1
|
Chadwick M, Swann JR, Gawthrop F, Michelmore R, Scaglione D, Jose-Truco M, Wagstaff C. Mapping taste and flavour traits to genetic markers in lettuce Lactuca sativa. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100215. [PMID: 39281292 PMCID: PMC11399806 DOI: 10.1016/j.fochms.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Lettuce is the most highly consumed raw leafy vegetable crop eaten worldwide, making it nutritionally important in spite of its comparatively low nutrient density in relation to other vegetables. However, the perception of bitterness caused by high levels of sesquiterpenoid lactones and comparatively low levels of sweet tasting sugars limits palatability. To assess variation in nutritional and taste-related metabolites we assessed 104 members of a Lactuca sativa cv. Salinas x L. serriola (accession UC96US23) mapping population. Plants were grown in three distinct environments, and untargeted NMR and HPLC were used as a rapid chemotyping method, from which 63 unique Quantitative Trait Loci (QTL) were identified. We were able to identify putative regulatory candidate genes underlying the QTL for fructose on linkage group 9, which accounted for up to 36 % of our population variation, and which was stable across all three growing environments; and for 15-p-hydroxyyphenylacetyllactucin-8-sulfate on linkage group 5 which has previously been identified for its low bitterness, while retaining anti-herbivory field effects. We also identified a candidate gene for flavonoid 3',5'- hydroxylase underlying a polyphenol QTL on linkage group 5, and two further candidate genes in sugar biosynthesis on linkage groups 2 and 5. Collectively these candidate genes and their associated markers can inform a route for plant breeders to improve the palatability and nutritional value of lettuce in their breeding programmes.
Collapse
Affiliation(s)
- Martin Chadwick
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| | - Jonathan R Swann
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | | | | | - Davide Scaglione
- IGA Technology Services, Via J. Linussio, 51 Z.I.U.Udine, 33100, Italy
| | - Maria Jose-Truco
- UC Davis Genome Center, 451 Health Sciences Drive, Davis CA 95616, USA
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| |
Collapse
|
2
|
Tran MT, Do TQ, Phi TD, Nguyen TTH, Litaudon M, Tran TH, Nguyen TL, Pham C, Doan TMH. New Cytotoxic Sesquiterpene Lactones from the Leaves of Tithonia Diversifolia and their Apoptosis Effect Evaluation in KB Cancer Cells. Chem Biodivers 2024:e202401934. [PMID: 39187695 DOI: 10.1002/cbdv.202401934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
From the leaves of Tithonia diversifolia, nine sesquiterpenoids (1-9), including two new ones (tagitinin J (1) and tagitinin K (2)) were isolated and structurally determined. Their chemical structures were elucidated by extensive analyses of the HRESIMS and NMR spectral data, as well as comparison with the literature. All of the isolated compounds (except compounds 7-9) significantly exhibited cytotoxic activity against four human cancer cell lines (KB, HepG2, A549 and MCF7), with IC50 values ranging from 0.29-17.0 μM, which were in the same range as the positive control ellipticine or even lower. Further, the apoptosis induction effects of two new compounds 1 and 2 were also investigated and reported. While compound 2 did not induce the apoptosis in KB cells at test concentrations, compound 1 was found to possess anti-proliferative activity through concentration-dependently inducing cell cycle arrest at S phase, morphological changes, activation of caspase 3, and an increase in the early-stage apoptosis of KB cells at a concentration of 7.26 μM.
Collapse
Affiliation(s)
- Minh The Tran
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
- Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, 11600, Hanoi, Vietnam
| | - Thi Quynh Do
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Dao Phi
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Thu Ha Nguyen
- Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Marc Litaudon
- Université Paris-Saclay, CNRS, Institut de Chimie des substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Thu Huong Tran
- Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, 11600, Hanoi, Vietnam
| | - Thuy Linh Nguyen
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Cuong Pham
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| |
Collapse
|
3
|
Nitwal L, Jagadeesh C, Palni M, Melkani AB. Isolation and characterization of isomeric tibetin spiroethers from the roots of Tanacetum dolichophyllum (Kitam.) Kitam. Nat Prod Res 2024:1-6. [PMID: 38733628 DOI: 10.1080/14786419.2024.2350635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
The roots of Tanacetum dolichophyllum (Kitam.) Kitam. (syn. Hippolytia dolichophylla (Kitam.) K.Bremer & Humphries) were collected from high altitude area of Munsyari, district Pithoragarh (Uttarakhand, India) yielded essential oil by steam distillation method and the oil was analysed by TLC and GC-MS. The GC-MS analysis of the essential oil sample showed the dominance of two constituents visible in sesquiterpene range. These constituents were isolated by column chromatography. The structures of these compounds were determined on the basis of 1H-NMR,13C NMR, COSY, 135-DEPT, and HRMS (ESI-TOF) spectral data. The two major compounds were identified as isomeric C14-Tibetin spiroethers, namely (E)-2-(2',4'-heptadiyn-1'-ylidene)-1,6-dioxaspiro[4.4]non-3-ene and (Z)-2-(2',4'-heptadiyn-1'-ylidene)-1,6-dioxaspiro[4.4]non-3-ene.
Collapse
Affiliation(s)
- Leelawati Nitwal
- Chemistry Department, Kumaun University, Nainital, Uttarakhand, India
| | - Chenna Jagadeesh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow, India
| | - Manisha Palni
- Chemistry Department, Kumaun University, Nainital, Uttarakhand, India
| | - Anand B Melkani
- Chemistry Department, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
4
|
Domingo-Fernández D, Gadiya Y, Mubeen S, Bollerman TJ, Healy MD, Chanana S, Sadovsky RG, Healey D, Colluru V. Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience 2023; 26:107729. [PMID: 37701812 PMCID: PMC10494464 DOI: 10.1016/j.isci.2023.107729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
For millennia, numerous cultures and civilizations have relied on traditional remedies derived from plants to treat a wide range of conditions and ailments. Here, we systematically analyzed ethnobotanical patterns across taxonomically related plants, demonstrating that congeneric medicinal plants are more likely to be used for treating similar indications. Next, we reconstructed the phytochemical space covered by medicinal plants to reveal that (i) taxonomically related medicinal plants cover a similar phytochemical space, and (ii) chemical similarity correlates with similar therapeutic usage. Lastly, we present several case scenarios illustrating how mining this information can be used for drug discovery applications, including: (i) investigating taxonomic hotspots around particular indications, (ii) exploring shared patterns of congeneric plants located in different geographic areas, but which have been used to treat the same indications, and (iii) showing the concordance between ethnobotanical patterns among non-taxonomically related plants and the presence of shared bioactive phytochemicals.
Collapse
|
5
|
Bernabé-Antonio A, Castro-Rubio C, Rodríguez-Anda R, Silva-Guzmán JA, Manríquez-González R, Hurtado-Díaz I, Sánchez-Ramos M, Hinojosa-Ventura G, Romero-Estrada A. Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules 2023; 13:biom13050746. [PMID: 37238616 DOI: 10.3390/biom13050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Acmella radicans (Asteraceae) is a plant native to America. Despite it having medicinal attributes, studies on its phytochemical properties are scarce, and biotechnological studies do not exist for this species. In this study, we established an adventitious root culture from A. radicans internodal segments in shake flasks with indole-3-butyric acid (IBA), and then elicited it with jasmonic acid (JA) and salicylic acid (SA). The total phenolic content and antioxidant activity were evaluated, and a comparison was made using in vitro plantlets and wild plants. Internodal segments with 0.1 mg/L IBA showed 100% root induction and exhibited better growth after transfer to shake flasks with MS liquid culture medium. JA had a significant effect on biomass increase compared to unelicited roots, mainly with 50 µM JA (28%), while SA did not show significant results. Root elicited with 100 µM (SA and JA) showed a 0.34- and 3.9-fold increase, respectively, in total phenolic content (TPC) compared to the control. The antioxidant activity was also significant, and a lower half-maximal inhibitory concentration (IC50) was observed as the AJ concentration increased. Roots elicited with AJ (100 µM) exhibited high antioxidant activity with DPPH (IC50 = 9.4 µg/mL) and ABTS (IC50 = 3.3 µg/mL) assays; these values were close to those for vitamin C (IC50 = 2.0 µg/mL). The TPC and antioxidant activity of in vitro plants and root cultured in shake flasks showed the lowest values in most cases; even the root cultures without elicitation were better than those of a wild plant. In this study, we demonstrated that A. radicans root culture is capable of producing secondary metabolites, while its production and antioxidant activity can be enhanced using jasmonic acid.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Clarisa Castro-Rubio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Raúl Rodríguez-Anda
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Ricardo Manríquez-González
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Israel Hurtado-Díaz
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Mariana Sánchez-Ramos
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Gabriela Hinojosa-Ventura
- Department of Chemical Engineering, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Antonio Romero-Estrada
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
6
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
7
|
Thuy TT, Thuy Linh NT, Cham BT, Hoang Anh NT, Quan TD, Tam NT, Hong Nhung LT, Thao DT, Hung NP, Hoang VD, Adorisio S, Delfino DV. Sesquiterpenoids from Tithonia diversifolia (Hemsl.) A. Gray induce apoptosis and inhibit the cell cycle progression of acute myeloid leukemia cells. Z NATURFORSCH C 2023; 78:65-72. [PMID: 36321958 DOI: 10.1515/znc-2021-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/28/2022] [Indexed: 01/10/2023]
Abstract
Three sesquiterpene lactones (1-3) were isolated from the aerial part of Tithonia diversifolia (Hemsl.) A. Gray grown in the Hoa Binh province in Viet Nam. The structures of these three sesquiterpene lactones were identified as tagitinin A (1), 1β-hydroxytirotundin 3-O-methyl ether (2), and tagitinin C (3) by analyzing spectroscopic data. For the first time, compound 2 was isolated from T. diversifolia growing in Viet Nam. Furthermore, contrary to existing literature, we determined that compound 1 was the major isolate. Compounds 1 and 3 significantly decreased numbers of acute myeloid leukemia OCI-AML3 cells by promoting apoptosis and causing cell cycle arrest at G0/G1 phase at concentrations as low as 2.5 μg/mL (compound 1) and 0.25 μg/mL (compound 3). Additionally, all three compounds showed cytotoxic activity against five human cancer cell lines (A549, T24, Huh-7, 8505, and SNU-1), with IC50 values ranging from 1.32 ± 0.14 to 46.34 ± 2.74 μM. Overall, our findings suggest that compounds 1 and 3 may be potential anti-cancer therapeutics and thus warrant further study.
