1
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
2
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
3
|
Ali R, Sen S, Hameed R, Nazir A, Verma S. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. J Control Release 2024; 365:132-160. [PMID: 37972768 DOI: 10.1016/j.jconrel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
4
|
Sheet PS, Lautner G, Meyerhoff ME, Schwendeman SP. Mechanistic analysis of the photolytic decomposition of solid-state S-nitroso-N-acetylpenicillamine. Nitric Oxide 2024; 142:38-46. [PMID: 37979933 DOI: 10.1016/j.niox.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 μm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.
Collapse
Affiliation(s)
- Partha S Sheet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gergely Lautner
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Yoshizumi T, Shibui Y, Kogo M, Honma S, Ito S, Yajima S, Sasaki Y. Mycothiol maintains the homeostasis and signalling of nitric oxide in Streptomyces coelicolor A3(2) M145. BMC Microbiol 2023; 23:285. [PMID: 37798648 PMCID: PMC10552308 DOI: 10.1186/s12866-023-03036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Previous studies have revealed a nitric oxide (NO) metabolic cycle in which NO, nitrate (NO3-), and nitrite (NO2-) circulate. The NO produced in this cycle serves as a signalling molecule that regulates actinorhodin (ACT) production via the DevS/DevR NO-dependent two-component system (TCS) in Streptomyces coelicolor A3(2) M145. However, the mechanisms involved in the regulation of NO signalling in S. coelicolor have not yet been elucidated. Mycothiol (MSH), a thiol molecule produced by Actinomyces, is involved in the defence mechanisms against oxidative stress. Therefore, this study focused on the correlation between intracellular NO and MSH levels. RESULTS To investigate the interaction of MSH with endogenously produced NO, we generated an S. coelicolor A3(2) strain deficient in MSH biosynthesis. This mutant strain exhibited a decrease in low-molecular-weight S-nitrosothiols and intracellular NO levels during culture compared to those of the wild-type strain. Moreover, the mutant strain exhibited reduced activity of the DevS/DevR TCS, a regulator of NO homeostasis and ACT production, from the early stage of culture, along with a decrease in ACT production compared to those of the wild-type strain. CONCLUSIONS This study suggests that MSH maintains intracellular NO homeostasis by forming S-nitrosomycothiol, which induces NO signalling. Finally, we propose a metabolic model in which MSH from endogenously produced NO facilitates the maintenance of both NO homeostasis and signalling in S. coelicolor A3(2) M145.
Collapse
Affiliation(s)
- Tomoki Yoshizumi
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Yukiko Shibui
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Minori Kogo
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Sota Honma
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Tokyo, Setagaya-Ku, 156-8502, Japan.
| |
Collapse
|
6
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
7
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
8
|
Lautt WW. Hepatalin: the missing link in prediabetes, obesity, and type 2 diabetes. Can J Physiol Pharmacol 2023; 101:117-135. [PMID: 36716439 DOI: 10.1139/cjpp-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatalin is a hormone secreted by the liver in response to pulses of insulin after a mixed nutrient meal, but only if the liver receives two permissive synergistic feeding signals from the stomach. Hepatalin stimulates glucose uptake and storage as glycogen in skeletal muscle, heart, and kidney but not liver, intestines, or adipocytes. Insulin acts primarily on liver and fat. Reduced hepatalin action results in postprandial hyperglycemia, compensatory elevation of insulin secretion, and a resultant shift in partitioning of nutrient energy storage from glycogen in muscle, to fat. Chronic hepatalin suppression leads to a predictable chronology of dysfunctions, first diagnosable as Absence of Meal-induced Insulin Sensitization (AMIS) which progresses to prediabetes, adiposity, and type 2 diabetes. The focus on nutrient partitioning and the role of hepatalin allows AMIS to be diagnosed, prevented, and treated, including through the use of lifestyle interventions.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Center 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
9
|
Roy B, Shieh M, Xu S, Ni X, Xian M. Single-Component Photo-Responsive Template for the Controlled Release of NO and H 2S 2. J Am Chem Soc 2023; 145:277-287. [PMID: 36548022 DOI: 10.1021/jacs.2c09914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redox signaling molecules include a number of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). These molecules work collectively in the regulation of many physiological processes. Understanding the crosstalk mechanisms in these signaling molecules is important but challenging. The development of donor compounds of ROS/RNS/RSS will aid the advances in this field. While many donors that can release one ROS/RNS/RSS have been developed, dual donors that can release two signaling species and facilitate their crosstalk studies are still very rare. Those limited examples lack the ability to precisely control the timing of two releases. In this work, a 2-methoxy-6-naphthacyl-derived tertiary SNO compound, Naph-SNO, was designed and evaluated as the dual donor for NO and H2S2. The 2-methoxy-6-naphthacyl structure was demonstrated to be a novel photoremovable protecting group that could directly uncage C-S bonds. Under the irradiation of lights with different wavelengths (visible or UV), Naph-SNO could release NO and H2S2 in a stepwise manner, or simultaneously (i.e., likely producing the crosstalk product HSNO/HSSNO). In addition, the release of payloads from the donor also produced an end product with blue fluorescence. Therefore, the release process could be easily monitored in "real time." This controllable photo-triggered release strategy has the potential to be used in the design of other RNS/RSS dual donors.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xiang Ni
