1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Webster J, Dalla Via J, Langley C, Smith C, Sale C, Sim M. Nutritional strategies to optimise musculoskeletal health for fall and fracture prevention: Looking beyond calcium, vitamin D and protein. Bone Rep 2023; 19:101684. [PMID: 38163013 PMCID: PMC10757289 DOI: 10.1016/j.bonr.2023.101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 01/03/2024] Open
Abstract
Falls and osteoporotic fractures are a major public health problem, particularly among older adults. A third of individuals aged 65 years and over fall at least once each year, with up to 20 % of these resulting in serious injury, including fracture. In conjunction with regular exercise, the importance of diet for musculoskeletal health has largely focused upon calcium, vitamin D, and protein, particularly in the context of preventing falls and fractures. Whilst there is evidence for the benefits of these nutrients for musculoskeletal health, other aspects of the diet remain largely underexplored. For example, vegetables are rich sources of macro- and micronutrients that are essential for muscle function and bone health, which are key factors in the prevention of falls and fractures. Recent work has highlighted the importance of nutrients such as vegetable-derived nitrate and vitamin K1 in optimising muscle strength, physical function, and bone quality. In the context of dietary patterns, vegan/plant-based diets have recently gained popularity due to perceived health benefits, animal welfare, or to tackle climate change. The elimination and/or substitution of animal-based products for plant foods (without careful planning and/or expert dietary guidance) could, however, have long-term negative musculoskeletal consequences; a trend uncovered by recent evidence. Within the overarching theme of nutrition for fall and fracture prevention in older populations, the aim of this review is to (i) summarise the current evidence for calcium, vitamin D and protein; (ii) describe the importance of vegetables and selected nutrients, such as nitrate and vitamin K1, for muscle function and bone structural integrity; and (iii) highlight current evidence around different dietary patterns (e.g., plant-based, diet quality, data driven approaches) and their impact on musculoskeletal health.
Collapse
Affiliation(s)
- James Webster
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jack Dalla Via
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Christina Langley
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Cassandra Smith
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
4
|
Proia P, Rossi C, Alioto A, Amato A, Polizzotto C, Pagliaro A, Kuliś S, Baldassano S. MiRNAs Expression Modulates Osteogenesis in Response to Exercise and Nutrition. Genes (Basel) 2023; 14:1667. [PMID: 37761807 PMCID: PMC10529960 DOI: 10.3390/genes14091667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, many articles have been published describing the impact of physical activity and diet on bone health. This review has aimed to figure out the possible epigenetic mechanisms that influence bone metabolism. Many studies highlighted the effects of macro and micronutrients combined with exercise on the regulation of gene expression through miRs. The present review will describe how physical activity and nutrition can prevent abnormal epigenetic regulation that otherwise could lead to bone-metabolism-related diseases, the most significant of which is osteoporosis. Nowadays, it is known that this effect can be carried out not only by endogenously produced miRs, but also through those intakes through the diet. Indeed, they have also been found in the transcriptome of animals and plants, and it is possible to hypothesise an interaction between miRNAs produced by different kingdoms and epigenetic influences on human gene expression. In particular, the key to the activation pathways triggered by diet and physical activity appears to be the activation of Runt-related transcription factor 2 (RUNX2), the expression of which is regulated by several miRs. Among the main miRs involved are exercise-induced miR21 and 21-5p, and food-induced miR 221-3p and 222-3p.
Collapse
Affiliation(s)
- Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
- Centro Medico di Fisioterapia “Villa Sarina”, 91011 Alcamo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy;
| | - Caterina Polizzotto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Szymon Kuliś
- Faculty of Physical Education, Józef Piłsudski University of Physical Education, 00-968 Warsaw, Poland;
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
5
|
Ali M, Lee Y, Ha B, Jung J, Lee BY, Kim DS, Lee MY, Kim YS. The bone-protective benefits of amino-conjugated calcium in an ovariectomized (OVX) rat model. Life Sci 2023; 328:121927. [PMID: 37437650 DOI: 10.1016/j.lfs.2023.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Low bone density, fragility, and microarchitectural disintegration are the symptoms of osteoporosis. An imbalance between bone growth and resorption can lead to osteoporosis. This study evaluated the effects of amino-calcium (AC) on bone protection in ovariectomized control group (NC) rats. Amino-calcium (AC) was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), and nuclear magnetic resonance spectroscopy analyses (NMR). After determining the biocompatibility of amino-calcium (AC) with MC3T3-E1 cells, alkaline phosphatase staining revealed significant changes on day 7. Three of the four groups underwent ovariectomy, whereas one group received a placebo. On micro-computed tomography, in vivo, data showed increased bone volume fraction in the femoral head and shaft areas in the amino-calcium (AC) group. Hematoxylin and eosin staining showed a bone mass and architectural protection in the amino-calcium (AC) group compared with the calcium carbonate and OVX control group. RNA sequencing analysis revealed high expression of osteogenesis-related genes in MC3T3-E1 cells. RNA sequencing revealed a significant fold change in the expression of integrin-binding sialoprotein (IBSP), bone gamma-carboxyglutamate proteins 1 and 2(BGLAP1 and BGLAP2), and periostin (POSTN). The study concluded that supplementing the OVX rats with calcium enhanced bone protection.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Youri Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Bin Ha
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Yeol Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; BTN Co., Ltd., 407ho, Entrepreneurship Hall, 22 Soonchunhyang-ro, Asan, Chungnam 31538, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
6
|
Li H, Liu S, Miao C, Lv Y, Hu Y. Integration of metabolomics and transcriptomics provides insights into enhanced osteogenesis in Ano5Cys360Tyr knock-in mouse model. Front Endocrinol (Lausanne) 2023; 14:1117111. [PMID: 36742392 PMCID: PMC9895949 DOI: 10.3389/fendo.2023.1117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare autosomal dominant disorder characterized by diaphyseal sclerosis of tubular bones and cemento-osseous lesions in mandibles. GDD is caused by point mutations in the ANO5 gene. However, the mechanisms underlying GDD have not been disclosed. We previously generated the first knock-in mouse model for GDD expressing a human mutation (p.Cys360Tyr) in ANO5 and homozygous Ano5 knock-in (Ano5KI/KI ) mice exhibited representative traits of human GDD especially including enhanced osteogenesis. METHODS Metabolomics and transcriptomics analyses were conducted for wildtype (Ano5+/+ ) and Ano5KI/KI mature mouse calvarial osteoblasts (mCOBs) grown in osteogenic cultures for 14 days to identify differential intracellular metabolites and genes involved in GDD. Subsequently, related differential genes were validated by qRT-PCR. Cell proliferation was confirmed by CCK8 assay and calcium content in mineral nodules was detected using SEM-EDS. RESULTS Metabolomics identified 42 differential metabolites that are primarily involved in amino acid and pyrimidine metabolism, and endocrine and other factor-regulated calcium reabsorption. Concomitantly, transcriptomic analysis revealed 407 differentially expressed genes in Ano5KI/KI osteoblasts compared with wildtype. Gene ontology and pathway analysis indicated that Ano5Cys360Tyr mutation considerably promoted cell cycle progression and perturbed calcium signaling pathway, which were confirmed by validated experiments. qRT-PCR and CCK-8 assays manifested that proliferation of Ano5KI/KI mCOBs was enhanced and the expression of cell cycle regulating genes (Mki67, Ccnb1, and Ccna2) was increased. In addition, SEM-EDS demonstrated that Ano5KI/KI mCOBs developed higher calcium contents in mineral nodules than Ano5+/+ mCOBs, while some calcium-related genes (Cacna1, Slc8a1, and Cyp27b1) were significantly up-regulated. Furthermore, osteocalcin which has been proved to be an osteoblast-derived metabolic hormone was upregulated in Ano5KI/KI osteoblast cultures. DISCUSSION Our data demonstrated that the Ano5Cys360Tyr mutation could affect the metabolism of osteoblasts, leading to unwonted calcium homeostasis and cellular proliferation that can contribute to the underlying pathogenesis of GDD disorders.