Collapse
Affiliation(s)
- Trinh Thi Thuy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Nguyen Thi Thuy Linh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Ba Thi Cham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Nguyen Thi Hoang Anh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Tran Duc Quan
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Nguyen Thanh Tam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Le Thi Hong Nhung
- Hanoi University of Industry, 298 Cau Dien, North District Tu Liem, Ha Noi, Viet Nam
| | - Do Thi Thao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Nguyen Phi Hung
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam.,Institute of Natural Products Chemistry, Vietnam Academy Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Vu Dinh Hoang
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai BBa Trung, Ha Noi, Viet Nam
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy
| | - Domenico V Delfino
- Department of Medicine and Surgery, Foligno Nursing School, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy.,Department of Medicine and Surgery, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy
| |
Collapse
|
8
|
Liu W, Liang B, Zeng J, Meng J, Shi L, Yang S, Chang J, Wang C, Hu X, Wang X, Han N, Lu C, Li J, Wang C, Li H, Zhang R, Xing D. First Discovery of Cholesterol-Lowering Activity of Parthenolide as NPC1L1 Inhibitor. Molecules 2022; 27:molecules27196270. [PMID: 36234807 PMCID: PMC9572688 DOI: 10.3390/molecules27196270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Elevated cholesterol significantly increases the risk of developing atherosclerosis and coronary heart disease. The key to treating hypercholesterolemia is lowering plasma cholesterol levels. There have been no studies on the cholesterol-lowering potential of parthenolide (PTL), a naturally occurring small molecule from Tanacetum parthenium. Here, we first put forth PTL’s cholesterol-lowering ability to inhibit cellular uptake of cholesterol in a dose-dependent manner. Its performance was on par with the positive control drug, ezetimibe. Niemann–Pick C1 Like-1 (NPC1L1) has been identified as a potential therapeutic target for hypercholesterolemia. The interaction of PTL with NPC1L1 could be explained by the results of molecular docking and filipin staining further reinforces this hypothesis. Furthermore, PTL reduced the expression of NPC1L1 in HepG2 cells in a concentration-dependent manner, which suggests that PTL functions as a potential NPC1L1 inhibitor with therapeutic potential for hypercholesterolemia.
Collapse
Affiliation(s)
- Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Xiaokun Hu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xufu Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Na Han
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Chenghui Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jiao Li
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Congcong Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Correspondence: (R.Z.); (D.X.)
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100190, China
- Correspondence: (R.Z.); (D.X.)
| |
Collapse
|
9
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| |
Collapse
|
10
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
11
|
Zhang Z, Zhang K, Zhang M, Zhang X, Zhang R. Parthenolide Suppresses T Helper 17 and Alleviates Experimental Autoimmune Encephalomyelitis. Front Immunol 2022; 13:856694. [PMID: 35514960 PMCID: PMC9066638 DOI: 10.3389/fimmu.2022.856694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
T helper (Th) cells play crucial roles in inflammation and adaptive immune system. Importantly, Th17 cells, a major pathogenic Th cell subset, are involved in the pathogenesis of multiple sclerosis (MS) and its classical animal modal experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that parthenolide (PTL), a sesquiterpene lactone, possesses potent anti-cancer and anti-inflammatory activities. However, the immunosuppressive effect of PTL on the pathogenic Th17 cell and MS is unclear. In this study, we showed that PTL treatment could alleviate clinical symptoms by inhibiting inflammatory cell infiltration, reducing inflammation and demyelination of CNS. In addition, the mRNA expression of cytokines and inflammatory factors in CD4+ T cells, especially Th1 and Th17 cells, reduced in both CNS and peripheral immune tissue of EAE mice. Furthermore, PTL could inhibit the reactivation of MOG-specific T cells and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. We also found that PTL inhibited nuclear factor kappa B (NF-κB) signaling and retinoid-related orphan receptor-γt (RORγt) in mouse Th17 cell and human Jurkat cell line. Taken together, our data demonstrated a critical immune-suppressive effect of PTL on autoimmune inflammation through regulating Th17 cells and the NF-κB/RORγt pathway.
Collapse
Affiliation(s)
- Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kai Zhang
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Moasses Ghafary S, Soriano-Teruel PM, Lotfollahzadeh S, Sancho M, Serrano-Candelas E, Karami F, Barigye SJ, Fernández-Pérez I, Gozalbes R, Nikkhah M, Orzáez M, Hosseinkhani S. Identification of NLRP3 PYD Homo-Oligomerization Inhibitors with Anti-Inflammatory Activity. Int J Mol Sci 2022; 23:ijms23031651. [PMID: 35163573 PMCID: PMC8835912 DOI: 10.3390/ijms23031651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer's disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3PYD homo-oligomerization. In the present study, we describe the identification of QM380 and QM381 as NLRP3PYD homo-oligomerization inhibitors after screening small molecules from the MyriaScreen library using a split-luciferase complementation assay. Our results demonstrate that these NLRP3PYD inhibitors interfere with ASC speck formation, inhibit pro-inflammatory cytokine IL1-β release, and decrease pyroptotic cell death. We employed spectroscopic techniques and computational docking analyses with QM380 and QM381 and the PYD domain to confirm the experimental results and predict possible mechanisms underlying the inhibition of NLRP3PYD homo-interactions.
Collapse
Affiliation(s)
- Soroush Moasses Ghafary
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (S.M.G.); (S.L.); (F.K.); (M.N.)
| | - Paula M. Soriano-Teruel
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, 46012 Valencia, Spain; (P.M.S.-T.); (M.S.); (I.F.-P.)
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, 46012 Valencia, Spain
| | - Shima Lotfollahzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (S.M.G.); (S.L.); (F.K.); (M.N.)
| | - Mónica Sancho
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, 46012 Valencia, Spain; (P.M.S.-T.); (M.S.); (I.F.-P.)
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (E.S.-C.); (S.J.B.); (R.G.)
| | - Fatemeh Karami
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (S.M.G.); (S.L.); (F.K.); (M.N.)
| | - Stephen J. Barigye
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (E.S.-C.); (S.J.B.); (R.G.)
- MolDrug AI Systems SL, 46018 Valencia, Spain
| | - Iván Fernández-Pérez
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, 46012 Valencia, Spain; (P.M.S.-T.); (M.S.); (I.F.-P.)
| | - Rafael Gozalbes
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (E.S.-C.); (S.J.B.); (R.G.)
- MolDrug AI Systems SL, 46018 Valencia, Spain
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (S.M.G.); (S.L.); (F.K.); (M.N.)
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, 46012 Valencia, Spain; (P.M.S.-T.); (M.S.); (I.F.-P.)