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
10
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
11
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
12
|
More questions than answers for the use of inhaled nitric oxide in COVID-19. Nitric Oxide 2022; 124:39-48. [PMID: 35526702 PMCID: PMC9072755 DOI: 10.1016/j.niox.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Inhaled nitric oxide (iNO) is a potent vasodilator approved for use in term and near-term neonates, but with broad off-label use in settings including acute respiratory distress syndrome (ARDS). As an inhaled therapy, iNO reaches well ventilated portions of the lung and selectively vasodilates the pulmonary vascular bed, with little systemic effect due to its rapid inactivation in the bloodstream. iNO is well documented to improve oxygenation in a variety of pathological conditions, but in ARDS, these transient improvements in oxygenation have not translated into meaningful clinical outcomes. In coronavirus disease 2019 (COVID-19) related ARDS, iNO has been proposed as a potential treatment due to a variety of mechanisms, including its vasodilatory effect, antiviral properties, as well as anti-thrombotic and anti-inflammatory actions. Presently however, no randomized controlled data are available evaluating iNO in COVID-19, and published data are largely derived from retrospective and cohort studies. It is therefore important to interpret these limited findings with caution, as many questions remain around factors such as patient selection, optimal dosing, timing of administration, duration of administration, and delivery method. Each of these factors may influence whether iNO is indeed an efficacious therapy - or not - in this context. As such, until randomized controlled trial data are available, use of iNO in the treatment of patients with COVID-19 related ARDS should be considered on an individual basis with sound clinical judgement from the attending physician.
Collapse
|
13
|
Wu Y, Wang Y, Sun Y, Li Z, Li X, Zhou Z, Tang D. Dissociation of Bipyridine and Coordination with Nitrosyl: Cyclometalated Ruthenium Nitrosyl Complex. Inorg Chem 2022; 61:8997-9011. [PMID: 35657382 DOI: 10.1021/acs.inorgchem.1c03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel family of ruthenium nitrosyl complexes [Ru(bpy)(C∧N)(MeCN)NO](PF6)2 (2a-2e, bpy = 2,2'-bipyridine, HC∧N = 2-phenylpyridine and its derivatives) has been prepared by reacting cyclometalated ruthenium complexes [Ru(bpy)2(C∧N)][PF6] (1a-1e) with NO+, which were comprehensively characterized by mass, IR, NMR, and UV-vis spectra as well as the single-crystal X-ray structure determinations. Herein, the coordination geometry of Ru atoms in 2a-2e is a distorted octahedron and {RuII-NO+}6 is present in these complexes. Theoretical calculations suggest that the reactions involving dissociation of one bipyridine and coordination with NO+ proceed spontaneously (ΔG < 0) and the transformation from 1a-1e to the intermediates is dominated by substituents (ΔGRI varies from -1.19 to -1.53 eV), which influence the binding energy between Ru(II) and NO+ in complexes 2a-2e (-89.42 to -101.17 kcal/mol) and thus control the photorelease of NO on a certain scale. The weak absorption bands in the visible region could be attributed to the contribution of dπ(RuII) → π*(NO+), which were enhanced greatly under light, indicating the possible release of NO. The photoinduced NO, as well as singlet oxygen (1O2), was then confirmed by EPR spectra, and the amount of NO released from 2a-2e was estimated via Griess reagent assay. The cytotoxicity of these complexes with or without visible light irradiation was also investigated using an MTT assay.
Collapse
Affiliation(s)
- Yuhao Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yirong Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yun Sun
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Zhen Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.,Key Laboratory of Analytical Chemistry of State Ethnic affairs Commission, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiguo Zhou
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Dingguo Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2022; 84:101056. [PMID: 34852941 PMCID: PMC8821404 DOI: 10.1016/j.mam.2021.101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at β-globin Cys93 (βCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.
Collapse
Affiliation(s)
- Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Liu S, Li G, Ma D. Controllable Nitric Oxide‐Delivering Platforms for Biomedical Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT‐MRI Center The First Affiliated Hospital of Jinan University Guangzhou 510630 China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
16
|
Tan R, Cano L, Lago-Rodríguez Á, Domínguez R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020762. [PMID: 35055584 PMCID: PMC8775572 DOI: 10.3390/ijerph19020762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.
