1
|
Wayne NJ, Dembny KE, Pease T, Saba F, Zhao X, Masison DC, Greene LE. Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0012221. [PMID: 34424055 PMCID: PMC8547424 DOI: 10.1128/mcb.00122-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.
Collapse
Affiliation(s)
- Nicole J. Wayne
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E. Dembny
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Pease
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Farrin Saba
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
North HL, Caminade P, Severac D, Belkhir K, Smadja CM. The role of copy-number variation in the reinforcement of sexual isolation between the two European subspecies of the house mouse. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190540. [PMID: 32654648 PMCID: PMC7423270 DOI: 10.1098/rstb.2019.0540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
Reinforcement has the potential to generate strong reproductive isolation through the evolution of barrier traits as a response to selection against maladaptive hybridization, but the genetic changes associated with this process remain largely unexplored. Building upon the increasing evidence for a role of structural variants in adaptation and speciation, we addressed the role of copy-number variation in the reinforcement of sexual isolation evidenced between the two European subspecies of the house mouse. We characterized copy-number divergence between populations of Mus musculus musculus that display assortative mate choice, and those that do not, using whole-genome resequencing data. Updating methods to detect deletions and tandem duplications (collectively: copy-number variants, CNVs) in Pool-Seq data, we developed an analytical pipeline dedicated to identifying genomic regions showing the expected pattern of copy-number displacement under a reinforcement scenario. This strategy allowed us to detect 1824 deletions and seven tandem duplications that showed extreme differences in frequency between behavioural classes across replicate comparisons. A subset of 480 deletions and four tandem duplications were specifically associated with the derived trait of assortative mate choice. These 'Choosiness-associated' CNVs occur in hundreds of genes. Consistent with our hypothesis, such genes included olfactory receptors potentially involved in the olfactory-based assortative mate choice in this system as well as one gene, Sp110, that is known to show patterns of differential expression between behavioural classes in an organ used in mate choice-the vomeronasal organ. These results demonstrate that fine-scale structural changes are common and highly variable within species, despite being under-studied, and may be important targets of reinforcing selection in this system and others. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Henry L. North
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Pierre Caminade
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Carole M. Smadja
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
3
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
4
|
Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma. Proc Natl Acad Sci U S A 2013; 110:3943-8. [PMID: 23431138 DOI: 10.1073/pnas.1217271110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell death is a common metazoan cell fate, and its inactivation is central to human malignancy. In Caenorhabditis elegans, apoptotic cell death occurs via the activation of the caspase CED-3 following binding of the EGL-1/BH3-only protein to the antiapoptotic CED-9/BCL2 protein. Here we report a major alternative mechanism for caspase activation in vivo involving the F-box protein DRE-1. DRE-1 functions in parallel to EGL-1, requires CED-9 for activity, and binds to CED-9, suggesting that DRE-1 promotes apoptosis by inactivating CED-9. FBXO10, a human protein related to DRE-1, binds BCL2 and promotes its degradation, thereby initiating cell death. Moreover, some human diffuse large B-cell lymphomas have inactivating mutations in FBXO10 or express FBXO10 at low levels. Our results suggest that DRE-1/FBXO10 is a conserved regulator of apoptosis.
Collapse
|
5
|
Armstrong CL, Duffin CA, McFarland R, Vogel MW. Mechanisms of compartmental purkinje cell death and survival in the lurcher mutant mouse. THE CEREBELLUM 2012; 10:504-14. [PMID: 21104177 DOI: 10.1007/s12311-010-0231-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Lurcher mutant mouse is characterized by its ataxic gait and loss of cerebellar Purkinje cells and their afferents, granule cells and olivary neurons, during the first weeks of postnatal development. For the 50 years since its discovery, the heterozygous Lurcher mutant has served as an important model system for studying neuron-target interactions in the developing cerebellum and cerebellar function. The identification of the Lurcher (Lc) gene over 10 years ago as a gain-of-function mutation in the δ2 glutamate receptor (GluRδ2) led to extensive studies of cell death mechanisms in the Lc/+ cerebellum. The advantage of this model system is that GluRδ2(+) receptors and GluRδ2(Lc) channels are expressed predominantly in Purkinje cells, making it possible to study the effects of a well-characterized leak current in a well-defined cell type during a critical phase of neuronal development. Yet there is still controversy surrounding the mechanisms of neuronal death in Lc/+ Purkinje cells with competing hypotheses for necrotic, apoptotic, and autophagic cell death pathways as a consequence of the excitotoxic stress caused by the GluRδ2(Lc) leak current. The goal of this review is to summarize recent studies that critically test the role of various cell death pathways in Lc/+ Purkinje cell degeneration with respect to evidence for the molecular heterogeneity of Purkinje cells. We propose that the expression of putative survival factors, such as heat shock proteins, in a subset of cerebellar Purkinje cells may affect cell death pathways and account for the pattern and diverse mechanisms of Lc/+ Purkinje degeneration.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Chemical and Biological Sciences, Mt Royal University, Calgary, AB, Canada, T3E 6K6
| | | | | | | |
Collapse
|
6
|
Senol N, Ceyhan BM, Ersoy IH, Senol A, Acarturk G, Sutcu R. Aspirin increases NMDA receptor subunit 2A concentrations in rat hippocampus. J Recept Signal Transduct Res 2011; 32:17-21. [DOI: 10.3109/10799893.2011.641975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Oliver PL, Finelli MJ, Edwards B, Bitoun E, Butts DL, Becker EBE, Cheeseman MT, Davies B, Davies KE. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet 2011; 7:e1002338. [PMID: 22028674 PMCID: PMC3197693 DOI: 10.1371/journal.pgen.1002338] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/24/2011] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.
Collapse
Affiliation(s)
- Peter L. Oliver
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mattéa J. Finelli
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Darcy L. Butts
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Ben Davies
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. J Neurosci 2010; 30:13932-42. [PMID: 20962215 DOI: 10.1523/jneurosci.1515-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inappropriate or excessive activation of ionotropic receptors can have dramatic consequences for neuronal function and, in many instances, leads to cell death. In Caenorhabditis elegans, nicotinic acetylcholine receptor (nAChR) subunits are highly expressed in a neural circuit that controls movement. Here, we show that heteromeric nAChRs containing the acr-2 subunit are diffusely localized in the processes of excitatory motor neurons and act to modulate motor neuron activity. Excessive signaling through these receptors leads to cell-autonomous degeneration of cholinergic motor neurons and paralysis. C. elegans double mutants lacking calreticulin and calnexin-two genes previously implicated in the cellular events leading to necrotic-like cell death (Xu et al. 2001)-are resistant to nAChR-mediated toxicity and possess normal numbers of motor neuron cell bodies. Nonetheless, excess nAChR activation leads to progressive destabilization of the motor neuron processes and, ultimately, paralysis in these animals. Our results provide new evidence that chronic activation of ionotropic receptors can have devastating degenerative effects in neurons and reveal that ion channel-mediated toxicity may have distinct consequences in neuronal cell bodies and processes.
