1
|
Ma Y, Wang Y, Anwaier G, Tuerdi N, Wu Y, Huang Y, Qin B, Ma H, Zhang Q, Wu D, Zeng K, Qi R. Antrodia cinnamomea triterpenoids attenuate cardiac hypertrophy via the SNW1/RXR/ALDH2 axis. Redox Biol 2024; 78:103437. [PMID: 39591904 PMCID: PMC11626818 DOI: 10.1016/j.redox.2024.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2), a pivotal enzyme in the metabolism of toxic aldehydes produced by oxidative stress, has been demonstrated to play a cardioprotective role in cardiovascular diseases. Antrodia cinnamomea triterpenoids (ACT) is a medicinal mushroom with anti-inflammatory and antioxidant properties, and our previous study found that ACT can exert anti-fatty liver effects by regulating ALDH2. This study aimed to elucidate the impact of ACT and its monomer on cardiac hypertrophy and investigate the relationship between its pharmacological mechanism and ALDH2. Through examining cardiac morphology and expression levels of hypertrophic biomarkers, ACT significantly reduced myocardial hypertrophy induced by angiotensin II (Ang II) and transverse aortic constriction (TAC)surgery in wild-type mice, but not in ALDH2 knockout mice. In vitro, ACT and its monomeric dehydrosulphurenic acid (DSA) inhibited the hypertrophic phenotype of Ang II-stimulated neonatal cardiac myocytes (NRCMs) in an ALDH2-dependent manner. Regarding the pharmacological mechanism, it was observed that ACT and DSA restored ALDH2 expression and activity in myocardial tissues of WT-Ang II/TAC mice and Ang II-induced NRCMs. Furthermore, it inhibited oxidative stress and improved mitochondrial quality control (MQC) homeostasis in an ALDH2-dependent manner. We screened SNW1, a transcriptional coactivator, as a DSA-binding protein by "target fishing" and cellular enthusiasm transfer assay techniques and validated that SNW1 promoted ALDH2 transcription and translation levels through synergistic interaction with the transcription factor RXR. In conclusion, the findings demonstrate that ACT/DSA upregulates ALDH2 expression via regulating SNW1/RXR, thereby inhibiting oxidative stress and maintaining MQC homeostasis, and then protects against cardiac hypertrophy.
Collapse
Affiliation(s)
- Yinghua Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yunxia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Gulinigaer Anwaier
- Department of Pathophysiology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang, 830000, China
| | - Nuerbiye Tuerdi
- Department of Cardiovascular Medicine, The People's Hospital of Ba Chu Country, Xinjiang, 843800, China
| | - Yangchang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Chinese Medicine Research and Development Center, China Medical University Hospital, The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yinyue Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Haoyue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Jiang C, Tan M, Lai L, Wang Y, Chen Z, Xie Q, Li Y. Inhibiting glycosphingolipids alleviates cardiac hypertrophy by reducing reactive oxygen species and restoring autophagic homeostasis. Front Pharmacol 2024; 15:1409625. [PMID: 39411072 PMCID: PMC11474036 DOI: 10.3389/fphar.2024.1409625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Cardiac hypertrophy is a compensatory stress response produced by a variety of factors, and pathologic hypertrophy can lead to irreversible, severe cardiac disease. Glycosphingolipids (GSLs) are vital constituents of cells, and changes in their content and composition are important factors causing mitochondrial dysfunction in diabetic cardiomyopathy; however, the relationship between GSLs expression and cardiac hypertrophy and specific mechanisms associated with it are not clear. Methods Here, using male C57BL/6 