1
|
Taniguchi M, Murata Y, Yamaguchi M, Kaba H. Activation of arginine vasopressin receptor 1a reduces inhibitory synaptic currents at reciprocal synapses in the mouse accessory olfactory bulb. Front Cell Neurosci 2024; 18:1466817. [PMID: 39386179 PMCID: PMC11462548 DOI: 10.3389/fncel.2024.1466817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Central arginine vasopressin (AVP) facilitates social recognition and modulates many complex social behaviors in mammals that, in many cases, recognize each other based on olfactory and/or pheromonal signals. AVP neurons are present in the accessory olfactory bulb (AOB), which is the first relay in the vomeronasal system and has been demonstrated to be a critical site for mating-induced mate recognition (olfactory memory) in female mice. The transmission of information from the AOB to higher centers is controlled by the dendrodendritic recurrent inhibition, i.e., inhibitory postsynaptic currents (IPSCs) generated in mitral cells by recurrent dendrodendritic inhibitory inputs from granule cells. These reports suggest that AVP might play an important role in regulating dendrodendritic inhibition in the AOB. To test this hypothesis, we examined the effects of extracellularly applied AVP on synaptic responses measured from mitral and granule cells in slice preparations from 23--36-day-old Balb/c mice. To evoke dendrodendritic inhibition in a mitral cell, depolarizing voltages of -70 to 0 mV (10 ms duration) were applied to a mitral cell using a conventional whole-cell configuration. We found that AVP significantly reduced the IPSCs. The suppressive effects of AVP on the IPSCs was diminished by an antagonist for vasopressin receptor 1a (V1aR) (Manning compound), but not by an antagonist for vasopressin receptor 1b (SSR149415). An agonist for V1aRs [(Phe2)OVT] mimicked the action of AVP on IPSCs. Additionally, AVP significantly suppressed voltage-activated currents in granule cells without affecting the magnitude of the response of mitral cells to gamma-aminobutyric acid (GABA). The present results suggest that V1aRs play a role in reciprocal transmission between mitral cells and granule cells in the mouse AOB by reducing GABAergic transmission through a presynaptic mechanism in granule cells.
Collapse
Affiliation(s)
- Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | | | | |
Collapse
|
2
|
Tsotsokou G, Trompoukis G, Papatheodoropoulos C. Muscarinic Modulation of Synaptic Transmission and Short-Term Plasticity in the Dorsal and Ventral Hippocampus. Mol Cell Neurosci 2024; 129:103935. [PMID: 38703973 DOI: 10.1016/j.mcn.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece
| | - George Trompoukis
- Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece
| | | |
Collapse
|
3
|
Rupareliya VP, Singh AA, Butt AM, A H, Kumar H. The "molecular soldiers" of the CNS: Astrocytes, a comprehensive review on their roles and molecular signatures. Eur J Pharmacol 2023; 959:176048. [PMID: 37758010 DOI: 10.1016/j.ejphar.2023.176048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
For a long time, neurons held the position of central players in the nervous system. Since there are far more astrocytes than neurons in the brain, it makes us wonder if these cells just take up space and support the neurons or if they are actively participating in central nervous system (CNS) homeostasis. Now, astrocytes' contribution to CNS physiology is appreciated as they are known to regulate ion and neurotransmitter levels, synapse formation and elimination, blood-brain barrier integrity, immune function, cerebral blood flow, and many more. In many neurological and psychiatric disorders, astrocyte functions are altered. Advancements in microscopic and transcriptomic tools revealed populations of astrocytes with varied morphology, electrophysiological properties, and transcriptomic profiles. Neuron-circuit-specific functions and neuron-specific interactions of astroglial subpopulations are found, which suggests that diversity is essential in carrying out diverse region-specific CNS functions. Investigations on heterogeneous astrocyte populations are revealing new astrocyte functions and their role in pathological conditions, opening a new therapeutic avenue for targeting neurological conditions. The true extent of astrocytic heterogeneity and its functional implications are yet to be fully explored. This review summarizes essential astrocytic functions and their relevance in pathological conditions and discusses astrocytic diversity in relation to morphology, function, and gene expression throughout the CNS.
Collapse
Affiliation(s)
- Vimal P Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hariharan A
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
4
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
6
|
Naumann LB, Keijser J, Sprekeler H. Invariant neural subspaces maintained by feedback modulation. eLife 2022; 11:e76096. [PMID: 35442191 PMCID: PMC9106332 DOI: 10.7554/elife.76096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.
Collapse
Affiliation(s)
- Laura B Naumann
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
7
|
Zhilyakov N, Arkhipov A, Malomouzh A, Samigullin D. Activation of Neuronal Nicotinic Receptors Inhibits Acetylcholine Release in the Neuromuscular Junction by Increasing Ca 2+ Flux through Ca v1 Channels. Int J Mol Sci 2021; 22:9031. [PMID: 34445737 PMCID: PMC8396429 DOI: 10.3390/ijms22169031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 μM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.
Collapse
Affiliation(s)
- Nikita Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Arsenii Arkhipov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Artem Malomouzh
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
- Department of Radiophotonics and Microwave Technologies, Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University Named after A.N. Tupolev–KAI”, 420111 Kazan, Russia
| |
Collapse
|
8
|
Broussard GJ, Petreanu L. Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. J Neurosci Methods 2021; 360:109251. [PMID: 34119572 PMCID: PMC8363211 DOI: 10.1016/j.jneumeth.2021.109251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Neurons broadcast electrical signals to distal brain regions through extensive axonal arbors. Genetically encoded calcium sensors permit the direct observation of action potential activity at axonal terminals, providing unique insights on the organization and function of neural projections. Here, we consider what information can be gleaned from axonal recordings made at scales ranging from the summed activity extracted from multi-cell axon projections to single boutons. In particular, we discuss the application of different recently developed multi photon and fiber photometry methods for recording neural activity in axons of rodents. We define experimental difficulties associated with imaging approaches in the axonal compartment and highlight the latest methodological advances for addressing these issues. Finally, we reflect on ways in which new technologies can be used in conjunction with axon calcium imaging to address current questions in neurobiology.
Collapse
Affiliation(s)
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
9
|
Lituma PJ, Kwon HB, Alviña K, Luján R, Castillo PE. Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. eLife 2021; 10:e66612. [PMID: 34061025 PMCID: PMC8186907 DOI: 10.7554/elife.66612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Neurotransmitter release is a highly controlled process by which synapses can critically regulate information transfer within neural circuits. While presynaptic receptors - typically activated by neurotransmitters and modulated by neuromodulators - provide a powerful way of fine-tuning synaptic function, their contribution to activity-dependent changes in transmitter release remains poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at mossy fiber boutons in the rodent hippocampus can be activated by physiologically relevant patterns of activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs facilitate brain-derived neurotrophic factor release and contribute to presynaptic calcium rise. Taken together, our results indicate that by increasing presynaptic calcium, preNMDARs fine-tune mossy fiber neurotransmission and can control information transfer during dentate granule cell burst activity that normally occur in vivo.