Collapse
|
9
|
Duffin C, McFarland R, Sarna J, Vogel M, Armstrong C. Heat shock protein 25 expression and preferential Purkinje cell survival in thelurchermutant mouse cerebellum. J Comp Neurol 2010; 518:1892-907. [DOI: 10.1002/cne.22309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? THE CEREBELLUM 2009; 8:202-10. [PMID: 19462216 DOI: 10.1007/s12311-009-0113-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 05/06/2009] [Indexed: 01/29/2023]
Abstract
A spontaneous model of cerebellar ataxia in the Syrian hamster is described. Breeding data indicate that the condition is hereditary and that the mode of inheritance is autosomal recessive. Homozygotes are smaller in size than the wild-type but have a normal appearance. Mutants show a moderate ataxia beginning at 7 weeks of age. Although affected adults exhibit significant atrophy in the cerebellum, other parts of the brain appear relatively normal by light microscopy. Mutants lose almost all Purkinje cells by 18 months of age and exhibit a moderate reduction in granule cell density, probably as a consequence of the primary loss of Purkinje cells. In the homozygous hamster brain, Nna1 expression is suppressed, similar to that previously observed in Purkinje cell degeneration (pcd) mutant mice. A phenotypic comparison of ataxic hamsters with the pcd mutant mice suggests that the influence of the causal allele in ataxic hamsters is considerably milder than most of the alleles found in the mutant mice.
Collapse
|
11
|
Crews L, Rockenstein E, Masliah E. Biological Transgenic Mouse Models of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:291-301. [DOI: 10.1016/s0072-9752(07)01227-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Derenne A, Arsenault ML, Austin DP, Weatherly JN. Weaver mutant mice exhibit long-term learning deficits under several measures of instrumental behavior. Physiol Behav 2007; 92:1002-9. [PMID: 17826805 DOI: 10.1016/j.physbeh.2007.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Homozygous weaver mutant mice (wv/wv) exhibit symptoms that parallel Parkinson's disease, including motor deficits and the destruction of dopaminergic neurons as well as degeneration in the cerebellum and hippocampus. To develop a more complete behavioral profile of these organisms, groups of wv/wv, wv/+ mice and C57BL/6 mice were observed on a within-subjects basis under a fixed-interval schedule of reinforcement, a differential-reinforcement-of-low-rate-of-responding schedule, and a discrimination task in which a saccharin solution and tap water were concurrently available from two food cups. Under both reinforcement schedules, the wv/wv mice responded as frequently as the comparison subjects, but they responded in a manner that was inappropriate to the contingencies. Rather than respond with increasing frequency as the upcoming reinforcer became temporally proximate, wv/wv mice responded with decreasing probability as a function of the time since the previous reinforcer. Under the discrimination task, the wv/wv mice, unlike the controls, obtained saccharin over tap water at the level of chance. The findings suggest that weaver mutant mice express learning deficits similar to those found in other dopamine-deficient organisms.
Collapse
|
13
|
Akita K, Arai S, Ohta T, Hanaya T, Fukuda S. Suppressed Nna1 gene expression in the brain of ataxic Syrian hamsters. J Neurogenet 2007; 21:19-29. [PMID: 17464795 DOI: 10.1080/01677060600843316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ataxic Syrian hamsters with an autosomal recessive trait were analyzed. Homozygotes showed moderate ataxia beginning at seven to eight weeks of age. They were fertile and lived more than two years. The affected hamsters exhibited an adult-onset degeneration of cerebellar Purkinje neurons, followed by a slow, mild reduction in the density of granule cells. Northern hybridization demonstrated that expression of Nna1, the gene responsible for the Purkinje cell degeneration (pcd) phenotype, was almost negligible in the brain of homozygous hamsters. These results strongly suggest that pcd-type mutation is involved in the ataxic phenotype of mutant hamsters.
Collapse
Affiliation(s)
- Kenji Akita
- Biomedical Institute, Research Center, Hayashibara Biochemical Laboratories, Fujisaki, Okayama, Japan.
| | | | | | | | | |
Collapse
|
14
|
Chen YT, Collins LL, Uno H, Chou SM, Meshul CK, Chang SS, Chang C. Abnormal cerebellar cytoarchitecture and impaired inhibitory signaling in adult mice lacking TR4 orphan nuclear receptor. Brain Res 2007; 1168:72-82. [PMID: 17706948 PMCID: PMC2084075 DOI: 10.1016/j.brainres.2007.06.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/01/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
Since testicular orphan nuclear receptor 4 (TR4) was cloned, its physiological functions remain largely unknown. In this study, the TR4 knockout (TR4(-/-)) mouse model was used to investigate the role of TR4 in the adult cerebellum. Behaviorally, these null mice exhibit unsteady gait, as well as involuntary postural and kinetic movements, indicating a disturbance of cerebellar function. In the TR4(-/-) brain, cerebellar restricted hypoplasia is severe and cerebellar vermal lobules VI and VII are underdeveloped, while no structural alterations in the cerebral cortex are observed. Histological analysis of the TR4(-/-) cerebellar cortex reveals reductions in granule cell density, as well as a decreased number of parallel fiber boutons that are enlarged in size. Further analyses reveal that the levels of GABA and GAD are decreased in both Purkinje cells and interneurons of the TR4(-/-) cerebellum, suggesting that the inhibitory circuits signaling within and from the cerebellum may be perturbed. In addition, in the TR4(-/-) cerebellum, immunoreactivity of GluR2/3 was reduced in Purkinje cells, but increased in the deep cerebellar nuclei. Together, these results suggest that the behavioral phenotype of TR4(-/-) mice may result from disrupted inhibitory pathways in the cerebellum. No progressive atrophy was observed at various adult stages in the TR4(-/-) brain, therefore the disturbances most likely originate from a failure to establish proper connections between principal neurons in the cerebellum during development.
Collapse
Affiliation(s)
- Yei-Tsung Chen
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
- Department of Neurology, Massachusetts General Hosptial and Harvard Medical School, Boston, MA 02114
| | - Loretta L. Collins
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642
| | - Hideo Uno
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53708
| | - Samuel M. Chou
- Norris ALS Neuromuscular Research Institute, San Francisco, CA 94115
| | - Charles K. Meshul
- Research Services, V.A. Medical Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Shu-Shi Chang
- Department of Neuroscience, Chinese Medical University, Taiwan
| | - Chawnshang Chang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
15
|
Frischmuth S, Kranda K, Bäurle J. Translocation of cytochrome c during cerebellar degeneration in Lurcher and weaver mutant mice. Brain Res Bull 2006; 71:139-48. [PMID: 17113939 DOI: 10.1016/j.brainresbull.2006.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 06/09/2006] [Accepted: 08/20/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c translocation from the inner mitochondrial membrane into the cytosol is the initial step of the intrinsic apoptotic pathway. As no evidence was ever presented for cytochrome c translocation during cerebellar degeneration in Lurcher (Lc/+) and weaver (wv/wv) mutant mice, we searched for the presence of such a process in cerebellar homogenates of mutant and wild-type mice from postnatal day (P)1 to P56. Here we present the first documented time course of cytochrome c translocation spanning the entire period of neurodegeneration in both mutant types. We identified cytochrome c with Western blotting and monitored cell loss in the cerebellum with Calbindin D-28k immunohistochemistry, Nissl-staining and morphometry. No cytochrome c translocation was ever detected in wild-types at any age investigated. Translocated cytochrome c appeared between P13 and P21 in Lc/+ and between P5 and P6 in wv/wv. These two intervals precisely coincide with the respective periods of maximal neuronal death in the cerebellum. Secondary translocation was also observed at a later stage between P42 and P49 in Lc/+ and from P22 onwards in wv/wv. Since no substantial neuronal loss has ever been observed in Lc/+ and wv/wv mutants at these postnatal ages, the delayed translocation may correspond to cytochrome c of extraneuronal, presumably glial origin. Observations of an increased expression of glial fibrillary acidic protein and sustained remodeling of the astrocytic network in the cerebellum of both mutants, long after the cessation of neuronal death make this assumption rather plausible.