Collapse
Affiliation(s)
- Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Leire Cano
- Independent Researcher, 48991 Getxo, Spain;
| | - Ángel Lago-Rodríguez
- Movement, Brain and Health Group, Center of Higher Education Alberta Giménez, 07013 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-680-330-105
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento, Universidad de Sevilla, 41013 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
17
|
Neres-Santos RS, Junho CVC, Panico K, Caio-Silva W, Pieretti JC, Tamashiro JA, Seabra AB, Ribeiro CAJ, Carneiro-Ramos MS. Mitochondrial Dysfunction in Cardiorenal Syndrome 3: Renocardiac Effect of Vitamin C. Cells 2021; 10:3029. [PMID: 34831251 PMCID: PMC8616479 DOI: 10.3390/cells10113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a pathological link between the kidneys and heart, in which an insult in a kidney or heart leads the other organ to incur damage. CRS is classified into five subtypes, and type 3 (CRS3) is characterized by acute kidney injury as a precursor to subsequent cardiovascular changes. Mitochondrial dysfunction and oxidative and nitrosative stress have been reported in the pathophysiology of CRS3. It is known that vitamin C, an antioxidant, has proven protective capacity for cardiac, renal, and vascular endothelial tissues. Therefore, the present study aimed to assess whether vitamin C provides protection to heart and the kidneys in an in vivo CRS3 model. The unilateral renal ischemia and reperfusion (IR) protocol was performed for 60 min in the left kidney of adult mice, with and without vitamin C treatment, immediately after IR or 15 days after IR. Kidneys and hearts were subsequently collected, and the following analyses were conducted: renal morphometric evaluation, serum urea and creatinine levels, high-resolution respirometry, amperometry technique for NO measurement, gene expression of mitochondrial dynamic markers, and NOS. The analyses showed that the left kidney weight was reduced, urea and creatinine levels were increased, mitochondrial oxygen consumption was reduced, NO levels were elevated, and Mfn2 expression was reduced after 15 days of IR compared to the sham group. Oxygen consumption and NO levels in the heart were also reduced. The treatment with vitamin C preserved the left kidney weight, restored renal function, reduced NO levels, decreased iNOS expression, elevated constitutive NOS isoforms, and improved oxygen consumption. In the heart, oxygen consumption and NO levels were improved after vitamin C treatment, whereas the three NOS isoforms were overexpressed. These data indicate that vitamin C provides protection to the kidneys and some beneficial effects to the heart after IR, indicating it may be a preventive approach against cardiorenal insults.
Collapse
Affiliation(s)
- Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Karine Panico
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Wellington Caio-Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Joana Claudio Pieretti
- Laboratory BioNanoMetals, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (J.C.P.); (A.B.S.)
| | - Juliana Almeida Tamashiro
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Amedea Barozzi Seabra
- Laboratory BioNanoMetals, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (J.C.P.); (A.B.S.)
| | | | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| |
Collapse
|
18
|
Chen SY, Wang J, Jia F, Shen ZD, Zhang WB, Wang YX, Ren KF, Fu GS, Ji J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J Mater Chem B 2021; 10:2454-2462. [PMID: 34698745 DOI: 10.1039/d1tb01828k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombus and restenosis after stent implantation are the major complications because traditional drugs such as rapamycin delay the process of endothelialization. Nitric oxide (NO) is mainly produced by endothelial nitric oxide synthase (eNOS) on the membrane of endothelial cells (ECs) in the cardiovascular system and plays an important role in vasomotor function. It strongly inhibits the proliferation of smooth muscle cells (SMCs) and ameliorates endothelial function when ECs get hurt. Inspired by this, introducing NO to traditional stent coating may alleviate endothelial insufficiency caused by rapamycin. Here, we introduced SNAP as the NO donor, mimicking how NO affects in vivo, into rapamycin coating to alleviate endothelial damage while inhibiting SMC proliferation. Through wicking effects, SNAP was absorbed into a hierarchical coating that had an upper porous layer and a dense polymer layer with rapamycin at the bottom. Cells were cultured on the coatings, and it was observed that the injured ECs were restored while the growth of SMCs further diminished. Genome analysis was conducted to further clarify possible signaling pathways: the effect of cell growth attenuated by NO may cause by affecting cell cycle and enhancing inflammation. These findings supported the idea that introducing NO to traditional drug-eluting stents alleviates incomplete endothelialization and further inhibits the stenosis caused by the proliferation of SMCs.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Wen-Bin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. BIOLOGY 2021; 10:1041. [PMID: 34681140 PMCID: PMC8533285 DOI: 10.3390/biology10101041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions of low availability of NO, such as during hypertension, these processes are impaired. Currently, there is great interest in the development of compounds capable of releasing NO in a modulated and stable way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are widely recognized as having great relevance in the treatment of different diseases. Therefore, the exogenous administration of NO is an attractive and pharmacological alternative in the study and treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension, focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist activity in vascular function.