Collapse
Affiliation(s)
- Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hyung-Bae Kwon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La ManchaAlbaceteSpain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
10
|
Neurexins regulate presynaptic GABA B-receptors at central synapses. Nat Commun 2021; 12:2380. [PMID: 33888718 PMCID: PMC8062527 DOI: 10.1038/s41467-021-22753-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/20/2021] [Indexed: 11/28/2022] Open
Abstract
Diverse signaling complexes are precisely assembled at the presynaptic active zone for dynamic modulation of synaptic transmission and synaptic plasticity. Presynaptic GABAB-receptors nucleate critical signaling complexes regulating neurotransmitter release at most synapses. However, the molecular mechanisms underlying assembly of GABAB-receptor signaling complexes remain unclear. Here we show that neurexins are required for the localization and function of presynaptic GABAB-receptor signaling complexes. At four model synapses, excitatory calyx of Held synapses in the brainstem, excitatory and inhibitory synapses on hippocampal CA1-region pyramidal neurons, and inhibitory basket cell synapses in the cerebellum, deletion of neurexins rendered neurotransmitter release significantly less sensitive to GABAB-receptor activation. Moreover, deletion of neurexins caused a loss of GABAB-receptors from the presynaptic active zone of the calyx synapse. These findings extend the role of neurexins at the presynaptic active zone to enabling GABAB-receptor signaling, supporting the notion that neurexins function as central organizers of active zone signaling complexes. Neurexins are evolutionarily conserved cell adhesion molecules that tune synapse formation and specification. Here the authors show that neurexins play similar roles in regulating presynaptic GABAB receptors at multiple CNS synapses.
Collapse
|
11
|
Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity. PLoS Comput Biol 2020; 16:e1008118. [PMID: 32764742 PMCID: PMC7439813 DOI: 10.1371/journal.pcbi.1008118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/19/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Hebbian plasticity, a mechanism believed to be the substrate of learning and memory, detects and further enhances correlated neural activity. Because this constitutes an unstable positive feedback loop, it requires additional homeostatic control. Computational work suggests that in recurrent networks, the homeostatic mechanisms observed in experiments are too slow to compensate instabilities arising from Hebbian plasticity and need to be complemented by rapid compensatory processes. We suggest presynaptic inhibition as a candidate that rapidly provides stability by compensating recurrent excitation induced by Hebbian changes. Presynaptic inhibition is mediated by presynaptic GABA receptors that effectively and reversibly attenuate transmitter release. Activation of these receptors can be triggered by excess network activity, hence providing a stabilising negative feedback loop that weakens recurrent interactions on sub-second timescales. We study the stabilising effect of presynaptic inhibition in recurrent networks, in which presynaptic inhibition is implemented as a multiplicative reduction of recurrent synaptic weights in response to increasing inhibitory activity. We show that networks with presynaptic inhibition display a gradual increase of firing rates with growing excitatory weights, in contrast to traditional excitatory-inhibitory networks. This alleviates the positive feedback loop between Hebbian plasticity and network activity and thereby allows homeostasis to act on timescales similar to those observed in experiments. Our results generalise to spiking networks with a biophysically more detailed implementation of the presynaptic inhibition mechanism. In conclusion, presynaptic inhibition provides a powerful compensatory mechanism that rapidly reduces effective recurrent interactions and thereby stabilises Hebbian learning. Synapses between neurons change during learning and memory formation, a process termed synaptic plasticity. Established models of plasticity rely on strengthening synapses of co-active neurons. In recurrent networks, mutually connected neurons tend to be co-active. The emerging positive feedback loop is believed to be counteracted by homeostatic mechanisms that aim to keep neural activity at a given set point. However, theoretical work indicates that experimentally observed forms of homeostasis are too slow to maintain stable network activity. In this article, we suggest that presynaptic inhibition can alleviate this problem. Presynaptic inhibition is an inhibitory mechanism that weakens synapses rather than suppressing neural activity. Using mathematical analyses and computer simulations, we show that presynaptic inhibition can compensate the strengthening of recurrent connections and thus stabilises neural networks subject to synaptic plasticity, even if homeostasis acts on biologically plausible timescales.
Collapse
|
12
|
Abstract
At various stages of the visual system, visual responses are modulated by arousal. Here, we find that in mice this modulation operates as early as in the first synapse from the retina and even in retinal axons. To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superior colliculus. Their activity depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced their visual responses and selectivity for direction and orientation. Recordings from retinal axons in the optic tract revealed that arousal modulates the firing of some retinal ganglion cells. Arousal had similar effects postsynaptically in colliculus neurons, independent of activity in the other main source of visual inputs to the colliculus, the primary visual cortex. These results indicate that arousal modulates activity at every stage of the mouse visual system.