- Correspondence: (M.O.); (S.H.)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
- Correspondence: (M.O.); (S.H.)
| |
Collapse
|
13
|
Zhang J, Zheng ZQ, Xu Q, Li Y, Gao K, Fang J. Onopordopicrin from the new genus Shangwua as a novel thioredoxin reductase inhibitor to induce oxidative stress-mediated tumor cell apoptosis. J Enzyme Inhib Med Chem 2021; 36:790-801. [PMID: 33733960 PMCID: PMC7993383 DOI: 10.1080/14756366.2021.1899169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Isolation and identification of natural products from plants is an essential approach for discovering drug candidates. Herein we report the characterization of three sesquiterpene lactones from a new genus Shangwua, e.g. onopordopicrin (ONP), C2, and C3, and evaluation of their pharmacological functions in interfering cellular redox signaling. Compared to C2 and C3, ONP shows the most potency in killing cancer cells. Further experiments demonstrate that ONP robustly inhibits thioredoxin reductase (TrxR), which leads to perturbation of cellular redox homeostasis with the favor of oxidative stress. Knockdown of the TrxR sensitizes cells to the ONP treatment while overexpression of the enzyme reduces the potency of ONP, underpinning the correlation of TrxR inhibition to the cytotoxicity of ONP. The discovery of ONP expands the library of the natural TrxR inhibitors, and the disclosure of the action mechanism of ONP provides a foundation for the further development of ONP as an anticancer agent.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Zai-Qin Zheng
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kun Gao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Nunes PR, Mattioli SV, Sandrim VC. NLRP3 Activation and Its Relationship to Endothelial Dysfunction and Oxidative Stress: Implications for Preeclampsia and Pharmacological Interventions. Cells 2021; 10:cells10112828. [PMID: 34831052 PMCID: PMC8616099 DOI: 10.3390/cells10112828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a specific syndrome of human pregnancy, being one of the main causes of maternal death. Persistent inflammation in the endothelium stimulates the secretion of several inflammatory mediators, activating different signaling patterns. One of these mechanisms is related to NLRP3 activation, initiated by high levels of danger signals such as cholesterol, urate, and glucose, producing IL-1, IL-18, and cell death by pyroptosis. Furthermore, reactive oxygen species (ROS), act as an intermediate to activate NLRP3, contributing to subsequent inflammatory cascades and cell damage. Moreover, increased production of ROS may elevate nitric oxide (NO) catabolism and consequently decrease NO bioavailability. NO has many roles in immune responses, including the regulation of signaling cascades. At the site of inflammation, vascular endothelium is crucial in the regulation of systemic inflammation with important implications for homeostasis. In this review, we present the important role of NLRP3 activation in exacerbating oxidative stress and endothelial dysfunction. Considering that the causes related to these processes and inflammation in PE remain a challenge for clinical practice, the use of drugs related to inhibition of the NLRP3 may be a good option for future solutions for this disease.
Collapse
|
15
|
Salm A, Krishnan SR, Collu M, Danton O, Hamburger M, Leonti M, Almanza G, Gertsch J. Phylobioactive hotspots in plant resources used to treat Chagas disease. iScience 2021; 24:102310. [PMID: 33870129 PMCID: PMC8040286 DOI: 10.1016/j.isci.2021.102310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, more than six million people are infected with Trypanosoma cruzi, the causative protozoan parasite of the vector-borne Chagas disease (CD). We conducted a cross-sectional ethnopharmacological field study in Bolivia among different ethnic groups where CD is hyperendemic. A total of 775 extracts of botanical drugs used in Bolivia in the context of CD and botanical drugs from unrelated indications from the Mediterranean De Materia Medica compiled by Dioscorides two thousand years ago were profiled in a multidimensional assay uncovering different antichagasic natural product classes. Intriguingly, the phylobioactive anthraquinone hotspot matched the antichagasic activity of Senna chloroclada, the taxon with the strongest ethnomedical consensus for treating CD among the Izoceño-Guaraní. Testing common 9,10-anthracenedione derivatives in T. cruzi cellular infection assays demarcates hydroxyanthraquinone as a potential antichagasic lead scaffold. Our study systematically uncovers in vitro antichagasic phylogenetic hotspots in the plant kingdom as a potential resource for drug discovery based on ethnopharmacological hypotheses.
Collapse
Affiliation(s)
- Andrea Salm
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sandhya R. Krishnan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marta Collu
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ombeline Danton
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Almanza
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Adeeyo AO, Edokpayi JN, Alabi MA, Msagati TAM, Odiyo JO. Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
This review aims at establishing the emerging applications of phytobiotics in water treatment and disinfection.
Results
Statistical analysis of data obtained revealed that the use of plant product in water treatment needs more research attention. A major observation is that plants possess multifaceted components and can be sustainably developed into products for water treatment. The seed (24.53%), flower (20.75), leaf (16.98%) and fruit (11.32%) biomasses are preferred against bulb (3.77%), resin (1.89%), bark (1.89%) and tuber (1.89%). The observation suggests that novel applications of plant in water treatment need further exploration since vast and broader antimicrobial activities (63.63%) is reported than water treatment application (36.37%).
Conclusions
This review has revealed the existing knowledge gaps in exploration of plant resources for water treatment and product development. Chemical complexity of some plant extracts, lack of standardisation, slow working rate, poor water solubility, extraction and purification complexities are limitations that need to be overcome for industrial adoption of phytochemicals in water treatment. The field of phytobiotics should engage modern methodologies such as proteomics, genomics, and metabolomics to minimise challenges confronting phytobiotic standardisation. The knowledge disseminated awaits novel application for plant product development in water treatment.
Collapse
|
17
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
18
|
Petelka J, Plagg B, Säumel I, Zerbe S. Traditional medicinal plants in South Tyrol (northern Italy, southern Alps): biodiversity and use. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:74. [PMID: 33243238 PMCID: PMC7690129 DOI: 10.1186/s13002-020-00419-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Worldwide mountain regions are recognized as hotspots of ethnopharmacologically relevant species diversity. In South Tyrol (Southern Alps, Italy), and due to the region's high plant diversity and isolated population, a unique traditional botanical knowledge of medicinal plants has flourished, which traces its history back to prehistoric times. However, changes in rural life and culture may threaten this unique biodiversity and cultural heritage. Our study aims to collect and analyze information on native plants used in traditional folk medicine, focusing on the preservation of botanical and cultural diversity. METHODS Data were collected through a review of published material that documents traditionally used medicinal plants of South Tyrol in order to capture the total diversity of plants and their usage. We evaluated different parameters, comprising the ethnobotanicity index (EI), ethnophytonomic index (EPI), relative frequency of citation (RFC), red list status, and regional legislation with regard to the plant species. RESULTS A total of 276 species, including 3 mushrooms and 3 lichens, were identified. These belonged to 72 families, most frequently to the Asteraceae, Rosaceae, and Lamiaceae. The most frequently cited species were Hypericum perforatum L., Urtica dioica L., and Plantago lanceolata L. According to 12 ICPC-2 disease categories, the most frequently treated human health symptoms were from the digestive and respiratory systems as well as the skin. A total of 27 species were listed as endangered, of which 16 are not protected and two are now already extinct. Among the 59 predominantly alpine species, 11 species are restricted to the high altitudes of the Alps and may be threatened by global warming. CONCLUSIONS Our research revealed that the ethnobotanical richness of South Tyrol is among the highest in Italy and throughout the Alps. Nevertheless, it is evident that biodiversity and traditional knowledge have been heavily eroded. Furthermore, we point out particularly sensitive species that should be reconsidered for stronger protections in legal regulations.
Collapse
Affiliation(s)
- Joshua Petelka
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Barbara Plagg
- Faculty of Education, Free University of Bozen-Bolzano, Bolzano, Italy
- Institute of General Medicine, College of Health Care Professions Claudiana, Bozen, Italy
| | - Ina Säumel
- Integrative Research Institute on Transformations of Human-Environment Systems (IRITHESys), Humboldt Universität zu Berlin, Berlin, Germany.
| | - Stefan Zerbe
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
19
|
Mandal SK, Debnath U, Kumar A, Thomas S, Mandal SC, Choudhury MD, Palit P. Natural Sesquiterpene Lactones in the Prevention and Treatment of Inflammatory Disorders and cancer: A Systematic Study of this Emerging Therapeutic Approach based on Chemical and Pharmacological Aspect. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200421144007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Introduction:
Sesquiterpene lactones are a class of secondary metabolite
that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive
secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae
family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so
far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological
activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional
disorders. Moreover, these moiety based phytocompounds have been highlighted with a new
dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize
achieved by the Artemisinin researchers.
Objective:
These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural
backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and
anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been
increased. This study will review the prospect of sesquiterpene lactones against inflammation and
cancer.
Methods:
Hence, we emphasized on the different features of this moiety by incorporating its structural
diversity on biological activities to explore structure-activity relationships (SAR) against inflammation
and cancer.
Results:
How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby
these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of
anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy
will also be revealed in the present review in the milieu of pharmacophore activity relation
and pharmacodynamics study as well.