Collapse
|
7
|
Moretti A, Liguori S, Paoletta M, Migliaccio S, Toro G, Gimigliano F, Iolascon G. Bone fragility during the COVID-19 pandemic: the role of macro- and micronutrients. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158200. [PMID: 36937822 PMCID: PMC10015293 DOI: 10.1177/1759720x231158200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
Bone fragility is the susceptibility to fracture due to poor bone strength. This condition is usually associated with aging, comorbidities, disability, poor quality of life, and increased mortality. International guidelines for the management of patients with bone fragility include a nutritional approach, mainly aiming at optimal protein, calcium, and vitamin D intakes. Several biomechanical features of the skeleton, such as bone mineral density (BMD), trabecular and cortical microarchitecture, seem to be positively influenced by micro- and macronutrient intake. Patients with major fragility fractures are usually poor consumers of dairy products, fruit, and vegetables as well as of nutrients modulating gut microbiota. The COVID-19 pandemic has further aggravated the health status of patients with skeletal fragility, also in terms of unhealthy dietary patterns that might adversely affect bone health. In this narrative review, we discuss the role of macro- and micronutrients in patients with bone fragility during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Sara Liguori
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health
Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Francesca Gimigliano
- Department of Physical and Mental Health and
Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| |
Collapse
|
8
|
McAuliffe GA, Takahashi T, Beal T, Huppertz T, Leroy F, Buttriss J, Collins AL, Drewnowski A, McLaren SJ, Ortenzi F, van der Pols JC, van Vliet S, Lee MRF. Protein quality as a complementary functional unit in life cycle assessment (LCA). THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2022; 28:146-155. [PMID: 36685326 PMCID: PMC9845161 DOI: 10.1007/s11367-022-02123-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Goal and theoretical commentary A number of recent life cycle assessment (LCA) studies have concluded that animal-sourced foods should be restricted-or even avoided-within the human diet due to their relatively high environmental impacts (particularly those from ruminants) compared with other protein-rich foods (mainly protein-rich plant foods). From a nutritional point of view, however, issues such as broad nutrient bioavailability, amino acid balances, digestibility and even non-protein nutrient density (e.g., micronutrients) need to be accounted for before making such recommendations to the global population. This is especially important given the contribution of animal sourced foods to nutrient adequacy in the global South and vulnerable populations of high-income countries (e.g., children, women of reproductive age and elderly). Often, however, LCAs simplify this reality by using 'protein' as a functional unit in their models and basing their analyses on generic nutritional requirements. Even if a 'nutritional functional unit' (nFU) is utilised, it is unlikely to consider the complexities of amino acid composition and subsequent protein accretion. The discussion herein focuses on nutritional LCA (nLCA), particularly on the usefulness of nFUs such as 'protein,' and whether protein quality should be considered when adopting the nutrient as an (n)FU. Further, a novel and informative case study is provided to demonstrate the strengths and weaknesses of protein-quality adjustment. Case study methods To complement current discussions, we present an exploratory virtual experiment to determine how Digestible Indispensable Amino Acid Scores (DIAAS) might play a role in nLCA development by correcting for amino acid quality and digestibility. DIAAS is a scoring mechanism which considers the limiting indispensable amino acids (IAAs) within an IAA balance of a given food (or meal) and provides a percentage contribution relative to recommended daily intakes for IAA and subsequent protein anabolism; for clarity, we focus only on single food items (4 × animal-based products and 4 × plant-based products) in the current case exemplar. Further, we take beef as a sensitivity analysis example (which we particularly recommend when considering IAA complementarity at the meal-level) to elucidate how various cuts of the same intermediary product could affect the interpretation of nLCA results of the end-product(s). Recommendations First, we provide a list of suggestions which are intended to (a) assist with deciding whether protein-quality correction is necessary for a specific research question and (b) acknowledge additional uncertainties by providing mitigating opportunities to avoid misinterpretation (or worse, dis-interpretation) of protein-focused nLCA studies. We conclude that as relevant (primary) data availability from supply chain 'gatekeepers' (e.g., international agri-food distributors and processors) becomes more prevalent, detailed consideration of IAA provision of contrasting protein sources needs to be acknowledged-ideally quantitatively with DIAAS being one example-in nLCA studies utilising protein as a nFU. We also contend that future nLCA studies should discuss the complementarity of amino acid balances at the meal-level, as a minimum, rather than the product level when assessing protein metabolic responses of consumers. Additionally, a broader set of nutrients should ideally be included when evaluating "protein-rich foods" which provide nutrients that extend beyond amino acids, which is of particular importance when exploring dietary-level nLCA.
Collapse
Affiliation(s)
- G. A. McAuliffe
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB Devon UK
| | - T. Takahashi
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB Devon UK
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU UK
| | - T. Beal
- Global Alliance for Improved Nutrition (GAIN), Washington, DC 20036 USA
- Institute for Social, Behavioral and Economic Research, University of California, Santa Barbara, CA 93106 USA
| | - T. Huppertz
- Wageningen University and Research, Wageningen, The Netherlands
- Dairy Physics and Chemistry, FrieslandCampina, Wolvega, Weststellingwerf The Netherlands
| | - F. Leroy
- Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - A. L. Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB Devon UK
| | - A. Drewnowski
- Department of Epidemiology, University of Washington, Nutritional Sciences, Seattle, WA 98195 USA
| | - S. J. McLaren
- New Zealand Life Cycle Management Centre, Massey University, Palmerston North, New Zealand
| | - F. Ortenzi
- Independent Nutrition and Global Health Consultant, Geneva, Switzerland
| | - J. C. van der Pols
- Faculty of Health, School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059 Australia
| | - S. van Vliet
- Center for Human Nutrition Studies, Utah State University, Logan, UT 84322 USA
| | - M. R. F. Lee
- Harper Adams University, Edgmond, Newport, TF10 8NB UK
| |
Collapse
|
9
|
Liu Y, Liu Q, Yin C, Li Y, Wu J, Chen Q, Yu H, Lu A, Guan D. Uncovering Hidden Mechanisms of Different Prescriptions Treatment for Osteoporosis via Novel Bioinformatics Model and Experiment Validation. Front Cell Dev Biol 2022; 10:831894. [PMID: 35211473 PMCID: PMC8861325 DOI: 10.3389/fcell.2022.831894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of “different treatments for the same disease” in herbal medicine. However, at present, the functional interpretation of “different treatments for the same disease” in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of “different treatments for the same disease” in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Habibi M, Shili CN, Sutton J, Goodarzi P, Pezeshki A. Dietary branched-chain amino acids modulate the dynamics of calcium absorption and reabsorption in protein-restricted pigs. J Anim Sci Biotechnol 2022; 13:15. [PMID: 35139926 PMCID: PMC8830008 DOI: 10.1186/s40104-021-00669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Background Very low-protein (VLP) diets negatively impact calcium (Ca) metabolism and absorption. The objective of this study was to investigate the effect of supplemental branched-chain amino acids (BCAA) and limiting amino acids (LAA) on Ca digestibility, absorption and reabsorption in pigs fed with VLP diets. Forty-eight piglets were assigned to six treatments: positive control (PC), negative control (NC), and NC containing LAA 25%, LAA 50%, LAA + BCAA 25% (LB25) and LAA + BCAA 50% (LB50) more than recommendations. Results Relative to PC or NC, LB25 and LB50 had higher digestibility of Ca and plasma Ca and phosphorus (P), but lower plasma vitamin D3. LB50 tended to increase vitamin D receptor transcript and protein in the gut, but decreased mRNA or protein abundance of parathyroid hormone 1 receptor (PTH1R), calbindin 1 (CALB1), cytochrome P450 family 27 subfamily B member 1 and occludin in small intestine. LB50 increased the transcript of cytochrome P450 family 24 subfamily A member 1 and PTH1R but decreased the transcript of transient receptor potential cation channel subfamily V member 5, CALB1 and solute carrier family 17 member 4 in kidney. Conclusion Overall, BCAA increased Ca digestibility through regulating the transcellular and paracellular Ca absorption in the gut and reabsorption in kidney during protein restriction.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Cedrick N Shili
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
12
|
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9:606-621. [PMID: 34242583 DOI: 10.1016/s2213-8587(21)00119-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Osteoporotic or fragility fractures affect one in two women and one in five men who are older than 50. These events are associated with substantial morbidity, increased mortality, and an impaired quality of life. Recommended general measures for fragility fracture prevention include a balanced diet with an optimal protein and calcium intake and vitamin D sufficiency, together with regular weight-bearing physical exercise. In this narrative Review, we discuss the role of nutrients, foods, and dietary patterns in maintaining bone health. Much of this information comes from observational studies. Bone mineral density, microstructure-estimated bone strength, and trabecular and cortical microstructure are positively associated with total protein intake. Several studies indicate that fracture risk might be lower with a higher dietary protein intake, provided that the calcium supply is sufficient. Dairy products are a valuable source of these two nutrients. Hip fracture risk appears to be lower in consumers of dairy products, particularly fermented dairy products. Consuming less than five servings per day of fruit and vegetables is associated with a higher hip fracture risk. Adherence to a Mediterranean diet or to a prudent diet is associated with a lower fracture risk. These various nutrients and dietary patterns influence gut microbiota composition or function, or both. The conclusions of this Review emphasise the importance of a balanced diet including minerals, protein, and fruit and vegetables for bone health and in the prevention of fragility fractures.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Daly A, Högler W, Crabtree N, Shaw N, Evans S, Pinto A, Jackson R, Ashmore C, Rocha JC, Strauss BJ, Wilcox G, Fraser WD, Tang JCY, MacDonald A. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients 2021; 13:nu13062075. [PMID: 34204378 PMCID: PMC8233747 DOI: 10.3390/nu13062075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
In patients with phenylketonuria (PKU), treated by diet therapy only, evidence suggests that areal bone mineral density (BMDa) is within the normal clinical reference range but is below the population norm. Aims: To study longitudinal bone density, mass, and geometry over 36 months in children with PKU taking either amino acid (L-AA) or casein glycomacropeptide substitutes (CGMP-AA) as their main protein source. Methodology: A total of 48 subjects completed the study, 19 subjects in the L-AA group (median age 11.1, range 5–16 years) and 29 subjects in the CGMP-AA group (median age 8.3, range 5–16 years). The CGMP-AA was further divided into two groups, CGMP100 (median age 9.2, range 5–16 years) (n = 13), children taking CGMP-AA only and CGMP50 (median age 7.3, range 5–15 years) (n = 16), children taking a combination of CGMP-AA and L-AA. Dual X-ray absorptiometry (DXA) was measured at enrolment and 36 months, peripheral quantitative computer tomography (pQCT) at 36 months only, and serum blood and urine bone turnover markers (BTM) and blood bone biochemistry at enrolment, 6, 12, and 36 months. Results: No statistically significant differences were found between the three groups for DXA outcome parameters, i.e., BMDa (L2–L4 BMDa g/cm2), bone mineral apparent density (L2–L4 BMAD g/cm3) and total body less head BMDa (TBLH g/cm2). All blood biochemistry markers were within the reference ranges, and BTM showed active bone turnover with a trend for BTM to decrease with increasing age. Conclusions: Bone density was clinically normal, although the median z scores were below the population mean. BTM showed active bone turnover and blood biochemistry was within the reference ranges. There appeared to be no advantage to bone density, mass, or geometry from taking a macropeptide-based protein substitute as compared with L-AAs.