Collapse
|
13
|
Trompoukis G, Papatheodoropoulos C. Dorsal-Ventral Differences in Modulation of Synaptic Transmission in the Hippocampus. Front Synaptic Neurosci 2020; 12:24. [PMID: 32625076 PMCID: PMC7316154 DOI: 10.3389/fnsyn.2020.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
Functional diversification along the longitudinal axis of the hippocampus is a rapidly growing concept. Modulation of synaptic transmission by neurotransmitter receptors may importantly contribute to specialization of local intrinsic network function along the hippocampus. In the present study, using transverse slices from the dorsal and the ventral hippocampus of adult rats and recordings of evoked field postsynaptic excitatory potentials (fEPSPs) from the CA1 stratum radiatum, we aimed to compare modulation of synaptic transmission between the dorsal and the ventral hippocampus. We found that transient heterosynaptic depression (tHSD, <2 s), a physiologically relevant phenomenon of regulation of excitatory synaptic transmission induced by paired stimulation of two independent inputs to stratum radiatum of CA1 field, has an increased magnitude and duration in the ventral hippocampus, presumably contributing to increased input segregation in this segment of the hippocampus. GABAB receptors, GABAA receptors, adenosine A1 receptors and L-type voltage-gated calcium channels appear to contribute differently to tHSD in the two hippocampal segments; GABABRs play a predominant role in the ventral hippocampus while both GABABRs and A1Rs play important roles in the dorsal hippocampus. Activation of GABAB receptors by an exogenous agonist, baclofen, robustly and reversibly modulated both the initial fast and the late slow components of excitatory synaptic transmission, expressed by the fEPSPslope and fEPSP decay time constant (fEPSPτ), respectively. Specifically, baclofen suppressed fEPSP slope more in the ventral than in the dorsal hippocampus and enhanced fEPSPτ more in the dorsal than in the ventral hippocampus. Also, baclofen enhanced paired-pulse facilitation in the two hippocampal segments similarly. Blockade of GABAB receptors did not affect basal paired-pulse facilitation in either hippocampal segment. We propose that the revealed dorsal-ventral differences in modulation of synaptic transmission may provide a means for specialization of information processing in the local neuronal circuits, thereby significantly contributing to diversifying neuronal network functioning along the dorsal-ventral axis of hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece
| | | |
Collapse
|
14
|
Oliveira PDA, Capim SL, Gonçalves GM, Laureano-Melo R, Côrtes WDS, Vasconcellos MLADA, Marinho BG. Pharmacological evaluation underlying the antinociceptive activity of two new hybrids NSAIDs tetrahydropyran derivatives. Fundam Clin Pharmacol 2019; 34:321-335. [PMID: 31804743 DOI: 10.1111/fcp.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/03/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
The development of analgesic drugs is still a necessity due to the inefficiency of the current treatments for some pathological conditions and also due to the adverse effects produced by these drugs. The aim of this study was to deepen the pharmacological study of two new hybrids NSAIDs tetrahydropyran derivatives, regarding their antinociceptive effects on acute pain in mice. Male swiss mice were evaluated in the acetic acid-induced abdominal writhing, formalin, tail-flick, open-field, glutamate- and capsaicin-induced paw licking tests, and in vitro Cox inhibition assay, besides the acute toxicological evaluation. The compounds had an effect on the acetic acid-induced abdominal writhing, formalin (both phases), and tail-flick tests. In the study of the mechanism of action was observed reversion of the antinociceptive effect of the compounds from the previous administration of naloxone, L-NAME (L-nitro-arginine methyl ester), ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), glibenclamide, and nor-binaltorphimine, by the intrathecal and intraperitoneal routes. The prior administration of MK-801 suggests that the modulation of NMDA receptor contributes to the antinociceptive effect of compounds. In summary, hybrid compounds presented central antinociceptive effect, demonstrating participation of the NO-cGMP-K+ ATP pathway, κ-opioid, and NMDA receptors. In addition, the compounds showed inhibition of cyclo-oxygenase enzymes and adverse effects were not observed with dose 300 times greater than the dose used experimentally.
Collapse
Affiliation(s)
- Poliana de Araujo Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Rua Luiz Viana, 92, Catu, 48110-000, Brazil
| | - Gabriela Mastrangelo Gonçalves
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil
| | - Roberto Laureano-Melo
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil
| | - Wellington da Silva Côrtes
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil
| | - Mário Luiz Araujo de Almeida Vasconcellos
- Laboratório de Síntese Orgânica Medicinal da Paraíba (LASOM-PB), Departamento de Química, Universidade Federal da Paraíba, Campus 1, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Bruno Guimarães Marinho
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR465, Km 07, Seropédica, 23897-000, Brazil
| |
Collapse
|
15
|
Valbuena S, Lerma J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2019; 456:17-26. [PMID: 31866560 DOI: 10.1016/j.neuroscience.2019.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023]
Abstract
Extensive research over the past decades has characterized multiple forms of synaptic plasticity, identifying them as key processes that allow the brain to operate in a dynamic manner. Within the wide variety of synaptic plasticity modulators, kainate receptors are receiving increasing attention, given their diversity of signaling mechanisms and cellular expression profile. Here, we summarize the experimental evidence about the involvement of kainate receptor signaling in the regulation of short- and long-term plasticity, from the perspective of the regulation of neurotransmitter release. In light of this evidence, we propose that kainate receptors may be considered homeostatic modulators of neurotransmitter release, able to bidirectionally regulate plasticity depending on the functional history of the synapse.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| | - Juan Lerma
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
16
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
17
|
Zhang X, Coates K, Dacks A, Günay C, Lauritzen JS, Li F, Calle-Schuler SA, Bock D, Gaudry Q. Local synaptic inputs support opposing, network-specific odor representations in a widely projecting modulatory neuron. eLife 2019; 8:46839. [PMID: 31264962 PMCID: PMC6660217 DOI: 10.7554/elife.46839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Serotonin plays different roles across networks within the same sensory modality. Previously, we used whole-cell electrophysiology in Drosophila to show that serotonergic neurons innervating the first olfactory relay are inhibited by odorants (Zhang and Gaudry, 2016). Here we show that network-spanning serotonergic neurons segregate information about stimulus features, odor intensity and identity, by using opposing coding schemes in different olfactory neuropil. A pair of serotonergic neurons (the CSDns) innervate the antennal lobe and lateral horn, which are first and second order neuropils. CSDn processes in the antennal lobe are inhibited by odors in an identity independent manner. In the lateral horn, CSDn processes are excited in an odor identity dependent manner. Using functional imaging, modeling, and EM reconstruction, we demonstrate that antennal lobe derived inhibition arises from local GABAergic inputs and acts as a means of gain control on branch-specific inputs that the CSDns receive within the lateral horn.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Biology, University of Maryland, College Park, United States
| | - Kaylynn Coates
- Department of Biology, West Virginia University, Morgantown, United States
| | - Andrew Dacks
- Department of Biology, West Virginia University, Morgantown, United States
| | - Cengiz Günay
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, United States
| | - J Scott Lauritzen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Davi Bock
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, United States
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, United States
| |
Collapse
|
18
|
Abstract
Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20-25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but "allostatic" effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
19
|
Guo LB, Yu C, Ling QL, Fu Y, Wang YJ, Liu JG. Proteomic analysis of male rat nucleus accumbens, dorsal hippocampus and amygdala on conditioned place aversion induced by morphine withdrawal. Behav Brain Res 2019; 372:112008. [PMID: 31173798 DOI: 10.1016/j.bbr.2019.112008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
Addiction is characterized by compulsive drug seeking and taking behavior, which is thought to result from persistent neuroadaptations, encoded by changes of gene expression. We previously demonstrated that the changes in synaptic plasticity were required for the formation of aversive memories associated with morphine withdrawal. However, the proteins involved in synaptic plasticity and aversive memory formation have not been well explored. In the present study, we employed a two-dimensional gel electrophoresis (2-DE)-based proteomic technique to detect the changes of protein expression in the nucleus accumbens, amygdala and dorsal hippocampus of the rats that had developed conditioned morphine withdrawal. We found that twenty-three proteins were significantly altered in the amygdala and dorsal hippocampus after conditioned morphine withdrawal. These proteins can be classified into multiple categories, such as energy metabolism, signal transduction, synaptic transmission, cytoskeletal proteins, chaperones, and protein metabolism according to their biological functions. Eight proteins related to synaptic plasticity were further confirmed by western blot analysis. It is very likely that these identified proteins may contribute to conditioned morphine withdrawal-induced neural plasticity and aversive memory formation. Thus, our work will help understand the potential mechanism associated with generation of drug withdrawal memories.