Collapse
Affiliation(s)
- Gabriela Maria da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Ellen Mayara Lima Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Fabíola Furtado Fialho Gouvêa
- School of Technical Health, Health Sciences Center, Federal University of Paraíba, João Pessoa 58.051-900, PB, Brazil;
| | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60.020-181, CE, Brazil;
| | - Alice Valença Araújo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Kelli Nogueira Ferraz Pereira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| |
Collapse
|
20
|
Sahana T, Mondal A, Anju BS, Kundu S. Metal-free Transformations of Nitrogen-Oxyanions to Ammonia via Oxoammonium Salt. Angew Chem Int Ed Engl 2021; 60:20661-20665. [PMID: 34057773 DOI: 10.1002/anie.202105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Transformations of nitrogen-oxyanions (NOx - ) to ammonia impart pivotal roles in sustainable biogeochemical processes. While metal-mediated reductions of NOx - are relatively well known, this report illustrates proton-assisted transformations of NOx - anions in the presence of electron-rich aromatics such as 1,3,5-trimethoxybenzene (TMB-H, 1 a) leading to the formation of diaryl oxoammonium salt [(TMB)2 N+ =O][NO3 - ] (2 a) via the intermediacy of nitrosonium cation (NO+ ). Detailed characterizations including UV/Vis, multinuclear NMR, FT-IR, HRMS, X-ray analyses on a set of closely related metastable diaryl oxoammonium [Ar2 N+ =O] species disclose unambiguous structural and spectroscopic signatures. Oxoammonium salt 2 a exhibits 2 e- oxidative reactivity in the presence of oxidizable substrates such as benzylamine, thiol, and ferrocene. Intriguingly, reaction of 2 a with water affords ammonia. Perhaps of broader significance, this work reveals a new metal-free route germane to the conversion of NOx to NH3 .
Collapse
Affiliation(s)
- Tuhin Sahana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Aditesh Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Balakrishnan S Anju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
21
|
Sahana T, Mondal A, Anju BS, Kundu S. Metal‐free Transformations of Nitrogen‐Oxyanions to Ammonia via Oxoammonium Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tuhin Sahana
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Aditesh Mondal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Balakrishnan S. Anju
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Subrata Kundu
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| |
Collapse
|
22
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
23
|
Prikhodko VA, Selizarova NO, Okovityi SV. [Molecular mechanisms of hypoxia and adaptation to it. Part II]. Arkh Patol 2021; 83:62-69. [PMID: 34041899 DOI: 10.17116/patol20218303162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reprogramming of the mitochondrial electron transport chain (ETC) is the most important physiological mechanism that provides short- and long-term adaptation to hypoxia. The possibilities of additional pharmacological regulation of ETC activity are of considerable practical interest in correcting hypoxia-associated disorders. This review considers the main groups of antihypoxic compounds that exhibit their effect at the interface of ETC and the cycle of tricarboxylic acids, including succinate-containing and succinate-forming antihypoxants. The role of succinate during adaptation to hypoxia, the biological activity of the succinate, and its potentially adverse effects are currently not fully understood and require further clarification.
Collapse
Affiliation(s)
- V A Prikhodko
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - N O Selizarova
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - S V Okovityi
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
24
|
Wurm CJ, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:808-818. [PMID: 33128375 DOI: 10.1093/jxb/eraa404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is involved in a vast number of physiologically important processes in plants, such as organ development, stress resistance, and immunity. Transduction of NO bioactivity is generally achieved by post-translational modification of proteins, with S-nitrosation of cysteine residues as the predominant form. While traditionally the subcellular location of the factors involved was of lesser importance, recent studies identified the connection between NO and transcriptional activity and thereby raised the question about the route of NO into the nuclear sphere. Identification of NO-affected transcription factors and chromatin-modifying histone deacetylases implicated the important role of NO signaling in the plant nucleus as a regulator of epigenetic mechanisms and gene transcription. Here, we discuss the relationship between NO and its directly regulated protein targets in the nuclear environment, focusing on S-nitrosated chromatin modulators and transcription factors.
Collapse
Affiliation(s)
- Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
25
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
26
|
Tossounian MA, Zhang B, Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel) 2020; 9:antiox9121288. [PMID: 33339386 PMCID: PMC7765867 DOI: 10.3390/antiox9121288] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been reported to be one of the most prominent cellular targets of post-translational modifications (PTMs), which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs (oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration and metabolic disorders.
