1
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Magaña-Ávila GR, Moreno E, Plata C, Carbajal-Contreras H, Murillo-de-Ozores AR, García-Ávila K, Vázquez N, Syed M, Wysocki J, Batlle D, Gamba G, Castañeda-Bueno M. Effect of SARS-CoV-2 S protein on the proteolytic cleavage of the epithelial Na+ channel ENaC. PLoS One 2024; 19:e0302436. [PMID: 38662786 PMCID: PMC11045049 DOI: 10.1371/journal.pone.0302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.
Collapse
Affiliation(s)
- Germán Ricardo Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kevin García-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vázquez
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Syed
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jan Wysocki
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniel Batlle
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
3
|
Sure F, Einsiedel J, Gmeiner P, Duchstein P, Zahn D, Korbmacher C, Ilyaskin AV. The small molecule activator S3969 stimulates the epithelial sodium channel by interacting with a specific binding pocket in the channel's β-subunit. J Biol Chem 2024; 300:105785. [PMID: 38401845 PMCID: PMC11065748 DOI: 10.1016/j.jbc.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of β-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of β-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the β-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of β-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (βR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.
Collapse
Affiliation(s)
- Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Duchstein
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Zahn
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
5
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
6
|
Romero MJ, Yue Q, Singla B, Hamacher J, Sridhar S, Moseley AS, Song C, Mraheil MA, Fischer B, Zeitlinger M, Chakraborty T, Fulton D, Gan L, Annex BH, Csanyi G, Eaton DC, Lucas R. Direct endothelial ENaC activation mitigates vasculopathy induced by SARS-CoV2 spike protein. Front Immunol 2023; 14:1241448. [PMID: 37638055 PMCID: PMC10449264 DOI: 10.3389/fimmu.2023.1241448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
Collapse
Affiliation(s)
- Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qian Yue
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Auriel S. Moseley
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chang Song
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mobarak A. Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
8
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
9
|
Ahmad T, Ertuglu LA, Masenga SK, Kleyman TR, Kirabo A. The epithelial sodium channel in inflammation and blood pressure modulation. Front Cardiovasc Med 2023; 10:1130148. [PMID: 37123470 PMCID: PMC10132033 DOI: 10.3389/fcvm.2023.1130148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Tian L, Jia Z, Yan Y, Jia Q, Shi W, Cui S, Chen H, Han Y, Zhao X, He K. Low-dose of caffeine alleviates high altitude pulmonary edema via regulating mitochondrial quality control process in AT1 cells. Front Pharmacol 2023; 14:1155414. [PMID: 37081967 PMCID: PMC10110878 DOI: 10.3389/fphar.2023.1155414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Backgrounds: High-altitude pulmonary edema (HAPE) is a life-threatening disease without effective drugs. Caffeine is a small molecule compound with antioxidant biological activity used to treat respiratory distress syndrome. However, it is unclear whether caffeine plays a role in alleviating HAPE.Methods: We combined a series of biological experiments and label-free quantitative proteomics analysis to detect the effect of caffeine on treating HAPE and explore its mechanism in vivo and in vitro.Results: Dry and wet weight ratio and HE staining of pulmonary tissues showed that the HAPE model was constructed successfully, and caffeine relieved pulmonary edema. The proteomic results of mice lungs indicated that regulating mitochondria might be the mechanism by which caffeine reduced HAPE. We found that caffeine blocked the reduction of ATP production and oxygen consumption rate, decreased ROS accumulation, and stabilized mitochondrial membrane potential to protect AT1 cells from oxidative stress damage under hypoxia. Caffeine promoted the PINK1/parkin-dependent mitophagy and enhanced mitochondrial fission to maintain the mitochondria quality control process.Conclusion: Low-dose of caffeine alleviated HAPE by promoting PINK1/parkin-dependent mitophagy and mitochondrial fission to control the mitochondria quality. Therefore, caffeine could be a potential treatment for HAPE.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Wenjie Shi
- Technical Research Centre for Prevention and Control of Birth Defects, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yang Han
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Kunlun He
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| |
Collapse
|
11
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
12
|
Baloglu E, Velineni K, Ermis-Kaya E, Mairbäurl H. Hypoxia Aggravates Inhibition of Alveolar Epithelial Na-Transport by Lipopolysaccharide-Stimulation of Alveolar Macrophages. Int J Mol Sci 2022; 23:ijms23158315. [PMID: 35955448 PMCID: PMC9368968 DOI: 10.3390/ijms23158315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation and hypoxia impair alveolar barrier tightness, inhibit Na- and fluid reabsorption, and cause edema. We tested whether stimulated alveolar macrophages affect alveolar Na-transport and whether hypoxia aggravates the effects of inflammation, and tested for involved signaling pathways. Primary rat alveolar type II cells (rA2) were co-cultured with rat alveolar macrophages (NR8383) or treated with NR8383-conditioned media after stimulation with lipopolysaccharide (LPS; 1 µg/mL) and exposed to normoxia and hypoxia (1.5% O2). LPS caused a fast, transient increase in TNFα and IL-6 mRNA in macrophages and a sustained increase in inducible nitric oxide synthase (NOS2) mRNA in macrophages and in rA2 cells resulting in elevated nitrite levels and secretion of TNF-α and IL-6 into culture media. In normoxia, 24 h of LPS treated NR8383 decreased the transepithelial electrical resistance (TEER) of co-cultures, of amiloride-sensitive short circuit current (ISCΔamil); whereas Na/K-ATPase activity was not affected. Inhibition was also seen with conditioned media from LPS-stimulated NR8383 on rA2, but was less pronounced after dialysis to remove small molecules and nitrite. The effect of LPS-stimulated macrophages on TEER and Na-transport was fully prevented by the iNOS-inhibitor L-NMMA applied to co-cultures and to rA2 mono-cultures. Hypoxia in combination with LPS-stimulated NR8383 totally abolished TEER and ISCΔamil. These results indicate that the LPS-stimulation of alveolar macrophages impairs alveolar epithelial Na-transport by NO-dependent mechanisms, where part of the NO is produced by rA2 induced by signals from LPS stimulated alveolar macrophages.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
- Translational Lung Research Center Heidelberg (TLRC-H), Part of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; (K.V.); (E.E.-K.)
| | - Kalpana Velineni
- Translational Lung Research Center Heidelberg (TLRC-H), Part of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; (K.V.); (E.E.-K.)
| | - Ezgi Ermis-Kaya
- Translational Lung Research Center Heidelberg (TLRC-H), Part of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; (K.V.); (E.E.-K.)