Collapse
Affiliation(s)
- Sabine Frischmuth
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Physiology, Arnimallee 22, D-14195 Berlin, Germany
| | | | | |
Collapse
|
16
|
Chakrabarti L, Neal JT, Miles M, Martinez RA, Smith AC, Sopher BL, La Spada AR. The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes Nna1 protein. Mamm Genome 2006; 17:103-10. [PMID: 16465590 DOI: 10.1007/s00335-005-0096-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/21/2005] [Indexed: 11/25/2022]
Abstract
In the mouse, Purkinje cell degeneration (pcd) is a recessive mutation characterized by degeneration of cerebellar Purkinje cells, retinal photoreceptors, olfactory bulb mitral neurons, and certain thalamic neurons, and is accompanied by defective spermatogenesis. Previous studies of pcd have led to the identification of Nna1 as the causal gene; however, how loss of Nna1 function results in neurodegeneration remains unresolved. One useful approach for establishing which functional domains of a protein underlie a recessive phenotype has been to determine the genetic basis of the various alleles at the locus of interest. Because none of the pcd alleles analyzed at the time of the identification of Nna1 provided insight into the molecular basis of Nna1 loss-of-function, we obtained a recent pcd remutation--pcd5J, and after determining that its phenotype is comparable to existing pcd severe alleles, we sought its genetic basis by sequencing Nna1. In this article we report that pcd5J results from the insertion of a single GAC triplet encoding an aspartic acid residue at position 775 of Nna1. Although this insertion does not affect Nna1 expression at the RNA level, Nna1pcd-5J protein expression is markedly decreased. Pulse-chase experiments reveal that the aspartic acid insertion dramatically destabilizes Nna1pcd-5J protein, accounting for the observation that pcd5J is a severe allele. The presence of a readily detectable genetic mutation in pcd5J confirms that Nna1 loss-of-function alone underlies the broad pcd phenotype and will facilitate further studies of how Nna1 loss-of-function produces neurodegeneration and defective spermatogenesis in pcd mice.
Collapse
Affiliation(s)
- Lisa Chakrabarti
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195-7110, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Armstrong CL, Vogel MW, Hawkes R. Development of Hsp25 expression compartments is not constrained by Purkinje cell defects in the Lurcher mouse mutant. J Comp Neurol 2006; 491:69-78. [PMID: 16127699 DOI: 10.1002/cne.20703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four transverse zones can be distinguished in the adult mouse cerebellar cortex based on differential expression of cell-specific antigens, termination patterns of mossy fiber afferents, and phenotypes of mouse mutants with cerebellar defects: the anterior zone (AZ), central zone (CZ), posterior zone (PZ), and nodular zone (NZ). In the heterozygous Lurcher (Lc/+) mouse a zonally restricted abnormality in Purkinje cell development is seen. The Purkinje cell-specific antigen zebrin II is normally differentially expressed in all four zones of the adult cerebellum, but in the Lc/+ mutant is confined to the PZ and NZ, caudal to a transverse boundary in the dorsal aspect of lobule VIII. In this study we wanted to understand why zebrin II expression is arrested at this boundary and whether the Lc mutation affects the differentiation of additional Purkinje cell antigens in a similar manner. To determine this, we took advantage of the dynamic developmental timetable of another Purkinje cell antigen, the small heat shock protein Hsp25. Using immunohistochemistry we demonstrate that cerebellar maturation anterior to the CZ/PZ transverse boundary appears to be unaffected by the Lc allele, in that initial progression of Hsp25 expression in the Lc/+ cerebellum was similar to controls. Double-labeling experiments with anti-Hsp25 and anti-calbindin suggest that characteristic banding patterns of Hsp25 in Lc/+ cerebellum develop and are preserved despite cell loss. Thus, since simple temporal or spatial models cannot account for the zonal restriction seen during Lc/+ cerebellar development, the abnormality may be zebrin II-specific.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Cell Biology & Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
18
|
Etheredge JA, Murchison D, Abbott LC, Griffith WH. Functional compensation by other voltage-gated Ca2+ channels in mouse basal forebrain neurons with Ca(V)2.1 mutations. Brain Res 2005; 1140:105-19. [PMID: 16364258 DOI: 10.1016/j.brainres.2005.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 01/19/2023]
Abstract
Tottering (tg/tg) and leaner (tg(la)/tg(la)) mutant mice exhibit distinct mutations in the gene encoding the voltage-activated Ca(2+) channel alpha(1A) subunit (CACNA1A), the pore-forming subunit of the Ca(V)2.1 (P/Q type) Ca(2+) channels. These mice exhibit absence seizures and deficiencies in motor control and other functions. Previous work in cerebellar Purkinje neurons has shown that these mutations cause dramatic reductions in calcium channel function. Because Purkinje cell somata primarily express the Ca(V)2.1 channels, the general decrease in Ca(V)2.1 channel function is observed as a profound decrease in whole-cell current. In contrast to Purkinje cells, basal forebrain (BF) neurons express all of the Ca(2+) channel alpha(1) subunits, with Ca(V)2.1 contributing approximately 30% to the whole-cell current in wild-type (+/+) mice. Here, we show that whole-cell Ba(2+) current densities in BF neurons are not reduced in the mutant genotypes despite a reduction in the Ca(V)2.1 contribution. By blocking the different Ca(2+) channel subtypes with specific pharmacological agents, we found a significant increase in the proportion of Ca(V)1 Ca(2+) current in mutant phenotypes. There was no change in tissue mRNA expression of calcium channel subtypes Ca(V)2.1, Ca(V)2.2, Ca(V)1.2, Ca(V)1.3, and Ca(V)2.3 in the tottering and leaner mutant mice. These results suggest that Ca(V)1 channels may functionally upregulate to compensate for reduced Ca(V)2.1 function in the mutants without an increase in Ca(v)1 message. Single-cell reverse transcription polymerase chain reaction (RT-PCR) experiments in a subset of sampled neurons revealed that approximately 90% of the cells could be considered cholinergic based on choline acetyltransferase (ChAT) mRNA expression.
Collapse
Affiliation(s)
- Jason A Etheredge
- Department of Medical Pharmacology and Toxicology, College of Medicine, Reynolds Medical Science Building, Texas A&M University System Health Science Center, 1114-TAMU, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
19
|
Hebert ML, Wells RD. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG.CAG repeats by intramolecular DNA repair. J Mol Biol 2005; 353:961-79. [PMID: 16213518 DOI: 10.1016/j.jmb.2005.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/30/2005] [Accepted: 09/09/2005] [Indexed: 11/19/2022]
Abstract
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.
Collapse
Affiliation(s)
- Micheal L Hebert
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
20
|
Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, Krobitsch S. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet 2005; 14:2893-909. [PMID: 16115810 DOI: 10.1093/hmg/ddi321] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 is an inherited neurodegenerative disorder that is caused by an expanded trinucleotide repeat in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2. Although evidence has been provided that ataxin-2 is involved in RNA metabolism, the physiological function of ataxin-2 remains unclear. Here, we demonstrate that ataxin-2 interacts with two members of the endophilin family, endophilin-A1 and endophilin-A3. To elucidate the physiological implications of these interactions, we exploited yeast as a model system and discovered that expression of ataxin-2 as well as both endophilin proteins is toxic for yeast lacking the SAC6 gene product fimbrin, a protein involved in actin filament organization and endocytotic processes. Intriguingly, expression of huntingtin, another polyglutamine protein interacting with endophilin-A3, was also toxic in Deltasac6 yeast. These effects can be suppressed by simultaneous expression of one of the two human fimbrin orthologs, L- or T-plastin. Moreover, we have discovered that ataxin-2 associates with L- and T-plastin and that overexpression of ataxin-2 leads to accumulation of T-plastin in mammalian cells. Thus, our findings suggest an interplay between ataxin-2, endophilin proteins and huntingtin in plastin-associated cellular pathways.