mice, we performed aortic arch reduction surgery to establish an animal model of pressure overload cardiac hypertrophy. In addition, phenylephrine was used in vitro to induce H9c2 cells and neonatal rat left ventricular myocytes (NRVMs) to establish a cellular hypertrophy model. Results Mass spectrometry revealed that the composition of GSLs was altered in pressure overload-induced hypertrophied mouse hearts and in stimulated hypertrophied cardiomyocyte cell lines. Specifically, in both cases, the proportion of endogenous lactosylceramide (LacCer) was significantly higher than in controls. Inhibition of GSL synthesis with Genz-123346 in NRVMs reduced cell hypertrophy, as well as fibrosis and apoptosis. By Western blotting, we detected decreased intracellular expression of Sirt3 and elevated phosphorylation of JNK after phenylephrine stimulation, but this was reversed in cells pretreated with Genz-123346. Additionally, increased protein expression of FoxO3a and Parkin, along with a decreased LC3-II/I protein ratio in phenylephrine-stimulated cells (compared with unstimulated cells), indicated that the mitochondrial autophagy process was disrupted; again, pretreatment with Genz-123346 reversed that. Discussion Our results revealed that changes in GSLs in cardiomyocytes, especially an increase of LacCer, may be a factor causing cellular hypertrophy, which can be alleviated by inhibition of GSLs synthesis. A possible mechanism is that GSLs inhibition increases the expression of Sirt3 protein, scavenges intracellular reactive oxygen species, and restores mitochondrial autophagy homeostasis, thereby lessening cardiomyocyte hypertrophy. In all, these results provide a new perspective for developing drugs for cardiac hypertrophy.
Collapse
Affiliation(s)
- Chunxin Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Zijun Chen
- College of traditional Chinese medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zhu L, Liu YP, Huang YT, Zhou ZJ, Liu JF, Yu LM, Wang HS. Cellular and molecular biology of posttranslational modifications in cardiovascular disease. Biomed Pharmacother 2024; 179:117374. [PMID: 39217836 DOI: 10.1016/j.biopha.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zi-Jun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
4
|
Schuetz T, Dolejsi T, Beck E, Fugger F, Bild A, Duin MT, Gavranovic-Novakovic J, Hilbold E, Hoffmann T, Zuber J, Bauer A, Ruschitzka F, Bär C, Penninger JM, Haubner BJ. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci Rep 2024; 14:22661. [PMID: 39349545 PMCID: PMC11443045 DOI: 10.1038/s41598-024-72783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart. Igf1r is a well-known regulator of cardiomyocyte maturation and proliferation in neonatal mice. To test the role of Igf1r as a pivotal factor in cardiac regeneration, we knocked down (KD) Igf1r specifically in cardiomyocytes using recombinant adeno-associated virus (rAAV) delivery and troponin T promotor driven shRNAmirs. Cardiomyocyte specific Igf1r KD versus control mice were subjected to experimental MI by permanent ligation of the left anterior descending artery (LAD). Cardiac functional and morphological data were analyzed over a 21-day period. Neonatal Igf1r KD mice showed reduced systolic cardiac function and increased fibrotic cardiac remodeling 21 days post injury. This cardiac phenotype was associated with reduced cardiomyocyte nuclei mitosis and decreased AKT and ERK phosphorylation in Igf1r KD, compared to control neonatal mouse hearts. Our in vivo murine data show that Igf1r KD shifts neonatal cardiac regeneration to a more adult-like scarring phenotype, identifying cardiomyocyte-specific Igf1r signaling as a crucial component of neonatal cardiac regeneration.