Conclusion:
So, these metabolites are paramount in phytopharmacological aspects. The present discussion
on the future prospect of this moiety based on the reported literature could be a guide for
anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur- 713206, India
| | - Utsab Debnath
- School of Pharmaceutical Technology, Adamas University, Kolkata 700126, India
| | - Amresh Kumar
- Department of Life Science and Bioinformatics, Biotech Hub, Assam University, Silchar, Assam-788011, India
| | - Sabu Thomas
- Mahatma Gandhi University, Kottayam-686560, Kerala, India
| | - Subhash Chandra Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Research Laboratory, Jadavpur University, Kolkata 700032, India
| | - Manabendra Dutta Choudhury
- Department of Life Science and Bioinformatics, Biotech Hub, Assam University, Silchar, Assam-788011, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Division of Pharmacognosy, Assam University (A Central University), Silchar-788011, India
| |
Collapse
|
20
|
Ezeta-Miranda A, Vera-Montenegro Y, Avila-Acevedo JG, García-Bores AM, Estrella-Parra EA, Francisco-Marquez G, Ibarra-Velarde F. Efficacy of purified fractions of Artemisia ludoviciana Nutt. mexicana and ultraestructural damage to newly excysted juveniles of Fasciola hepatica in vitro. Vet Parasitol 2020; 285:109184. [DOI: 10.1016/j.vetpar.2020.109184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
|
21
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Kamsani K, Franco FM, Slik F. A comparative account of the traditional healing practices of healers and non-healers in the Kiudang area of Brunei Darussalam. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112788. [PMID: 32224194 DOI: 10.1016/j.jep.2020.112788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In this study, we compare the traditional medicinal knowledge and associated spiritual practices of healers with that of non-healers, to understand the relevance of healers in contemporary times. Given that Brunei Darussalam is well-known for its forest cover, the study also aims to understand the number of species collected from the forests, compared to those from human influenced habitats. MATERIALS AND METHODS A total of six specialist healers from Belait, Tutong, Dusun and Iban communities, and seven non-healers who had personal experience in self-medication using medicinal plants participated in the study. We identified the specialist healers through purposive sampling, on the basis of their reputation in the locality, while the non-healers were those experienced in self-medication, recommended by the healers. Informants were interviewed at their residences, followed by collection trips to the plant habitats. We classified the total recorded ailments into 15 disease categories. We then compared the medicinal uses cited by healers to those mentioned by non-healers, as well as with prior published records from Brunei Darussalam. We also compare the habitats of species cited by both healers and non-healers to understand the dependency of the local pharmacopoeia on forests and human-influenced habitats. RESULTS Our study records 175 medicinal plants belonging to 85 families, the majority of which (92) were exotic to Borneo. There were 110 species collected from disturbed, human influenced habitats such as roadsides, agricultural fields, secondary and degraded forests, and homestead lands, while 58 species were collected from the forests surrounding Kiudang. Majority of the plants used by both healers and non-healers were collected from human-influenced habitats, indicating that the local pharmacopoeia could be a disturbance one. Most of the medicinal plants recorded in this study were used to treat chronic, but non-life threatening conditions. Ailments affecting the digestive system were the most targeted group with 67 species used. All medicinal uses with more than one citation were recorded from healers. Medicinal uses cited by healers also had greater correspondence with prior published reports from Brunei Darussalam. Healers believe that combining medicinal plants can produce a synergistic effect. Our study found that traditional knowledge related to healing practices is mostly transmitted vertically from parents to children. We also show that a ritual gift (pikaras) and invocations characteristic of the beliefs of the healers play an important role in facilitating healing. CONCLUSION Our study adds further evidence to prior studies that the medicinal plants and healing practices in the Kiudang region could be considered as disturbance pharmacopoeia. Healers with their knowledge on both therapeutic and spiritual aspects of healing continue to play an important role in local healthcare.
Collapse
Affiliation(s)
- Khairunzahidah Kamsani
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - F Merlin Franco
- Institute of Asian Studies, Universiti Brunei Darussalam, Brunei Darussalam.
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
23
|
Okamoto T, Sugimoto S, Noda M, Yokooji T, Danshiitsoodol N, Higashikawa F, Sugiyama M. Interleukin-8 Release Inhibitors Generated by Fermentation of Artemisia princeps Pampanini Herb Extract With Lactobacillus plantarum SN13T. Front Microbiol 2020; 11:1159. [PMID: 32582099 PMCID: PMC7283739 DOI: 10.3389/fmicb.2020.01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Some glycosides, which are detected in water extracts from medicinal plants, have been reported to be degraded into their aglycones by incubating with some microorganisms producing β-glucosidase. We have shown that a plant-derived Lactobacillus plantarum SN13T harbors 11 open reading frames (ORFs) encoding the β-glucosidase enzyme and can grow vigorously in several herbal water extracts. In this study, we observed that the water extract from Artemisia princeps Pampanini (AP) fermented with the SN13T strain strongly inhibited the release of interleukin (IL)-8 from the HuH-7 cells, when compared to that without fermentation. Furthermore, we demonstrated that the SN13T strain produced at least two bioactive compounds from some compounds contained in AP extract. In addition, we determined that the two compounds were catechol and seco-tanapartholide C, which dose-dependently inhibited the release of IL-8. Because some sesquiterpene lactones are useful in pharmaceuticals, seco-tanapartholide C may be useful as an anti-inflammatory agent. This study suggests that the fermentation of medicinal herbs with Lb. plantarum SN13T is a significant technique to obtain bioactive compounds having therapeutic potential.
Collapse
Affiliation(s)
- Tomoko Okamoto
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiko Higashikawa
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Yeung AWK, Heinrich M, Kijjoa A, Tzvetkov NT, Atanasov AG. The ethnopharmacological literature: An analysis of the scientific landscape. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112414. [PMID: 31751650 DOI: 10.1016/j.jep.2019.112414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The research into bioactive natural products originating from medicinal plants, fungi and other organisms has a long history, accumulating abundant and diverse publications. However no quantitative literature analysis has been conducted so far. AIM OF THE STUDY Here we analyze the bibliometric data of ethnopharmacology literature and relate the semantic content to the publication and citation data so that the major research themes, contributors, and journals of different time periods could be identified and evaluated. MATERIALS AND METHODS Web of Science (WoS) was searched to identify relevant publications. The Analyze function of WoS and bibliometric software (VOSviewer) were utilized to perform the analyses. RESULTS Until the end of November 2018, 59,576 publications -linked to 'ethnopharmacology' indexed by WoS, published since 1958 in more than 5600 journals, and contributed by over 20,600 institutions located in more than 200 countries/regions, were identified. The papers were published under four dominating WoS categories, namely pharmacology/pharmacy (34.4%), plant sciences (28.6%), medicinal chemistry (25.3%), and integrative complementary medicine (20.6%). India (14.6%) and China (13.2%) were dominating the publication space. The United States and Brazil also had more than 8.0% contribution each. The rest of the top ten countries/regions were mainly from Asia. There were around ten-fold more original articles (84.6%) than reviews (8.4%). CONCLUSIONS Ethnopharmacological research has a consistent focus on food and plant sciences, (bio)chemistry, complementary medicine and pharmacology, with a more limited scientific acceptance in the socio-cultural sciences. Dynamic global contributions have been shifting from developed countries to economically and scientifically emerging countries in Asia, South America and the Middle East. Research on recording medicinal plant species used by traditional medicine continues, but the evaluation of specific properties or treatment effects of extracts and compounds has increased enormously. Moreover increasing attention is paid to some widely distributed natural products, such as curcumin, quercetin, and rutin.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Michael Heinrich
- Research Group "Pharmacognosy and Phytotherapy", UCL School of Pharmacy, London, United Kingdom.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar & CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria; Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552, Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
25
|
The parthenolide derivative ACT001 synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson’s disease in mice. Behav Brain Res 2020; 379:112337. [DOI: 10.1016/j.bbr.2019.112337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/29/2023]
|
26
|
Wang X, Liu M, Cai GH, Chen Y, Shi XC, Zhang CC, Xia B, Xie BC, Liu H, Zhang RX, Lu JF, Zhu MQ, Yang SZ, Chu XY, Zhang DY, Wang YL, Wu JW. A Potential Nutraceutical Candidate Lactucin Inhibits Adipogenesis through Downregulation of JAK2/STAT3 Signaling Pathway-Mediated Mitotic Clonal Expansion. Cells 2020; 9:cells9020331. [PMID: 32023857 PMCID: PMC7072480 DOI: 10.3390/cells9020331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 μM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.
Collapse
|
27
|
Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol 2019; 10:2538. [PMID: 31749805 DOI: 10.3389/fimmu.2019.02538/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/14/2019] [Indexed: 05/24/2023] Open
Abstract
Inflammasomes play a crucial role in innate immunity by serving as signaling platforms which deal with a plethora of pathogenic products and cellular products associated with stress and damage. By far, the best studied and most characterized inflammasome is NLRP3 inflammasome, which consists of NLRP3 (nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3), ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), and procaspase-1. Activation of NLRP3 inflammasome is mediated by highly diverse stimuli. Upon activation, NLRP3 protein recruits the adapter ASC protein, which recruits the procaspase-1 resulting in its cleavage and activation, inducing the maturation, and secretion of inflammatory cytokines and pyroptosis. However, aberrant activation of the NLRP3 inflammasome is implicated in various diseases including diabetes, atherosclerosis, metabolic syndrome, cardiovascular, and neurodegenerative diseases; raising a tremendous clinical interest in exploring the potential inhibitors of NLRP3 inflammasome. Recent investigations have disclosed various inhibitors of the NLRP3 inflammasome pathway which were validated through in vitro studies and in vivo experiments in animal models of NLRP3-associated disorders. Some of these inhibitors directly target the NLRP3 protein whereas some are aimed at other components and products of the inflammasome. Direct targeting of NLRP3 protein can be a better choice because it can prevent off target immunosuppressive effects, thus restrain tissue destruction. This paper will review the various pharmacological inhibitors of the NLRP3 inflammasome and will also discuss their mechanism of action.