Collapse
Affiliation(s)
- Markus Ralser
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
22
|
Zainabadi K, Benyamini P, Chakrabarti R, Veena MS, Chandrasekharappa SC, Gatti RA, Srivatsan ES. A 700-kb physical and transcription map of the cervical cancer tumor suppressor gene locus on chromosome 11q13. Genomics 2005; 85:704-14. [PMID: 15885497 DOI: 10.1016/j.ygeno.2005.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 02/11/2005] [Accepted: 02/25/2005] [Indexed: 11/18/2022]
Abstract
Nonrandom deletion of chromosome 11q13 sequences is a significant event in a number of human tumors. We have recently identified a 300-kb minimal area of deletion in primary cervical tumors that overlaps with deletions observed in endocrine and nasopharyngeal tumors. We have also observed a 5.7-kb homozygous deletion within this interval in HeLa cells (a cervical cancer cell line), HeLa cell-derived tumorigenic hybrids, and a primary cervical tumor, suggesting the presence of a tumor suppressor gene in this region. In the present investigation, we have constructed a 700-kb contig map encompassing the 300-kb deletion using the human genome sequence database and confirmed the map using various STS markers from the region. Our map also shows the overlap of a previously published rare, heritable fragile site, FRA11A, with the cervical cancer deletion locus. The mapped region contains highly repetitive GC-poor sequences. We have identified and characterized eight different polymorphic microsatellite markers from the sequences within and surrounding the deletion. Further, expression studies performed with 18 different ESTs localized adjacent to the homozygous deletion showed the presence of a transcript for only one of the ESTs, AA282789. This EST mapping within the homozygous deletion is also expressed in HeLa cells, thereby excluding the EST as the putative tumor suppressor gene. Additionally, analysis of four candidate genes (SF3B2, BRMS1, RIN1, and RAB1B) from the region showed expression of the expected size message in both the nontumorigenic and the tumorigenic HeLa cell hybrids, thereby excluding them as the putative tumor suppressor gene(s). However, Northern blot analysis with a fifth candidate gene, PACS1 (phosphofurin acidic cluster sorting protein), mapped to the deletion/FRA11A overlap region showed the expression of an 8-kb transcript in HeLa and five other tumor cell lines in addition to the expected 4.5-kb transcript. Since the gene shows abundant expression in normal tissues and an altered transcript is observed in tumor cell lines, we hypothesize that this gene could represent sequences of the putative tumor suppressor gene. Finally, we have observed a perfect 48-bp CAG/CCG repeat 99 kb proximal to D11S913, the marker linked to the neurodegenerative disorder spinocerebellar ataxia 5. The physical and transcription maps and the microsatellite markers of the 700-kb region of chromosome 11q13 should be helpful in the cloning of the cervical cancer tumor suppressor gene.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Department of Surgery 10H2, VAGLAHS West Los Angeles, David Geffen School of Medicine, University of California at Los Angeles, Building 304, Room E2-218, 11301 Wiltshire Boulevard, West Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Khajav M, Ashizawa T, Sinden RR. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004; 32:6334-46. [PMID: 15576360 PMCID: PMC535684 DOI: 10.1093/nar/gkh976] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a (CTG).(CAG) repeat in the DMPK gene on chromosome 19q13.3. At least 17 neurological diseases have similar genetic mutations, the expansion of DNA repeats. In most of these disorders, the disease severity is related to the length of the repeat expansion, and in DM1 the expanded repeat undergoes further elongation in somatic and germline tissues. At present, in this class of diseases, no therapeutic approach exists to prevent or slow the repeat expansion and thereby reduce disease severity or delay disease onset. We present initial results testing the hypothesis that repeat deletion may be mediated by various chemotherapeutic agents. Three lymphoblast cell lines derived from two DM1 patients treated with either ethylmethanesulfonate (EMS), mitomycin C, mitoxantrone or doxorubicin, at therapeutic concentrations, accumulated deletions following treatment. Treatment with EMS frequently prevented the repeat expansion observed during growth in culture. A significant reduction of CTG repeat length by 100-350 (CTG).(CAG) repeats often occurred in the cell population following treatment with these drugs. Potential mechanisms of drug-induced deletion are presented.
Collapse
Affiliation(s)
- Vera I Hashem
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Engel KC, Anderson JH, Gomez CM, Soechting JF. Deficits in ocular and manual tracking due to episodic ataxia type 2. Mov Disord 2004; 19:778-787. [PMID: 15254935 DOI: 10.1002/mds.20121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Four patients with a novel mutation leading to episodic ataxia type 2 were studied in a task that required them to track target motion either with the eyes or with the index finger of the right hand. The target initially moved in a straight line and then changed direction at an unpredictable time by an unpredictable amount. On the day of testing, 3 of the patients were evaluated as normal on a neurological exam, whereas the fourth was severely ataxic. Nevertheless, all 4 showed deficits in tracking behavior with common features. Ocular tracking tended to result in hypermetric saccades at longer than normal latencies. Smooth pursuit tracking was absent in 1 patient and had lower than normal gain in the others. Deficits in manual tracking showed similarities to the deficits in ocular tracking, with hypermetric compensations for changes in target direction. The similarities in the deficits in manual and ocular tracking suggest that they are subject to similar control by the cerebellar structures.
Collapse
Affiliation(s)
- Kevin C Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - John H Anderson
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher M Gomez
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John F Soechting
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Bianchi L, Gerstbrein B, Frøkjaer-Jensen C, Royal DC, Mukherjee G, Royal MA, Xue J, Schafer WR, Driscoll M. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci 2004; 7:1337-44. [PMID: 15543143 DOI: 10.1038/nn1347] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 10/12/2004] [Indexed: 12/18/2022]
Abstract
Hyperactivation of the Caenorhabditis elegans MEC-4 Na(+) channel of the DEG/ENaC superfamily (MEC-4(d)) induces neuronal necrosis through an increase in intracellular Ca(2+) and calpain activation. How exacerbated Na(+) channel activity elicits a toxic rise in cytoplasmic Ca(2+), however, has remained unclear. We tested the hypothesis that MEC-4(d)-induced membrane depolarization activates voltage-gated Ca(2+) channels (VGCCs) to initiate a toxic Ca(2+) influx, and ruled out a critical requirement for VGCCs. Instead, we found that MEC-4(d) itself conducts Ca(2+) both when heterologously expressed in Xenopus oocytes and in vivo in C. elegans touch neurons. Data generated using the Ca(2+) sensor cameleon suggest that an induced release of endoplasmic reticulum (ER) Ca(2+) is crucial for progression through necrosis. We propose a refined molecular model of necrosis initiation in which Ca(2+) influx through the MEC-4(d) channel activates Ca(2+)-induced Ca(2+) release from the ER to promote neuronal death, a mechanism that may apply to neurotoxicity associated with activation of the ASIC1a channel in mammalian ischemia.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, A232 Nelson Biological Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hashem VI, Rosche WA, Sinden RR. Genetic recombination destabilizes (CTG)n.(CAG)n repeats in E. coli. Mutat Res 2004; 554:95-109. [PMID: 15450408 DOI: 10.1016/j.mrfmmm.2004.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/16/2004] [Accepted: 03/28/2004] [Indexed: 11/26/2022]
Abstract
The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, 2121 West Holcombe Blvd., Houston 77030-3303, USA
| | | | | |
Collapse
|
27
|
Oliver PL, Bitoun E, Clark J, Jones EL, Davies KE. Mediation of Af4 protein function in the cerebellum by Siah proteins. Proc Natl Acad Sci U S A 2004; 101:14901-6. [PMID: 15459319 PMCID: PMC522018 DOI: 10.1073/pnas.0406196101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have established that the gene AF4, which had long been recognized as disrupted in childhood leukemia, also plays a role in the CNS. Af4 is mutated in the robotic mouse that is characterized by ataxia and Purkinje cell loss. To determine the molecular basis of this mutation, we carried out a yeast two-hybrid screen and show that Af4 binds the E3 ubiquitin ligases Drosophila seven in absentia (sina) homologues (Siah)-1a and Siah-2 in the brain. Siah-1a and Af4 are expressed in Purkinje cells and colocalize in the nucleus of human embryonic kidney 293T and P19 cells. In vitro binding assays and coimmunoprecipitation reveal a significant reduction in affinity between Siah-1a and robotic mutant Af4 compared with wild-type, which correlates with the almost complete abolition of mutant Af4 degradation by Siah-1a. These data strongly suggest that an accumulation of mutant Af4 occurs in the robotic mouse due to a reduction in its normal turnover by the proteasome. A significant increase in the transcriptional activity of mutant Af4 relative to wild-type was obtained in mammalian cells, suggesting that the activity of Af4 is controlled through Siah-mediated degradation. Another member of the Af4 family, Fmr2, which is involved in mental handicap in humans, binds Siah proteins in a similar manner. These results provide evidence that a common regulatory mechanism exists that controls levels of the Af4/Fmr2 protein family. The robotic mouse thus provides a unique opportunity to understand how these proteins play a role in disorders as diverse as leukemia, mental retardation, and neurodegenerative disease.