Collapse
Affiliation(s)
- Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Beck
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Fugger
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Bild
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Marie-Theres Duin
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Josef Martin Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Meng C, Su H, Shu M, Shen F, Lu Y, Wu S, Su Z, Yu M, Yang D. The functional role of m6A demethylase ALKBH5 in cardiomyocyte hypertrophy. Cell Death Dis 2024; 15:683. [PMID: 39294131 PMCID: PMC11410975 DOI: 10.1038/s41419-024-07053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiomyocyte hypertrophy is a major outcome of pathological cardiac hypertrophy. The m6A demethylase ALKBH5 is reported to be associated with cardiovascular diseases, whereas the functional role of ALKBH5 in cardiomyocyte hypertrophy remains confused. We engineered Alkbh5 siRNA (siAlkbh5) and Alkbh5 overexpressing plasmid (Alkbh5 OE) to transfect cardiomyocytes. Subsequently, RNA immunoprecipitation (RIP)-qPCR, MeRIP-qPCR analysis and the dual-luciferase reporter assays were applied to elucidate the regulatory mechanism of ALKBH5 on cardiomyocyte hypertrophy. Our study identified ALKBH5 as a new contributor of cardiomyocyte hypertrophy. ALKBH5 showed upregulation in both phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro and transverse aortic constriction (TAC)/high fat diet (HFD)-induced pathological cardiac hypertrophy in vivo. Knockdown or overexpression of ALKBH5 regulated the occurrence of hypertrophic responses, including the increased cardiomyocyte surface areas and elevation of the hypertrophic marker levels, such as brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP). Mechanically, we indicated that ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth. Our work highlights the functional role of ALKBH5 in regulating the onset of cardiomyocyte hypertrophy and provides a potential target for hypertrophic heart diseases prevention and treatment. ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth.
Collapse
Affiliation(s)
- Chen Meng
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Haibi Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Meiling Shu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yijie Lu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Shishi Wu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Zhenghua Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Mengyao Yu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| | - Di Yang
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Fan D, Jiang WL, Jin ZL, Cao JL, Li Y, He T, Zhang W, Peng L, Liu HX, Wu XY, Chen M, Fan YZ, He B, Yu WX, Wang HR, Hu XR, Lu ZB. Leucine zipper protein 1 attenuates pressure overload-induced cardiac hypertrophy through inhibiting Stat3 signaling. J Adv Res 2024; 63:117-128. [PMID: 37806546 PMCID: PMC11380019 DOI: 10.1016/j.jare.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
INTRODUCTION Cardiac hypertrophy is an important contributor of heart failure, and the mechanisms remain unclear. Leucine zipper protein 1 (LUZP1) is essential for the development and function of cardiovascular system; however, its role in cardiac hypertrophy is elusive. OBJECTIVES This study aims to investigate the molecular basis of LUZP1 in cardiac hypertrophy and to provide a rational therapeutic approach. METHODS Cardiac-specific Luzp1 knockout (cKO) and transgenic mice were established, and transverse aortic constriction (TAC) was used to induce pressure overload-induced cardiac hypertrophy. The possible molecular basis of LUZP1 in regulating cardiac hypertrophy was determined by transcriptome analysis. Neonatal rat cardiomyocytes were cultured to elucidate the role and mechanism of LUZP1 in vitro. RESULTS LUZP1 expression was progressively increased in hypertrophic hearts after TAC surgery. Gain- and loss-of-function methods revealed that cardiac-specific LUZP1 deficiency aggravated, while cardiac-specific LUZP1 overexpression attenuated pressure overload-elicited hypertrophic growth and cardiac dysfunction in vivo and in vitro. Mechanistically, the transcriptome data identified Stat3 pathway as a key downstream target of LUZP1 in regulating pathological cardiac hypertrophy. Cardiac-specific Stat3 deletion abolished the pro-hypertrophic role in LUZP1 cKO mice after TAC surgery. Further findings suggested that LUZP1 elevated the expression of Src homology region 2 domain-containing phosphatase 1 (SHP1) to inactivate Stat3 pathway, and SHP1 silence blocked the anti-hypertrophic effects of LUZP1 in vivo and in vitro. CONCLUSION We demonstrate that LUZP1 attenuates pressure overload-induced cardiac hypertrophy through inhibiting Stat3 signaling, and targeting LUZP1 may develop novel approaches to treat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Di Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Wan-Li Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhi-Li Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Yi Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Wei Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Li Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Hui-Xia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Xiao-Yan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Yong-Zhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Wen-Xi Yu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Hai-Rong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China
| | - Xiao-Rong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China.
| | - Zhi-Bing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430062, China.
| |
Collapse
|
7
|
Ghasempour Dabaghi G, Rabiee Rad M, Amani-Beni R, Darouei B. The role of p130Cas/BCAR1 adaptor protein in the pathogenesis of cardiovascular diseases: A literature review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100416. [PMID: 39036012 PMCID: PMC11259988 DOI: 10.1016/j.ahjo.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).