Collapse
Affiliation(s)
- Liu-Bin Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Chuan Yu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Qing-Lan Ling
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yu Fu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
20
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
23
|
Jiang Y, Xiao Y, Zhang X, Shu Y. Activation of axon initial segmental GABA A receptors inhibits action potential generation in neocortical GABAergic interneurons. Neuropharmacology 2018; 138:97-105. [PMID: 29883765 DOI: 10.1016/j.neuropharm.2018.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
Ionotropic GABAA receptors expressing at the axon initial segment (AIS) of glutamatergic pyramidal cell (PC) in the cortex plays critical roles in regulating action potential generation. However, it remains unclear whether these receptors also express at the AIS of cortical GABAergic interneurons. In mouse prefrontal cortical slices, we performed experiments at the soma and AIS of the two most abundant GABAergic interneurons: parvalbumin (PV) and somatostatin (SST) positive neurons. Local application of GABA at the perisomatic axonal regions could evoke picrotoxin-sensitive currents with a reversal potential near the Cl- equilibrium potential. Puffing agonists to outside-out patches excised from AIS confirmed the expression of GABAA receptors. Further pharmacological experiments revealed that GABAA receptors in AIS of PV neurons contain α1 subunits, different from those containing α2/3 in AIS and α4 in axon trunk of layer-5 PCs. Cell-attached recording at the soma of PV and SST neurons revealed that the activation of AIS GABAA receptors inhibits the action potential generation induced by synaptic stimulation. Together, our results demonstrate that the AIS of PV and SST neurons express GABAA receptors with distinct subunit composition, which exert an inhibitory effect on neuronal excitability in these inhibitory interneurons.
Collapse
Affiliation(s)
- Yanbo Jiang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoxue Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing 100875, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
24
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
25
|
Huang GZ, Taniguchi M, Zhou YB, Zhang JJ, Okutani F, Murata Y, Yamaguchi M, Kaba H. α 2-Adrenergic receptor activation promotes long-term potentiation at excitatory synapses in the mouse accessory olfactory bulb. ACTA ACUST UNITED AC 2018; 25:147-157. [PMID: 29545386 PMCID: PMC5855524 DOI: 10.1101/lm.046391.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The formation of mate recognition memory in mice is associated with neural changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cell (MC) projection neurons and GABAergic granule cell (GC) interneurons in the accessory olfactory bulb (AOB). Although noradrenaline (NA) plays a critical role in the formation of the memory, the mechanism by which it exerts this effect remains unclear. Here we used extracellular field potential and whole-cell patch-clamp recordings to assess the actions of bath-applied NA (10 µM) on the glutamatergic transmission and its plasticity at the MC-to-GC synapse in the AOB. Stimulation (400 stimuli) of MC axons at 10 Hz but not at 100 Hz effectively induced N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP), which exhibited reversibility. NA paired with subthreshold 10-Hz stimulation (200 stimuli) facilitated the induction of NMDA receptor-dependent LTP via the activation of α2-adrenergic receptors (ARs). We next examined how NA, acting at α2-ARs, facilitates LTP induction. In terms of acute actions, NA suppressed GC excitatory postsynaptic current (EPSC) responses to single pulse stimulation of MC axons by reducing glutamate release from MCs via G-protein coupled inhibition of calcium channels. Consequently, NA reduced recurrent inhibition of MCs, resulting in the enhancement of evoked EPSCs and spike fidelity in GCs during the 10-Hz stimulation used to induce LTP. These results suggest that NA, acting at α2-ARs, facilitates the induction of NMDA receptor-dependent LTP at the MC-to-GC synapse by shifting its threshold through disinhibition of MCs.
Collapse
Affiliation(s)
- Guang-Zhe Huang
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Ye-Bo Zhou
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Jing-Ji Zhang
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Fumino Okutani
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hideto Kaba
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan .,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan.,Division of Adaptation Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
26
|
Robles Gómez AA, Vega AV, Gónzalez-Sandoval C, Barral J. The role of Ca 2+ -dependent K + - channels at the rat corticostriatal synapses revealed by paired pulse stimulation. Synapse 2017; 72. [PMID: 29136290 DOI: 10.1002/syn.22017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
Abstract
Potassium channels play an important role in modulating synaptic activity both at presynaptic and postsynaptic levels. We have shown before that presynaptically located KV and KIR channels modulate the strength of corticostriatal synapses in rat brain, but the role of other types of potassium channels at these synapses remains largely unknown. Here, we show that calcium-dependent potassium channels BK-type but not SK-type channels are located presynaptically in corticostriatal synapses. We stimulated cortical neurons in rat brain slices and recorded postsynaptic excitatory potentials (EPSP) in medium spiny neurons (MSN) in dorsal neostriatum. By using a paired pulse protocol, we induced synaptic facilitation before applying either BK- or SK-specific toxins. Thus, we found that blockage of BKCa with iberiotoxin (10 nM) reduces synaptic facilitation and increases the amplitude of the EPSP, while exposure to SK-blocker apamin (100 nM) has no effect. Additionally, we induced train action potentials on striatal MSN by current injection before and after the exposure to KCa toxins. We found that the action potential becomes broader when the MSN is exposed to iberiotoxin, although it has no impact on frequency. In contrast, exposure to apamin results in loss of afterhyperpolarization phase and an increase of spike frequency. Therefore, we concluded that postsynaptic SK channels are involved in afterhyperpolarization and modulation of spike frequency while the BK channels are involved on the late repolarization phase of the action potential. Altogether, our results show that calcium-dependent potassium channels modulate both input towards and output from the striatum.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, UBIMED, FES Iztacala UNAM, México
| | | | - Jaime Barral
- Neurociencias, UIICSE, FES Iztacala, UNAM, México
| |
Collapse
|
27
|
Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor. Behav Pharmacol 2017; 27:506-15. [PMID: 27035064 DOI: 10.1097/fbp.0000000000000238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study used behavioral analyses to investigate the involvement of the NO/cGMP/KATP pathway, serotoninergic, and opioid systems in the antinociceptive action of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl]methanol (CTHP) in mice. Oral administration of CTHP (1, 5, 10, and 30 mg/kg) exerted effects at higher doses in chemical models of nociception (the acetic acid writhing and formalin tests) as well as a thermal model (the tail-flick test). It was also found that pretreatment with L-N-nitroarginine methyl ester (nonselective nitric oxide synthase inhibitor), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (selective inhibitor of nitric oxide-sensitive guanosyl cyclase), glibenclamide (selective ATP-sensitive K channel blocker), naloxone (nonselective opioid receptor blocker), and nor-binaltorphimine (selective κ-opioid receptor blocker), but not methylnaltrexone (peripheral μ-opioid receptor blocker) or naltrindole (selective δ-opioid receptor blocker), reversed the antinociceptive effect of CTHP. In addition, CTHP induced the development of tolerance in the tail-flick test: the tolerance appeared later compared with morphine, and was only observed with a higher dose. Taken together, the present study showed that the systemic administration of CTHP reduced pain induced by chemical and thermal stimuli. We also suggest that the possible mechanisms include the involvement of the NO/cGMP/KATP pathway and the κ-opioid receptor.