Collapse
Affiliation(s)
- Ayesha Zahid
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol 2019; 10:2538. [PMID: 31749805 PMCID: PMC6842943 DOI: 10.3389/fimmu.2019.02538] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammasomes play a crucial role in innate immunity by serving as signaling platforms which deal with a plethora of pathogenic products and cellular products associated with stress and damage. By far, the best studied and most characterized inflammasome is NLRP3 inflammasome, which consists of NLRP3 (nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3), ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), and procaspase-1. Activation of NLRP3 inflammasome is mediated by highly diverse stimuli. Upon activation, NLRP3 protein recruits the adapter ASC protein, which recruits the procaspase-1 resulting in its cleavage and activation, inducing the maturation, and secretion of inflammatory cytokines and pyroptosis. However, aberrant activation of the NLRP3 inflammasome is implicated in various diseases including diabetes, atherosclerosis, metabolic syndrome, cardiovascular, and neurodegenerative diseases; raising a tremendous clinical interest in exploring the potential inhibitors of NLRP3 inflammasome. Recent investigations have disclosed various inhibitors of the NLRP3 inflammasome pathway which were validated through in vitro studies and in vivo experiments in animal models of NLRP3-associated disorders. Some of these inhibitors directly target the NLRP3 protein whereas some are aimed at other components and products of the inflammasome. Direct targeting of NLRP3 protein can be a better choice because it can prevent off target immunosuppressive effects, thus restrain tissue destruction. This paper will review the various pharmacological inhibitors of the NLRP3 inflammasome and will also discuss their mechanism of action.
Collapse
Affiliation(s)
- Ayesha Zahid
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Broering MF, Nunes R, De Faveri R, De Faveri A, Melato J, Correa TP, Vieira ME, Malheiros A, Meira Quintão NL, Santin JR. Effects of Tithonia diversifolia (Asteraceae) extract on innate inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112041. [PMID: 31252095 DOI: 10.1016/j.jep.2019.112041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/06/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tithonia diversifolia (Helms.) A. Gray, popularly known in Brazil as "margaridão" or "mão-de-Deus" has been used in the folk medicine as anti-inflammatory and against other illnesses in several countries. Indeed, many studies show de effect of T. diversifolia in the inflammatory process, however, any of them have demonstrated the mechanism of cell migration. AIM OF THE STUDY The aim of this investigation was to show the in vivo and in vitro effects of T. diversifolia leaves ethanol extract on neutrophil trafficking from the blood to the inflamed tissue and on cell-derived secretion of chemical mediators, as well as, the effects on inflammatory resolution and inflammatory pain. MATERIALS AND METHODS Anti-inflammatory activity was investigated using carrageenan-induced inflammation in the subcutaneous tissue of male Swiss mice orally treated with the T. diversifolia extract (0.1, 1 or 3 mg/kg). The leukocyte influx (optical microscopy) and the secretion of chemical mediators (TNF, IL-6, IL-1β and CXCL1, by enzyme-linked immunosorbent assay) were quantified in the inflamed exudate. Histological analysis of the pouches was performed. N-Formyl-methionine-leucine-phenylalanine-induced chemotaxis, lipopolysaccharide-induced TNF, IL-6, IL-1β, CXCL1 and NO production, and adhesion molecule expression (CD62L and CD18, flow cytometry) were in vitro quantified using oyster glycogen recruited peritoneal neutrophils previous treated with the extract (1, 10, or 100 μg/mL). The resolution of inflammation was accessed by efferocytosis assay, and the antinociceptive activity was investigated using carrageenan-induced mechanical hypersensitivity. RESULTS The oral treatment with T. diversifolia promoted reduction in the neutrophil migration as well as the decrease in total protein, TNF, IL-1β and CXCL1 levels in the inflamed exudate. In vitro treatment with T. diversifolia shedding of β2 integrin expressions, without alter CD62L expression. The extract was able to increase the efferocytosis of apoptotic neutrophils, and the increase of the IL-10 and the decrease of TNF secretion. Additionally, the extract reduced the hypersensitivity induced by carrageenan. CONCLUSIONS Together, the data herein obtained showed that T. diversifolia extract presented anti-inflammatory activity by inhibiting the cytokine and NO production, and also the leukocyte migration. The mechanisms involved in the extract anti-inflammatory effects include the impairment in the leukocyte migration to the inflamed tissue, the pro-resolution activity, and consequently the anti-hypersensitivity.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Aline De Faveri
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Jéssica Melato
- Nutrition Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Maria Eduarda Vieira
- Biomedicine Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Angela Malheiros
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
30
|
Ur Rashid M, Alamzeb M, Ali S, Ullah Z, Shah ZA, Naz I, Khan MR. The chemistry and pharmacology of alkaloids and allied nitrogen compounds from Artemisia species: A review. Phytother Res 2019; 33:2661-2684. [PMID: 31453659 DOI: 10.1002/ptr.6466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
Several reviews have been published on Artemisia's derived natural products, but it is the first attempt to review the chemistry and pharmacology of more than 80 alkaloids and allied nitrogen compounds obtained from various Artemisia species (covering the literature up to June 2018). The pharmacological potential and unique skeleton types of certain Artemisia's alkaloids provoke the importance of analyzing Artemisia species for bioactive alkaloids and allied nitrogen compounds. Among the various types of bioactive Artemisia's alkaloids, the main classes were the derivatives of rupestine (pyridine-sesquiterpene), lycoctonine (diterpene), pyrrolizidine, purines, polyamine, peptides, indole, piperidine, pyrrolidine, alkamides, and flavoalkaloids. The rupestine derivatives are Artemisia's characteristic alkaloids, whereas the rest are common alkaloids found in the family Asteraceae and chemotaxonomically links the genus Artemisia with the tribes Anthemideae. The most important biological activities of Artemisia's alkaloids are including hepatoprotective, local anesthetic, β-galactosidase, and antiparasitic activities; treatment of angina pectoris, opening blocked arteries, as a sleep-inducing agents and inhibition of HIV viral protease, CYP450, melanin biosynthesis, human carbonic anhydrase, [3H]-AEA metabolism, kinases, and DNA polymerase β1 . Some of the important nitrogen metabolites of Artemisia include pellitorine, zeatin, tryptophan, rupestine, and aconitine analogs, which need to be optimized and commercialized further.
Collapse
Affiliation(s)
- Mamoon Ur Rashid
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Saqib Ali
- Department of Chemistry, University of Kotli, Kotli, Pakistan
| | - Zahoor Ullah
- Department of Chemistry, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Zafar Ali Shah
- Department of Agriculture Chemistry, Agriculture University Peshawar, Peshawar, Pakistan
| | - Ishrat Naz
- Department of Plant Pathology, Agriculture University Peshawar, Peshawar, Pakistan
| | - Muhammad Rafiullah Khan
- Phytopharmaceutical and Nutraceutical Research Laboratory (PNRL), Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
31
|
Chibli LA, Rosa AL, Nonato MC, Da Costa FB. Untargeted LC-MS metabolomic studies of Asteraceae species to discover inhibitors of Leishmania major dihydroorotate dehydrogenase. Metabolomics 2019; 15:59. [PMID: 30949823 DOI: 10.1007/s11306-019-1520-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Interesting data about the family Asteraceae as a new source of Leishmania major dihydroorotate dehydrogenase (LmDHODH) inhibitors are presented. This key macromolecular target for parasites causing neglected diseases catalyzes the fourth reaction of the de novo pyrimidine biosynthetic pathway, which takes part in major cell functions, including DNA and RNA biosynthesis. OBJECTIVES We aimed to (1) determine LmDHODH inhibitor candidates, revealing the type of chemistry underlying such bioactivity, and (2) predict the inhibitory potential of extracts from new untested plant species, classifying them as active or inactive based on their LC-MS based metabolic fingerprints. METHODS Extracts from 150 species were screened for the inhibition of LmDHODH, and untargeted UHPLC-(ESI)-HRMS metabolomic studies were carried out in combination with in silico approaches. RESULTS The IC50 values determined for a subset of 59 species ranged from 148 µg mL-1 to 9.4 mg mL-1. Dereplication of the metabolic fingerprints allowed the identification of 48 metabolites. A reliable OPLS-DA model (R2 > 0.9, Q2 > 0.7, RMSECV < 0.3) indicated the inhibitor candidates; nine of these metabolites were identified using data from isolated chemical standards, one of which-4,5-di-O-E-caffeoylquinic acid (IC50 73 µM)-was capable of inhibiting LmDHODH. The predictive OPLS model was also effective, with 60% correct predictions for the test set. CONCLUSION Our approach was validated for (1) the discovery of LmDHODH inhibitors or interesting starting points for the optimization of new leishmanicides from Asteraceae species and (2) the prediction of extracts from untested species, classifying them as active or inactive.