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC-H), Part of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; (K.V.); (E.E.-K.)
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-39329
| |
Collapse
|
13
|
Deng W, Qi D, Tang XM, Deng XY, He J, Wang DX. THE WNK4/SPAK PATHWAY STIMULATES ALVEOLAR FLUID CLEARANCE BY UPREGULATION OF EPITHELIAL SODIUM CHANNEL IN MICE WITH LIPOPOLYSACCHARIDE-INDUCED ACUTE RESPIRATORY DISTRESS SYNDROME. Shock 2022; 58:68-77. [PMID: 35670456 PMCID: PMC9415224 DOI: 10.1097/shk.0000000000001945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT With-No lysine Kinases (WNKs) have been newly implicated in alveolar fluid clearance (AFC). Epithelial sodium channels (ENaCs) serve a vital role in AFC. The potential protective effect of WNK4 in acute respiratory distress syndrome (ARDS), mediated by ENaC-associated AFC was investigated in the study. A model of lipopolysaccharide (LPS)-induced ARDS was established in C57BL/6 mice. WNK4, Sterile 20-related proline-alanine-rich kinase (SPAK), small interfering RNA (siRNA)-WNK4 or siRNA-SPAK were transfected into mouse lung or primary alveolar epithelial type II (ATII) cells. AFC, bronchoalveolar lavage fluid and lung histomorphology were determined. The expression of ENaC was determined to investigate the regulation of AFC by WNK4-SPAK signaling pathway. Activation of WNK4-SPAK signaling improved lung injury and survival rate, with enhanced AFC and reduced pulmonary edema via the upregulation of ENaC in ARDS. In primary rat ATII cells, gene-silencing by siRNA transfection reduced ENaC expression and the level of WNK4-associated SPAK phosphorylation. Immunoprecipitation revealed that the level of neural precursor cell-expressed developmentally downregulated gene 4 (Nedd4-2) binding to ENaC was decreased as a result of WNK4-SPAK signaling. The present study demonstrated that the WNK4/SPAK pathway improved AFC during LPS-induced ARDS, which is mainly dependent on the upregulation of ENaC with Nedd4-2-mediated ubiquitination.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Xu-Mao Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Xin-Yu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Dao-Xin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| |
Collapse
|
14
|
PTEN: An Emerging Potential Target for Therapeutic Intervention in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4512503. [PMID: 35814272 PMCID: PMC9262564 DOI: 10.1155/2022/4512503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.
Collapse
|
15
|
Huneif MA, Alhazmy ZH, Shoomi AM, Alghofely MA, Heena H, Mushiba AM, Alsaheel A. A Novel SCNN1A Variation in a Patient with Autosomal-recessive Pseudohypoaldosteronism Type 1. J Clin Res Pediatr Endocrinol 2022; 14:244-250. [PMID: 33829730 PMCID: PMC9176094 DOI: 10.4274/jcrpe.galenos.2021.2020.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Pseudohypoaldosteronism type 1 (PHA1) is an autosomal-recessive disorder characterized by defective regulation of body sodium (Na) levels. The abnormality results from mutations in the genes encoding subunits of the epithelial Na channel. Patients with PHA1 present in infancy as being in adrenal crisis. A 41-day-old female who presented with recurrent adrenal crisis did not adequately respond to hydrocortisone and required mineralocorticoid therapy. The patient’s demographic data and clinical features were recorded. Blood samples were collected and tested for endocrine and metabolic characteristics and for use in genetic studies. Bidirectional Sanger sequencing of SCNN1A was conducted. The entire coding region of 12 exons and 20 bp of flanking intron were sequenced. Genetic analyses revealed a new mutation - c.729_730delAG (p.Val245Glyfs*65) - in SCNN1A exon four. Adrenal crisis during the neonatal period highlights the importance of early screening for PHA1. Genetic testing could help to anticipate the prognosis, severity, onset of the disease, and the mode of inheritance, especially given its extensive phenotype.
Collapse
Affiliation(s)
- Mohammed Ayed Huneif
- Najran University Hospital, at Pediatric Department, Collage of Medicine, Najran University, Najran, Saudi Arabia,* Address for Correspondence: Najran University Hospital, at Pediatric Department, Collage of Medicine, Najran University, Najran, Saudi Arabia E-mail:
| | - Ziyad Hamad Alhazmy
- Al Yamammah Hospital, Clinic of Pediatric Endocrinology, Riyadh, Saudi Arabia
| | - Anas M. Shoomi
- King Fahad Medical City, Obesity, Endocrine, and Metabolism Center, Clinic of Pediatric Endocrinology, Riyadh, Saudi Arabia
| | - Mohammed A. Alghofely
- King Fahad Medical City, Obesity, Endocrine, and Metabolism Center, Clinic of Pediatric Endocrinology, Riyadh, Saudi Arabia
| | - Humariya Heena
- King Fahad Medical City, Research Center, Riyadh, Saudi Arabia
| | - Aziza M. Mushiba
- Clinical Geneticist, Pediatric Subspecialties Department, Children’s Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulhamid Alsaheel
- King Fahad Medical City, Obesity, Endocrine, and Metabolism Center, Clinic of Pediatric Endocrinology, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem 2022; 298:102004. [PMID: 35504352 PMCID: PMC9163703 DOI: 10.1016/j.jbc.2022.102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, β-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αβγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C–Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexei Diakov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - M Gregor Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
17
|
Martin-Malpartida P, Arrastia-Casado S, Farrera-Sinfreu J, Lucas R, Fischer H, Fischer B, Eaton DC, Tzotzos S, Macias MJ. Conformational ensemble of the TNF-derived peptide solnatide in solution. Comput Struct Biotechnol J 2022; 20:2082-2090. [PMID: 35601958 PMCID: PMC9079168 DOI: 10.1016/j.csbj.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a homotrimer that has two spatially distinct binding regions, three lectin-like domains (LLD) at the TIP of the protein and three basolaterally located receptor-binding sites, the latter of which are responsible for the inflammatory and cell death-inducing properties of the cytokine. Solnatide (a.k.a. TIP peptide, AP301) is a 17-mer cyclic peptide that mimics the LLD of human TNF which activates the amiloride-sensitive epithelial sodium channel (ENaC) and, as such, recapitulates the capacity of TNF to enhance alveolar fluid clearance, as demonstrated in numerous preclinical studies. TNF and solnatide interact with glycoproteins and these interactions are necessary for their trypanolytic and ENaC-activating activities. In view of the crucial role of ENaC in lung liquid clearance, solnatide is currently being evaluated as a novel therapeutic agent to treat pulmonary edema in patients with moderate-to-severe acute respiratory distress syndrome (ARDS), as well as severe COVID-19 patients with ARDS. To facilitate the description of the functional properties of solnatide in detail, as well as to further target-docking studies, we have analyzed its folding properties by NMR. In solution, solnatide populates a set of conformations characterized by a small hydrophobic core and two electrostatically charged poles. Using the structural information determined here and also that available for the ENaC protein, we propose a model to describe solnatide interaction with the C-terminal domain of the ENaCα subunit. This model may serve to guide future experiments to validate specific interactions with ENaCα and the design of new solnatide analogs with unexplored functionalities.