Collapse
|
28
|
Zurawski Z, Page B, Chicka MC, Brindley RL, Wells CA, Preininger AM, Hyde K, Gilbert JA, Cruz-Rodriguez O, Currie KPM, Chapman ER, Alford S, Hamm HE. Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. J Biol Chem 2017; 292:12165-12177. [PMID: 28515322 DOI: 10.1074/jbc.m116.773523] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gβγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gβγ subunits with the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gβγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gβγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gβγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gβγ for SNARE-binding sites in lipid environments. Mutant Gβγ subunits that were previously shown to be more efficacious at inhibiting Ca2+-triggered exocytotic release than wild-type Gβγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gβγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gβ and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gβγ inhibited Ca2+/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gβγ-SNARE interaction and show that the target of Gβγ, downstream of VGCC, is the membrane-embedded SNARE complex.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Michael C Chicka
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Rebecca L Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Christopher A Wells
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - James A Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Osvaldo Cruz-Rodriguez
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Kevin P M Currie
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600.
| |
Collapse
|
29
|
Park A, Li Y, Masri R, Keller A. Presynaptic and extrasynaptic regulation of posterior nucleus of thalamus. J Neurophysiol 2017; 118:507-519. [PMID: 28331010 DOI: 10.1152/jn.00862.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 11/22/2022] Open
Abstract
The posterior nucleus of thalamus (PO) is a higher-order nucleus involved in sensorimotor processing, including nociception. An important characteristic of PO is its wide range of activity profiles that vary across states of arousal, thought to underlie differences in somatosensory perception subject to attention and degree of consciousness. Furthermore, PO loses the ability to downregulate its activity level in some forms of chronic pain, suggesting that regulatory mechanisms underlying the normal modulation of PO activity may be pathologically altered. However, the mechanisms responsible for regulating such a wide dynamic range of activity are unknown. Here, we test a series of hypotheses regarding the function of several presynaptic receptors on both GABAergic and glutamatergic afferents targeting PO in mouse, using acute slice electrophysiology. We found that presynaptic GABAB receptors are present on both GABAergic and glutamatergic terminals in PO, but only those on GABAergic terminals are tonically active. We also found that release from GABAergic terminals, but not glutamatergic terminals, is suppressed by cholinergic activation and that a subpopulation of GABAergic terminals is regulated by cannabinoids. Finally, we discovered the presence of tonic currents mediated by extrasynaptic GABAA receptors in PO that are heterogeneously distributed across the nucleus. Thus we demonstrate that multiple regulatory mechanisms concurrently exist in PO, and we propose that regulation of inhibition, rather than excitation, is the more consequential mechanism by which PO activity can be regulated.NEW & NOTEWORTHY The posterior nucleus of thalamus (PO) is a key sensorimotor structure, whose activity is tightly regulated by inhibition from several nuclei. Maladaptive plasticity in this inhibition leads to severe pathologies, including chronic pain. We reveal here, for the first time in PO, multiple regulatory mechanisms that modulate synaptic transmission within PO. These findings may lead to targeted therapies for chronic pain and other disorders.
Collapse
Affiliation(s)
- Anthony Park
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Ying Li
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Radi Masri
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Baltimore, School of Dentistry, Baltimore, Maryland
| | - Asaf Keller
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
30
|
Tomatsu S, Kim G, Confais J, Seki K. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation. J Neurophysiol 2017; 117:796-807. [PMID: 27974451 DOI: 10.1152/jn.00874.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
Presynaptic inhibition of the sensory input from the periphery to the spinal cord can be evaluated directly by intra-axonal recording of primary afferent depolarization (PAD) or indirectly by intraspinal microstimulation (excitability testing). Excitability testing is superior for use in normal behaving animals, because this methodology bypasses the technically challenging intra-axonal recording. However, use of excitability testing on the muscle or joint afferent in intact animals presents its own technical challenges. Because these afferents, in many cases, are mixed with motor axons in the peripheral nervous system, it is crucial to dissociate antidromic volleys in the primary afferents from orthodromic volleys in the motor axon, both of which are evoked by intraspinal microstimulation. We have demonstrated in rats that application of a paired stimulation protocol with a short interstimulus interval (ISI) successfully dissociated the antidromic volley in the nerve innervating the medial gastrocnemius muscle. By using a 2-ms ISI, the amplitude of the volleys evoked by the second stimulation was decreased in dorsal root-sectioned rats, but the amplitude did not change or was slightly increased in ventral root-sectioned rats. Excitability testing in rats with intact spinal roots indicated that the putative antidromic volleys exhibited dominant primary afferent depolarization, which was reasonably induced from the more dorsal side of the spinal cord. We concluded that excitability testing with a paired-pulse protocol can be used for studying presynaptic inhibition of somatosensory afferents in animals with intact spinal roots.NEW & NOTEWORTHY Excitability testing of primary afferents has been used to evaluate presynaptic modulation of synaptic transmission in experiments conducted in vivo. However, to apply this method to muscle afferents of animals with intact spinal roots, it is crucial to dissociate antidromic and orthodromic volleys induced by spinal microstimulation. We propose a new method to make this dissociation possible without cutting spinal roots and demonstrate that it facilitates excitability testing of muscle afferents.