Collapse
Affiliation(s)
- Lucas A Chibli
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Annylory L Rosa
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Maria Cristina Nonato
- Laboratory of Protein Crystallography, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernando B Da Costa
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
32
|
Abstract
Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. This review presents 139 active acetylenic molecules of plant, fungal, and soil bacterial origin that reveal cytotoxic and/or anticancer activities. Although many compounds of this group possess encouraging characteristics, they have never been evaluated as potential anticancer agents. They are of great interest, especially for the medicine and/or pharmaceutical industries. Here we describe structures and biological activities of acetylenic metabolites.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dmitri O Levitsky
- CNRS UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, Université de Nantes, P.O. Box 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
33
|
Cortes-Morales J, Olmedo-Juárez A, Trejo-Tapia G, González-Cortazar M, Domínguez-Mendoza B, Mendoza-de Gives P, Zamilpa A. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp Parasitol 2019; 197:20-28. [DOI: 10.1016/j.exppara.2019.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
|
34
|
Antioxidant Potential of Herbal Preparations and Components from Galactites elegans (All.) Nyman ex Soldano. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9294358. [PMID: 30410560 PMCID: PMC6206561 DOI: 10.1155/2018/9294358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
Galactites is a genus of flowering plants belonging to Asteraceae family. This genus is mainly represented by the Galactites elegans (All.) Nyman ex Soldano, the milky thistle, a plant of Mediterranean origin. Galactites elegans is consumed as a monofloral boar thistle honey. Chromatography separation of CHCl3 and n-BuOH extracts of aerial parts of G. elegans led to isolation of 18 pure compounds. Their structures were elucidated by 1D-and 2D-NMR spectroscopy and confirmed by mass spectrometry analysis. Sinapic aldehyde, abietin, chlorogenic acid, neochlorogenic acid, 8α-hydroxypinoresinol, 9α-hydroxypinoresinol, pinoresinol, 4-ketopinoresinol, nortrachelogenin, and erythro-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol were isolated from CHCl3 extract, while luteolin 4'-O-glucuronide, naringenin-7-O-neohesperidoside, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, apigenin-7-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, quercitrin, quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, ciwujiatone, and nortrachelogenin-4,4'-di-O-β-D-glucopyranoside were obtained from n-BuOH extract. The majority of isolated compounds displayed a significant antioxidant potential in vitro test (DPPH). The ability of compounds to reduce the level of peroxides in control and BHP-treated Jurkat cells was studied. The lignan derivatives were also able to reduce at 50 μM the basal level of peroxides in Jurkat cells as well as counteract peroxide increase induced by BHP treatment. Particularly 8α-hydroxypinoresinol was the most active showing 70% of peroxide level inhibition.
Collapse
|
35
|
Omokhua AG, Abdalla MA, Van Staden J, McGaw LJ. A comprehensive study of the potential phytomedicinal use and toxicity of invasive Tithonia species in South Africa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:272. [PMID: 30285713 PMCID: PMC6171246 DOI: 10.1186/s12906-018-2336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tithonia diversifolia and T. rotundifolia belong to the Asteraceae family and are native to Mexico and Central America. These plants have become invasive in parts of tropical Africa and Asia where they have become an ecological, agricultural and economic burden. Tithonia diversifolia is exploited by locals in its native and most parts of its invasive range as a source of medicines; however, T. rotundifolia is only used for medicinal purposes in one country in the native range (Venezuela) and none in the invasive range. Although T. diversifolia has been studied for different biological activities, little or no attention has been given to T. rotundifolia. This study compared the antimicrobial activity, phytochemistry, identification of bioactive compound(s) and toxicity levels of different leaf extracts and fractions of T. diversifolia and T. rotundifolia. METHODS Antimicrobial activity was evaluated against seven pathogenic bacteria, four non-pathogenic Mycobacterium species and three fungal species using serial microdilution assays. Phytochemical contents were determined through standard methods of analysis. UPLC/MS was used to analyse the fractions to identify possible bioactive compounds that may be responsible for bioactivity, while toxicity tests were carried out using the colorimetric MTT assay and the Ames test. RESULTS Both species had a range of antimicrobial activity against bacterial, mycobacterial and fungal species. However, T. rotundifolia displayed better activity against most of the strains tested with minimum inhibitory concentration values ranging between 0.01 and 0.07 mg/ml. Both species were rich in phenolics, flavonoids and tannins. Tagitinin A was identified as the main compound present in both species, and this compound may be responsible for the antimicrobial activity displayed. Toxicity tests showed that T. diversifolia was cytotoxic at concentrations used in this study, while T. rotundifolia was not. Both species did not show any mutagenic/genotoxic effects. CONCLUSION The above results suggest that both species may be further developed as a source of antimicrobials for the treatment of infections caused by opportunistic pathogens. They may also serve as alternatives to highly exploited plant species with the same medicinal properties. However, T. diversifolia should be used with caution as it may be toxic.
Collapse
Affiliation(s)
- Aitebiremen Gift Omokhua
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3201 South Africa
| | - Muna Ali Abdalla
- Deparment of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Khartoum North, Sudan
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3201 South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| |
Collapse
|
36
|
Alamgeer, Uttra AM, Ahsan H, Hasan UH, Chaudhary MA. Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: A review. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30897-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Zhu J, Zhao J, Yu Z, Shrestha S, Song J, Liu W, Lan W, Xing J, Liu S, Chen C, Cao M, Sun X, Wang Q, Song X. Epoxymicheliolide, a novelguaiane-type sesquiterpene lactone, inhibits NF‑κB/COX‑2 signaling pathways by targeting leucine 281 and leucine 25 in IKKβ in renal cell carcinoma. Int J Oncol 2018; 53:987-1000. [PMID: 29956738 PMCID: PMC6065450 DOI: 10.3892/ijo.2018.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Parthenolide (PTL) is a sesquiterpene lactone compound obtained from Tanacetum parthenium (feverfew) and inhibits the activation of nuclear factor (NF)-κB. Epoxymicheliolide (EMCL) is a compound which is structurally related to PTL; however, EMCL is more stable under acidic and alkaline conditions. As a biologically active molecule, the detailed mechanism by which EMCL inhibits tumor activity remains to be elucidated. The present study evaluated the effect of EMCL on renal cell carcinoma (RCC) cells and identified the underlying mechanisms. It was found that treatment with EMCL significantly inhibited the proliferation of RCC cells in vitro and increased the induction of apoptosis by activating the mitochondria- and caspase-dependent pathway. Simultaneously, EMCL suppressed cell invasion and metastasis by inhibiting epithelial-mesenchymal transition, as observed in a microfluidic chip assay. Furthermore, using immunofluorescence analysis, an electrophoretic mobility shift assay and a dual-luciferase reporter assay, it was shown that treatment with EMCL significantly suppressed the expression of cyclooxygenase-2 by inhibiting the translocation of NF-κB p50/p65 and the activity of NF-κB. Collectively, the results indicated that EMCL suppressed tumor growth by inhibiting the activation of NF-κB and suggested that EMCL may be a novel anticancer agent in the treatment of RCC.