Collapse
Affiliation(s)
- Ghazal Ghasempour Dabaghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Rabiee Rad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahar Darouei
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
8
|
Sharifi H, Mehri M, Mann CK, Campbell KS, Lee LC, Wenk JF. Multiscale Finite Element Modeling of Left Ventricular Growth in Simulations of Valve Disease. Ann Biomed Eng 2024; 52:2024-2038. [PMID: 38564074 DOI: 10.1007/s10439-024-03497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Multiscale models of the cardiovascular system are emerging as effective tools for investigating the mechanisms that drive ventricular growth and remodeling. These models can predict how molecular-level mechanisms impact organ-level structure and function and could provide new insights that help improve patient care. MyoFE is a multiscale computer framework that bridges molecular and organ-level mechanisms in a finite element model of the left ventricle that is coupled with the systemic circulation. In this study, we extend MyoFE to include a growth algorithm, based on volumetric growth theory, to simulate concentric growth (wall thickening/thinning) and eccentric growth (chamber dilation/constriction) in response to valvular diseases. Specifically in our model, concentric growth is controlled by time-averaged total stress along the fiber direction over a cardiac cycle while eccentric growth responds to time-averaged intracellular myofiber passive stress over a cardiac cycle. The new framework correctly predicted different forms of growth in response to two types of valvular diseases, namely aortic stenosis and mitral regurgitation. Furthermore, the model predicted that LV size and function are nearly restored (reversal of growth) when the disease-mimicking perturbation was removed in the simulations for each valvular disorder. In conclusion, the simulations suggest that time-averaged total stress along the fiber direction and time-averaged intracellular myofiber passive stress can be used to drive concentric and eccentric growth in simulations of valve disease.
Collapse
Affiliation(s)
- Hossein Sharifi
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY, 40506-0503, USA
| | - Mohammad Mehri
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY, 40506-0503, USA
| | - Charles K Mann
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY, 40506-0503, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan F Wenk
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY, 40506-0503, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Wan S, Wang S, Yang X, Cui Y, Guan H, Xiao W, Liu F. Regulation of H9C2 cell hypertrophy by 14-3-3η via inhibiting glycolysis. PLoS One 2024; 19:e0307696. [PMID: 39038022 PMCID: PMC11262655 DOI: 10.1371/journal.pone.0307696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
It has been reported that Ywhah (14-3-3η) reduces glycolysis. However, it remains unclear about the downstream mechanism by which glycolysis is regulated by 14-3-3η in cardiac hypertrophy. As an important regulator, Yes-associated protein (YAP) interacts with 14-3-3η to participate in the initiation and progression of various diseases in vivo. In this study, the model of H9C2 cardiomyocyte hypertrophy was established by triiodothyronine (T3) or rotenone stimulation to probe into the action mechanism of 14-3-3η. Interestingly, the overexpression of 14-3-3η attenuated T3 or rotenone induced cardiomyocyte hypertrophy and decreased glycolysis in H9C2 cardiomyocytes, whereas the knockdown of 14-3-3η had an opposite effect. Mechanistically, 14-3-3η can reduce the expression level of YAP and bind to it to reduce its nuclear translocation. In addition, changing YAP may affect the expression of lactate dehydrogenase A (LDHA), a glycolysis-related protein. Meanwhile, LDHA is also a possible target for 14-3-3η to mediate glycolysis based on changes in pyruvate, a substrate of LDHA. Collectively, 14-3-3η can suppress cardiomyocyte hypertrophy via decreasing the nucleus translocation of YAP and glycolysis, which indicates that 14-3-3η could be a promising target for inhibiting cardiac hypertrophy.