Collapse
Affiliation(s)
- Saeka Tomatsu
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Geehee Kim
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Joachim Confais
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
31
|
Hikima T, Garcia-Munoz M, Arbuthnott GW. Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release. Brain Res 2016; 1639:74-87. [PMID: 26944299 DOI: 10.1016/j.brainres.2016.02.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study release of glutamic acid (GLU) from one-axon terminal or bouton at-a-time using cortical neurons grown in vitro to study the effect of presynaptic auto- and heteroreceptor stimulation. Neurons were infected with release reporters SypHx2 or iGluSnFR at 7 or 3 days-in-vitro (DIV) respectively. At 13-15 DIV single synaptic boutons were identified from images obtained from a confocal scanning microscope before and after field electrical stimulation. We further stimulated release by raising intracellular levels of cAMP with forskolin (10µM). Forskolin-mediated effects were dependent on protein kinase A (PKA) and did not result from an increase in endocytosis, but rather from an increase in the size of the vesicle readily releasable pool. Once iGluSnFR was confirmed as more sensitive than SypHx2, it was used to study the participation of presynaptic auto- and heteroreceptors on GLU release. Although most receptor agonizts (carbamylcholine, nicotine, dopamine D2, BDNF) did not affect electrically stimulated GLU release, a significant increase was observed in the presence of metabotropic D1/D5 heteroreceptor agonist (SKF38393 10µM) that was reversed by PKA inhibitors. Interestingly, stimulation of group II metabotropic mGLU2/3 autoreceptors (LY379268 50nM) induced a decrease in GLU release that was reversed by the specific mGLU2/3 receptor antagonist (LY341495 1µM) and also by PKA inhibitors (KT5720 200nM and PKI14-22 400nM). These changes in release probability at individual release sites suggest another level of control of the distribution of transmitter substances in cortical tissue.
Collapse
Affiliation(s)
- Takuya Hikima
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Marianela Garcia-Munoz
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Gordon William Arbuthnott
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
32
|
Meneses D, Mateos V, Islas G, Barral J. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation. Synapse 2015; 69:446-52. [DOI: 10.1002/syn.21833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
|
33
|
Blichowski M, Shephard A, Armstrong J, Shen L, Cortez MA, Eubanks JH, Snead OC. The GIRK2 subunit is involved in IS-like seizures induced by GABABreceptor agonists. Epilepsia 2015; 56:1081-7. [DOI: 10.1111/epi.13034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Monica Blichowski
- Division of Neurology; SickKids Hospital; Toronto Ontario Canada
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
- University of Toronto; Toronto Ontario Canada
| | - Alexander Shephard
- Division of Neurology; SickKids Hospital; Toronto Ontario Canada
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
| | - Jessica Armstrong
- Division of Neurology; SickKids Hospital; Toronto Ontario Canada
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
| | - Liqing Shen
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
| | - Miguel A. Cortez
- Division of Neurology; SickKids Hospital; Toronto Ontario Canada
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
- University of Toronto; Toronto Ontario Canada
- Department of Paediatrics; SickKids Hospital; Toronto Ontario Canada
| | | | - O. Carter Snead
- Division of Neurology; SickKids Hospital; Toronto Ontario Canada
- Neurosciences and Mental Health Program; Peter Gilgan Centre for Research and Learning; SickKids Hospital; Toronto Ontario Canada
- University of Toronto; Toronto Ontario Canada
- Department of Paediatrics; SickKids Hospital; Toronto Ontario Canada
| |
Collapse
|
34
|
Farrag M, Laufenberg LJ, Steiner JL, Weller GE, Lang CH, Ruiz-Velasco V. Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats. PLoS One 2015; 10:e0125566. [PMID: 26017846 PMCID: PMC4446366 DOI: 10.1371/journal.pone.0125566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG) sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP) model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE)-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.
Collapse
Affiliation(s)
- Mohamed Farrag
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, United States of America
| | - Lacee J. Laufenberg
- Department of Surgery, Penn State College of Medicine, Hershey, PA, United States of America
| | - Jennifer L. Steiner
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States of America
| | - Gregory E. Weller
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, United States of America
| | - Charles H. Lang
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States of America
| | - Victor Ruiz-Velasco
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lenkey N, Kirizs T, Holderith N, Máté Z, Szabó G, Vizi ES, Hájos N, Nusser Z. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat Commun 2015; 6:6557. [PMID: 25891347 PMCID: PMC4413030 DOI: 10.1038/ncomms7557] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca(2+)] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca(2+)] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca(2+) channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.
Collapse
Affiliation(s)
- Nora Lenkey
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| | - Tekla Kirizs
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
- János Szentágothai School of
Neurosciences, Semmelweis University, Budapest H1085,
Hungary
| | - Noemi Holderith
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| | - Zoltán Máté
- Division of Medical Gene Technology, Institute of
Experimental Medicine, Hungarian Academy of Sciences, Budapest
H1083, Hungary
| | - Gábor Szabó
- Division of Medical Gene Technology, Institute of
Experimental Medicine, Hungarian Academy of Sciences, Budapest
H1083, Hungary
| | - E. Sylvester Vizi
- Laboratory of Drug Research, Institute of Experimental
Medicine, Hungarian Academy of Sciences, Budapest H1083,
Hungary
| | - Norbert Hájos
- Lendület Laboratory of Network Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Szigony street 43, Budapest
H1083, Hungary
| | - Zoltan Nusser
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| |
Collapse
|
36
|
Astrocytes: Orchestrating synaptic plasticity? Neuroscience 2015; 323:43-61. [PMID: 25862587 DOI: 10.1016/j.neuroscience.2015.04.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 01/09/2023]
Abstract
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.
Collapse
|
37
|
Presynaptic inhibition by α2 receptor/adenylate cyclase/PDE4 complex at retinal rod bipolar synapse. J Neurosci 2014; 34:9432-40. [PMID: 25009274 DOI: 10.1523/jneurosci.0766-14.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptor (GPCR)-mediated presynaptic inhibition is a fundamental mechanism regulating synaptic transmission in the CNS. The classical GPCR-mediated presynaptic inhibition in the CNS is produced by direct interactions between the G(βγ) subunits of the G-protein and presynaptic Ca(2+) channels, K(+) channels, or synaptic proteins that affect transmitter release. This mode of action is shared by well known GPCRs such as the α2, GABA(B), and CB1 receptors. We report that the α2 receptor-mediated inhibition of presynaptic Ca(2+) channel and transmitter release in rat retinal rod bipolar cells depends on the G(α) subunit via a G(α)-adenylate cyclase-cAMP cascade and requires participation of the type 4 phosphodiesterase (PDE4), a new role for phosphodiesterase in neural signaling. By using the G(α) instead of the G(βγ) subunits, this mechanism is able to use a cyclase/PDE enzyme pair to dynamically control a cyclic nucleotide second messenger (i.e., cAMP) for the regulation of synaptic transmission, an operating strategy that shows remarkable similarity to that of dynamic control of cGMP and transmitter release from photoreceptors by the guanylate cyclase/PDE6 pair in phototransduction. Our results demonstrate a new paradigm of GPCR-mediated presynaptic inhibition in the CNS and add a new regulatory mechanism at a critical presynaptic site in the visual pathway that controls the transmission of scotopic information. They also provide a presynaptic mechanism that could contribute to neuroprotection of retinal ganglion cells by α2 agonists, such as brimonidine, in animal models of glaucoma and retinal ischemia and in glaucoma patients.