Collapse
Affiliation(s)
- Jiabin Zhu
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Sandeep Shrestha
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Song
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Wen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jinshan Xing
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Shuang Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chen Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Momo Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiuzhen Sun
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xishuang Song
- Department of Urology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
38
|
Babaei G, Aliarab A, Abroon S, Rasmi Y, Aziz SGG. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed Pharmacother 2018; 106:239-246. [PMID: 29966966 DOI: 10.1016/j.biopha.2018.06.131] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most dangerous diseases that are rapidly increasing globally. After heart disease, it is the second leading cause of death, accounting for seven million deaths each year. Chemotherapy is the use of cytotoxic drugs on cancer cells. But the use of common chemotherapy drugs poses a problem due their high side effects and low efficacy. As a result, efforts are on to find new potent compounds with low side effects. The compounds extracted from plants have been studied in this regard due to their prevalence. Sesquiterpene lactones are a group of natural compounds that were first detected in Asteraceae dark plants. These compounds exercise their effects by reacting with functional groups available on proteins and enzymes, especially the thiol group. Owing to the high side effects as an antitumor synthetic drugs, efforts are being made to find drugs with high efficiency and low side effects. Their high structural ranges have attracted the attention of many researchers as a potential source of new anticancer drugs.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Sina Abroon
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yusof Rasmi
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
39
|
Mabou Tagne A, Marino F, Cosentino M. Tithonia diversifolia (Hemsl.) A. Gray as a medicinal plant: A comprehensive review of its ethnopharmacology, phytochemistry, pharmacotoxicology and clinical relevance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:94-116. [PMID: 29596999 DOI: 10.1016/j.jep.2018.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tithonia diversifolia (TD) is widely valued in several cultures for its medicinal properties. A comprehensive review of the current understanding of this plant species is required due to emerging concerns over its efficacy, toxicity and allergenic potential. AIM OF THE REVIEW We critically summarized the current evidence on the botany, traditional use, phytochemistry, pharmacology and safety of TD, with the view to provide perspectives for developing more attractive pharmaceuticals of plant origin, but also to lay a new foundation for further investigations on this plant. MATERIALS AND METHODS A preliminary consultation of search engines such as Web of Science, PubMed, ScienceDirect and other published/unpublished resources provided an overview of extant literature on TD. Then, we meticulously screened all titles, abstracts and full-texts to establish consistency in the application of inclusion criteria. Studies were considered for inclusion if they dealt with taxonomy, global distribution, local and traditional knowledge, phytochemistry, toxicity and biological effects. RESULTS 1856 articles were retrieved among which 168 were revised and included. Several studies conducted on cell lines and animals provided supporting evidence for some ethnomedicinal claims of extracts from TD. Short-term use of Tithonia extracts were effective and well-tolerated in animals when taken at lower doses. Both the toxic and therapeutic effects were attributed to bioactive principles naturally occurring in this species including sesquiterpene lactones, chlorogenic acid and flavonoids. CONCLUSIONS T. diversifolia is a valuable source of bioactive compounds with significant therapeutic implications and favourable safety index. However, more rigorously designed investigations are needed to recommend the whole plant or its active ingredients as a medication, and should focus on understanding the multi-target network pharmacology of the plant, clarifying the effective doses as well as identifying the potential interactions with prescribed drugs or other chemicals.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Centre for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy.
| | - Franca Marino
- Centre for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Centre for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
40
|
Nawaz NUA, Saeed M, Rauf K, Usman M, Arif M, Ullah Z, Raziq N. Antinociceptive effectiveness of Tithonia tubaeformis in a vincristine model of chemotherapy-induced painful neuropathy in mice. Biomed Pharmacother 2018; 103:1043-1051. [PMID: 29710662 DOI: 10.1016/j.biopha.2018.04.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chemotherapy induced peripheral neuropathy (CIPN) is a painful side-effect of commonly used chemotherapeutic agents that profoundly impair the quality of life of patients as the current pharmacotherapeutic strategies are inefficient in providing adequate pain relief. Complementary and alternative medicine (CAM) therapies are preferred by patients with neuropathic pain as they experience insufficient control of pain with conventional medications. This study describes the antinociceptive effect of Tithonia tubaeformis (Jacq.) Cass. in a vincristine mouse model of established CIPN. METHODS Tithonia tubaeformis hydromethanolic extract was tested for preliminary qualitative phytochemical analysis and acute oral toxicity test in mice. The antinociceptive effect was investigated using the abdominal constriction (writhing) and tail immersion tests (25-200 mg/kg). The anti-neuropathic effect was determined in the vincristine mouse model, established by daily administration of vincristine (0.1 mg/kg/day, i.p) for consecutive 14 days. Acute treatment with Tithonia tubaeformis (100 and 200 mg/kg) and the positive control, gabapentin (75 mg/kg) was carried out on the 15th day of the last vincrsitine dose and the animals were tested for allodynia and thermal hyperalgesia at 30-120 min post extract/drug administration. RESULTS Vincristine produced significant temporal tactile allodynia and thermal hyperalgesia (P < 0.01 and P < 0.001 on day 7 and 14) and was maintained for the subsequent day (P < 0.001 during 30-120 min). Tithonia tubaeformis was effective in attenuating the vincristine-induced allodynia and thermal hyperalgesia at 100 mg/kg (P < 0.05, P < 0.01) and 200 mg/kg (P < 0.01, P < 0.001). Similarly, gabapentin also showed a robust antinociceptive effect in counteracting the vincristine associated behavioral alterations. CONCLUSIONS Tithonia tubaeformis can be an effective CAM therapeutic remedy for established CIPN due to its potential antinociceptive effect in attenuating vincristine-induced neuropathy.
Collapse
Affiliation(s)
| | - Muhammad Saeed
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Khalid Rauf
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Zaki Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
41
|
Tian S, Chen Y, Yang B, Lou C, Zhu R, Zhao Y, Zhao H. F1012-2 inhibits the growth of triple negative breast cancer through induction of cell cycle arrest, apoptosis, and autophagy. Phytother Res 2018; 32:908-922. [DOI: 10.1002/ptr.6030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Shasha Tian
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Yan Chen
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Bo Yang
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Chenghua Lou
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Rui Zhu
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Yaping Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| | - Huajun Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences; Zhejiang Chinese Medical University; Hangzhou Zhejiang 311402 China
| |
Collapse
|
42
|
Sut S, Dall'Acqua S, Baldan V, Ngahang Kamte SL, Ranjbarian F, Biapa Nya PC, Vittori S, Benelli G, Maggi F, Cappellacci L, Hofer A, Petrelli R. Identification of tagitinin C from Tithonia diversifolia as antitrypanosomal compound using bioactivity-guided fractionation. Fitoterapia 2018; 124:145-151. [DOI: 10.1016/j.fitote.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
|
43
|
Sharma A, Flores-Vallejo RDC, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:264-329. [PMID: 27155134 DOI: 10.1016/j.jep.2016.04.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE We provide an extensive summary of the in vitro antibacterial properties of medicinal plants popularly used in Mexico to treat infections, and we discuss the ethnomedical information that has been published for these species. MATERIALS AND METHODS We carried out a bibliographic investigation by analyzing local and international peer-reviewed papers selected by consulting internationally accepted scientific databases from 1995 to 2014. We provide specific information about the evaluated plant parts, the type of extracts, the tested bacterial strains, and the inhibitory concentrations for each one of the species. We recorded the ethnomedical information for the active species, as well as their popular names and local distribution. Information about the plant compounds that has been identified is included in the manuscript. This review also incorporates an extensive summary of the available toxicological reports on the recorded species, as well as the worldwide registries of plant patents used for treating bacterial infections. In addition, we provide a list with the top plant species with antibacterial activities in this review RESULTS: We documented the in vitro antibacterial activities of 343 plant species pertaining to 92 botanical families against 72 bacterial species, focusing particularly on Staphylococcus aureus, Mycobacterium tuberculosis, Escherichia coli and Pseudomonas aeruginosa. The plant families Asteraceae, Fabaceae, Lamiaceae and Euphorbiaceae included the largest number of active species. Information related to popular uses reveals that the majority of the plants, in addition to treating infections, are used to treat other conditions. The distribution of Mexican plants extended from those that were reported to grow in just one state to those that grow in all 32 Mexican states. From 75 plant species, 225 compounds were identified. Out of the total plant species, only 140 (40.57%) had at least one report about their toxic effects. From 1994 to July 2014 a total of 11,836 worldwide antibacterial patents prepared from different sources were recorded; only 36 antibacterial patents from plants were registered over the same time period. We offered some insights on the most important findings regarding the antibacterial effects, current state of the art, and research perspectives of top plant species with antibacterial activities in vitro. CONCLUSIONS Studies of the antibacterial in vitro activity of medicinal plants popularly used in Mexico to treat infections indicate that both the selection of plant material and the investigation methodologies vary. Standardized experimental procedures as well as in vivo pharmacokinetic studies to document the effectiveness of plant extracts and compounds are necessary. This review presents extensive information about the medicinal plants possessing antibacterial activity that has been scientifically studied and are popularly used in Mexico. We anticipate that this review will be of use for future studies because it constitutes a valuable information tool for selecting the most significant plants and their potential antibacterial properties.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Escuela de Ingeniería en Alimentos, Biotecnología y Agronomía (ESIABA), Tecnológico de Monterrey, Campus Querétaro, México
| | - Rosario Del Carmen Flores-Vallejo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| | - Alexandre Cardoso-Taketa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca Morelos 62209, México
| |
Collapse
|
44
|
Hassanzadeh-kiabi F, Negahdari B. Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:994-1000. [DOI: 10.1080/21691401.2017.1354303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
45
|
Pomorska DK, Gach-Janczak K, Jakubowski R, Janecki T, Szymański J, Janecka A. Evaluation of anticancer properties of a new α-methylene-δ-lactone DL-249 on two cancer cell lines. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AbstractBackgroundThe anticancer activity of a new synthetic α-methylene-δ-lactone DL-249 was reported in leukemia HL-60 and breast cancer MCF-7 cells and compared with the activity of a natural α-methylene-γ-lactone from Tanacetum parthenium, parthenolide.MethodologyThe chemical synthesis of DL-249 was performed using Horner-Wadsworth-Emmons methodology. The cytotoxic activity of the tested compounds was assessed by an MTT test. The ability to induce apoptosis was studied by flow cytometry. The expression levels of genes were determined by quantitative real-time PCR.Principal Findings/ResultsDL-249 and parthenolide inhibited the growth of HL-60 and MCF-7 cells with IC50 values below 10 μM. DL-249 was a stronger apoptosis inducer than parthenolide in both cell lines and both compounds produced a more pronounced effect on HL-60 than on MCF-7 cells. DL-249 and PTL significantly up-regulated expression of Bax, caspase-9, caspase-3 and p53 genes and decreased the level of Bcl-2 and Bcl-xl genes in both cancer cell lines. Additionally DL-249 caused cell cycle arrest in the subG0/G1phase.Conclusion/SignificanceA new synthetic α-methylene-δ-lactone, DL-249 showed the anticancer activity on two cancer cell lines and seemed to be a better apoptosis inducer than parthenolide which makes this compound an attractive lead for further studies.