Collapse
|
27
|
Ge J, Zhang L, Pu L, Zhang Y, Pei Z, Dong H. The Oxidation of
S
‐Acetyl by Nitrite: Mechanism and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian‐Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
- School of Chemistry and Chemical Engineering Hubei Polytechnic University Guilinbei Road 16 Huangshi 435003 P. R. China
| | - Le‐Feng Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Liang Pu
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Ying Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Zhi‐Chao Pei
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| |
Collapse
|
28
|
Aksoy M, Kıranşan KD. The Construction and Testing of an Amperometric Biosensor for Oxidized Glutathione with Glutathione Reductase Immobilized on Reduced Graphene Oxide Paper Modified with Cobalt Sulphur. ChemistrySelect 2020. [DOI: 10.1002/slct.202003552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mine Aksoy
- Atatürk University Faculty of Science Department of Chemistry Erzurum Turkey
| | | |
Collapse
|
29
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
30
|
S-nitrosothiol-terminated Pluronic F127: Influence of microstructure on nitric oxide release. J Colloid Interface Sci 2020; 576:457-467. [DOI: 10.1016/j.jcis.2020.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/18/2023]
|
31
|
Hibbard HAJ, Reynolds MM. Enzyme-Activated Nitric Oxide-Releasing Composite Material for Antibacterial Activity Against Escherichia coli. ACS APPLIED BIO MATERIALS 2020; 3:5367-5374. [PMID: 35021711 DOI: 10.1021/acsabm.0c00670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infections occurring on medical devices are incredibly difficult to treat, highlighting the urgency for progress in developing antibiotics and antibacterial materials. This work describes the preparation of an antibacterial prodrug polymer composite material for use as an antibacterial coating for medical devices to prevent infections. Polyvinyl chloride and polyurethane films are prepared containing a bacterial nitroreductase enzyme-activated diazeniumdiolate that releases nitric oxide (NO), a known potent antimicrobial agent. Characterization of the surface of the composite materials by scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS) reveals that the surface of the materials is composed of high amounts of nitrogen due to incorporation of the NO donor compound, up to 13.2% nitrogen on the surface of the 2.5% w/v diazeniumdiolate composite. NO release from the composite films is observed only after metabolism by a bacterial nitroreductase enzyme isolated from E. coli, demonstrating the prodrug nature of the polymer composite materials. Antibacterial efficacy experiments resulted in up to a 66% reduction in E. coli after exposure to the diazeniumdiolate-composite materials. This work details the first illustration of an antibacterial enzyme-activated NO-releasing polymer, a material with potential application as a medical device coating to prevent device-associated infections and improve patient outcomes.
Collapse
Affiliation(s)
- Hailey A J Hibbard
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
32
|
Lee IJ, Kao PT, Hung SA, Wang ZW, Lin HJ, Chang WT, Yeh CS, Liau I. Light triggering goldsomes enable local NO-generation and alleviate pathological vasoconstriction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102282. [PMID: 32771420 DOI: 10.1016/j.nano.2020.102282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/17/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022]
Abstract
While nitric oxide (NO) can remedy vasoconstriction, inhalation of NO may cause systematic toxicity. We report a goldsome, which comprises a hollowed poly(lactic-co-glycolic acid) (PLGA) polymersome with S-nitrosoglutathione (GSNO, a NO donor) molecules and gold nanoparticles (Au NPs) incorporated in its hydrophilic core and hydrophobic membrane, respectively. Photothermal heating caused breakdown of polymersomes and enabled NO generation through reaction between GSNO and Au NPs. Photo-illumination at the zebrafish head led to local NO generation and selective cerebral vasodilation while it had little effects in regions away from the illumination site, and effectively mitigated hypoxia induced cerebral vasoconstriction. We demonstrate a translational potential by showing photo-stimulated NO generation with a clinical intravascular optical catheter. In conclusion, the goldsome, which enables light stimulated local NO generation and can be delivered with clinical intravascular optical catheters, should extend applications of NO therapies while surmounting limitations associated with systemic administration.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Tsung Kao
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Hung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Zih-Wun Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Jen Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine and Cardiovascular Center, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Ian Liau
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan; Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
33
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
34
|
Póvoa VCO, Dos Santos GJVP, Picheth GF, Jara CP, da Silva LCE, de Araújo EP, de Oliveira MG. Wound healing action of nitric oxide-releasing self-expandable collagen sponge. J Tissue Eng Regen Med 2020; 14:807-818. [PMID: 32330363 DOI: 10.1002/term.3046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Mounting evidence showing that local nitric oxide (NO) delivery may significantly improve the wound healing process has stimulated the development of wound dressings capable of releasing NO topically. Herein, we describe the preparation of a self-expandable NO-releasing hydrolyzed collagen sponge (CS), charged with the endogenously found NO donor, S-nitrosoglutathione (GSNO). We show that cold pressed and GSNO-charged CS (CS/GSNO) undergo self-expansion to its original 3D shape upon water absorption to a swelling degree of 2,300 wt%, triggering the release of free NO. Topical application of compressed CS/GSNO on wounds in an animal model showed that exudate absorption by CS/GSNO leads to the release of higher NO doses during the inflammatory phase and progressively lower NO doses at later stages of the healing process. Moreover, treated animals showed significant increase in the mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1), murine macrophage marker (F4/80), transforming growth factor beta (TGF-β), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor-1 (IGF-1), nitric oxide synthase(iNOS), and matrix metalloproteinase(MMP-9). Cluster differentiation 31 (CD31), vascular endothelial growth factor (VEGF), and F4/80 were measured on Days 7 and 12 by immunohistochemistry in the cicatricial tissue. These results indicate that the topical delivery of NO enhances the migration and infiltration of leucocytes, macrophages, and keratinocytes to the wounded tissue, as well as the neovascularization and collagen deposition, which are correlated with an accelerated wound closure. Thus, self-expandable CS/GSNO may represent a novel biocompatible and active wound dress for the topical delivery of NO on wounds.