Collapse
|
38
|
Presynaptic calcium channel inhibition underlies CB₁ cannabinoid receptor-mediated suppression of GABA release. J Neurosci 2014; 34:7958-63. [PMID: 24899717 DOI: 10.1523/jneurosci.0247-14.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CB1 cannabinoid receptors (CB1) are located at axon terminals and effectively control synaptic communication and thereby circuit operation widespread in the CNS. Although it is partially uncovered how CB1 activation leads to the reduction of synaptic excitation, the mechanisms of the decrease of GABA release upon activation of these cannabinoid receptors remain elusive. To determine the mechanisms underlying the suppression of synaptic transmission by CB1 at GABAergic synapses, we recorded unitary IPSCs (uIPSCs) at cholecystokinin-expressing interneuron-pyramidal cell connections and imaged presynaptic [Ca(2+)] transients in mouse hippocampal slices. Our results reveal a power function with an exponent of 2.2 between the amplitude of uIPSCs and intrabouton [Ca(2+)]. Altering CB1 function by either increasing endocannabinoid production or removing its tonic activity allowed us to demonstrate that CB1 controls GABA release by inhibiting Ca(2+) entry into presynaptic axon terminals via N-type (Cav2.2) Ca(2+) channels. These results provide evidence for modulation of intrabouton Ca(2+) influx into GABAergic axon terminals by CB1, leading to the effective suppression of synaptic inhibition.
Collapse
|
39
|
Lowe JD, Bailey CP. Functional selectivity and time-dependence of μ-opioid receptor desensitization at nerve terminals in the mouse ventral tegmental area. Br J Pharmacol 2014; 172:469-81. [PMID: 24467517 PMCID: PMC4292961 DOI: 10.1111/bph.12605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The majority of studies examining desensitization of the μ-opioid receptor (MOR) have examined those located at cell bodies. However, MORs are extensively expressed at nerve terminals throughout the mammalian nervous system. This study is designed to investigate agonist-induced MOR desensitization at nerve terminals in the mouse ventral tegmental area (VTA). EXPERIMENTAL APPROACH MOR function was measured in mature mouse brain slices containing the VTA using whole-cell patch-clamp electrophysiology. Presynaptic MOR function was isolated from postsynaptic function and the functional selectivity, time-dependence and mechanisms of agonist-induced MOR desensitization were examined. KEY RESULTS MORs located at GABAergic nerve terminals in the VTA were completely resistant to rapid desensitization induced by the high-efficacy agonists DAMGO and Met-enkephalin. MORs located postsynaptically on GABAergic cell bodies readily underwent rapid desensitization in response to DAMGO. However, after prolonged (>7 h) treatment with Met-enkephalin, profound homologous MOR desensitization was observed. Morphine could induce rapid MOR desensitization at nerve terminals when PKC was activated. CONCLUSIONS AND IMPLICATIONS Agonist-induced MOR desensitization in GABAergic neurons in the VTA is compartment-selective as well as agonist-selective. When MORs are located at cell bodies, higher-efficacy agonists induce greater levels of rapid desensitization than lower-efficacy agonists. However, the converse is true at nerve terminals where agonists that induce MOR desensitization via PKC are capable of rapid agonist-induced desensitization while higher-efficacy agonists are not. MOR desensitization induced by higher-efficacy agonists at nerve terminals only takes place after prolonged receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2
Collapse
Affiliation(s)
- J D Lowe
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK; School of Physiology & Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
40
|
Control of synaptic vesicle endocytosis by an extracellular signalling molecule. Nat Commun 2014; 4:2394. [PMID: 23999152 PMCID: PMC3778765 DOI: 10.1038/ncomms3394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022] Open
Abstract
Signalling cascades control multiple aspects of presynaptic function. Synaptic vesicle endocytosis was assumed to be exempt from modulation, due to its essential role maintaining synaptic vesicle supply and thus neurotransmission. Here we show that brain-derived neurotrophic factor arrests the rephosphorylation of the endocytosis enzyme dynamin I via an inhibition of glycogen synthase kinase 3. This event results in a selective inhibition of activity-dependent bulk endocytosis during high-intensity firing. Furthermore, the continued presence of brain-derived neurotrophic factor alleviates the rundown of neurotransmission during high activity. Thus, synaptic strength can be modulated by extracellular signalling molecules via a direct inhibition of a synaptic vesicle endocytosis mode.
Collapse
|
41
|
Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology 2014; 39:1081-92. [PMID: 24169802 PMCID: PMC3957102 DOI: 10.1038/npp.2013.308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.
Collapse
Affiliation(s)
- Marsida Kallupi
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Florence P Varodayan
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Diego Correia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacology, Universidade Federal do Paraná, Jardim das Américas, Curitiba, Paraná, Brazil
| | - George Luu
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
42
|
Modulation of neurotransmission by GPCRs is dependent upon the microarchitecture of the primed vesicle complex. J Neurosci 2014; 34:260-74. [PMID: 24381287 DOI: 10.1523/jneurosci.3633-12.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G(i/o)-protein-coupled receptors (GPCRs) ubiquitously inhibit neurotransmission, principally via Gβγ, which acts via a number of possible effectors. GPCR effector specificity has traditionally been attributed to Gα, based on Gα's preferential effector targeting in vitro compared with Gβγ's promiscuous targeting of various effectors. In synapses, however, Gβγ clearly targets unique effectors in a receptor-dependent way to modulate synaptic transmission. It remains unknown whether Gβγ specificity in vivo is due to specific Gβγ isoform-receptor associations or to spatial separation of distinct Gβγ pathways through macromolecular interactions. We thus sought to determine how Gβγ signaling pathways within axons remain distinct from one another. In rat hippocampal CA1 axons, GABA(B) receptors (GABA(B)Rs) inhibit presynaptic Ca(2+) entry, and we have now demonstrated that 5-HT(1B) receptors (5-HT(1B)Rs) liberate Gβγ to interact with SNARE complex C terminals with no effect on Ca(2+) entry. Both GABA(B)Rs and 5-HT(1B)Rs inhibit Ca(2+)-evoked neurotransmitter release, but 5-HT(1B)Rs have no effect on Sr(2+)-evoked release. Sr(2+), unlike Ca(2+), does not cause synaptotagmin to compete with Gβγ binding to SNARE complexes. 5-HT(1B)Rs also fail to inhibit release following cleavage of the C terminus of the SNARE complex protein SNAP-25 with botulinum A toxin. Thus, GABA(B)Rs and 5-HT(1B)Rs both localize to presynaptic terminals, but target distinct effectors. We demonstrate that disruption of SNARE complexes and vesicle priming with botulinum C toxin eliminates this selectivity, allowing 5-HT(1B)R inhibition of Ca(2+) entry. We conclude that receptor-effector specificity requires a microarchitecture provided by the SNARE complex during vesicle priming.