Collapse
Affiliation(s)
- Peter L Oliver
- Medical Research Council Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
28
|
Frank C, Giammarioli AM, Pepponi R, Fiorentini C, Rufini S. Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Lett 2004; 566:25-9. [PMID: 15147862 DOI: 10.1016/j.febslet.2004.03.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/11/2004] [Accepted: 03/22/2004] [Indexed: 11/22/2022]
Abstract
The present study was carried out to investigate the potential involvement of cholesterol-rich membrane microdomains in the mobilization of calcium induced by NMDA-receptors (NMDA-R). We herein provide evidence that agents interfering with plasma membrane cholesterol (namely, filipin and methyl-beta-cyclodextrin (Cdex)) inhibit the NMDA-stimulated influx of calcium in hippocampal cells in culture. Filipin-treated cells maintained their morphology and were able to respond with a calcium influx to high K(+) challenge, whereas Cdex altered both cellular parameters. These results suggest that the NMDA-R can be located in cholesterol-rich membrane microdomains or alternatively that the mechanisms coupling their dynamics in the post-synaptic membrane are dependent on the integrity of the microdomains.
Collapse
Affiliation(s)
- Claudio Frank
- Laboratory of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
29
|
Delibas N, Kilinc I, Yonden Z, Sutcu R, Gultekin F, Koylu H. NMDA receptor subunits 2A and 2B decrease and lipid peroxidation increase in the hippocampus of streptozotocin-diabetic rats: effects of insulin and gliclazide treatments. Int J Neurosci 2004; 114:391-401. [PMID: 14754663 DOI: 10.1080/00207450490270893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies indicate that diabetes mellitus changes N-methyl-D-aspartate (NMDA) receptor subunit composition and impairs cognitive functions. It also has been known that diabetes mellitus causes lipid peroxidation. This study examined the effects of streptozotocin-diabetes and insulin or gliclazide treatment on the hippocampal NMDA receptor subunit 2A and 2B (NR2A and NR2B) concentrations. In addition, malondial dehyde (MDA) levels were measured as a marker for lipid peroxidation. Eight weeks after the induction of diabetes MDA, levels were increased, and NR2A and NR2B concentrations were reduced. Insulin and gliclazide treatment partially prevented the reduction of NR2A and NR2B expression and prevented the elevation of MDA levels. There was no significant difference between the effects of insulin and gliclazide. The results suggest that the elevation of lipid peroxidation can be the primary biochemical disturbances in diabetes progression, and that changes in NMDA receptor subunit compositions can be involved in cognitive decline in diabetes.
Collapse
Affiliation(s)
- Namik Delibas
- Suleyman Demirel University, Faculty of Medicine, Department of Biochemistry and Physiology, Isparta, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Ayala-Grosso C, Tam J, Xanthoudakis S, Bureau Y, Roy S, Nicholson DW, Robertson GS. Effects of fimbria-fornix transection on calpain and choline acetyl transferase activities in the septohippocampal pathway. Neuroscience 2004; 126:927-40. [PMID: 15207327 DOI: 10.1016/j.neuroscience.2004.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/28/2004] [Accepted: 04/22/2004] [Indexed: 01/09/2023]
Abstract
The ability of fimbria-fornix bilateral axotomy to elicit calpain and caspase-3 activation in the rat septohippocampal pathway was determined using antibodies that selectively recognize either calpain- or caspase-cleaved products of the cytoskeletal protein alphaII-spectrin. Radioenzymatically determined choline acetyl transferase (ChAT) activity was elevated in the septum at day 5, but reduced in the dorsal hippocampus at days 3, 5 and 7, after axotomy. Prominent accumulation of calpain-, but not caspase-3-, cleaved spectrin proteolytic fragments was observed in both the septum and dorsal hippocampus 1-7 days after axotomy. ChAT-positive neuronal cell bodies in the septum also displayed calpain-cleaved spectrin indicating that calpain activation occurred in cholinergic septal neurons as a consequence of transection of the septohippocampal pathway. Calpain-cleaved alphaII-spectrin immunoreactivity was observed in cholinergic fibers coursing through the fimbria-fornix, but not in pyramidal neurons of the dorsal hippocampus, suggesting that degenerating cholinergic nerve terminals were the source of calpain activity in the dorsal hippocampus following axotomy. Accumulation of calpain-cleaved spectrin proteolytic fragments in the dorsal hippocampus and septum at day 5 after axotomy was reduced by i.c.v. administration of two calpain inhibitors. Calpain inhibition partially reduced the elevation of ChAT activity in the septum produced by transection but failed to decrease the loss of ChAT activity in the dorsal hippocampus following axotomy. These findings suggest that calpain activation contributes to the cholinergic cell body response and hippocampal axonal cytoskeletal degradation produced by transection of the septohippocampal pathway.
Collapse
Affiliation(s)
- C Ayala-Grosso
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Montreal, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
31
|
Becker EBE, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25. [PMID: 15019174 DOI: 10.1016/j.pneurobio.2003.12.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther B E Becker
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Kim SR, Lee MK, Koo KA, Kim SH, Sung SH, Lee NG, Markelonis GJ, Oh TH, Yang JH, Kim YC. Dibenzocyclooctadiene lignans fromSchisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res 2004; 76:397-405. [PMID: 15079869 DOI: 10.1002/jnr.20089] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A methanolic extract of dried Schisandra fruit (Schisandra chinensis Baill.; Schisandraceae) significantly attenuated the neurotoxicity induced by L-glutamate in primary cultures of rat cortical cells. Five dibenzocyclooctadiene lignans (deoxyschisandrin, gomisin N, gomisin A, schisandrin, and wuweizisu C) were isolated from the methanolic extract; their protective effects against glutamate-induced neurotoxicity were then evaluated. Among the five lignans, deoxyschisandrin, gomisin N, and wuweizisu C significantly attenuated glutamate-induced neurotoxicity as measured by 1). an inhibition in the increase of intracellular [Ca(2+)]; 2). an improvement in the glutathione defense system, the level of glutathione, and the activity of glutathione peroxidase; and 3). an inhibition in the formation of cellular peroxide. These results suggest that dibenzocyclooctadiene lignans from Schisandra chinensis may possess therapeutic potential against oxidative neuronal damage induced by excitotoxin.