Collapse
Affiliation(s)
- Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Songhao Wang
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Yalan Cui
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
- Clinical Pathology Department, The Second People’s Hospital of Yichang, Yichang, China
| | - Heng Guan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Wenping Xiao
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| |
Collapse
|
10
|
Wang Y, Zhang M, Wang R, Lin J, Ma Q, Guo H, Huang H, Liang Z, Cao Y, Zhang X, Lu YW, Liu J, Xiao F, Yan H, Dimitrova N, Huang ZP, Mably JD, Pu WT, Wang DZ. Therapeutic Inhibition of LincRNA-p21 Protects Against Cardiac Hypertrophy. Circ Res 2024; 135:434-449. [PMID: 38864216 PMCID: PMC11257812 DOI: 10.1161/circresaha.123.323356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Cardiomegaly/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/prevention & control
- Cardiomegaly/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Ventricular Remodeling
Collapse
Affiliation(s)
- Yi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mingming Zhang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Rong Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Lin
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haipeng Guo
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huihui Huang
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhuomin Liang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianming Liu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Vertex pharmaceuticals, Vertex cell and genetic therapy (VCGT), Boston, MA 02210, USA
| | - Feng Xiao
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hualin Yan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - John D. Mably
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
11
|
Gao C, Wang Y. A New linc(-RNA) Between NFAT/MEF2 and Cardiac Hypertrophy. Circ Res 2024; 135:450-452. [PMID: 39024397 PMCID: PMC11423791 DOI: 10.1161/circresaha.124.324794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School, Singapore
- National Heart Center of Singapore and Institute of Cell and Molecular Biology, A’STAR, Singapore
| |
Collapse
|
12
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Oppose PLC-Dependent Hypertrophic Signaling. Circ Res 2024; 135:e24-e38. [PMID: 38813686 PMCID: PMC11223973 DOI: 10.1161/circresaha.123.323201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR (β1-adrenergic receptor) and β2-ARs (β2-adrenergic receptor) are the 2 major subtypes of β-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1-ARs drives detrimental cardiac remodeling while β2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2-ARs remain unclear. METHODS β2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of β2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS Here, we show that β2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for β2-AR-mediated phospholipase C inhibition requires internalization of β2-AR, activation of Gi and Gβγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS This reveals a mechanism for β2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
13
|
Nie X, Fan J, Wang Y, Xie R, Chen C, Li H, Wang DW. lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression. Front Med 2024; 18:484-498. [PMID: 38743133 DOI: 10.1007/s11684-023-1036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/15/2023] [Indexed: 05/16/2024]
Abstract
lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yanwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
14
|
Zhong X, Wang K, Wang Y, Wang L, Wang S, Huang W, Jia Z, Dai SS, Huang Z. Angiotension II directly bind P2X7 receptor to induce myocardial ferroptosis and remodeling by activating human antigen R. Redox Biol 2024; 72:103154. [PMID: 38626575 PMCID: PMC11035111 DOI: 10.1016/j.redox.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Kangwei Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Yonghua Wang
- Department of Physical Education, WenZhou Medical University, WenZhou, ZheJiang, China
| | - Luya Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Sudan Wang
- Department of Respiratory, Wenzhou People's Hospital of Zhejiang Province, WenZhou, ZheJiang, China
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Zhuyin Jia
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China.
| | - Shan-Shan Dai
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, Zhejiang, China.