Collapse
|
43
|
Rowe DL, Hermens DF. Attention-deficit/hyperactivity disorder: neurophysiology, information processing, arousal and drug development. Expert Rev Neurother 2014; 6:1721-34. [PMID: 17144785 DOI: 10.1586/14737175.6.11.1721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we draw on literature from both animal and human neurophysiological studies to consider the neurochemical mechanisms underlying attention-deficit/ hyperactivity disorder (ADHD). Psychophysiological and neuropsychological research is used to propose possible etiological endophenotypes of ADHD. These are conceptualized as patients with distinct cortical-arousal, information-processing or maturational abnormalities, or a combination thereof, and how the endophenotypes can be used to help drug development and optimize treatment and management. To illustrate, the paper focuses on neuro- and psychophysiological evidence that suggests cholinergic mechanisms may underlie specific information-processing abnormalities that occur in ADHD. The clinical implications for a cholinergic hypothesis of ADHD are considered, along with its possible implications for treatment and pharmacological development.
Collapse
Affiliation(s)
- Donald L Rowe
- The Brain Dynamics Centre and Department of Psychological Medicine, Westmead Hospital and University of Sydney, NSW, Australia.
| | | |
Collapse
|
44
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, Ali DI, Sulaiman MR. Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain: Participation of the κ-opioid receptor and KATP. Pharmacol Biochem Behav 2013; 114-115:58-63. [PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Abstract
The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
Collapse
Affiliation(s)
- Lee Ming-Tatt
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
47
|
Taniguchi M, Yokoi M, Shinohara Y, Okutani F, Murata Y, Nakanishi S, Kaba H. Regulation of synaptic currents by mGluR2 at reciprocal synapses in the mouse accessory olfactory bulb. Eur J Neurosci 2012; 37:351-8. [PMID: 23167899 DOI: 10.1111/ejn.12059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 11/26/2022]
Abstract
The throughput of information from the accessory olfactory bulb (AOB) to downstream structures is controlled by reciprocal dendrodendritic inhibition of mitral cells by granule cells. Given the high expression levels of mGluR2, a metabotropic glutamate receptor, in the AOB and the fact that the activation of mGluR2 permits the formation of a specific olfactory memory, we reasoned that mGluR2 might play an important role in regulating dendrodendritic inhibition. To test this hypothesis, we examined the effects of pharmacological and genetic manipulations of mGluR2 on synaptic responses measured from mitral or granule cells in slice preparations from 23- to 36-day-old Balb/c mice. To evoke dendrodendritic inhibition, a depolarizing voltage step from -70 to 0 mV or a threshold current stimulus adjusted to elicit action potential(s) was applied to a mitral cell using either a nystatin-perforated or conventional whole-cell configuration. We found that an agonist for group II metabotropic glutamate receptors (mGluR2/mGluR3), DCG-IV [(2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine], suppressed, whereas the mGluR2/mGluR3 antagonist LY341495 [(αS)-α-amino-α-[(1S,2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid] enhanced dendrodendritic inhibition. Genetic ablation of mGluR2 markedly impaired the effects of DCG-IV and LY341495 on dendrodendritic inhibition. DCG-IV reduced both the frequency and the amplitude of spontaneous miniature excitatory postsynaptic currents recorded from granule cells. Additionally, DCG-IV inhibited high-voltage-activated calcium currents in both mitral and granule cells. These results suggest that mGluR2 reduces dendrodendritic inhibition by inhibiting synaptic transmission between mitral cells and granule cells in the AOB.
Collapse
|
48
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
49
|
Natriuretic peptides block synaptic transmission by activating phosphodiesterase 2A and reducing presynaptic PKA activity. Proc Natl Acad Sci U S A 2012; 109:17681-6. [PMID: 23045693 DOI: 10.1073/pnas.1209185109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart peptide hormone atrial natriuretic peptide (ANP) regulates blood pressure by stimulating guanylyl cyclase-A to produce cyclic guanosine monophosphate (cGMP). ANP and guanylyl cyclase-A are also expressed in many brain areas, but their physiological functions and downstream signaling pathways remain enigmatic. Here we investigated the physiological functions of ANP signaling in the neural pathway from the medial habenula (MHb) to the interpeduncular nucleus (IPN). Biochemical assays indicate that ANP increases cGMP accumulation in the IPN of mouse brain slices. Using optogenetic stimulation and electrophysiological recordings, we show that both ANP and brain natriuretic peptide profoundly block glutamate release from MHb neurons. Pharmacological applications reveal that this blockade is mediated by phosphodiesterase 2A (PDE2A) but not by cGMP-stimulated protein kinase-G or cGMP-sensitive cyclic nucleotide-gated channels. In addition, focal infusion of ANP into the IPN enhances stress-induced analgesia, and the enhancement is prevented by PDE2A inhibitors. PDE2A is richly expressed in the axonal terminals of MHb neurons, and its activation by cGMP depletes cyclic adenosine monophosphates. The inhibitory effect of ANP on glutamate release is reversed by selectively activating protein kinase A. These results demonstrate strong presynaptic inhibition by natriuretic peptides in the brain and suggest important physiological and behavioral roles of PDE2A in modulating neurotransmitter release by negative crosstalk between cGMP-signaling and cyclic adenosine monophosphate-signaling pathways.
Collapse
|
50
|
Laudes T, Meis S, Munsch T, Lessmann V. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Neuroscience 2012; 222:215-27. [DOI: 10.1016/j.neuroscience.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023]
|