Collapse
Affiliation(s)
- Anne Daly
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
- Correspondence:
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstraße 26-30, 4020 Linz, Austria;
| | - Nicola Crabtree
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Nick Shaw
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Sharon Evans
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Alex Pinto
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Richard Jackson
- Liverpool Clinical Trials Centre, University of Liverpool, Brownlow Hill, Liverpool L69 3GL, UK;
| | - Catherine Ashmore
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| | - Júlio C. Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Centre for Health and Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
| | - Boyd J. Strauss
- School of Medical Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester M13 9PL, UK; (B.J.S.); (G.W.)
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Gisela Wilcox
- School of Medical Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester M13 9PL, UK; (B.J.S.); (G.W.)
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Ladywell NW2, Salford, Manchester M6 8HD, UK
| | - William D. Fraser
- BioAnalytical Facility, BCRE Builiding University or East Anglia, Norwich NR4 7TJ, UK; (W.D.F.); (J.C.Y.T.)
| | - Jonathan C. Y. Tang
- BioAnalytical Facility, BCRE Builiding University or East Anglia, Norwich NR4 7TJ, UK; (W.D.F.); (J.C.Y.T.)
- Departments of Clinical Biochemistry and Endocrinology, Norfolk and Norwich University Hospitals Trust, Norwich NR4 7UY, UK
| | - Anita MacDonald
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (N.C.); (N.S.); (S.E.); (A.P.); (C.A.); (A.M.)
| |
Collapse
|
14
|
Mangano KM, Noel SE, Lai CQ, Christensen JJ, Ordovas JM, Dawson-Hughes B, Tucker KL, Parnell LD. Diet-derived fruit and vegetable metabolites show sex-specific inverse relationships to osteoporosis status. Bone 2021; 144:115780. [PMID: 33278656 PMCID: PMC7856195 DOI: 10.1016/j.bone.2020.115780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The impact of nutrition on the metabolic profile of osteoporosis (OS) is unknown. OBJECTIVE Identify biochemical factors driving the association of fruit and vegetable (FV) intakes with OS prevalence using an untargeted metabolomics approach. DESIGN Cross-sectional dietary, anthropometric and plasma metabolite data were examined from the Boston Puerto Rican Osteoporosis Study, n = 600 (46-79 yr). METHODS Bone mineral density was assessed by DXA. OS was defined by clinical standards. A culturally adapted FFQ assessed usual dietary intake. Principal components analysis (PCA) of 42 FV items created 6 factors. Metabolomic profiles derived from plasma samples were assessed on a commercial platform. Differences in levels of 525 plasma metabolites between disease groups (OS vs no-OS) were compared using logistic regression; and associations with FV intakes by multivariable linear regression, adjusted for covariates. Metabolites significantly associated with OS status or with total FV intake were analyzed for enrichment in various biological pathways using Mbrole 2.0, MetaboAnalyst, and Reactome, using FDR correction of P-values. Correlation coefficients were calculated as Spearman's rho rank correlations, followed by hierarchical clustering of the resulting correlation coefficients using PCA FV factors and sex-specific sets of OS-associated metabolites. RESULTS High FV intake was inversely related to OS prevalence (Odds Ratio = 0.73; 95% CI = 0.57, 0.94; P = 0.01). Several biological processes affiliated with the FV-associating metabolites, including caffeine metabolism, carnitines and fatty acids, and glycerophospholipids. Important processes identified with OS-associated metabolites were steroid hormone biosynthesis in women and branched-chain amino acid metabolism in men. Factors derived from PCA were correlated with the OS-associated metabolites, with high intake of dark leafy greens and berries/melons appearing protective in both sexes. CONCLUSIONS These data warrant investigation into whether increasing intakes of dark leafy greens, berries and melons causally affect bone turnover and BMD among middle-aged and older adults at risk for osteoporosis via sex-specific metabolic pathways, and how gene-diet interactions alter these sex-specific metabolomic-osteoporosis links. ClinicalTrials.gov Identifier: NCT01231958.
Collapse
Affiliation(s)
- Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA.
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0315 Oslo, Norway
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, 02111 Boston, MA, USA
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, 02111 Boston, MA, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| |
Collapse
|
15
|
Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr Rev Food Sci Food Saf 2021; 20:2234-2262. [PMID: 33522110 DOI: 10.1111/1541-4337.12707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone is a dynamic organ under constant metabolism (or remodeling), where a delicate balance between bone resorption and bone formation is maintained. Disruption of this coordinated bone remodeling results in bone diseases, such as osteoporosis, the most common bone disorder characterized by decreased bone mineral density and microarchitectural deterioration. Epidemiological and clinical evidence support that consumption of dairy products is beneficial for bone health; this benefit is often attributed to the presence of calcium, the physiological contributions of milk proteins on bone metabolism, however, are underestimated. Emerging evidence highlighted that not only milk proteins (including individual milk proteins) but also their derived peptides positively regulate bone remodeling and attenuate bone loss, via the regulation of cellular markers and signaling of osteoblasts and osteoclasts. This article aims to review current knowledge about the roles of milk proteins, with an emphasis on individual milk proteins, bioactive peptides derived from milk proteins, and effect of milk processing in particular fermentation, on bone metabolism, to highlight the potential uses of milk proteins in the prevention and treatment of osteoporosis, and, to discuss the knowledge gap and to recommend future research directions.
Collapse
Affiliation(s)
- Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jianping Wu
- ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Itkonen ST, Päivärinta E, Pellinen T, Viitakangas H, Risteli J, Erkkola M, Lamberg-Allardt C, Pajari AM. Partial Replacement of Animal Proteins with Plant Proteins for 12 Weeks Accelerates Bone Turnover Among Healthy Adults: A Randomized Clinical Trial. J Nutr 2021; 151:11-19. [PMID: 32939557 DOI: 10.1093/jn/nxaa264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Plant-based diets may reduce the risk of chronic diseases, but can also lead to low calcium and vitamin D intakes, posing a risk for bone health. OBJECTIVES We investigated whether partial replacement of animal proteins with plant-based proteins using a whole-diet approach affects bone and mineral metabolism in healthy adults in 3 groups fed diets differing in protein composition. METHODS This 12-week clinical trial was comprised of 107 women and 29 men (20-69 years old; BMI mean ± SD, 24.8 ± 3.9) randomly assigned to consume 1 of 3 diets designed to provide 17 energy percent (E%) protein: "animal" (70% animal protein, 30% plant protein of total protein intake), "50/50" (50% animal, 50% plant), and "plant" (30% animal, 70% plant) diets. We examined differences in bone formation [serum intact procollagen type I amino-terminal propeptide (S-iPINP)], bone resorption [serum collagen type 1 cross-linked C-terminal telopeptide (S-CTX)], mineral metabolism markers (primary outcomes), and nutrient intakes (secondary outcomes) by ANOVA/ANCOVA. RESULTS S-CTX was significantly higher in the plant group (mean ± SEM, 0.44 ± 0.02 ng/mL) than in the other groups (P values < 0.001 for both), and differed also between the animal (mean ± SEM, 0.29 ± 0.02 ng/mL) and 50/50 groups (mean ± SEM, 0.34 ± 0.02 ng/mL; P = 0.018). S-iPINP was significantly higher in the plant group (mean ± SEM, 63.9 ± 1.91 ng/mL) than in the animal group (mean ± SEM, 55.0 ± 1.82 ng/mL; P = 0.006). In a subgroup without a history of vitamin D supplement use, plasma parathyroid hormone was significantly higher in the plant than in the animal group (P = 0.018). Vitamin D and calcium intakes were below recommended levels in the plant group (mean ± SEM, 6.2 ± 3.7 μg/d and 733 ± 164 mg/d, respectively). CONCLUSIONS Partial replacement of animal proteins with plant-based proteins for 12 weeks increased the markers of bone resorption and formation among healthy adults, indicating a possible risk for bone health. This is probably caused by lower vitamin D and calcium intakes from diets containing more plant-based proteins, but it is unclear whether differences in protein intake or quality play a major role. This trial was registered at clinicaltrials.gov as NCT03206827.