Collapse
Affiliation(s)
- Dorota K. Pomorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Rafał Jakubowski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Szymański
- Central Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
46
|
Abood S, Eichelbaum S, Mustafi S, Veisaga ML, López LA, Barbieri M. Biomedical Properties and Origins of Sesquiterpene Lactones, with a Focus on Dehydroleucodine. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dehydroleucodine, a sesquiterpene lactone, belongs to the terpenoid class of secondary metabolites. Dehydroleucodine and other Artemisia-derived phytochemicals evolved numerous biodefenses that were first co-opted for human pharmacological use by traditional cultures in the Middle East, Asia, Europe and the Americas. Later, these phytochemicals were modified through the use of medicinal chemical techniques to increase their potency. All sesquiterpene lactones contain an α-methylene-γ-lactone group, which confers thiol reactivity, which is responsible, in part, for their therapeutic effects. A wide range of therapeutic uses of sequiterpene lactones has been found, including anti-adipogenic, cytoprotective, anti-microbial, anti-viral, anti-fungal, anti-malarial and, anti-migraine effects. Dehydroleucodine significantly inhibits differentiation of murine preadipocytes and also significantly decreases the accumulation of lipid content by a dramatic down regulation of adipogenic-specific transcriptional factors PPARγ and C-EBPα. Dehydroleucodine also inhibits secretion of matrix metalloprotease-2 (MMP-2), which is a known protease involved in migration and invasion of B16 cells. In addition to these anti-adipogenic and anti-cancer effects, dehydroleucodine effectively neutralizes several bacterial species, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, methicillin resistant Staphylococcus aueus (MRSA) and S. epidermis (MRSE). The compound also inhibits the growth and secretion of several toxins of Pseudomonas aeruginosa, possesses gastro-protective qualities and possesses anti-parasitic properties against Trypanosoma cruzi, responsible for Chagas disease. Other sesquiterpene lactones, such as parthenolide, costunolide, and helanin, also possess significant therapeutic utility.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Steven Eichelbaum
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Sushmita Mustafi
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
| | - Luis A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
| | - Manuel Barbieri
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
47
|
Nishiyama K, Fujimoto Y, Takeuchi T, Azuma YT. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis. Neurochem Res 2017; 43:19-26. [PMID: 28424949 DOI: 10.1007/s11064-017-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
48
|
Silva AMR, Ferreira NLO, Oliveira AE, Borges LL, Conceição EC. Comparison of Ultrasound-assisted Extraction and Dynamic Maceration Over Content of Tagitinin C obtained from Tithonia diversifolia (Hemsl.) A. Gray Leaves Using Factorial Design. Pharmacogn Mag 2017; 13:270-274. [PMID: 28539720 PMCID: PMC5421425 DOI: 10.4103/0973-1296.204555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/11/2016] [Indexed: 12/02/2022] Open
Abstract
Background: Tithonia diversifolia belongs to the Asteraceae family. The leaves of T. diversifolia have been studied lately because of the presence of tagitinin C. Objective: Looking for an easy and inexpensive method to extract tagitinin C from T. diversifolia leaves, this work aims to conduct a screening to evaluate the influence of different experimental factors using the dynamic maceration and ultrasound-assisted extraction methods with 23 factorial design based on response surface methodology in enhancing this chemical marker extraction. Materials and Methods: The experimental factors were: extraction time (ET) of 30 and 60 minutes, solid: liquid ratio (SLR) of 5 and 10 grams/grams and ethanolic strength (ES) 48 and 96% (w/w). The experiments were done tripled. The content of tagitinin C in each produced extract was quantified by HPLC method. Results: The highest concentrations of tagitinin C obtained under the experimental design were 0.53 mg/mL and 0.71 mg/mL, respectively for dynamic maceration (DM) and ultrasound-assisted extraction (UAE) from Tithonia diversifolia powdered leaves. For the UAE method, the main parameter for higher contents of tagitinin C was the solid: liquid ratio, followed by the ethanolic strength, and the extraction time was not significant for this method. As for the DM method, all the parameters (SLR, ES, and ET) were significant for a higher content of tagitinin C. Conclusion: Based on the obtained results, it was revealed that the ultrasound-assisted extraction was more effective than dynamic maceration for tagitinin C extraction from T. diversifolia powdered leaves. Summary Tithonia diversifolia leaves possess tagitinin C, a sesquiterpene lactone, as an important secondary metabolite with several biological activities, such as antimalarial, gastroprotective, chemotherapeutic adjuvants, and toxic activities. Ultrasound-assisted extraction was more effective to obtain higher levels of tagitinin C when compared with dynamic maceration extraction. Factorial design can be employed as a screening tool to find the effects of factors investigated in the extraction processes.
Abbreviation used: DME: dynamic maceration extraction, UAE: ultrasound-assisted extraction, ET: extraction time, ES: ethanolic strength, SLR: solid:liquid ratio, Tag C: tagitinin C, HPLC: high-performance liquid chromatography.
Collapse
Affiliation(s)
- Aline M R Silva
- Faculty of Pharmacy Research, Laboratory of Natural Products, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Nayara L O Ferreira
- Faculty of Pharmacy Research, Laboratory of Natural Products, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Anselmo E Oliveira
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo L Borges
- Anápolis Campus of Exact and Technological Sciences Henrique Santillo, State University of Goiás, Anápolis, GO, Brazil
| | - Edemilson C Conceição
- Faculty of Pharmacy Research, Laboratory of Natural Products, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
49
|
Bosco A, Golsteyn RM. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells. Molecules 2017; 22:molecules22030459. [PMID: 28335397 PMCID: PMC6155193 DOI: 10.3390/molecules22030459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s) required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology.
Collapse
Affiliation(s)
- Alessandra Bosco
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
50
|
Gao S, Wang Q, Tian XH, Li HL, Shen YH, Xu XK, Wu GZ, Hu ZL, Zhang WD. Total sesquiterpene lactones prepared from Inula helenium L. has potentials in prevention and therapy of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:39-46. [PMID: 27988396 DOI: 10.1016/j.jep.2016.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUNDS Inula helenium L. is an herb with anti-inflammatory properties. Sesquiterpene lactones (SLs), mainly alantolactone (AL) and isoalantolactone (IAL), are considered as its active ingredients. However, the anti-inflammatory effects of SL-containing extracts of I. helenium have not been explored. Here we prepared total SLs from I. helenium (TSL-IHL), analyzed its chemical constituents, and performed cellular and animal studies to evaluate its anti-inflammatory activities. MATERIALS AND METHODS The chemical profile of TSL-IHL was analyzed by HPLC-UV. Its in vitro effects on the activation of signaling pathways and expression of inflammatory genes were examined by western blotting and quantitative real-time PCR, respectively, and compared with those of AL and IAL. Its in vivo anti-inflammatory effects were evaluated in adjuvant- and collagen-induced arthritis rat models. RESULTS Chemical analysis showed that AL and IAL represent major constituents of TSL-IHL. TSL-IHL, as well as AL and IAL, could inhibit TNF-α-induced activation of NF-κB and MAPK pathways in b. End3 cells, suppress the expressions of MMP-3, MCP-1, and IL-1 in TNF-α-stimulated synovial fibroblasts, and IL-1, IL-6, and iNOS in LPS-activated RAW 264.7 cells in a dose-dependent manner in the range of 0.6-2.4μg/mL. Oral administration of TSL-IHL at 12.5-50mg/kg could dose-dependently alleviate the arthritic severity and paw swelling in either developing or developed phases of arthritis of rats induced by adjuvant or collagen CONCLUSIONS: These results indicated potentials of TSL-IHL in prevention and therapy of rheumatoid arthritis.
Collapse
Affiliation(s)
- Shuang Gao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Qun Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Xin-Hui Tian
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Hui-Liang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Yun-Heng Shen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Xi-Ke Xu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Guo-Zhen Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Zhen-Lin Hu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China.
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| |
Collapse
|