Collapse
Affiliation(s)
- So Ra Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim SR, Koo KA, Sung SH, Ma CJ, Yoon JS, Kim YC. Iridoids fromScrophularia buergeriana attenuate glutamate-induced neurotoxicity in rat cortical cultures. J Neurosci Res 2003; 74:948-55. [PMID: 14648601 DOI: 10.1002/jnr.10828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In previous work, we isolated 7 neuroprotective iridoid glycosides from the 90% MeOH fraction of Scrophularia buergeriana (Scrophulariaceae). We therefore investigated the mode of action of 8-O-E-p-methoxycinnamoyl-harpagide (8-MCA-Harp), the most potent neuroprotective iridoid, and its aglycone, harpagide (Harp) using primary cultures of rat cortical cells in vitro. 8-MCA-Harp only revealed its neuroprotective activity in a pretreatment paradigm; this iridoid had more selectivity in protecting neurons against N-methyl-D-aspartate (NMDA)-induced neurotoxicity as opposed to that induced by kainic acid (KA). On the other hand, Harp exerted significant neuroprotective activity when it was administered either before or after glutamate insult and protected cultured neuronal cells from neurotoxicity induced by NMDA or KA. Furthermore, Harp significantly prevented the decrease of glutathione, an antioxidative compound in the brain, in our cultures. Finally, 8-MCA-Harp and Harp could successfully reduce the overproduction of nitric oxide and the level of cellular peroxide in cultured neurons. Collectively, these results suggested that Harp and 8-MCA-Harp protected primary cultured neurons against glutamate-induced oxidative stress primarily by acting on the antioxidative defense system and on glutamatergic receptors, respectively.
Collapse
Affiliation(s)
- So Ra Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Gundlfinger A, Kapfhammer JP, Kruse F, Leitges M, Metzger F. Different regulation of Purkinje cell dendritic development in cerebellar slice cultures by protein kinase Calpha and -beta. JOURNAL OF NEUROBIOLOGY 2003; 57:95-109. [PMID: 12973831 DOI: 10.1002/neu.10259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activity of protein kinase C (PKC), and in particular the PKCgamma-isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity-dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca(2+)-dependent PKC isoforms, PKCalpha and -beta, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild-type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCbeta, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild-type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCalpha-deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild-type cells. Together with our previous work on the role of PKCgamma, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCgamma-isoform, which is highly activated by developmental processes. The PKCalpha isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCbeta isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures.
Collapse
Affiliation(s)
- Anja Gundlfinger
- Anatomisches Institut I, AG Neuronale Plastizität, Universität Freiburg, Hansastrasse 9a, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
The cerebellum is the primary motor coordination center of the CNS and is also involved in cognitive processing and sensory discrimination. Multiple cerebellar malformations have been described in humans, however, their developmental and genetic etiologies currently remain largely unknown. In contrast, there is extensive literature describing cerebellar malformations in the mouse. During the past decade, analysis of both spontaneous and gene-targeted neurological mutant mice has provided significant insight into the molecular and cellular mechanisms that regulate cerebellar development. Cerebellar development occurs in several distinct but interconnected steps. These include the establishment of the cerebellar territory along anterior-posterior and dorsal-ventral axes of the embryo, initial specification of the cerebellar cell types, their subsequent proliferation, differentiation and migration, and, finally, the interconnection of the cerebellar circuitry. Our understanding of the basis of these developmental processes is certain to provide insight into the nature of human cerebellar malformations.
Collapse
Affiliation(s)
- Victor Chizhikov
- Department of Human Genetics, University of Chicago, 920 E 58th Street, CLSC 319, Chicago, IL 60637, USA
| | | |
Collapse
|
36
|
Schlüter OM, Fornai F, Alessandrí MG, Takamori S, Geppert M, Jahn R, Südhof TC. Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 2003; 118:985-1002. [PMID: 12732244 DOI: 10.1016/s0306-4522(03)00036-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In humans, mutations in the alpha-synuclein gene or exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produce Parkinson's disease with loss of dopaminergic neurons and depletion of nigrostriatal dopamine. alpha-Synuclein is a vertebrate-specific component of presynaptic nerve terminals that may function in modulating synaptic transmission. To test whether MPTP toxicity involves alpha-synuclein, we generated alpha-synuclein-deficient mice by homologous recombination, and analyzed the effect of deleting alpha-synuclein on MPTP toxicity using these knockout mice. In addition, we examined commercially available mice that contain a spontaneous loss of the alpha-synuclein gene. As described previously, deletion of alpha-synuclein had no significant effects on brain structure or composition. In particular, the levels of synaptic proteins were not altered, and the concentrations of dopamine, dopamine metabolites, and dopaminergic proteins were unchanged. Upon acute MPTP challenge, alpha-synuclein knockout mice were partly protected from chronic depletion of nigrostriatal dopamine when compared with littermates of the same genetic background, whereas mice carrying the spontaneous deletion of the alpha-synuclein gene exhibited no protection. Furthermore, alpha-synuclein knockout mice but not the mice with the alpha-synuclein gene deletion were slightly more sensitive to methamphetamine than littermate control mice. These results demonstrate that alpha-synuclein is not obligatorily coupled to MPTP sensitivity, but can influence MPTP toxicity on some genetic backgrounds, and illustrate the need for extensive controls in studies aimed at describing the effects of mouse knockouts on MPTP sensitivity.
Collapse
Affiliation(s)
- O M Schlüter
- Center for Basic Neuroscience, Department of Molecular Genetics, and The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Valera E, Fernández-Salguero PM, Planells-Cases R, Messeguer A, Van Den Nest W, Carreño C, Ferrer-Montiel A, Merino JM. Neuroprotection against excitotoxicity by N-alkylglycines in rat hippocampal neurons. Neuromolecular Med 2003; 2:271-80. [PMID: 12622405 DOI: 10.1385/nmm:2:3:271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Excessive activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype is considered a relevant initial step underlying different neurodegenerative diseases. Recently, with the approval of memantine to treat Alzheimer dementia, NMDA receptors have regained clinical interest. Accordingly, the development and validation of NMDA receptor antagonists is being reconsidered. We recently identified a family of trialkylglycines that act as channel blockers of the NMDAreceptor. Their neuroprotective activity against excitotoxic insults remains elusive. To address this issue, we first characterized the contribution of glutamate receptor subtypes to hippocampal death in culture as a function of days in culture in vitro (DIV). Whereas at 7 DIV neither NMDA nor glutamate produced a significant neuronal death, at 14 and 21 DIV, NMDA produced the death of 40% of the neurons exposed to this receptor agonist that was fully protected by MK-801. Similar results were obtained for L-glutamate at 14 DIV. In contrast, when neurons at 21 DIV were used, glutamate killed 51.1 +/- 4.9% of the neuronal population. This neuronal death was only partially prevented by MK-801, and fully abrogated by a combination of MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glucose deprivation injured 37.1 +/- 9.2% of the neurons through a mechanism sensitive to MK-801. The family of recently identified N-alkylglycines tested protected neurons against NMDA and glucosedeprivation toxicity, but not against glutamate toxicity. Noteworthy, N-alkylglicines with a moderate protection against NMDA-induced toxicity strongly protected from beta-amyloid toxicity. Collectively, these findings imply both NMDA and non-NMDA receptors in excitotoxicity of hippocampal neurons, and suggest that blockade of NMDA receptors alone may not suffice to efficiently abrogate neurodegeneration.