Collapse
Affiliation(s)
- Suvi T Itkonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Essi Päivärinta
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Tiina Pellinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Hanna Viitakangas
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Juha Risteli
- Cancer and Translational Medicine Research Unit, Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Maijaliisa Erkkola
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | | | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Pham HT, Ono M, Hara ES, Nguyen HTT, Dang AT, Do HT, Komori T, Tosa I, Hazehara-Kunitomo Y, Yoshioka Y, Oida Y, Akiyama K, Kuboki T. Tryptophan and Kynurenine Enhances the Stemness and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro and In Vivo. MATERIALS 2021; 14:ma14010208. [PMID: 33406724 PMCID: PMC7796421 DOI: 10.3390/ma14010208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023]
Abstract
Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 μM) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss.
Collapse
Affiliation(s)
- Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
- Faculty of Dentistry, Hai Phong University of Medical and Pharmacy, Haiphong 04211, Vietnam
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
- Correspondence: (M.O.); (E.S.H.); Tel.: +81-86-235-7127 (M.O.); +81-86-235-6667 (E.S.H.); Fax: +81-86-222-7768 (M.O.); +81-86-235-6669 (E.S.H.)
| | - Emilio Satoshi Hara
- Department of Biomaterials, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
- Correspondence: (M.O.); (E.S.H.); Tel.: +81-86-235-7127 (M.O.); +81-86-235-6667 (E.S.H.); Fax: +81-86-222-7768 (M.O.); +81-86-235-6669 (E.S.H.)
| | - Ha Thi Thu Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
- Faculty of Dentistry, Hai Phong University of Medical and Pharmacy, Haiphong 04211, Vietnam
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
| | - Anh Tuan Dang
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
- Faculty of Dentistry, Hai Phong University of Medical and Pharmacy, Haiphong 04211, Vietnam
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
| | - Hang Thuy Do
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
- Faculty of Dentistry, Hai Phong University of Medical and Pharmacy, Haiphong 04211, Vietnam
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| | - Yuri Hazehara-Kunitomo
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan
| | - Yuya Yoshioka
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| | - Yasutaka Oida
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (H.T.P.); (H.T.T.N.); (A.T.D.); (H.T.D.); (T.K.); (I.T.); (Y.H.-K.); (Y.Y.); (Y.O.); (K.A.); (T.K.)
| |
Collapse
|
18
|
OLIVEIRA DLD, GRASSI TLM, BASSANI JS, DINIZ JCP, PAIVA NM, PONSANO EHG. Enrichment of fishburgers with proteins from surimi washing water. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.21319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Wang J, Dong X, Ma F, Li C, Bu R, Lu J, Gao J, Xue P. Metabolomics profiling reveals Echinops latifolius Tausch improves the trabecular micro-architecture of ovariectomized rats mainly via intervening amino acids and glycerophospholipids metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113018. [PMID: 32502650 DOI: 10.1016/j.jep.2020.113018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinops latifolius Tausch (ELT) is traditional Mongolian medicine in China, and often used to against osteoporosis, strengthen tendons and bones, clear bones heat. AIM OF THE STUDY To study efficacy of ELT on ovariectomized (OVX) rats and underly metabolic pathways related to trabecular micro-architecture changing of OVX. MATERIALS AND METHODS Three-month-old female Wistar rats were randomly divided into 4 groups (n = 6) including normal group (without surgery), sham group (bilateral laparotomy), OVX group (bilateral ovariectomy), and ELT-treated groups (ELT-treated after bilateral ovariectomy). The effects of ELT on trabecular micro-architecture and biochemical markers of OVX rat were investigated by dual-energy X-ray absorptiometry machine and Enzyme-linked immunosorbent assay (ELISA), respectively. Untargeted metabolomics strategy was applied to discover the potential biomarkers and related metabolic pathways involving the progression of OVX-induced osteoporosis. RESULTS The trabecular micro-architecture and biochemical markers of OVX rats were improved by ELT. We found 36 potential biomarkers and 21 related metabolic pathways were involved in progression of OVX-induced osteoporosis. Amino acids metabolism and glycerophospholipids metabolism were mainly intervened in ELT treatment on ovariectomized rats. The disordered amino acids and glycerophospholipids metabolism closely related to the imbalance between bone resorption and formation were reversed by administration of ELT, indicating that the influences of ELT on OVX rats' trabecular micro-architecture may possible be associated with intervening amino acids and glycerophospholipids metabolism. CONCLUSIONS This approach may provide the metabolomic perspective to link metabolic alterations and anti-osteoporosis action of ELT, to further explain how ELT works in postmenopausal patients with bone loss.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Xin Dong
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Feixiang Ma
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Chunyan Li
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Ren Bu
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Jingkun Lu
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China
| | - Jianping Gao
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China.
| | - Peifeng Xue
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, China.
| |
Collapse
|
20
|
Kanakis I, Alameddine M, Scalabrin M, van 't Hof RJ, Liloglou T, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Low protein intake during reproduction compromises the recovery of lactation-induced bone loss in female mouse dams without affecting skeletal muscles. FASEB J 2020; 34:11844-11859. [PMID: 32652768 DOI: 10.1096/fj.202001131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Moussira Alameddine
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Mattia Scalabrin
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Rob J van 't Hof
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
22
|
Wei Y, Fu J, Wu W, Wu J. Comparative profiles of DNA methylation and differential gene expression in osteocytic areas from aged and young mice. Cell Biochem Funct 2020; 38:721-732. [PMID: 32526817 DOI: 10.1002/cbf.3539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Altered DNA methylation upon ageing may result in many age-related diseases such as osteoporosis. However, the changes in DNA methylation that occur in cortical bones, the major osteocytic areas, remain unknown. In our study, we extracted total DNA and RNA from the cortical bones of 6-month-old and 24-month-old mice and systematically analysed the differentially methylated regions (DMRs), differentially methylated promoters (DMPs) and differentially expressed genes (DEGs) between the mouse groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DMR-related genes revealed that they were mainly associated with metabolic signalling pathways, including glycolysis, fatty acid and amino acid metabolism. Other genes with DMRs were related to signalling pathways that regulate the growth and development of cells, including the PI3K-AKT, Ras and Rap1 signalling pathways. The gene expression profiles indicated that the DEGs were mainly involved in metabolic pathways and the PI3K-AKT signalling pathway, and the profiles were verified through real-time quantitative PCR (RT-qPCR). Due to the pivotal roles of the affected genes in maintaining bone homeostasis, we suspect that these changes may be key factors in age-related bone loss, either together or individually. Our study may provide a novel perspective for understanding the osteocyte and its relationship with osteoporosis during ageing. SIGNIFICANCE OF THE STUDY: Our study identified age-related changes in gene expressions in osteocytic areas through whole-genome bisulfite sequencing (WGBS) and RNA-seq, providing new theoretical foundations for the targeted treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenjing Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
23
|
Jørgensen CV, Bräuner‐Osborne H. Pharmacology and physiological function of the orphan GPRC6A receptor. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:77-87. [DOI: 10.1111/bcpt.13397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Christinna V. Jørgensen
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
24
|
Castro FLS, Kim HY, Hong YG, Kim WK. The effect of total sulfur amino acid levels on growth performance, egg quality, and bone metabolism in laying hens subjected to high environmental temperature. Poult Sci 2019; 98:4982-4993. [PMID: 31152669 DOI: 10.3382/ps/pez275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the effects of total sulfur amino acid (TSAA) levels on performance, egg quality, and bone metabolism in laying hens subjected or not to high environmental temperature (HT). HyLine W36 layers (n = 144) were randomly distributed in a 2 × 3 factorial arrangement. Room temperature (control, CR: 21°C/24 h; and high temperature, HR: 32°C/8 h) and diets (70, 85, or 100% of TSAA) were the main factors, with 4 replicates of 6 birds (19 to 45 wk). The TSAA levels were obtained by adding L-Methionine (L-Met) to the basal diet (70% of TSAA) until 85 and 100% of TSAA were reached. At weeks 21, 34, and 45, growth performance, egg production, and egg quality traits were evaluated. At 45 wk, bones were evaluated for collagenous and non-collagenous proteins, bone volume, mineral content, and mineral density from total, cortical, trabecular, and medullary portions. When interactions were found, the increase of TSAA levels (85 and 100%) was able to counteract the negative effects of HT. In general, HT reduced egg production (P < 0.05) and did not significantly affect bone quality. The birds fed 70% of TSAA showed higher feed conversion, lower body weight, egg weight, and egg mass than birds fed 85 and 100% of TSAA in at least one phase. The birds fed 100% of TSAA showed higher egg production and egg mass than the other treatments at 21 wk of age. The cortical and trabecular bone mineral densities were higher for birds fed 100 than 70% of TSAA, whereas the medullary bone mineral content and density were higher for birds fed 70 than 100% of TSAA. In conclusion, HT had negative impact on performance, egg quality and no effect on bone development. The supplementation of L-Met until either 85 or 100% of TSAA levels were reached was enough to assure good performance, egg quality, and bone development in laying hens subjected or not to HT.