| | - Zhouqing Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
15
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Eden M, Leye M, Hahn J, Heilein E, Luzarowski M, Völschow B, Tannert C, Sossalla S, Lucena-Porcel C, Frank D, Frey N. Mst4, a novel cardiac STRIPAK complex-associated kinase, regulates cardiomyocyte growth and survival and is upregulated in human cardiomyopathy. J Biol Chem 2024; 300:107255. [PMID: 38579991 PMCID: PMC11087964 DOI: 10.1016/j.jbc.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Myocardial failure is associated with adverse remodeling, including loss of cardiomyocytes, hypertrophy, and alterations in cell-cell contacts. Striatin-interacting phosphatase and kinase (STRIPAK) complexes and their mammalian STE20-like kinase 4 (Mst4) have been linked to development of different diseases. The role and targets of Mst4 in cardiomyocytes have not been investigated yet. Multitissue immunoblot experiments show highly enriched Mst4 expression in rodent hearts. Analyses of human biopsy samples from patients suffering from dilated cardiomyopathy revealed that Mst4 is upregulated (5- to 8-fold p < 0.001) compared with nonfailing controls. Increased abundance of Mst4 could also be detected in mouse models of cardiomyopathy. We confirmed that Mst4 interacts with STRIPAK components in neonatal rat ventricular cardiomyocytes, indicating that STRIPAK is present in the heart. Immunofluorescence stainings and molecular interaction studies revealed that Mst4 is localized to the intercalated disc and interacts with several intercalated disc proteins. Overexpression of Mst4 in cardiomyocytes results in hypertrophy compared with controls. In adult rat cardiomyocytes, Mst4 overexpression increases cellular and sarcomeric fractional shortening (p < 0.05), indicating enhanced contractility. Overexpression of Mst4 also inhibits apoptosis shown by reduction of cleaved caspase3 (-69%, p < 0.0001), caspase7 (-80%, p < 0.0001), and cleaved Parp1 (-27%, p < 0.001). To elucidate potential Mst4 targets, we performed phosphoproteomics analyses in neonatal rat cardiomyocytes after Mst4 overexpression and inhibition. The results revealed target candidates of Mst4 at the intercalated disc. We identified Mst4 as a novel cardiac kinase that is upregulated in cardiomyopathy-regulating cardiomyocyte growth and survival.
Collapse
Affiliation(s)
- Matthias Eden
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marius Leye
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Justus Hahn
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Emanuel Heilein
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology at Heidelberg University (ZMBH), Heidelberg, Germany
| | - Bill Völschow
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Christin Tannert
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Samuel Sossalla
- Department of Cardiology, University of Giessen, Giessen and Kerckhoff Heart and Lung Centre, Giessen, Germany
| | - Carlota Lucena-Porcel
- Tissue Bank of the National Center of Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany.
| |
Collapse
|
17
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in the mdx mouse model of Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589650. [PMID: 38659739 PMCID: PMC11042272 DOI: 10.1101/2024.04.15.589650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to enhance the cardiac phenotype in the mdx model, many methods lead to high mortality, variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. For our study, mdx and wild-type (WT) mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathologic assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels, and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes, and diminished cardiac reserve in mdx mice compared to wild-type. Our findings highlight the utility of low-dose isoproterenol in mdx mice as a valuable model for exploring therapies targeting DMD-associated cardiac complications.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Steven S. Welc
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
18
|
Steiman S, Miyake T, McDermott JC. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol 2024; 44:57-71. [PMID: 38483114 PMCID: PMC10950271 DOI: 10.1080/10985549.2024.2323959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Sydney Steiman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| |
Collapse
|
19
|
Farah EN, Hu RK, Kern C, Zhang Q, Lu TY, Ma Q, Tran S, Zhang B, Carlin D, Monell A, Blair AP, Wang Z, Eschbach J, Li B, Destici E, Ren B, Evans SM, Chen S, Zhu Q, Chi NC. Spatially organized cellular communities form the developing human heart. Nature 2024; 627:854-864. [PMID: 38480880 PMCID: PMC10972757 DOI: 10.1038/s41586-024-07171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
The heart, which is the first organ to develop, is highly dependent on its form to function1,2. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart. This approach also provided a spatial mapping of individual cells that enables illumination of their organization into cellular communities that form distinct cardiac structures. We discovered that many of these cardiac cell types further specified into subpopulations exclusive to specific communities, which support their specialization according to the cellular ecosystem and anatomical region. In particular, ventricular cardiomyocyte subpopulations displayed an unexpected complex laminar organization across the ventricular wall and formed, with other cell subpopulations, several cellular communities. Interrogating cell-cell interactions within these communities using in vivo conditional genetic mouse models and in vitro human pluripotent stem cell systems revealed multicellular signalling pathways that orchestrate the spatial organization of cardiac cell subpopulations during ventricular wall morphogenesis. These detailed findings into the cellular social interactions and specialization of cardiac cell types constructing and remodelling the human heart offer new insights into structural heart diseases and the engineering of complex multicellular tissues for human heart repair.