Collapse
Affiliation(s)
- Elvira Valera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stevanin G, Dürr A, Brice A. Spinocerebellar ataxias caused by polyglutamine expansions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 516:47-77. [PMID: 12611435 DOI: 10.1007/978-1-4615-0117-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giovanni Stevanin
- INSERM U289, Institut Fédératif di Recherche des Neurosciences, Groupe Hospitalier Pitié-Salpêtriére, Paris, France
| | | | | |
Collapse
|
39
|
Abstract
The evidence for a role of apoptosis in the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and in the more acute conditions of cerebral ischemia, traumatic brain injury (TBI), and spinal cord injury (SCI) is reviewed with regard to potential intervention by means of small antiapoptotic molecules. In addition, the available animal models for these diseases are discussed with respect to their relevance for testing small antiapoptotic molecules in the context of what is known about the apoptotic pathways involved in the diseases and the models. The principal issues related to pharmacotherapy by apoptosis inhibition, i.e., functionality of rescued neurons and potential interference with physiologically occurring apoptosis, are pointed out. Finally, the properties of a number of small antiapoptotic molecules currently under clinical investigation are summarized. It is concluded that the evidence for a role of apoptosis at present is more convincing for PD and ALS than for AD. In PD, damage to dopaminergic neurons may occur through oxidative stress and/or mitochondrial impairment and culminate in activation of an apoptotic, presumably p53-dependent cascade; some neurons experiencing energy failure may not be able to complete apoptosis, end up in necrosis and give rise to inflammatory processes. These events are reasonably well reflected in some of the PD animal models, notably those involving 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone. In sporadic ALS, an involvement of pathways involving p53 and Bcl-2 family members appears possible if not likely, but is not established. The issue is important for the development of antiapoptotic compounds for the treatment of this disease because of differential involvement of p53 in different mutant superoxide dismutase (SOD) mice. Most debated is the role of apoptosis in AD; this implies that little is known about potentially involved pathways. Moreover, there is a lack of suitable animal models for compound evaluation. Apoptosis or related phenomena are likely involved in secondary cell death in cerebral ischemia, TBI, and SCI. Most of the pertinent information comes from animal experiments, which have provided some evidence for prevention of cell death by antiapoptotic treatments, but little for functional benefit. Much remains to be done in this area to explore the potential of antiapoptotic drugs. There is a small number of antiapoptotic compounds in clinical development. With some of them, evidence for maintenance of functionality of the rescued neurons has been obtained in some animal models, and the fact that they made it to phase II studies in patients suggests that interference with physiological apoptosis is not an obligatory problem. The prospect that small antiapoptotic molecules will have an impact on the therapy of neurodegenerative diseases, and perhaps also of ischemia and trauma, is therefore judged cautiously positively.
Collapse
Affiliation(s)
- Peter C Waldmeier
- Nervous System Research, Novartis Pharma Limited, WKL-125.607, CH-4002, Basel, Switzerland.
| |
Collapse
|
40
|
Abstract
The robotic mouse is an autosomal dominant mutant that arose from a large-scale chemical mutagenesis program. It has a jerky, ataxic gait and develops adult-onset Purkinje cell loss in the cerebellum in a striking region-specific pattern, as well as cataracts. Genetic and physical mapping of the disease locus led to the identification of a missense mutation in a highly conserved region of Af4, a putative transcription factor that has been previously implicated in leukemogenesis. We demonstrate that Af4 is specifically expressed in Purkinje cells, and we hypothesize that the expression of mutant Af4 leads to neurodegeneration. This function was not identified through knock-out studies, highlighting the power of phenotype-driven mutagenesis in the mouse to identify new pathways involved in neurological disease.
Collapse
|
41
|
Delibas N, Ozcankaya R, Altuntas I, Sutcu R. Effect of cigarette smoke on lipid peroxidation, antioxidant enzymes and NMDA receptor subunits 2A and 2B concentration in rat hippocampus. Cell Biochem Funct 2003; 21:69-73. [PMID: 12579524 DOI: 10.1002/cbf.990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of cigarette smoke on lipid peroxidation and antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and on the concentration of N-methyl-d-aspartate receptor (NMDAR) subunits 2A and 2B in the hippocampus of Sprague-Dawley rats exposed to cigarette smoke for 2h/day for a period of 4 weeks was determined. It was observed that NMDAR 2A and 2B concentrations in the hippocampus were enhanced in the case of animals exposed to cigarette smoke, whereas lipid peroxidation and antioxidant enzyme activities did not show any change as compared to control animals. The results of our study suggest that cigarette smoke induces NMDAR 2A and 2B expression in the hippocampus, and that this is not due to an increased lipid peroxidation, because cigarette smoke has no effect on lipid peroxidation and antioxidant enzyme activities in the hippocampus.
Collapse
Affiliation(s)
- Namik Delibas
- Department of Biochemistry and Clinical Biochemistry, Faculty of Medicine, University of Suleyman Demirel, Turkey.
| | | | | | | |
Collapse
|
42
|
Driscoll M, Gerstbrein B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 2003; 4:181-94. [PMID: 12610523 DOI: 10.1038/nrg1018] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
If invertebrate neurons are injured by hostile environments or aberrant proteins they die much like human neurons, indicating that the powerful advantages of invertebrate molecular genetics might be successfully used for testing specific hypotheses about human neurological diseases, for drug discovery and for non-biased screens for suppressors and enhancers of neurodegeneration. Recent molecular dissection of the genetic requirements for hypoxia, excitotoxicity and death in models of Alzheimer disease, polyglutamine-expansion disorders, Parkinson disease and more, is providing mechanistic insights into neurotoxicity and suggesting new therapeutic interventions. An emerging theme is that neuronal crises of distinct origins might converge to disrupt common cellular functions, such as protein folding and turnover.
Collapse
Affiliation(s)
- Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, A232 Nelson Biological Laboratories, 604 Allison Road, Piscataway, New Jersey 08855, USA.
| | | |
Collapse
|
43
|
Díaz E, Ge Y, Yang YH, Loh KC, Serafini TA, Okazaki Y, Hayashizaki Y, Speed TP, Ngai J, Scheiffele P. Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 2002; 36:417-34. [PMID: 12408845 DOI: 10.1016/s0896-6273(02)01016-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As an approach toward understanding the molecular mechanisms of neuronal differentiation, we utilized DNA microarrays to elucidate global patterns of gene expression during pontocerebellar development. Through this analysis, we identified groups of genes specific to neuronal precursor cells, associated with axon outgrowth, and regulated in response to contact with synaptic target cells. In the cerebellum, we identified a phase of granule cell differentiation that is independent of interactions with other cerebellar cell types. Analysis of pontine gene expression revealed that distinct programs of gene expression, correlated with axon outgrowth and synapse formation, can be decoupled and are likely influenced by different cells in the cerebellar target environment. Our approach provides insight into the genetic programs underlying the differentiation of specific cell types in the pontocerebellar projection system.
Collapse
Affiliation(s)
- Elva Díaz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002; 419:367-74. [PMID: 12353028 DOI: 10.1038/nature01034] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 07/26/2002] [Indexed: 11/08/2022]
Abstract
Harlequin (Hq) mutant mice have progressive degeneration of terminally differentiated cerebellar and retinal neurons. We have identified the Hq mutation as a proviral insertion in the apoptosis-inducing factor (Aif) gene, causing about an 80% reduction in AIF expression. Mutant cerebellar granule cells are susceptible to exogenous and endogenous peroxide-mediated apoptosis, but can be rescued by AIF expression. Overexpression of AIF in wild-type granule cells further decreases peroxide-mediated cell death, suggesting that AIF serves as a free radical scavenger. In agreement, dying neurons in aged Hq mutant mice show oxidative stress. In addition, neurons damaged by oxidative stress in both the cerebellum and retina of Hq mutant mice re-enter the cell cycle before undergoing apoptosis. Our results provide a genetic model of oxidative stress-mediated neurodegeneration and demonstrate a direct connection between cell cycle re-entry and oxidative stress in the ageing central nervous system.