Collapse
Affiliation(s)
- F L S Castro
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - H Y Kim
- CJ Corporation, 330 Dongho-ro, Jung-gu, Seoul 100-400, South Korea
| | - Y G Hong
- CJ Corporation, 330 Dongho-ro, Jung-gu, Seoul 100-400, South Korea
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Miao LY, Chu TTH, Li P, Jiang Y, Li HJ. Cimicifuga heracleifolia is therapeutically similar to black cohosh in relieving menopausal symptoms: evidence from pharmacological and metabolomics studies. Chin J Nat Med 2019; 17:435-445. [PMID: 31262456 DOI: 10.1016/s1875-5364(19)30051-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/28/2022]
Abstract
In the market of botanical dietary supplements, Cimicifuga heracleifolia (CH) has always been considered as an adulterated species of Cimicifuga racemosa (CR), a conventional American herb with promising benefits to counteract troubles arising from the menopause. However, the detailed comparison of their therapeutic effects is lacking. In present study, the pharmacological and metabolomics studies were comparatively conducted between CH and CR in ovariectomized (OVX) female rats. Specifically, estrogen-like, anti-hyperlipidemia and anti-osteoporosis effects were evaluated through measuring serum biochemical parameters, histopathological examination and micro computed tomography (Micro-CT) scanning. At the same time, a gas chromatography-mass spectrometry (GC-MS)-based serum metabolomics method was employed to profile the metabolite compositional changes. As a result, both CR and CH displayed anti-osteoporosis and anti-hyperlipemia on menopause syndrome. Meanwhile, their potentials in improving the OVX-induced metabolic disorders were discovered. In conclusion, these results demonstrated that CH is therapeutically similar to CR in relieving menopausal symptoms and CH could be considered as a promising alternative to CR instead of an adulterant in the market of botanical dietary supplements.
Collapse
Affiliation(s)
- Lan-Yun Miao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Thi Thanh Huyen Chu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Su Y, Elshorbagy A, Turner C, Refsum H, Chan R, Kwok T. Circulating amino acids are associated with bone mineral density decline and ten-year major osteoporotic fracture risk in older community-dwelling adults. Bone 2019; 129:115082. [PMID: 31622772 PMCID: PMC6925590 DOI: 10.1016/j.bone.2019.115082] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022]
Abstract
With aging, poor bone mineral density (BMD) and accelerated decrease in BMD are strong risk factors for fracture. Reports of the associations of dietary protein intake with bone strength are inconsistent, possibly owing to differences in protein sources and amino acid (AA) composition. We examined the associations of serum AA with 4-year hip BMD loss and subsequent fracture risk within 10 years in older community-dwelling adults, and further addressed whether lifestyle, dietary protein intake and its source, and body composition would affect the associations. In 1424 men and 1573 women (mean age 72 years), using binary logistic regression, higher serum valine, leucine, isoleucine and tryptophan concentrations were associated (or approaching a borderline significance in case of the last three ones) with less hip BMD decline (defined as BMD loss ≥ 2.8 times the precision error of the BMD measurement at femoral neck) in 4 years later, with the OR (95%CI) /SD of AA increase, ranging from 0.83 (0.75, 0.91) to 0.92 (0.87, 0.98) after multiple adjustments for baseline age, gender, BMI, BMD, estimated glomerular filtration rate (eGFR), dietary protein intake (animal- and plant-derived protein intakes), calcium intake, established lifestyles (physical activity level, smoking and alcohol drinking status), osteoporosis medications, and changes of body fat and lean muscle mass. Higher serum total homocysteine (tHcy) concentration was independently associated with BMD decline 4 years later (OR (95%CI) /SD of 1.16 (1.05, 1.27)). Using multivariate Cox regression, higher serum tryptophan concentration potentially predicted low risk of incident major osteoporotic fractures (MOFs) (HR/SD (95%CI)=0.86 (0.75, 0.98)) after multiple adjustments. Higher serum tHcy was associated with MOFs (HR/SD (95%CI)=1.29 (1.12, 1.50)) risk after multiple adjustments in men. These findings suggest that a specific AA profile correlates with greater BMD and lower subsequent fracture risk, independent of diet and lifestyle factors.
Collapse
Affiliation(s)
- Yi Su
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, Oslo, Norway
| | - Ruth Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Abstract
Osteoblasts are specialized mesenchymal cells that synthesize bone matrix and coordinate the mineralization of the skeleton. These cells work in harmony with osteoclasts, which resorb bone, in a continuous cycle that occurs throughout life. The unique function of osteoblasts requires substantial amounts of energy production, particularly during states of new bone formation and remodelling. Over the last 15 years, studies have shown that osteoblasts secrete endocrine factors that integrate the metabolic requirements of bone formation with global energy balance through the regulation of insulin production, feeding behaviour and adipose tissue metabolism. In this article, we summarize the current understanding of three osteoblast-derived metabolic hormones (osteocalcin, lipocalin and sclerostin) and the clinical evidence that suggests the relevance of these pathways in humans, while also discussing the necessity of specific energy substrates (glucose, fatty acids and amino acids) to fuel bone formation and promote osteoblast differentiation.
Collapse
Affiliation(s)
- Naomi Dirckx
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan C Moorer
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
28
|
Le B, Bůžková P, Robbins JA, Fink HA, Raiford M, Isales CM, Shikany JM, Coughlin SS, Carbone LD. The Association of Aromatic Amino Acids with Incident Hip Fracture, aBMD, and Body Composition from the Cardiovascular Health Study. Calcif Tissue Int 2019; 105:161-172. [PMID: 31115639 PMCID: PMC6663558 DOI: 10.1007/s00223-019-00562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
In 5187 persons from the Cardiovascular Health Study, there was no significant association of dietary intakes of aromatic amino acids (AAA) with areal BMD of the hip or body composition. However, those who had the lowest dietary intakes of AAA were at increased risk for incident hip fractures. Prior studies of the association of protein intake with osteoporosis are conflicting and have not directly examined the relationship of aromatic amino acids (AAA) with fractures, areal bone mineral density (aBMD), and body composition. We sought to determine the relationship of dietary intakes of AAA with osteoporosis parameters in elderly men and women. 5187 men and women aged ≥ 65 years from the Cardiovascular Health Study (CHS) with dietary intakes of AAA (tryptophan, phenylalanine, tyrosine) estimated by food frequency questionnaire (FFQ) were included. We examined the relationship between a one-time estimate of daily dietary AAA intake with risk of incident hip fractures over a median of 13.2 years of fracture follow-up. A subset (n = 1336) who had dual energy X-ray absorptiometry (DXA) performed were included in a cross-sectional analysis of the association of dietary AAA intake with aBMD of the total hip and measurements of body composition. In multivariable models adjusted for demographic and clinical variables, medication use, and diet, higher dietary AAA intake was not significantly associated with incident hip fractures. All hazard ratios (HR) were less than one (tryptophan, HR 0.14, 95% CI 0.01 to 1.89; phenylalanine, HR 0.60, 95% CI 0.23 to 1.55; tyrosine, HR 0.59, 95% CI 0.27 to 1.32), but confidence intervals were wide and included no difference. However, in post hoc analyses, the lowest quartile of intake for each AAA was associated with an increased risk for hip fracture compared to higher quartiles (p ≤ 0.047 for all). Dietary AAA intakes were not significantly associated with total hip aBMD or any measurements of body composition. Overall, there was no significant association of dietary AAA intake with hip fractures, aBMD of the hip, or body composition. However, there may be a subset of elderly individuals with low dietary intakes of AAA who are at increased for hip fractures.