Collapse
Affiliation(s)
- Elie N Farah
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Robert K Hu
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Colin Kern
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qingquan Zhang
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Ting-Yu Lu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Qixuan Ma
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Shaina Tran
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Bo Zhang
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel Carlin
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew P Blair
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Zilu Wang
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Jacqueline Eschbach
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eugin Destici
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sylvia M Evans
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shaochen Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Quan Zhu
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
21
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Yao B, Lv J, Du L, Zhang H, Xu Z. Phoenixin-14 protects cardiac damages in a streptozotocin-induced diabetes mice model through SIRT3. Arch Physiol Biochem 2024; 130:110-118. [PMID: 34618648 DOI: 10.1080/13813455.2021.1981946] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type I diabetes is a metabolic syndrome that severely impacts the normal lives of patients through its multiple complications, such as diabetic cardiomyopathy (DCM). Phoenixin-14 is a peptide found to be widely expressed in eukaryons with multiple protective properties, including anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic impacts of Phoenixin-14 on DCM. METHODS Type I diabetes was induced by treatment with a single dose of STZ (40 mg/kg body weight) intraperitoneally for 5 consecutive days. Mice were divided into four groups: the Control, Phoenixin-14, T1DM, and Phoenixin-14 +T1DM groups. The levels of myocardial injury markers were measured. Cardiac hypertrophy was assessed using wheat germ agglutinin (WGA) staining. RESULTS Phoenixin-14 was significantly downregulated in the cardiac tissue of diabetic mice. The myocardial injury and deteriorated cardiac function in diabetic mice induced by STZ were significantly ameliorated by Phoenixin-14, accompanied by the alleviation of cardiac hypertrophy. In addition, the severe oxidative stress and inflammation in diabetic mice were dramatically mitigated by Phoenixin-14. Lastly, the downregulated SIRT3 and upregulated p-FOXO3 in diabetic mice were pronouncedly reversed by Phoenixin-14. It is worth mentioning that compared to the Control, no significant changes to any of the investigated parameters in the present study were found in the Phoenixin-14-treated normal mice, suggesting that treatment with it has no side effects. CONCLUSION Our data revealed that Phoenixin-14 protected against cardiac damages in STZ-induced diabetes mice models.
Collapse
Affiliation(s)
- Bo Yao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junlin Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Le Du
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Xu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Wang G, Feng L, Liu C, Han Z, Chen X. MiR-378 Inhibits Angiotensin II-Induced Cardiomyocyte Hypertrophy by Targeting AKT2. Int Heart J 2024; 65:528-536. [PMID: 38825497 DOI: 10.1536/ihj.23-485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Guili Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Linlin Feng
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Chunxiang Liu
- Department of Ultrasound, Beijing Xiaotangshan Hospital
| | - Zongqiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Xia Chen
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| |
Collapse
|
24
|
Xie Q, Xu X, Xiong D, Yao M, Zhou Y. CircRNA Larp4b/miR-298-5p/Mef2c Regulates Cardiac Hypertrophy Induced by Angiotensin II. Int J Sports Med 2024; 45:33-40. [PMID: 37956874 DOI: 10.1055/a-2172-8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac hypertrophy (CH) is an early marker in the clinical course of heart failure. Circular RNAs (circRNAs) play important roles in human disease. However, the role of circ_Larp4b in myocardial hypertrophy has not been studied. Angiotensin II (Ang II) treated HL-1 cells to induce a CH cell model. Quantitative real-time polymerase chain reaction was used to detect the expression of circ_Larp4b, microRNA-298-5p, and myocyte enhancer factor 2 (Mef2c). Western blot detected the protein level of alpha-actinin-2 (ACTN2), beta-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and Mef2c. The relationship between miR-298-5p and circ_Larp4b or Mef2c was verified by dual-luciferase reporter assay and RNA pull-down assay. Circ_Larp4b and Mef2c were upregulated in HL-1 cells treated with Ang II. Moreover, circ_Larp4b down-regulation regulated the progress of CH induced by Ang II. MiR-298-5p was a target of circ_Larp4b, and Mef2c was a target of miR-298-5p. Overexpressed Mef2c reversed the cell size inhibited by miR-298-5p in Ang II-induced HL-1 cells. Circ_Larp4b regulated CH progress by regulating miR-298-5p/Mef2c axis.
