously and unusually for actin-like filaments, the MamK subunits from each of the two strands are juxtaposed, creating an additional twofold axis along the filament. Compared with monomeric MamK, ADP-bound MamK in the filament undergoes a conformational change, rotating domains I and II against each other to further close the interdomain cleft between subdomains IB and IIB. The domain movement causes several loops to close around the nucleotide-binding pocket. Glu-143, a key residue for catalysis coordinating the magnesium ion, moves closer, presumably switching nucleotide hydrolysis upon polymerization-one of the hallmarks of cytomotive filaments of the actin type.
Collapse
|
43
|
Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol 2016; 14:88. [PMID: 27733152 PMCID: PMC5059902 DOI: 10.1186/s12915-016-0290-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The navigation of magnetotactic bacteria relies on specific intracellular organelles, the magnetosomes, which are membrane-enclosed crystals of magnetite aligned into a linear chain. The magnetosome chain acts as a cellular compass, aligning the cells in the geomagnetic field in order to search for suitable environmental conditions in chemically stratified water columns and sediments. During cytokinesis, magnetosome chains have to be properly positioned, cleaved and separated in order to be evenly passed into daughter cells. In Magnetospirillum gryphiswaldense, the assembly of the magnetosome chain is controlled by the actin-like MamK, which polymerizes into cytoskeletal filaments that are connected to magnetosomes through the acidic MamJ protein. MamK filaments were speculated to recruit the magnetosome chain to cellular division sites, thus ensuring equal organelle inheritance. However, the underlying mechanism of magnetic organelle segregation has remained largely unknown. RESULTS Here, we performed in vivo time-lapse fluorescence imaging to directly track the intracellular movement and dynamics of magnetosome chains as well as photokinetic and ultrastructural analyses of the actin-like cytoskeletal MamK filament. We show that magnetosome chains undergo rapid intracellular repositioning from the new poles towards midcell into the newborn daughter cells, and the driving force for magnetosomes movement is likely provided by the pole-to-midcell treadmilling growth of MamK filaments. We further discovered that splitting and equipartitioning of magnetosome chains occurs with unexpectedly high accuracy, which depends directly on the dynamics of MamK filaments. CONCLUSION We propose a novel mechanism for prokaryotic organelle segregation that, similar to the type-II bacterial partitioning system of plasmids, relies on the action of cytomotive actin-like filaments together with specific connectors, which transport the magnetosome cargo in a fashion reminiscent of eukaryotic actin-organelle transport and segregation mechanisms.
Collapse
Affiliation(s)
- Mauricio Toro-Nahuelpan
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Frank D Müller
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany
| | - Stefan Klumpp
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute for Nonlinear Dynamics, Georg August University Göttingen, Göttingen, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
44
|
Bakhshi PK, Bain J, Gul MO, Stride E, Edirisinghe M, Staniland SS. Manufacturing Man-Made Magnetosomes: High-Throughput In Situ Synthesis of Biomimetic Magnetite Loaded Nanovesicles. Macromol Biosci 2016; 16:1555-1561. [PMID: 27490757 DOI: 10.1002/mabi.201600181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/11/2016] [Indexed: 11/11/2022]
Abstract
A new synthetic method for the production of artificial magnetosomes, i.e., lipid-coated vesicles containing magnetic nanoparticles, is demonstrated. Magnetosomes have considerable potential in biomedical and other nanotechnological applications but current production methods rely upon magnetotactic bacteria which limits the range of sizes and shapes that can be generated as well as the obtainable yield. Here, electrohydrodynamic atomization is utilized to form nanoscale liposomes of tunable size followed by electroporation to transport iron into the nanoliposome core resulting in magnetite crystallization. Using a combination of electron and fluorescence microscopy, dynamic light scattering, Raman spectroscopy, and magnetic susceptibility measurements, it is shown that single crystals of single-phase magnetite can be precipitated within each liposome, forming a near-monodisperse population of magnetic nanoparticles. For the specific conditions used in this study the mean particle size is 58 nm (±8 nm) but the system offers a high degree of flexibility in terms of both the size and composition of the final product.
Collapse
Affiliation(s)
- Poonam K Bakhshi
- Department of Mechanical Engineering, University College London, Roberts, Torrington Place, London, WC1E 7JE, UK
| | - Jennifer Bain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mine Orlu Gul
- School of Pharmacy, Department of Pharmaceutics, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus, Research Building University of Oxford, Oxford, OX3 7DQ, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Roberts, Torrington Place, London, WC1E 7JE, UK
| | - Sarah S Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
45
|
Fu JP, Mo WC, Liu Y, Bartlett PF, He RQ. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell 2016; 7:624-37. [PMID: 27484904 PMCID: PMC5003790 DOI: 10.1007/s13238-016-0300-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023] Open
Abstract
Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT), produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.
Collapse
Affiliation(s)
- Jing-Peng Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chuan Mo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China. .,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
46
|
Jacob JJ, Suthindhiran K. Magnetotactic bacteria and magnetosomes - Scope and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:919-928. [PMID: 27524094 DOI: 10.1016/j.msec.2016.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science.
Collapse
Affiliation(s)
- Jobin John Jacob
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
47
|
Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria. Appl Environ Microbiol 2016; 82:3886-3891. [PMID: 27107111 DOI: 10.1128/aem.00508-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. IMPORTANCE The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water.
Collapse
|
48
|
Wang X, Wang Q, Zhang Y, Wang Y, Zhou Y, Zhang W, Wen T, Li L, Zuo M, Zhang Z, Tian J, Jiang W, Li Y, Wang L, Li J. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:371-381. [PMID: 27043321 DOI: 10.1111/1758-2229.12395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Qing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yang Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yinjia Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Yuan Zhou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Weijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Tong Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Meiqing Zuo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ziding Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Jiesheng Tian
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ying Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Lei Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| |
Collapse
|
49
|
Dong Y, Li J, Zhang W, Zhang W, Zhao Y, Xiao T, Wu LF, Pan H. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:239-249. [PMID: 26742990 DOI: 10.1111/1758-2229.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Wuchang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenyan Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Long-Fei Wu
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
- Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, CNRS, F-13402, Marseille, France
| | - Hongmiao Pan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| |
Collapse
|
50
|
A novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1. Sci Rep 2016; 6:21156. [PMID: 26879571 PMCID: PMC4754748 DOI: 10.1038/srep21156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023] Open
Abstract
Magnetotactic bacteria (MTB) are specialized microorganisms that synthesize intracellular magnetite particles called magnetosomes. Although many studies have focused on the mechanism of magnetosome synthesis, it remains unclear how these structures are formed. Recent reports have suggested that magnetosome formation is energy dependent. To investigate the relationship between magnetosome formation and energy metabolism, a global regulator, named Crp, which mainly controls energy and carbon metabolism in most microorganisms, was genetically disrupted in Magnetospirillum gryphiswaldense MSR-1. Compared with the wild-type or complemented strains, the growth, ferromagnetism and intracellular iron content of crp-deficient mutant cells were dramatically decreased. Transmission electron microscopy (TEM) showed that magnetosome synthesis was strongly impaired by the disruption of crp. Further gene expression profile analysis showed that the disruption of crp not only influenced genes related to energy and carbon metabolism, but a series of crucial magnetosome island (MAI) genes were also down regulated. These results indicate that Crp is essential for magnetosome formation in MSR-1. This is the first time to demonstrate that Crp plays an important role in controlling magnetosome biomineralization and provides reliable expression profile data that elucidate the mechanism of Crp regulation of magnetosome formation in MSR-1.
Collapse
|