Collapse
Key Words
- AP301 peptide
- ARDS, Acute Respiratory Distress Syndrome
- AlphaFold applications
- Alveolar fluid clearance
- Amiloride-sensitive epithelial sodium channel
- Amphipathic helix
- ENaC
- ENaC, Amiloride-sensitive Epithelial Sodium/Channel
- HPLC, High Performance Liquid Chromatography
- HSQC, Heteronuclear Single Quantum Coherence
- LLD, Lectin-Like Domains
- MARCKS, Myristoylated Alanine-Rich C Kinase Substrate
- NMR, Nuclear Magnetic Resonance
- NOESY, Nuclear Overhauser Effect Spectroscopy
- PIP2, Phosphatidylinositol Bisphosphate
- Peptide NMR
- Pulmonary edema
- Solnatide structure
- TIP peptide
- TM, Transmembrane Regions
- TNF, Tumor Necrosis Factor
- TOCSY, Total Correlation Spectroscopy
- Tumor necrosis factor
Collapse
Affiliation(s)
- Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | - Rudolf Lucas
- Vascular Biology Center, Dept of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hendrik Fischer
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Bernhard Fischer
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Douglas C. Eaton
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Susan Tzotzos
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
18
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
19
|
Kelchtermans J, Pinney SE, Leonard JMM, Mcgrath-Morrow S. Diagnostic and management considerations in pseudohypoaldosteronism type 1b. BMJ Case Rep 2022; 15:e246538. [PMID: 34980640 PMCID: PMC8724702 DOI: 10.1136/bcr-2021-246538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Pseudohypoaldosteronism type 1B is a rare autosomal recessive disorder caused by dysfunction of amiloride-sensitive epithelial sodium channels (ENaCs). We present the case of a neonate with cardiogenic shock after cardiac arrest due to profound hyperkalaemia. Genetic testing revealed a novel homozygous variant in SCNNIA We review diagnostic considerations including the molecular mechanisms of disease, discuss treatment approaches and highlight the possible significance of the diversity of pulmonary ENaCs.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara E Pinney
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jacqueline M M Leonard
- Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sharon Mcgrath-Morrow
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Ding Y, Cui Y, Hou Y, Nie H. Bone marrow mesenchymal stem cell-conditioned medium facilitates fluid resolution via miR-214-activating epithelial sodium channels. MedComm (Beijing) 2021; 1:376-385. [PMID: 34766129 PMCID: PMC8491198 DOI: 10.1002/mco2.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is featured with severe lung edema at the early exudative phase, resulting from the imbalance of alveolar fluid turnover and clearance. Mesenchymal stem cells (MSCs) belong to multipotent stem cells, which have shown potential therapeutic effects during ALI. Of note, MSC‐conditioned medium (MSC‐CM) improved alveolar fluid clearance (AFC) in vivo, whereas the involvement of miRNAs is seldom known. We thus aim to explore the roles of miR‐214 in facilitating MSC‐CM mediated fluid resolution of impaired AFC. In this study, AFC was increased significantly by intratracheally administrated MSC‐CM in lipopolysaccharide‐treated mice. MSC‐CM augmented amiloride‐sensitive currents in intact H441 monolayers, and increased α‐epithelial sodium channel (α‐ENaC) expression level in H441 and mouse alveolar type 2 epithelial cells. Meanwhile, MSC‐CM increased the expression of miR‐214, which may participate in regulating ENaC expression and function. Our results suggested that MSC‐CM enhanced AFC in ALI mice in vivo through a novel mechanism, involving miR‐214 regulation of ENaC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Yong Cui
- Department of Anesthesiology the First Affiliated Hospital of China Medical University Shenyang China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| |
Collapse
|
21
|
Yang Q, Xu HR, Xiang SY, Zhang C, Ye Y, Shen CX, Mei HX, Zhang PH, Ma HY, Zheng SX, Smith FG, Jin SW, Wang Q. Resolvin Conjugates in Tissue Regeneration 1 Promote Alveolar Fluid Clearance by Activating Alveolar Epithelial Sodium Channels and Na, K-ATPase in Lipopolysaccharide-Induced Acute Lung Injury. J Pharmacol Exp Ther 2021; 379:156-165. [PMID: 34465632 DOI: 10.1124/jpet.121.000712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 μg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.
Collapse
Affiliation(s)
- Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hao-Ran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Shu-Yang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Chen Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Chen-Xi Shen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Pu-Hong Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hong-Yu Ma
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Fang-Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| |
Collapse
|
22
|
Deng W, He J, Tang XM, Li CY, Tong J, Qi D, Wang DX. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol Med Rep 2021; 24:725. [PMID: 34396442 PMCID: PMC8404097 DOI: 10.3892/mmr.2021.12364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild‑type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol‑induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS‑induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α‑ENaC, β‑ENaC and γ‑ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α‑ENaC, β‑ENaC and γ‑ENaC expression levels via the A2aAR or A2bAR‑cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol‑induced decrease of α‑ENaC, β‑ENaC and γ‑ENaC expression levels by the A2AR‑mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xu-Mao Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chang-Yi Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Tong
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dao-Xin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
23
|
Zhang Y, Zhang L, Chen W, Zhang Y, Wang X, Dong Y, Zhang W, Lin X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicol Lett 2021; 350:62-70. [PMID: 34252507 DOI: 10.1016/j.toxlet.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
The impact of fine particulate matter (PM2.5) on public health has received increasing attention. Through various biochemical mechanisms, PM2.5 alters the normal structure and function of the airway epithelium, causing epithelial barrier dysfunction. Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) has been implicated in various respiratory diseases; however, its role in PM2.5-induced epithelial barrier dysfunction remains unclear. Herein, we assessed the regulatory effects of Shp2 on PM2.5-mediated epithelial barrier function and tight junction (TJ) protein expression in both mice and human pulmonary epithelial (16HBE) cells. We observed that Shp2 levels were upregulated and claudin-4 levels were downregulated after PM2.5 stimulation in vivo and in vitro. Mice were exposed to PM2.5 to induce acute lung injury, and disrupted epithelial barrier function, with decreased transepithelial electrical resistance (TER) and increased paracellular flux that was observed in 16HBE cells. In contrast, the selective inhibition or knockdown of Shp2 retained airway epithelial barrier function and reversed claudin-4 downregulation that triggered by PM2.5, and these effects may occur through the ERK1/2 MAPK signaling pathway. These data highlight an important role of Shp2 in PM2.5-induced airway epithelial barrier dysfunction and suggest a possible new course of therapy for PM2.5-induced respiratory diseases.