Collapse
Affiliation(s)
| | | | | | - Carlos P Jara
- Nursing School, University of Campinas, UNICAMP, Campinas, Brazil
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil
| | | | | |
Collapse
|
35
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Yu L, He W, Peters EB, Ledford BT, Tsihlis ND, Kibbe MR. Development of Poly(1,8-octanediol- co-citrate- co-ascorbate) Elastomers with Enhanced Ascorbate Performance for Use as a Graft Coating to Prevent Neointimal Hyperplasia. ACS APPLIED BIO MATERIALS 2020; 3:2150-2159. [PMID: 35025266 DOI: 10.1021/acsabm.0c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small-diameter expanded polytetrafluoroethylene (ePTFE) graft surfaces have poor long-term patency due to limited endothelial cell (EC) coverage and anastomotic intimal hyperplasia. Multifunctional elastomers that coat the ePTFE graft surface to promote EC adhesion while simultaneously inhibiting intimal hyperplasia are highly desirable. Poly(diol-co-citrate) (PDC), a thermoset elastomer, is biodegradable, biocompatible, and mimics vascular mechanical properties. Engineering antioxidant components into PDC polymeric structures improves biocompatibility by attenuating oxidative stress yet is limited by bioavailability. Herein, we develop a new ascorbate protection and deprotection strategy (APDS) for loading bioactive ascorbic acid into the structure of PDC elastomers to improve poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA) prepolymer ascorbate activity. Elastomers cured from APDS POCA prepolymers provide twice the active ascorbate sites on the elastomer surface (35.19 ± 1.64 ng mg-1 cm-2) versus unprotected POCA (Un.POCA, 18.31 ± 0.97 ng mg-1 cm-2). APDS POCA elastomers displayed suitable mechanical properties for vascular graft coating [Young's modulus (2.15-2.61 MPa), elongation (189.5-214.6%) and ultimate tensile strength (2.73-3.61 MPa)], and superior surface antioxidant performance through 1,1-diphenyl-2-picrylhydrazyl free radical scavenging and lipid peroxidation inhibition as compared to poly(1,8-octanediol-co-citrate) (POC) and Un.POCA. Hydrolytic degradation of APDS POCA occurred within 12 weeks under physiological conditions with a mass loss of 25.8 ± 3.4% and the degradation product retaining ascorbate activity. APDS POCA elastomer surfaces supported human aortic endothelial cell proliferation while inhibiting human aortic smooth muscle cell proliferation in vitro. APDS POCA elastomer surfaces displayed superior decomposition of S-nitrosothiols compared to POC and Un.POCA. Taken together, these findings indicate the potential of APDS POCA elastomers to serve as bioactive, therapeutic coatings that enhance the long-term patency of small diameter ePTFE grafts.
Collapse
Affiliation(s)
- Lu Yu
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wenhan He
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erica B Peters
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin T Ledford
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H 2 S and NO in sweet pepper (Capsicum annuum L.) fruits. PHYSIOLOGIA PLANTARUM 2020; 168:278-288. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| |
Collapse
|
38
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Reis AKCA, Stern A, Monteiro HP. S-nitrosothiols and H 2S donors: Potential chemo-therapeutic agents in cancer. Redox Biol 2019; 27:101190. [PMID: 30981679 PMCID: PMC6859576 DOI: 10.1016/j.redox.2019.101190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric Oxide (NO) and Hydrogen Sulfide (H2S) are components of an "interactome", which is defined as a redox system involving the interactions of RSS, RNS and ROS. Chemical interaction by these species is common and is characterized by one and two electron oxidation, nitrosylation, nitration and sulfuration/polysulfidation reactions. NO and H2S are gases that penetrate cell membranes, are synthesized by specific enzymes, are ubiquitous, regulate protein activities through post-translational modifications and participate in cell signaling. The two molecules at high concentrations compared to physiological concentrations may result in cellular damage particularly through their interaction with other reactive species. NO and H2S can interact with each other and form a variety of molecular species which may have constructive or destructive behavior depending on the cell type, the cellular environment (ex. oxygen tension, pH, redox state), where the products are produced and in what concentrations. Cross talk exists between NO and H2S, whereby they can influence the generation and signaling behavior of each other. Given the above mentioned properties of NO and H2S and studies in cancer cells and animal models employing NO and H2S donors that generate higher than physiological concentrations of NO and H2S and are effective in killing cancer cells but not normal cells, lend credence to the possibility of the utility of these donors in an approach to the treatment of cancer.
Collapse
Affiliation(s)
- Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences - Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University, School of Medicine, New York, NY, USA.
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brazil.
| |
Collapse
|
40
|
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:135-191. [PMID: 31779879 DOI: 10.1016/j.pnmrs.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118-169], the current review provides a complete coverage of the literature published since 2008 in this area.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
41
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB. The function of S-nitrosothiols during abiotic stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4429-4439. [PMID: 31111892 DOI: 10.1093/jxb/erz197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.