Collapse
Affiliation(s)
- Brian Le
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - John A Robbins
- Department of Medicine, University of California - Davis, Sacramento, CA, USA
| | - Howard A Fink
- Geriatric Research Education & Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mattie Raiford
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven S Coughlin
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Department of Medicine, J. Harold Harrison MD Distinguished University Chair in Rheumatology, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
| |
Collapse
|
29
|
Mun HC, Leach KM, Conigrave AD. L-Amino Acids Promote Calcitonin Release via a Calcium-Sensing Receptor: Gq/11-Mediated Pathway in Human C-Cells. Endocrinology 2019; 160:1590-1599. [PMID: 31127815 DOI: 10.1210/en.2018-00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/19/2019] [Indexed: 11/19/2022]
Abstract
Human calcitonin release is promoted by elevated extracellular Ca2+ (Ca2+o) concentration acting, at least in part, via the calcium-sensing receptor (CaSR). The CaSR is positively modulated by L-amino acids, including the aromatic amino acids L-phenylalanine (Phe) and L-tryptophan (Trp). To investigate the effect of L-amino acids on human calcitonin secretion, we selected thyroid TT cells and exposed them to various Ca2+o concentrations in the absence or presence of L-Phe, plasma-like mixtures of L-amino acids, or the clinically effective positive modulator (calcimimetic) cinacalcet. In the presence of L-Phe or plasma-like mixtures of amino acids, TT cells exhibited enhanced Ca2+o sensitivity in assays of calcitonin release and intracellular Ca2+ mobilization. Furthermore, the effect of elevated Ca2+o and L-Phe on calcitonin release was markedly suppressed by the calcilytic NPS-2143. These effects were dependent on CaSR-mediated activation of Gq/11 as revealed by the specific inhibitor YM-254890. The findings support the hypothesis that calcitonin release is stimulated by increases in plasma L-amino acid levels as well as elevated Ca2+o concentration. They also demonstrate that stimulated calcitonin release as well as basal levels of calcitonin secretion are mediated by a CaSR:Gq/11 signaling mechanism.
Collapse
Affiliation(s)
- Hee-Chang Mun
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, New South Wales, Australia
| | - Katie M Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Ding KH, Cain M, Davis M, Bergson C, McGee-Lawrence M, Perkins C, Hardigan T, Shi X, Zhong Q, Xu J, Bollag WB, Hill W, Elsalanty M, Hunter M, Isales MC, Lopez P, Hamrick M, Isales CM. Amino acids as signaling molecules modulating bone turnover. Bone 2018; 115:15-24. [PMID: 29499416 PMCID: PMC6110952 DOI: 10.1016/j.bone.2018.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Except for the essential amino acids (AAs), much of the focus on adequate dietary protein intake has been on total nitrogen and caloric intake rather than AA composition. Recent data, however, demonstrate that "amino-acid sensing" can occur through either intracellular or extracellular nutrient-sensing mechanisms. In particular, members of the class 3 G-protein coupled receptor family, like the calcium-sensing receptor are known to preferentially bind specific AAs, which then modulate receptor activation by calcium ions and thus potentially impact bone turnover. In pursuing the possibility of direct nutrient effects on bone cells, we examined individual AA effects on osteoprogenitor/bone marrow stromal cells (BMSCs), a key target for bone anabolism. We demonstrate that BMSCs express both intracellular and extracellular nutrient sensing pathways and that AAs are required for BMSC survival. In addition, certain AA types, like members of the aromatic AAs, can potently stimulate increases in intracellular calcium and ERK phosphorylation/activation. Further, based on the in vitro data, we examined the effect of specific AAs on bone mass. To better evaluate the impact of specific AAs, we added these to a low-protein diet. Our data demonstrate that a low-protein diet itself is associated with a significant drop in bone mineral density (BMD) in the older mice, related, at least in part, to an increase in osteoclastic activity. This drop in BMD in mice on the low-protein diet is prevented by addition of AAs from the aromatic group. Taken together our data show that AAs function as specific and selective signaling molecules in bone cells.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA
| | - Michael Cain
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA
| | - Michael Davis
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA
| | - Clare Bergson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, USA
| | - Meghan McGee-Lawrence
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, USA
| | - Crystal Perkins
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA
| | - Trevor Hardigan
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA
| | - Xingming Shi
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA
| | - Wendy B Bollag
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Medicine, Medical College of Georgia, Augusta University, USA; Department of Physiology, Medical College of Georgia, Augusta University, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, USA; Charlie Norwood VA Medical Center, School of Dental Medicine, Augusta, GA 30912, USA
| | - William Hill
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, USA; Charlie Norwood VA Medical Center, School of Dental Medicine, Augusta, GA 30912, USA
| | - Mohammed Elsalanty
- Department of Oral Biology, School of Dental Medicine, Augusta, GA 30912, USA
| | - Monte Hunter
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA
| | - Maria C Isales
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA
| | - Patricia Lopez
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA
| | - Mark Hamrick
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, USA
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, USA; Department of Medicine, Medical College of Georgia, Augusta University, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, USA.
| |
Collapse
|
31
|
Firmenich CS, Elfers K, Wilkens MR, Breves G, Muscher-Banse AS. Modulation of renal calcium and phosphate transporting proteins by dietary nitrogen and/or calcium in young goats. J Anim Sci 2018; 96:3208-3220. [PMID: 29741700 PMCID: PMC6095294 DOI: 10.1093/jas/sky185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
In young goats, a reduction in dietary nitrogen (N) had an impact on mineral homeostasis although ruminants are able to recycle N effectively due to rumino-hepatic circulation. A solitary calcium (Ca) reduction stimulated calcitriol synthesis and Ca concentrations remained unchanged, whereas a dietary N reduction led to a decrease in calcitriol, which could not be prevented by a simultaneous reduction of N and Ca. In a previous study, it was shown that a reduced dietary N intake caused a decrease in intestinal Ca absorption due to a reduction of intestinal Ca transporting proteins. As no data on the potential role of the kidneys are available, it was the aim of the present study to evaluate whether an N- and/or Ca-reduced diet had an impact on renal Ca and phosphate (Pi) transporting protein expression in young goats. The animals were divided into 4 feeding groups, each receiving an adequate N and Ca supply, a reduced N supply, a reduced Ca supply, or a combined N and Ca reduction for 6 to 9 wk. The protein expression of the renal Ca channel transient receptor potential cation channel subfamily V member 5 (TRPV5) was diminished in N-reduced fed goats (P = 0.03), whereas in Ca restricted animals, the expression remained unaltered. The mRNA and protein expression of the Ca-binding protein calbindin-D28K (CaBPD28K) and the sodium-Ca exchanger 1 (NCX1) were significantly decreased due to the N-reduced feeding (mRNA, P = 0.003; P < 0.0001; protein, P = 0.002; P = 0.02), whereas dietary Ca reduction increased the CaBPD28K and NCX1 mRNA expression (P = 0.05; P = 0.01). The mRNA and protein expression of the parathyroid hormone receptor (PTHR) decreased due to the N-reduced feeding (P = 0.02; P = 0.03). These results confirm that a reduced dietary N intake led to decreased TRPV5, CaBPD28K, PTHR, and NCX1 expression levels, contributing to low levels of calcitriol and plasma Ca. In contrast to this, sodium-phosphate cotransporter type IIa expression and plasma Pi concentration were increased during dietary N reduction, thus indicating that Pi homeostasis is modulated in a calcitriol-independent manner. In conclusion, the modulation of Ca transporting proteins expression in the kidney is not able to prevent changes in mineral homeostasis in young goats receiving an N-reduced diet.
Collapse
Affiliation(s)
- C S Firmenich
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - K Elfers
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - G Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A S Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
32
|
Ning Y, Wang X, Guo X, Zhang P, Qu P, Zhang F, Wang S, Lei Y, Lammi M. Nutrients Other than Selenium Are Important for Promoting Children's Health in Kashin-Beck Disease Areas. Biol Trace Elem Res 2018; 183:233-244. [PMID: 28921450 DOI: 10.1007/s12011-017-1154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023]
Abstract
Overall nutritional status has been proved associated with people's health. The overall nutritional status of children in Kashin-Beck disease (KBD) areas has been overlooked for decades. Therefore, it is worth investigating in the current generation to gather evidence and make suggestions for improvement. A cross-sectional study with three 24-h dietary recalls was conducted to collect raw data on the daily food intake of children. Recorded food was converted into daily nutrient intakes using CDGSS 3.0 software. WHO AnthroPlus software was used to analyse the BMI-for-age z-score (BAZ) for estimating the overall nutrition status of children. All the comparisons and regression analyses were conducted with SPSS 18.0 software. Multiple nutrient intakes among children from the Se-supplemented KBD-endemic were under the estimated average requirement. The protein-to-carbohydrate ratio (P/C ratio) was significantly higher in children from the non-Se-supplemented KBD-endemic area than the other areas (P < 0.001). The children's BAZ was negatively associated with age (B = -0.095, P < 0.001) and the number of KBD relatives (B = -0.277, P = 0.04), and it was positively associated with better housing conditions, receiving colostrum, and daily intakes of niacin and zinc by multivariate regression analysis (F = 10.337, R = 0.609, P < 0.001).Compared to non-Se-supplemented KBD-endemic area and non-endemic areas, children in Se-supplemented KBD-endemic areas have an insufficient intake of multiple nutrients. School breakfast and lunch programmes are recommended, and strict implementation is the key to ensuring a positive effect.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
- Xi'an Jiaotong University Global Health Institute, Xi'an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China.