Collapse
Affiliation(s)
- Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Likang Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wanwan Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
24
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
26
|
Abstract
Lung fluid balance is maintained in part by the barriers formed by the pulmonary microvasculature and alveolar epithelium. Failure of either of these barriers leads to pulmonary edema, which limits lung function and exacerbates the severity of acute lung injury. Here we describe a method using Evans Blue dye to simultaneously measure the function of vascular and epithelial barriers of murine lungs in vivo.
Collapse
|
27
|
Bone marrow mesenchymal stem cells derived miRNA-130b enhances epithelial sodium channel by targeting PTEN. Respir Res 2020; 21:329. [PMID: 33308227 PMCID: PMC7731743 DOI: 10.1186/s12931-020-01595-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Acute lung injury (ALI) is a clinical syndrome with high morbidity and mortality, and severe pulmonary edema is one of the characteristics. Epithelial sodium channel (ENaC) located on the apical side of alveolar type 2 epithelial (AT2) cells is the primary rate limiting segment in alveolar fluid clearance. Many preclinical studies have revealed that mesenchymal stem cells (MSCs) based therapy has great therapeutic potential for ALI, while the role of ENaC in this process is rarely known. Methods We studied the effects of bone marrow-derived MSCs (BMSCs) on the protein/mRNA expression and activity of ENaC in primary mouse AT2 and human H441 cells by co-culture with them, respectively. Moreover, the changes of miRNA-130b in AT2 cells were detected by qRT-PCR, and we studied the involvement of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and the downstream PI3K/AKT pathway in the miRNA-130b regulation of ENaC. Results Our results demonstrated that BMSCs could increase ENaC protein expression and function, as well as the expression level of miRNA-130b. The dual luciferase target gene assay verified that PTEN was one of the target genes of miR-130b, which showed adverse effects on the protein expression of α/γ-ENaC and PTEN in AT2 cells. Upregulating miR-130b and/or knocking down PTEN resulted in the increase of α/γ-ENaC protein level, and the protein expression of p-AKT/AKT was enhanced by miR-130b. Both α and γ-ENaC protein expressions were increased after AT2 cells were transfected with siPTEN, which could be reversed by the co-administration of PI3K/AKT inhibitor LY294002. Conclusion In summary, miRNA-130b in BMSCs can enhance ENaC at least partially by targeting PTEN and activating PI3K/AKT pathway, which may provide a promising new direction for therapeutic strategy in ALI.
Collapse
|
28
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
29
|
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev 2020; 100:1065-1075. [PMID: 32216698 PMCID: PMC7191627 DOI: 10.1152/physrev.00013.2020] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Sadis Matalon
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Michael A Matthay
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
30
|
Han J, Li H, Bhandari S, Cao F, Wang XY, Tian C, Li XY, Zhang PH, Liu YJ, Wu CH, Smith FG, Jin SW, Hao Y. Maresin Conjugates in Tissue Regeneration 1 improves alveolar fluid clearance by up-regulating alveolar ENaC, Na, K-ATPase in lipopolysaccharide-induced acute lung injury. J Cell Mol Med 2020; 24:4736-4747. [PMID: 32160403 PMCID: PMC7176857 DOI: 10.1111/jcmm.15146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/31/2022] Open
Abstract
Maresin Conjugates in Tissue Regeneration 1 (MCTR1) is a newly identified macrophage‐derived sulfido‐conjugated mediator that stimulates the resolution of inflammation. This study assessed the role of MCTR1 in alveolar fluid clearance (AFC) in a rat model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Rats were intravenously injected with MCTR1 at a dose of 200 ng/rat, 8 hours after administration of 14 mg/kg LPS. The level of AFC was then determined in live rats. Primary rat ATII (Alveolar Type II) epithelial cells were also treated with MCTR1 (100 nmol/L) in a culture medium containing LPS for 8 hours. MCTR1 treatment improved AFC (18.85 ± 2.07 vs 10.11 ± 1.08, P < .0001) and ameliorated ALI in rats. MCTR1 also significantly promoted AFC by up‐regulating epithelial sodium channel (ENaC) and Na+‐K+‐adenosine triphosphatase (Na, K‐ATPase) expressions in vivo. MCTR1 also activated Na, K‐ATPase and elevated phosphorylated‐Akt (P‐Akt) by up‐regulating the expression of phosphorylated Nedd4‐2 (P‐Nedd4‐2) in vivo and in vitro. However, BOC‐2 (ALX inhibitor), KH7 (cAMP inhibitor) and LY294002 (PI3K inhibitor) abrogated the improved AFC induced by MCTR1. Based on the findings of this study, MCTR1 may be a novel therapeutic approach to improve reabsorption of pulmonary oedema during ALI/acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Jun Han
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fei Cao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-Yang Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-Yu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Pu-Hong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yong-Jian Liu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-Hua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
31
|
Grant GJ, Liou TG, Paine R, Helms MN. High-mobility group box-1 increases epithelial sodium channel activity and inflammation via the receptor for advanced glycation end products. Am J Physiol Cell Physiol 2020; 318:C570-C580. [PMID: 31913693 DOI: 10.1152/ajpcell.00291.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) lung disease persists and remains life-limiting for many patients. Elevated high-mobility group box-1 protein (HMGB-1) levels and epithelial sodium channel hyperactivity (ENaC) are hallmark features of the CF lung. The objective of this study was to better understand the pathogenic role of HMGB-1 signaling and ENaC in CF airway cells. We hypothesize that HMGB-1 links airway inflammation [via signaling to the receptor for advanced glycation end products (RAGE)] and airway surface liquid dehydration (via upregulation of ENaC) in the CF lung. We calculated equivalent short-current (Isc) and single-channel ENaC open probability (Po) in normal and CF human small airway epithelial cells (SAEC) in the presence and absence of human HMGB-1 peptide (0.5 μg/mL). In normal SAECs, HMGB-1 increased amiloride-sensitive Isc and elevated ENaC Po from 0.15 ± 0.03 to 0.28 ± 0.04 (P < 0.01). In CF SAECs, ENaC Po increased from 0.45 ± 0.06 to 0.73 ± 0.04 (P < 0.01). Pretreatment with 1 μM FPS-ZM1 (a RAGE inhibitor) attenuated all HMGB-1 effects on ENaC current in normal and CF SAECs. Confocal analysis of SAECs indicates that nuclear size and HMBG-1 localization can be impacted by ENaC dysfunction. Masson's trichrome labeling of mouse lung showed that intraperitoneally injected HMGB-1 significantly increased pulmonary fibrosis. Bronchoalveolar lavage fluid from HMGB-1-treated mice showed significant increases in IL-1β, IL-10, IL-6, IL-27, IL-17A, IFN-β, and granulocyte-macrophage colony-stimulating factor compared with vehicle-injected mice (P < 0.05). These studies put forth a new model in which HMGB-1 signaling to RAGE plays an important role in perpetuating ENaC dysfunction and inflammation in the CF lung.