Collapse
Affiliation(s)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | | |
Collapse
|
42
|
Song L, Keul F, Mardyukov A. Preparation and spectroscopic identification of methyl-Se-nitrososelenol. Chem Commun (Camb) 2019; 55:9943-9946. [PMID: 31378799 DOI: 10.1039/c9cc05065e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report, for the first time, the preparation, matrix-isolation, and spectroscopic characterization of the methyl selenyl radical and methyl-Se-nitrososelenol in combination with DFT and CASSCF/NEVPT2 computations. The latter proved to be highly photolabile, and upon irradiation with light at λ = 465 nm it leads to methyl selenyl and nitric oxide radical pairs. Upon λ > 730 nm irradiation it rearranges back to methyl-Se-nitrososelenol.
Collapse
Affiliation(s)
- Lijuan Song
- Dr Lijuan Song, Kelix Keul and Dr Artur Mardyukov Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Felix Keul
- Dr Lijuan Song, Kelix Keul and Dr Artur Mardyukov Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Artur Mardyukov
- Dr Lijuan Song, Kelix Keul and Dr Artur Mardyukov Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| |
Collapse
|
43
|
Umbreen S, Lubega J, Loake GJ. Sulfur: the heart of nitric oxide-dependent redox signalling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4279-4286. [PMID: 30911750 DOI: 10.1093/jxb/erz135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO), more benign than its more reactive and damaging related molecules, reactive oxygen species (ROS), is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity is through S-nitrosation, the addition of an NO moiety to a protein Cys thiol (-SH). This redox-based, post-translational modification (PTM) can modify protein function analogous to more well established PTMs such as phosphorylation, for example by modulating enzyme activity, localization, or protein-protein interactions. At the heart of the underpinning chemistry associated with this PTM is sulfur. The emerging evidence suggests that S-nitrosation is integral to a myriad of plant biological processes embedded in both development and environmental relations. However, a role for S-nitrosation is perhaps most well established in plant-pathogen interactions.
Collapse
Affiliation(s)
- Saima Umbreen
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Jibril Lubega
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Singha P, Workman CD, Pant J, Hopkins SP, Handa H. Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy. J Biomed Mater Res A 2019; 107:1425-1433. [PMID: 30737882 PMCID: PMC6527449 DOI: 10.1002/jbm.a.36657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
The development of infection-resistant materials is of substantial importance as seen with an increase in antibiotic resistance. In this project, the nitric oxide (NO)-releasing polymer has an added topcoat of zinc oxide nanoparticle (ZnO-NP) to improve NO-release and match the endogenous NO flux (0.5-4 × 10-10 mol cm-2 min-1 ). The ZnO-NP is incorporated to act as a catalyst and provide the additional benefit of acting synergistically with NO as an antimicrobial agent. The ZnO-NP topcoat is applied on a polycarbonate-based polyurethane (CarboSil) that contains blended NO donor, S-nitroso-N-acetylpenicillamine (SNAP). This sample, SNAP-ZnO, continuously sustained NO release above 0.5 × 10-10 mol cm-2 min-1 for 14 days while samples containing only SNAP dropped below physiological levels within 24 h. The ZnO-NP topcoat improved NO release and reduced the amount of SNAP leached by 55% over a 7-day period. ICP-MS data observed negligible Zn ion release into the environment, suggesting longevity of the catalyst within the material. Compared to samples with no NO-release, the SNAP-ZnO films had a 99.03% killing efficacy against Staphylococcus aureus and 87.62% killing efficacy against Pseudomonas aeruginosa. A cell cytotoxicity study using mouse fibroblast 3T3 cells also noted no significant difference in viability between the controls and the SNAP-ZnO material, indicating no toxicity toward mammalian cells. The studies indicate that the synergy of combining a metal ion catalyst with a NO-releasing polymer significantly improved NO-release kinetics and antimicrobial activity for device coating applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A: 000-000, 2019.