| | - Pan Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Pengfei Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Yanxia Lei
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Mikko Lammi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, 710061, People's Republic of China
- Department of Integrative Medical Biology, University of Umeå, 901 87, Umeå, Sweden
| |
Collapse
|
33
|
Fu Y, Therkildsen M, Aluko RE, Lametsch R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit Rev Food Sci Nutr 2018; 59:2011-2027. [DOI: 10.1080/10408398.2018.1436038] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Fu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Winnipeg, Canada
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
34
|
Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicol In Vitro 2017; 48:1-10. [PMID: 29278758 DOI: 10.1016/j.tiv.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Leucine (Leu) is an essential branched-chain amino acid, present in dairy products, which has been investigated for its important role in cell signaling. The effects of Leu on several kinds of cells have been studied, altough little is known on its action upon bone cells and cell proliferation. Thus, the aim of this study is to investigate the effects of Leu supplementation on the proliferation of pre-osteoblasts from MC3T3-E1 lineage. MC3T3-E1 cells were kept in Alpha medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimitotic. Cells were treated during 48h by adding 50μM of Leu, which corresponds to a 12.5% increase of the amino acid in the culture medium. The evaluation of viability and proliferation of cultured cells was performed using Trypan Blue dye. In order to identify the mechanisms related to the decreased cellular proliferation, assays were performed to assess cytotoxicity, apotosis, oxidative stress, inflammation, autophagy, senescence and DNA damage. Results showed that Leu supplementation decreased cell proliferation by 40% through mechanisms not related to cell necrosis, apoptosis, oxidative stress, autophagy or inhibition of the mTORC1 pathway. On the other hand, Leu supplementation caused DNA damage. In conclusion, Leu caused a negative impact on bone cell proliferation by inducing cell senescence through DNA damage.
Collapse
|
35
|
Curneen JMG, Casey M, Laird E. The relationship between protein quantity, BMD and fractures in older adults. Ir J Med Sci 2017; 187:111-121. [PMID: 28674746 DOI: 10.1007/s11845-017-1642-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previously, no large-scale literature reviews have focussed on the relationship between dietary protein and its impact on bone mineral density (BMD) and fracture risk-as measures of bone health-in older adults and its potential impact as a primary prevention tool. AIMS The aim of this study was to assess the impact of varying dietary protein levels on bone health. METHODS A literature review of trials concerning older adults' (>50 years of age) and animals' varying protein intake in the diet and its effect on BMD (human and animal) and fracture risk (human only) was carried out. Additionally, a review of dietary assessment tools used in these studies was also analysed. RESULTS Ten out of fourteen trials assessing BMD and dietary protein quantity in humans and 3/4 in animal trials found a positive relationship between these two parameters. Four out of seven trials investigating the relationship between dietary protein quantity and fracture risk displayed a positive, protective effect of dietary protein levels on fracture risk. Sixty-two percent of studies used the Food-Frequency Questionnaire assessment method. DISCUSSION Increased protein intake in the diet is beneficial to bone health and reduces morbidity and mortality. The importance of using dietary protein, along with calcium and vitamin D, as a primary preventative strategy should be stressed, given the health and cost benefits that this would deliver, with a possible need for a higher level of protein in the diet of an elderly person than what is currently recommended.
Collapse
Affiliation(s)
- J M G Curneen
- University College Dublin, Belfield, Dublin 4, County Dublin, Ireland.
| | - M Casey
- Department of Geriatric Medicine, St James' Hospital, James' Street, Dublin 8, County Dublin, Ireland.
| | - E Laird
- Trinity College School of Biochemistry and Immunology, St James' Hospital, James' Street, Dublin 8, County Dublin, Ireland
| |
Collapse
|
36
|
Daneault A, Prawitt J, Fabien Soulé V, Coxam V, Wittrant Y. Biological effect of hydrolyzed collagen on bone metabolism. Crit Rev Food Sci Nutr 2017; 57:1922-1937. [PMID: 25976422 DOI: 10.1080/10408398.2015.1038377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.
Collapse
Affiliation(s)
- Audrey Daneault
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | | | | | - Véronique Coxam
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | - Yohann Wittrant
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| |
Collapse
|
37
|
Bonjour JP. The dietary protein, IGF-I, skeletal health axis. Horm Mol Biol Clin Investig 2017; 28:39-53. [PMID: 26985688 DOI: 10.1515/hmbci-2016-0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 12/29/2022]
Abstract
Dietary protein represents an important nutrient for bone health and thereby for the prevention of osteoporosis. Besides its role as a brick provider for building the organic matrix of skeletal tissues, dietary protein stimulates the production of the anabolic bone trophic factor IGF-I (insulin-like growth factor I). The liver is the main source of circulating IGF-I. During growth, protein undernutrition results in reduced bone mass and strength. Genetic defect impairing the production of IGF-I markedly reduces bone development in both length and width. The serum level of IGF-I markedly increases and then decreases during pubertal maturation in parallel with the change in bone growth and standing height velocity. The impact of physical activity on bone structure and strength is enhanced by increased dietary protein consumption. This synergism between these two important environmental factors can be observed in prepubertal boys, thus modifying the genetically determined bone growth trajectory. In anorexia nervosa, IGF-I is low as well as bone mineral mass. In selective protein undernutrition, there is a resistance to the exogenous bone anabolic effect of IGF-I. A series of animal experiments and human clinical trials underscore the positive effect of increased dietary intake of protein on calcium-phosphate economy and bone balance. On the contrary, the dietary protein-induced acidosis hypothesis of osteoporosis is not supported by several experimental and clinical studies. There is a direct effect of amino acids on the local production of IGF-I by osteoblastic cells. IGF-I is likely the main mediator of the positive effect of parathyroid hormone (PTH) on bone formation, thus explaining the reduction in fragility fractures as observed in PTH-treated postmenopausal women. In elderly women and men, relatively high protein intake protects against spinal and femoral bone loss. In hip fracture patients, isocaloric correction of the relatively low protein intake results in: increased IGF-I serum level, significant attenuation of postsurgical bone loss, improved muscle strength, better recovery, and shortened hospital stay. Thus, dietary protein contributes to bone health from early childhood to old age. An adequate intake of protein should be recommended in the prevention and treatment of osteoporosis.
Collapse
|
38
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
39
|
Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res 2017; 39:1-13. [PMID: 28385284 DOI: 10.1016/j.nutres.2016.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ.
| | - L Claudia Pop
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Yang Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
40
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
41
|
Ahn SH, Park SY, Baek JE, Lee SY, Baek WY, Lee SY, Lee YS, Yoo HJ, Kim H, Lee SH, Im DS, Lee SK, Kim BJ, Koh JM. Free Fatty Acid Receptor 4 (GPR120) Stimulates Bone Formation and Suppresses Bone Resorption in the Presence of Elevated n-3 Fatty Acid Levels. Endocrinology 2016; 157:2621-35. [PMID: 27145004 DOI: 10.1210/en.2015-1855] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4(-/-)) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1(Tg+)) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4(-/-) and fat-1(Tg+) mice over two generations to generate four genotypes of mice littermates: Ffar4(+/+);fat-1(Tg-), Ffar4(+/+);fat-1(Tg+), Ffar4(-/-);fat-1(Tg-), and Ffar4(-/-);fat-1(Tg+). Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1(Tg+) mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In a high-fat diet-fed model, male fat-1(Tg+) mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.
Collapse
Affiliation(s)
- Seong Hee Ahn
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sook-Young Park
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Ji-Eun Baek
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Su-Youn Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Wook-Young Baek
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sun-Young Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Young-Sun Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Hyun Ju Yoo
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Hyeonmok Kim
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Seung Hun Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Dong-Soon Im
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sun-Kyeong Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Beom-Jun Kim
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Jung-Min Koh
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| |
Collapse
|
42
|
Jennings A, MacGregor A, Spector T, Cassidy A. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins. J Bone Miner Res 2016; 31:326-35. [PMID: 26334651 PMCID: PMC4832262 DOI: 10.1002/jbmr.2703] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/02/2022]
Abstract
Although a higher protein intake, particularly from vegetable sources, has been shown to be associated with higher bone mineral density (BMD) the relative impact of specific amino acids on BMD and risk of osteoporosis remains to be determined. Mechanistic research suggests that a number of specific amino acids, including five nonessential amino acids--alanine, arginine, glutamic acid, glycine, and proline--may play a role in bone health, principally through improved production of insulin and insulin-like growth factor 1 and the synthesis of collagen and muscle protein. However to date, no previous studies have examined the associations between habitual intake of amino acids and direct measures of BMD and prevalence of osteoporosis or osteopenia, and no studies have examined this relationship in discordant identical twin-pairs. In these analyses of female monozygotic twin-pairs discordant for amino acid intake (n = 135), twins with higher intakes of alanine and glycine had significantly higher BMD at the spine than their co-twins with within-pair differences in spine-BMD of 0.012 g/cm(2) (SE 0.01; p = 0.039) and 0.014 g/cm(2) (SE 0.01; p = 0.026), respectively. Furthermore, in cross-sectional multivariable analyses of 3160 females aged 18 to 79 years, a higher intake of total protein was significantly associated with higher DXA-measured BMD at the spine (quartile Q4 to quartile Q1: 0.017 g/cm(2), SE 0.01, p = 0.035) and forearm (Q4 to Q1: 0.010 g/cm(2), SE 0.003, p = 0.002). Intake of six amino acids (alanine, arginine, glutamic acid, leucine, lysine, and proline) were associated with higher BMD at the spine and forearm with the strongest association observed for leucine (Q4 to Q1: 0.024 g/cm(2), SE 0.01, p = 0.007). When intakes were stratified by protein source, vegetable or animal, prevalence of osteoporosis or osteopenia was 13% to 19% lower comparing extreme quartiles of vegetable intake for five amino acids (not glutamic acid or proline). These data provide evidence to suggest that intake of protein and several amino acids, including alanine and glycine, may be beneficial for bone health, independent of genetic background.