Collapse
Affiliation(s)
- Jeffrey A Klein
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002; 35:921-33. [PMID: 12372286 DOI: 10.1016/s0896-6273(02)00861-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autophagy is a pathway for bulk degradation of subcellular constituents that is hyperactivated in many neurodegenerative conditions. It has been considered a second form of programmed cell death. Death of cerebellar Purkinje cells in lurcher animals is due to a mutation in GluRdelta2 that results in its constitutive activation. Here we have identified protein interactions between GluRdelta2, a novel isoform of a PDZ domain-containing protein (nPIST) that binds to this receptor, and Beclin1. nPIST and Beclin1 can synergize to induce autophagy. GluRdelta2(Lc), but not GluRdelta2(wt), can also induce autophagy. Furthermore, dying lurcher Purkinje cells contain morphological hallmarks of autophagic death in vivo. These results provide strong evidence that a direct link exists between GluRdelta2(Lc) receptor and stimulation of the autophagic pathway in dying lurcher Purkinje cells.
Collapse
Affiliation(s)
- Zhenyu Yue
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hafezparast M, Ahmad-Annuar A, Wood NW, Tabrizi SJ, Fisher EMC. Mouse models for neurological disease. Lancet Neurol 2002; 1:215-24. [PMID: 12849454 DOI: 10.1016/s1474-4422(02)00100-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.
Collapse
Affiliation(s)
- Majid Hafezparast
- Department of Neurodegenerative Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | |
Collapse
|
47
|
Palladino MJ, Hadley TJ, Ganetzky B. Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. Genetics 2002; 161:1197-208. [PMID: 12136022 PMCID: PMC1462168 DOI: 10.1093/genetics/161.3.1197] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-dependent neurodegeneration is a pathological condition found in many metazoans. Despite the biological and medical significance of this condition, the cellular and molecular mechanisms underlying neurodegeneration are poorly understood. The availability of a large collection of mutants exhibiting neurodegeneration will provide a valuable resource to elucidate these mechanisms. We have developed an effective screen for isolating neurodegeneration mutants in Drosophila. This screen is based on the observation that neuronal dysfunction, which leads to observable behavioral phenotypes, is often associated with neurodegeneration. Thus, we used a secondary histological screen to examine a collection of mutants originally isolated on the basis of conditional paralytic phenotypes. Using this strategy, we have identified 15 mutations affecting at least nine loci that cause gross neurodegenerative pathology. Here, we present a genetic, behavioral, and anatomical analysis of vacuous (vacu), the first of these mutants to be characterized, and an overview of other mutants isolated in the screen. vacu is a recessive mutation located cytologically at 85D-E that causes locomotor defects in both larvae and adults as well as neuronal hyperactivity. In addition, vacu exhibits extensive age-dependent neurodegeneration throughout the central nervous system. We also identified mutations in at least eight other loci that showed significant levels of neurodegeneration with a diverse array of neuropathological phenotypes. These results demonstrate the effectiveness of our screen in identifying mutations causing neurodegeneration. Further studies of vacu and the other neurodegenerative mutants isolated should ultimately help dissect the biochemical pathways leading to neurodegeneration.
Collapse
|
48
|
Planells-Cases R, Montoliu C, Humet M, Fernández AM, García-Martínez C, Valera E, Merino JM, Pérez-Payá E, Messeguer A, Felipo V, Ferrer-Montiel A. A novel N-methyl-D-aspartate receptor open channel blocker with in vivo neuroprotectant activity. J Pharmacol Exp Ther 2002; 302:163-73. [PMID: 12065713 DOI: 10.1124/jpet.302.1.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excitotoxicity has been implicated in the etiology of ischemic stroke, chronic neurodegenerative disorders, and very recently, in glioma growth. Thus, the development of novel neuroprotectant molecules that reduce excitotoxic brain damage is vigorously pursued. We have used an ionic current block-based cellular assay to screen a synthetic combinatorial library of trimers of N-alkylglycines on the N-methyl-D-aspartate (NMDA) receptor, a well known molecular target involved in excitotoxicity. We report the identification of a family of N-alkylglycines that selectively blocked the NMDA receptor. Notably, compound 3,3-diphenylpropyl-N-glycinamide (referred to as N20C) inhibited NMDA receptor channel activity with micromolar affinity, fast on-off blockade kinetics, and strong voltage dependence. Molecule N20C did not act as a competitive glutamate or glycine antagonist. In contrast, saturation of the blocker binding site with N20C prevented dizolcipine (MK-801) blockade of the NMDA receptor, implying that both drugs bind to the same receptor site. The N-alkylglycine efficiently prevented in vitro excitotoxic neurodegeneration of cerebellar and hippocampal neurons in culture. Attenuation of neuronal glutamate/NMDA-induced Ca(2+) overload and subsequent modulation of the glutamate-nitric oxide-cGMP pathway seems to underlie N20C neuroprotection. Noteworthy, this molecule exhibited significant in vivo neuroprotectant activity against an acute, severe, excitotoxic insult. Taken together, these findings indicate that N-alkylglycine N20C is a novel, low molecular weight, moderate-affinity NMDA receptor open channel blocker with in vitro and in vivo neuroprotective activity, which, in due turn, may become a tolerated drug for the treatment of neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Centro de Biología Molecular y Celular, Universidad Miguel Hernández, Ed. Torregaitán, Avenida Ferrocaril s/n, 03202 Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Neurons seem to have at least two self-destruct programs. Like other cell types, they have an intracellular death program for undergoing apoptosis when they are injured, infected, or not needed. In addition, they apparently have a second, molecularly distinct self-destruct program in their axon. This program is activated when the axon is severed and leads to the rapid degeneration of the isolated part of the cut axon. Do neurons also use this second program to prune their axonal tree during development and to conserve resources in response to chronic insults?
Collapse
Affiliation(s)
- Martin C Raff
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit and the Biology Department, University College London, London WC1E 6BT, UK.
| | | | | |
Collapse
|
50
|
Jang YP, Kim SR, Choi YH, Kim J, Kim SG, Markelonis GJ, Oh TH, Kim YC. Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. J Neurosci Res 2002; 68:233-40. [PMID: 11948668 DOI: 10.1002/jnr.10204] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that arctigenin, a lignan isolated from the bark of Torreya nucifera, showed significant neuroprotective activity against glutamate-induced toxicity in primary cultured rat cortical cells. In this study, the mode of action of arctigenin was investigated using primary cultures of rat cortical cells as an in vitro system. Arctigenin significantly attenuated glutamate-induced neurotoxicity when added prior to or after an excitotoxic glutamate challenge. The lignan protected cultured neuronal cells more selectively from neurotoxicity induced by kainic acid than by N-methyl-D-aspartate. The binding of [(3)H]-kainate to its receptors was significantly inhibited by arctigenin in a competitive manner. Furthermore, arctigenin directly scavenged free radicals generated by excess glutamate and successfully reduced the level of cellular peroxide in cultured neurons. These results suggest that arctigenin exerted significant neuroprotective effects on glutamate-injured primary cultures of rat cortical cells by directly binding to kainic acid receptors and partly scavenging of free radicals.
Collapse
Affiliation(s)
- Young P Jang
- College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|