Collapse
Affiliation(s)
| | | | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA USA
| |
Collapse
|
45
|
Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione. J Colloid Interface Sci 2019; 544:217-229. [DOI: 10.1016/j.jcis.2019.02.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
46
|
Zhu Z, Umehara T, Okazaki T, Goto M, Fujita Y, Hoque SAM, Kawai T, Zeng W, Shimada M. Gene Expression and Protein Synthesis in Mitochondria Enhance the Duration of High-Speed Linear Motility in Boar Sperm. Front Physiol 2019; 10:252. [PMID: 30914972 PMCID: PMC6422996 DOI: 10.3389/fphys.2019.00252] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Sperm motility patterns are continuously changed after ejaculation to fertilization in the female tract. Hyperactivated motility is induced with high glucose medium in vitro or the oviduct fluids in vivo, whereas sperm maintain linear motility in the seminal plasma or the uterine fluids containing low glucose. Therefore, it is estimated that sperm motility patterns are dependent on the energy sources, and the mitochondrial oxidative phosphorylation is activated to produce ATP in low glucose condition. To elucidate these hypotheses, boar sperm was incubated in different energy conditions with the transcription and translation inhibitors in vitro. Sperm motility parameters, mitochondrial activity, ATP level, gene expression and protein synthesis were analyzed. Sperm progressive motility and straight-line velocity were significantly increased with decreasing glucose level in the incubation medium. Moreover, the mitochondrial protein turnover meaning transcription and translation from mitochondrial genome in sperm is activated during incubation. Incubation of sperm with mitochondrial translation inhibitor (D-chloramphenicol) suppressed mitochondrial protein synthesis, mitochondrial activity and ATP level in sperm and consequently reduced the linear motility speed, but not the motility. Thus, it is revealed that the mitochondrial central dogma is active in sperm, and the high-speed linear motility is induced in low glucose condition via activating the mitochondrial activity for ATP generation.
Collapse
Affiliation(s)
- Zhendong Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okazaki
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Masaaki Goto
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | | | - S. A. Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- Department of Animal Breeding of Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
47
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
48
|
Hibbard HAJ, Reynolds MM. Fluorescent nitric oxide donor for the detection and killing of Pseudomonas aeruginosa. J Mater Chem B 2019; 7:2009-2018. [PMID: 32254805 DOI: 10.1039/c8tb02552e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The epidemic of multidrug-resistant bacteria calls for the improvement of both detection methods for bacterial infections and methods of treatment. Nitric oxide is a known potent antibacterial agent, but due to its gaseous and highly reactive nature, it is difficult to incorporate into a stable antibacterial compound. In this paper, we synthesize a nitric oxide donor attached to a fluorescent compound, creating a material that can both detect and kill the deadly multi-drug resistant bacteria strain Pseudomonas aeruginosa. Detection occurs through a bacterial enzyme-activated color change, showing a clear and obvious change from blue to yellow under UV light. The synthesized compound spontaneously releases 853 μmol of nitric oxide/g from a 10 mM initial concentration. Antibacterial efficacy studies after exposing Pseudomonas aeruginosa to a 10 mM dose of the synthesized compound show a 55-75% reduction in bacteria after 24 hours. This work is the first instance of a small molecule dual-function material that can both detect and kill bacteria.
Collapse
Affiliation(s)
- Hailey A J Hibbard
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
49
|
Truzzi DR, Augusto O, Ford PC. Thiyl radicals are co-products of dinitrosyl iron complex (DNIC) formation. Chem Commun (Camb) 2019; 55:9156-9159. [DOI: 10.1039/c9cc04454j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thiyl radicals are detected by EPR as co-products of dinitrosyl iron complex (DNIC) formation.
Collapse
Affiliation(s)
- Daniela R. Truzzi
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- Santa Barbara
- USA
| | - Ohara Augusto
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- Brazil
| | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
50
|
Keszler A, Lindemer B, Hogg N, Lohr NL. Ascorbate attenuates red light mediated vasodilation: Potential role of S-nitrosothiols. Redox Biol 2019; 20:13-18. [PMID: 30261342 PMCID: PMC6156744 DOI: 10.1016/j.redox.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
There is significant therapeutic advantage of nitric oxide synthase (NOS) independent nitric oxide (NO) production in maladies where endothelium, and thereby NOS, is dysfunctional. Electromagnetic radiation in the red and near infrared region has been shown to stimulate NOS-independent but NO-dependent vasodilation, and thereby has significant therapeutic potential. We have recently shown that red light induces acute vasodilatation in the pre-constricted murine facial artery via the release of an endothelium derived substance. In this study we have investigated the mechanism of vasodilatation and conclude that 670 nm light stimulates vasodilator release from an endothelial store, and that this vasodilator has the characteristics of an S-nitrosothiol (RSNO). This study shows that 670 nm irradiation can be used as a targeted and non-invasive means to release biologically relevant amounts of vasodilator from endothelial stores. This raises the possibility that these stores can be pharmacologically built-up in pathological situations to improve the efficacy of red light treatment. This strategy may overcome eNOS dysfunction in peripheral vascular pathologies for the improvement of vascular health.
Collapse
Key Words
- enos, endothelial nitric oxide synthase
- rsno, s-nitrosothiols
- r/nir, red and near infrared light
- gsno, s-nitrosoglutathione
- dnic, dinitrosyl iron complex
- gsh-dnic, glutathione dinitrosyl iron complexes
- proli/no, 1-(hydroxy-nno-azoxy)-l-proline
- cl, ozone-chemiluminescence signal
- dha, dehydroascorbate
- dtpa, diethylenetriamine pentaacetic acid
- nem, n-ethylmaleimide
- se, standard error
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian Lindemer
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nicole L Lohr
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Clement J Zablocki VA Medical Center, 5000 W National Ave., Milwaukee, WI 53295, USA.
| |
Collapse
|