Collapse
Affiliation(s)
- Amy Jennings
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexander MacGregor
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Aedín Cassidy
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
43
|
Lee MY, Kim HY, Singh D, Yeo SH, Baek SY, Park YK, Lee CH. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model. Molecules 2016; 21:149. [PMID: 26821009 PMCID: PMC6273122 DOI: 10.3390/molecules21020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
The study was aimed at exploring the curative effects of Rubus coreanus (RC) vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX) rats without treatment, low-dose RC vinegar (LRV)-treated OVX rats, high-dose RC vinegar (HRV)-treated OVX rats and alendronate (ALEN)-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS) with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Hyang Yeon Kim
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Soo Hwan Yeo
- Fermented Food Science Division, Department of Agro-food Resource, National Academy of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 565-851, Korea.
| | - Seong Yeol Baek
- Fermented Food Science Division, Department of Agro-food Resource, National Academy of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 565-851, Korea.
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do 446-791, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| |
Collapse
|
44
|
Ammann P, Zacchetti G, Gasser JA, Lavet C, Rizzoli R. Protein malnutrition attenuates bone anabolic response to PTH in female rats. Endocrinology 2015; 156:419-28. [PMID: 25396268 DOI: 10.1210/en.2014-1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.
Collapse
Affiliation(s)
- P Ammann
- Division of Bone Disease (P.A., G.Z., C.L., R.R.), Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, CH 1211 Geneva, Switzerland; and Novartis Institutes for BioMedical Research (J.A.G.), CH 4001 Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Abstract
Fracture risk is determined by bone mass, geometry, and microstructure, which result from peak bone mass (the amount attained at the end of pubertal growth) and from the amount of bone lost subsequently. Nutritional intakes are an important environmental factor that influence both bone mass accumulation during childhood and adolescence and bone loss that occurs in later life. Bone growth is influenced by dietary intake, particularly of calcium and protein. Adequate dietary calcium and protein are essential to achieve optimal peak bone mass during skeletal growth and to prevent bone loss in the elderly. Dairy products are rich in nutrients that are essential for good bone health, including calcium, protein, vitamin D, potassium, phosphorus, and other micronutrients and macronutrients. Studies supporting the beneficial effects of milk or dairy products on bone health show a significant inverse association between dairy food intake and bone turnover markers and a positive association with bone mineral content. Fortified dairy products induce more favorable changes in biochemical indexes of bone metabolism than does calcium supplementation alone. The associations between the consumption of dairy products and the risk of hip fracture are less well established, although yogurt intake shows a weakly positive protective trend for hip fracture. By consuming 3 servings of dairy products per day, the recommended daily intakes of nutrients essential for good bone health may be readily achieved. Dairy products could therefore improve bone health and reduce the risk of fractures in later life.
Collapse
Affiliation(s)
- René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
46
|
|
47
|
Rouy E, Vico L, Laroche N, Benoit V, Rousseau B, Blachier F, Tomé D, Blais A. Protein quality affects bone status during moderate protein restriction in growing mice. Bone 2014; 59:7-13. [PMID: 24495359 DOI: 10.1016/j.bone.2013.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 01/16/2023]
Abstract
Adequate protein intake during development is critical to ensure optimal bone gain and to attain a higher peak bone mass later on. We hypothesized that the quality of the dietary protein is of prime importance for bone physiology during moderate protein restriction. The target population was growing Balb/C mice. We compared two protein restricted diets (6% of total energy as protein), one based on soy (LP-SOY) and one based on casein (LP-CAS). For comparison, a normal protein soy-based control group (NP-SOY) and a low protein group receiving an anabolic daily parathyroid hormone (PTH) 1-34 injection (LP-SOY+PTH) were included in the protocol. After 8weeks, LP-SOY mice had reduced body weights related to a lower lean mass whereas LP-CAS mice were not different from the NP-SOY group. LP-SOY mice were characterized by lower femoral cortical thickness, bone volume, trabecular number and thickness and increased medullar adiposity when compared to both the LP-CAS and NP-SOY groups. However, the dietary intervention had no effect on the vertebral parameters. The negative effect of the LP-SOY diet was correlated to an impaired bone formation as shown by the reduced P1NP serum level as well as the reduced osteoid surfaces and bone formation rate in the femur. PTH injection in LP-SOY mice had no effect on total weight or lean mass, but improved all bone parameters at both femoral and vertebral sites, suggesting that amino acid deficiency was not the primary reason for degraded bone status in mice consuming soy protein. In conclusion, our study showed that under the same protein restriction (6% of energy), a soy diet leads to impaired bone health whereas a casein diet has little effect when compared to a normal protein control.
Collapse
Affiliation(s)
- Emilien Rouy
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 75005 Paris, France; Yoplait France, 92641 Boulogne-Billancourt, France.
| | - Laurence Vico
- INSERM U1059/LBTO, Université Jean Monnet, Université de Lyon, 42023 Saint-Étienne, France
| | - Norbert Laroche
- INSERM U1059/LBTO, Université Jean Monnet, Université de Lyon, 42023 Saint-Étienne, France
| | | | | | - François Blachier
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 75005 Paris, France
| | - Daniel Tomé
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 75005 Paris, France
| | - Anne Blais
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 75005 Paris, France
| |
Collapse
|
48
|
Starke S, Huber K. Adaptive responses of calcium and phosphate homeostasis in goats to low nitrogen intake: renal aspects. J Anim Physiol Anim Nutr (Berl) 2013; 98:853-9. [DOI: 10.1111/jpn.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
- S. Starke
- Department of Physiology; University of Veterinary Medicine Hannover; Hannover Germany
| | - K. Huber
- Department of Physiology; University of Veterinary Medicine Hannover; Hannover Germany
| |
Collapse
|
49
|
Tang M, O'Connor LE, Campbell WW. Diet-induced weight loss: the effect of dietary protein on bone. J Acad Nutr Diet 2013; 114:72-85. [PMID: 24183993 DOI: 10.1016/j.jand.2013.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/06/2013] [Indexed: 01/28/2023]
Abstract
High-protein (>30% of energy from protein or >1.2 g/kg/day) and moderately high-protein (22% to 29% of energy from protein or 1.0 to 1.2 g/kg/day) diets are popular for weight loss, but the effect of dietary protein on bone during weight loss is not well understood. Protein may help preserve bone mass during weight loss by stimulating insulin-like growth factor 1, a potent bone anabolism stimulator, and increasing intestinal calcium absorption. Protein-induced acidity is considered to have minimal effect on bone resorption in adults with normal kidney function. Both the quantity and predominant source of protein influence changes in bone with diet-induced weight loss. Higher-protein, high-dairy diets may help attenuate bone loss during weight loss.
Collapse
|
50
|
Worcester EM, Bergsland KJ, Gillen DL, Coe FL. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. Am J Physiol Renal Physiol 2013; 305:F853-60. [PMID: 23863465 DOI: 10.1152/ajprenal.00124.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Patients with idiopathic hypercalciuria (IH) have decreased renal calcium reabsorption, most marked in the postprandial state, but the mechanisms are unknown. We compared 29 subjects with IH and 17 normal subjects (N) each fed meals providing identical amounts of calcium. Urine and blood samples were collected fasting and after meals. Levels of three candidate signalers, serum calcium (SCa), insulin (I), and plasma parathyroid hormone (PTH), did not differ between IH and N either fasting or fed, but all changed with feeding, and the change in SCa was greater in IH than in N. Regression analysis of fractional excretion of calcium (FECa) was significant for PTH and SCa in IH but not N. With the use of multivariable analysis, Sca entered the model while PTH and I did not. To avoid internal correlation we decomposed FECa into its independent terms: adjusted urine calcium (UCa) and UFCa molarity. Analyses using adjusted Uca and unadjusted Uca parallel those using FECa, showing a dominant effect of SCa with no effect of PTH or I. The effect of SCa may be mediated via vitamin D receptor-stimulated increased abundance of basolateral Ca receptor, which is supported by the fact PTH levels also seem more responsive to serum Ca in IH than in N. Although our data support an effect of SCa on FECa and UCa, which is more marked in IH than in N, it can account for only a modest fraction of the meal effect, perhaps 10-20%, suggesting additional mediators are also responsible for the exaggerated postprandial hypercalciuria seen in IH.
Collapse
Affiliation(s)
- Elaine M Worcester
- Nephrology Section MC 5100, Univ. of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637.
| | | | | | | |
Collapse
|