Collapse
Affiliation(s)
- Garett J Grant
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Theodore G Liou
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
32
|
Hebert KD, Mclaughlin N, Galeas-Pena M, Zhang Z, Eddens T, Govero A, Pilewski JM, Kolls JK, Pociask DA. Targeting the IL-22/IL-22BP axis enhances tight junctions and reduces inflammation during influenza infection. Mucosal Immunol 2020; 13:64-74. [PMID: 31597930 PMCID: PMC6917921 DOI: 10.1038/s41385-019-0206-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023]
Abstract
The seasonal burden of influenza coupled with the pandemic outbreaks of more pathogenic strains underscore a critical need to understand the pathophysiology of influenza injury in the lung. Interleukin-22 (IL-22) is a promising cytokine that is critical in protecting the lung during infection. This cytokine is strongly regulated by the soluble receptor IL-22-binding protein (IL-22BP), which is constitutively expressed in the lungs where it inhibits IL-22 activity. The IL-22/IL-22BP axis is thought to prevent chronic exposure of epithelial cells to IL-22. However, the importance of this axis is not understood during an infection such as influenza. Here we demonstrate through the use of IL-22BP-knockout mice (il-22ra2-/-) that a pro-IL-22 environment reduces pulmonary inflammation during H1N1 (PR8/34 H1N1) infection and protects the lung by promoting tight junction formation. We confirmed these results in normal human bronchial epithelial cells in vitro demonstrating improved membrane resistance and induction of the tight junction proteins Cldn4, Tjp1, and Tjp2. Importantly, we show that administering recombinant IL-22 in vivo reduces inflammation and fluid leak into the lung. Taken together, our results demonstrate the IL-22/IL-22BP axis is a potential targetable pathway for reducing influenza-induced pneumonia.
Collapse
Affiliation(s)
- K D Hebert
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - N Mclaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Z Zhang
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - T Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - A Govero
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - J M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - D A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
33
|
Zhao R, Ali G, Chang J, Komatsu S, Tsukasaki Y, Nie HG, Chang Y, Zhang M, Liu Y, Jain K, Jung BG, Samten B, Jiang D, Liang J, Ikebe M, Matthay MA, Ji HL. Proliferative regulation of alveolar epithelial type 2 progenitor cells by human Scnn1d gene. Am J Cancer Res 2019; 9:8155-8170. [PMID: 31754387 PMCID: PMC6857051 DOI: 10.7150/thno.37023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 01/03/2023] Open
Abstract
Lung epithelial sodium channel (ENaC) encoded by Scnn1 genes is essential for maintaining transepithelial salt and fluid homeostasis in the airway and the lung. Compared to α, β, and γ subunits, the role of respiratory δ-ENaC has not been studied in vivo due to the lack of animal models. Methods: We characterized full-length human δ802-ENaC expressed in both Xenopus oocytes and humanized transgenic mice. AT2 proliferation and differentiation in 3D organoids were analysed with FACS and a confocal microscope. Both two-electrode voltage clamp and Ussing chamber systems were applied to digitize δ802-ENaC channel activity. Immunoblotting was utilized to analyse δ802-ENaC protein. Transcripts of individual ENaC subunits in human lung tissues were quantitated with qPCR. Results: The results indicate that δ802-ENaC functions as an amiloride-inhibitable Na+ channel. Inhibitory peptide α-13 distinguishes δ802- from α-type ENaC channels. Modified proteolysis of γ-ENaC by plasmin and aprotinin did not alter the inhibition of amiloride and α-13 peptide. Expression of δ802-ENaC at the apical membrane of respiratory epithelium was detected with biophysical features similar to those of heterologously expressed channels in oocytes. δ802-ENaC regulated alveologenesis through facilitating the proliferation of alveolar type 2 epithelial cells. Conclusion: The humanized mouse line conditionally expressing human δ802-ENaC is a novel model for studying the expression and function of this protein in vivo .
Collapse
|
34
|
Wang X, Chen J, Shi S, Sheng S, Kleyman TR. Analyses of epithelial Na + channel variants reveal that an extracellular β-ball domain critically regulates ENaC gating. J Biol Chem 2019; 294:16765-16775. [PMID: 31551351 DOI: 10.1074/jbc.ra119.010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial Na+ channel (ENaC)-mediated Na+ transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K+]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the Xenopus oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the β7-strand and its adjacent loop of the α-subunit extracellular β-ball domain. αR350Wβγ and αG355Rβγ channels exhibited 2.5- and 1.8-fold greater amiloride-sensitive currents than WT αβγ human ENaCs, respectively, whereas αV351Aβγ channels conducted significantly less current than WT. Currents in αH354Rβγ-expressing oocytes were similar to those expressing WT. Surface expression levels of three mutants (αR350Wβγ, αV351Aβγ, and αG355Rβγ) were similar to that of WT. However, three mutant channels (αR350Wβγ, αH354Rβγ, and αG355Rβγ) exhibited a reduced Na+ self-inhibition response. Open probability of αR350Wβγ was significantly greater than that of WT. Moreover, other Arg-350 variants, including αR350G, αR350L, and αR350Q, also had significantly increased channel activity. A direct comparison of αR350W and two previously reported gain-of-function variants revealed that αR350W increases ENaC activity similarly to αW493R, but to a much greater degree than does αC479R. Our results indicate that αR350W along with αR350G, αR350L, and αR350Q, and αG355R are novel gain-of-function variants that function as gating modifiers. The location of these multiple functional variants suggests that the αENaC β-ball domain portion that interfaces with the palm domain of βENaC critically regulates ENaC gating.
Collapse
Affiliation(s)
- Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
35
|
Lu K, Chen X, Zhu W, Mao X, Yang Y, Qiu J, Zhang M, Cheng R. Terbutaline alleviates the lung injury in the neonatal rats exposed to endotoxin: Potential roles of epithelial sodium channels. Pediatr Pulmonol 2019; 54:280-288. [PMID: 30644180 PMCID: PMC6618278 DOI: 10.1002/ppul.24242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
Abstract
Intrauterine inflammation generates inflammatory mediators that damage the developing bronchoalveolar epithelium, resulting in neonatal lung injury. Lung fluid transport disorders are the main reasons for the development of pulmonary edema, an important pathology of lung injury. Previous studies suggested that epithelial sodium channels (ENaCs) play an important role in lung fluid transport. Here, we investigated whether changes in the expression of ENaCs were observed when neonatal rat lung injury was induced by maternal exposure to endotoxin. We also examined the therapeutic effect of terbutaline nebulizer inhalation on this injury. The results showed that maternal exposure to endotoxin increased the levels of TNF-α and IL-1β in bronchoalveolar lavage fluid, suppressed α-, β-, γ-ENaC in the neonatal rat lung, and resulted in the formation of pulmonary edema on postnatal days 1 and 7. Terbutaline up-regulated the expression of β- and γ-ENaC in the distal lung after 7 days of treatment. The potential signal molecules cAMP, PKA, and CREB expressions were increased after terbutaline treatment. In summary, maternal exposure to endotoxin decreased the expression of ENaCs in neonatal rats which, in turn, may exacerbate pulmonary edema. Inhalation of the β2-adrenergic receptor agonist terbutaline improved lung liquid clearance. By increasing the expression of sodium ion channels, the effective removal of alveolar fluid provides a new way for the prevention and treatment of neonatal lung injury.
Collapse
Affiliation(s)
- Keyu Lu
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Zhu
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Mao
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Qiu
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China.,Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Department of neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Deng W, Li CY, Tong J, He J, Zhao Y, Wang DX. Insulin ameliorates pulmonary edema through the upregulation of epithelial sodium channel via the PI3K/SGK1 pathway in mice with lipopolysaccharide‑induced lung injury. Mol Med Rep 2019; 19:1665-1677. [PMID: 30628684 PMCID: PMC6390057 DOI: 10.3892/mmr.2019.9809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Epithelial sodium channel (ENaC) provides the driving force for the removal of edema from the alveolar spaces in acute lung injury (ALI). Our previous study reported that insulin increased the expression of α‑ENaC, possibly via the serum/glucocorticoid‑inducible kinase‑1 (SGK1) pathway in ALI; however, the upstream regulator of SGK1 activity remains unclear. In the current study, C3H/HeN mice were subjected to lipopolysaccharide (LPS)‑induced lung injury without hyperglycemia. Exogenous insulin was administered intravenously using a micro‑osmotic pump, and intratracheal delivery of SGK1 small interfering RNA (siRNA) was performed. Furthermore, alveolar epithelial type II cells transfected with phosphatidylinositol 3‑kinase (PI3K) siRNA or SGK1 siRNA were incubated with insulin. Insulin protected the pulmonary epithelial barrier, reduced the apoptosis of alveolar epithelial cells, attenuated pulmonary edema, improved alveolar fluid clearance, and increased the expression levels of α‑, β‑ and γ‑ENaC in mice. In addition, in alveolar epithelial cells, insulin increased the expression levels of α‑, β‑ and γ‑ENaC, as well as the level of phosphorylated SGK1, which were then inhibited by the selective targeting of PI3K or SGK1 by siRNA. Taken together, the results of the present study demonstrated that insulin protected the lung epithelium and attenuated pulmonary edema through the upregulation of ENaC via the PI3K/SGK1 pathway in LPS‑induced lung injury.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chang-Yi Li
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Tong
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
37
|
Abstract
Pulmonary hypertension (PH) is a common hemodynamic evolution of heart failure (HF) with preserved or reduced ejection fraction, responsible for congestion, symptoms worsening, exercise limitation, and negative outcome. In HF of any origin, PH develops in response to a passive backward pressure transmission as result of increased left atrial pressure. Sustained pressure injury and chronic venous congestion can trigger pulmonary vasoconstriction and vascular remodeling, leading to irreversible pulmonary vascular disease, right ventricular hypertrophy, and failure. In this article, the key determinants of this "dangerous liaison" are analyzed with some digressions on related "leitmotiv" at the horizon.
Collapse
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit, IRCCS Policlinico San Donato, Piazza E. Malan 2, San Donato Milanese, Milano 20097, Italy.
| |
Collapse
|
38
|
Yang G, Pillich H, White R, Czikora I, Pochic I, Yue Q, Hudel M, Gorshkov B, Verin A, Sridhar S, Isales CM, Eaton DC, Hamacher J, Chakraborty T, Lucas R. Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins (Basel) 2018; 10:toxins10020079. [PMID: 29439494 PMCID: PMC5848180 DOI: 10.3390/toxins10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Richard White
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Biomedical Sciences, Georgia Campus-Philadelphia College of Osteopathic Medicine, Atlanta, GA 30224, USA.
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Isabelle Pochic
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Sandoz Inc., 83607 Holzkirchen, Germany.
| | - Qiang Yue
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| | - Douglas C Eaton
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Department of Pneumology, Lindenhofspital, 3001 Bern, Switzerland.
- Internal, Pulmonary and Critical Care Medicine, Saarland University, 66424 Homburg/Saar, Germany.
- Lungen-und Atmungsstifung, 3001 Bern, Switzerland.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| |
Collapse
|
39
|
Abstract
Fluid clearance from the respiratory system during developmental transitions is critically important for achieving optimal gas exchange in animals. During insect development from embryo to adult, airway clearance occurs episodically each time the molt is completed by performance of the ecdysis sequence, coordinated by a peptide-signaling cascade initiated by ecdysis-triggering hormone (ETH). We find that the neuropeptide Kinin (also known as Drosokinin or Leukokinin) is required for normal respiratory fluid clearance or "tracheal air-filling" in Drosophila larvae. Disruption of Kinin signaling leads to defective air-filling during all larval stages. Such defects are observed upon ablation or electrical silencing of Kinin neurons, as well as RNA silencing of the Kinin gene or the ETH receptor in Kinin neurons, indicating that ETH targets Kinin neurons to promote tracheal air-filling. A Kinin receptor mutant fly line (Lkrf02594 ) also exhibits tracheal air-filling defects in all larval stages. Targeted Kinin receptor silencing in tracheal epithelial cells using breathless or pickpocket (ppk) drivers compromises tracheal air-filling. On the other hand, promotion of Kinin signaling in vivo through peptide injection or Kinin neuron activation through Drosophila TrpA1 (dTrpA1) expression induces premature tracheal collapse and air-filling. Moreover, direct exposure of tracheal epithelial cells in vitro to Kinin leads to calcium mobilization in tracheal epithelial cells. Our findings strongly implicate the neuropeptide Kinin as an important regulator of airway clearance via intracellular calcium mobilization in tracheal epithelial cells of Drosophila.
Collapse
|
40
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
41
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol 2018; 53:17-27. [PMID: 29168340 PMCID: PMC5938176 DOI: 10.1002/ppul.23681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Premature neonates frequently require oxygen supplementation as a therapeutic intervention that, while necessary, also exposes the lung to significant oxidant stress. We hypothesized that hyperoxia has a deleterious effect on alveolar epithelial barrier function rendering the neonatal lung susceptible to injury and/or bronchopulmonary dysplasia (BPD). MATERIALS AND METHODS We examined the effects of exposure to 85% oxygen on neonatal rat alveolar barrier function in vitro and in vivo. Whole lung was measured using wet-to-dry weight ratios and bronchoalveolar lavage protein content and cultured primary neonatal alveolar epithelial cells (AECs) were measured using transepithelial electrical resistance (TEER) and paracellular flux measurements. Expression of claudin-family tight junction proteins, E-cadherin and the Snail transcription factor SNAI1 were measured by Q-PCR, immunoblot and confocal immunofluorescence microscopy. RESULTS Cultured neonatal AECs exposed to 85% oxygen showed impaired barrier function. This oxygen-induced increase in paracellular leak was associated with altered claudin expression, where claudin-3 and -18 were downregulated at both the mRNA and protein level. Claudin-4 and -5 mRNA were also decreased, although protein expression of these claudins was largely maintained. Lung alveolarization and barrier function in vivo were impaired in response to hyperoxia. Oxygen exposure also significantly decreased E-cadherin expression and induced expression of the SNAI1 transcription factor in vivo and in vitro. CONCLUSIONS These data support a model in which hyperoxia has a direct impact on alveolar tight and adherens junctions to impair barrier function. Strategies to antagonize the effects of high oxygen on alveolar junctions may potentially reverse this deleterious effect.
Collapse
Affiliation(s)
- Shilpa Vyas-Read
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rachel J Vance
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Wenyi Wang
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Lou Ann Brown
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael Koval
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
43
|
Ding Y, Zhao R, Zhao X, Matthay MA, Nie HG, Ji HL. ENaCs as Both Effectors and Regulators of MiRNAs in Lung Epithelial Development and Regeneration. Cell Physiol Biochem 2017; 44:1120-1132. [PMID: 29179210 PMCID: PMC5884700 DOI: 10.1159/000485417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial sodium channels (ENaC) play an important role in re-absorbing excessive luminal fluid by building up an osmotic Na+ gradient across the tight epithelium in the airway, the lung, the kidney, and the colon. The ENaC is a major pathway for retention of salt in kidney too. MicroRNAs (miRs), a group of non-coding RNAs that regulate gene expression at the post-transcriptional level, have emerged as a novel class of regulators for ENaC. Given the ENaC pathway is crucial for maintaining fluid homeostasis in the lung and the kidney and other cavities, we summarized the cross-talk between ENaC and miRs and recapitulated the underlying regulatory factors, including aldosterone, transforming growth factor-β1, and vascular endothelial growth factor-A in the lung and other epithelial tissues/organs. We have compared the profiling of miRs between normal and injured mice and human lungs, which showed a significant alteration in numerous miRs in mouse models of LPS and ventilator induced ARDS. In addition, we reiterated the potential regulation of the ENaC by miRs in stem/ progenitor cell-based re-epithelialization, and identified a promising pharmaceutic target of ENaC for removing edema fluid in ARDS by mesenchymal stem cells-released paracrine. In conclusion, it seems that the interactions between miRs and scnn1s/ENaCs are critical for lung development, epithelial cell turnover in adult lungs, and re-epithelialization for repair.
Collapse
Affiliation(s)
- Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler Texas
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler Texas, USA
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hong-Guang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Hong-Long Ji
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler Texas
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler Texas, USA
| |
Collapse
|
44
|
Wynne BM, Zou L, Linck V, Hoover RS, Ma HP, Eaton DC. Regulation of Lung Epithelial Sodium Channels by Cytokines and Chemokines. Front Immunol 2017; 8:766. [PMID: 28791006 PMCID: PMC5524836 DOI: 10.3389/fimmu.2017.00766] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury leading to acute respiratory distress (ARDS) is a global health concern. ARDS patients have significant pulmonary inflammation leading to flooding of the pulmonary alveoli. This prevents normal gas exchange with consequent hypoxemia and causes mortality. A thin fluid layer in the alveoli is normal. The maintenance of this thin layer results from fluid movement out of the pulmonary capillaries into the alveolar interstitium driven by vascular hydrostatic pressure and then through alveolar tight junctions. This is then balanced by fluid reabsorption from the alveolar space mediated by transepithelial salt and water transport through alveolar cells. Reabsorption is a two-step process: first, sodium enters via sodium-permeable channels in the apical membranes of alveolar type 1 and 2 cells followed by active extrusion of sodium into the interstitium by the basolateral Na+, K+-ATPase. Anions follow the cationic charge gradient and water follows the salt-induced osmotic gradient. The proximate cause of alveolar flooding is the result of a failure to reabsorb sufficient salt and water or a failure of the tight junctions to prevent excessive movement of fluid from the interstitium to alveolar lumen. Cytokine- and chemokine-induced inflammation can have a particularly profound effect on lung sodium transport since they can alter both ion channel and barrier function. Cytokines and chemokines affect alveolar amiloride-sensitive epithelial sodium channels (ENaCs), which play a crucial role in sodium transport and fluid reabsorption in the lung. This review discusses the regulation of ENaC via local and systemic cytokines during inflammatory disease and the effect on lung fluid balance.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Li Zou
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Valerie Linck
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, United States
| | - He-Ping Ma
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| |
Collapse
|
45
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
46
|
Lee KW, Nam MH, Lee HR, Hong CO, Lee KW. Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:373. [PMID: 28724416 PMCID: PMC5518117 DOI: 10.1186/s12906-017-1870-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/04/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chebulic acid (CA) isolated from T. chebula, which has been reported for treating asthma, as a potent anti-oxidant resources. Exposure to ambient urban particulate matter (UPM) considered as a risk for cardiopulmonary vascular dysfunction. To investigate the protective effect of CA against UPM-mediated collapse of the pulmonary alveolar epithelial (PAE) cell (NCI-H441), barrier integrity parameters, and their elements were evaluated in PAE. METHODS CA was acquired from the laboratory previous reports. UPM was obtained from the National Institutes of Standards and Technology, and these were collected in St. Louis, MO, over a 24-month period and used as a standard reference. To confirm the protection of PAE barrier integrity, paracellular permeability and the junctional molecules were estimated with determination of transepithelial electrical resistance, Western Blotting, RT-PCR, and fluorescent staining. RESULTS UPM aggravated the generation of reactive oxygen species (ROS) in PAE and also decreased mRNA and protein levels of junction molecules and barrier integrity in NCI-H441. However, CA repressed the ROS in PAE, also improved barrier integrity by protecting the junctional parameters in NCI-H411. CONCLUSIONS These data showed that CA resulted in decreased UPM-induced ROS formation, and the protected the integrity of the tight junctions against UPM exposure to PAE barrier.
Collapse
|
47
|
Li Y, Chang J, Cui Y, Zhao R, Ding Y, Hou Y, Zhou Z, Ji HL, Nie H. Novel mechanisms for crotonaldehyde-induced lung edema. Oncotarget 2017; 8:83509-83522. [PMID: 29137360 PMCID: PMC5663532 DOI: 10.18632/oncotarget.17840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background Crotonaldehyde is a highly noxious α,β-unsaturated aldehyde in cigarette smoke that causes edematous acute lung injury. Objective To understand how crotonaldehyde impairs lung function, we examined its effects on human epithelial sodium channels (ENaC), which are major contributors to alveolar fluid clearance. Methods We studied alveolar fluid clearance in C57 mice and ENaC activity was examined in H441 cells. Expression of α- and γ-ENaC was measured at protein and mRNA levels by western blot and real-time PCR, respectively. Intracellular ROS levels were detected by the dichlorofluorescein assay. Heterologous αβγ-ENaC activity was observed in an oocyte model. Results Our results showed that crotonaldehyde reduced transalveolar fluid clearance in mice. Furthermore, ENaC activity in H441 cells was inhibited by crotonaldehyde dose-dependently. Expression of α- and γ-subunits of ENaC was decreased at the protein and mRNA level in H441 cells exposed to crotonaldehyde, which was probably mediated by the increase in phosphorylated extracellular signal-regulated protein kinases 1 and 2. ROS levels increased time-dependently in cells exposed to crotonaldehyde. Heterologous αβγ-ENaC activity was rapidly eliminated by crotonaldehyde. Conclusion Our findings suggest that crotonaldehyde causes edematous acute lung injury by eliminating ENaC activity at least partly via facilitating the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 signal molecules. Long-term exposure may decrease the expression of ENaC subunits and damage the cell membrane integrity, as well as increase the levels of cellular ROS products.
Collapse
Affiliation(s)
- Yue Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Jianjun Chang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yapeng Hou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhiyu Zhou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.,Texas Lung Injury Institute, University of Texas Health Northeast, Tyler, Texas 75708, USA
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
48
|
Stewart T, Koval WT, Molina SA, Bock SM, Lillard JW, Ross RF, Desai TA, Koval M. Calibrated flux measurements reveal a nanostructure-stimulated transcytotic pathway. Exp Cell Res 2017; 355:153-161. [PMID: 28390677 DOI: 10.1016/j.yexcr.2017.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.
Collapse
Affiliation(s)
- Tarianna Stewart
- Morehouse School of Medicine, Atlanta, GA, United States; Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | - William T Koval
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | - Samuel A Molina
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | | | | | | | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Michael Koval
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
49
|
Trac PT, Thai TL, Linck V, Zou L, Greenlee M, Yue Q, Al-Khalili O, Alli AA, Eaton AF, Eaton DC. Alveolar nonselective channels are ASIC1a/α-ENaC channels and contribute to AFC. Am J Physiol Lung Cell Mol Physiol 2017; 312:L797-L811. [PMID: 28283476 DOI: 10.1152/ajplung.00379.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
A thin fluid layer in alveoli is normal and results from a balance of fluid entry and fluid uptake by transepithelial salt and water reabsorption. Conventional wisdom suggests the reabsorption is via epithelial Na+ channels (ENaC), but if all Na+ reabsorption were via ENaC, then amiloride, an ENaC inhibitor, should block alveolar fluid clearance (AFC). However, amiloride blocks only half of AFC. The reason for failure to block is clear from single-channel measurements from alveolar epithelial cells: ENaC channels are observed, but another channel is present at the same frequency that is nonselective for Na+ over K+, has a larger conductance, and has shorter open and closed times. These two channel types are known as highly selective channels (HSC) and nonselective cation channels (NSC). HSC channels are made up of three ENaC subunits since knocking down any of the subunits reduces HSC number. NSC channels contain α-ENaC since knocking down α-ENaC reduces the number of NSC (knocking down β- or γ-ENaC has no effect on NSC, but the molecular composition of NSC channels remains unclear). We show that NSC channels consist of at least one α-ENaC and one or more acid-sensing ion channel 1a (ASIC1a) proteins. Knocking down either α-ENaC or ASIC1a reduces both NSC and HSC number, and no NSC channels are observable in single-channel patches on lung slices from ASIC1a knockout mice. AFC is reduced in knockout mice, and wet wt-to-dry wt ratio is increased, but the percentage increase in wet wt-to-dry wt ratio is larger than expected based on the reduction in AFC.
Collapse
Affiliation(s)
- Phi T Trac
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Tiffany L Thai
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Valerie Linck
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Li Zou
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Megan Greenlee
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Qiang Yue
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Otor Al-Khalili
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Amity F Eaton
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Douglas C Eaton
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
50
|
Trac D, N. Helms M. Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|