Collapse
Affiliation(s)
- Qihai Xie
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Xu
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danqun Xiong
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Man Yao
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yafeng Zhou
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Leemann S, Schneider-Warme F, Kleinlogel S. Cardiac optogenetics: shining light on signaling pathways. Pflugers Arch 2023; 475:1421-1437. [PMID: 38097805 PMCID: PMC10730638 DOI: 10.1007/s00424-023-02892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
Collapse
Affiliation(s)
- Siri Leemann
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bern, Switzerland
- F. Hoffmann-La Roche, Translational Medicine Neuroscience, Basel, Switzerland
| |
Collapse
|
26
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
28
|
Jiajia H, Ziyao Y, Jiaqi Z, Yanli C, Xiaotao Z, Ming S. Screening UFMylation-associated genes in heart tissues of Ufm1-transgenic mice. BMC Cardiovasc Disord 2023; 23:567. [PMID: 37980507 PMCID: PMC10657630 DOI: 10.1186/s12872-023-03563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/15/2023] [Indexed: 11/20/2023] Open
Abstract
UFMylation is a ubiquitination-like modification that is related to endoplasmic reticulum stress and unfolded protein response. A recent study reported that Ufl1, a key enzyme of UFMylation, protects against heart failure, indicating that UFMylation may be associated with heart function regulation. In the present study, we initially constructed a Flag-6×His-tagged Ufm1ΔSC transgenic (Tg-Ufm1) mouse model that enables UFMylation studies in vivo. Tg-Ufm1 mice showed significant activation of UFMylation in hearts. By using this model, we identified 38 potential Ufm1-binding proteins in heart tissues through LC‒MS/MS methods. We found that these proteins were associated with mitochondria, metabolism and chaperone binding. By using transcriptomic screening, we identified Tnfaip2 as a novel UFMylation-associated gene. Overexpression of Ufm1 significantly upregulated the protein expression of Tnfaip2, whereas isoproterenol treatment decreased Tnfaip2 expression in Tg-Ufm1 mice. These data may provide novel clues for UFMylation in cardiac hypertrophy.
Collapse
Affiliation(s)
- Hu Jiajia
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yang Ziyao
- Department of Blood Transfusion, Peking University First Hospital, Beijing, China
| | - Zheng Jiaqi
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chen Yanli
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhao Xiaotao
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Su Ming
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
29
|
Hidayat R, El-Ghiaty MA, Shoieb SM, Alqahtani MA, El-Kadi AOS. The Effects of 16-HETE Enantiomers on Hypertrophic Markers in Human Fetal Ventricular Cardiomyocytes, RL-14 Cells. Eur J Drug Metab Pharmacokinet 2023; 48:709-722. [PMID: 37815672 DOI: 10.1007/s13318-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cytochrome P450 (CYP) metabolizes arachidonic acid to produce bioactive metabolites such as EETs and HETEs: mid-chain, subterminal, and terminal HETEs. Recent studies have revealed the role of CYP1B1 and its associated cardiotoxic mid-chain HETE metabolites in developing cardiac hypertrophy and heart failure. Subterminal HETEs have also been involved in various physiological and pathophysiological processes; however, their role in cardiac hypertrophy has not been fully defined. OBJECTIVE The objective of the current study is to determine the possible effect of subterminal HETEs, R and S enantiomers of 16-HETE, on CYP1B1 expression in vitro using human cardiomyocytes RL-14 cells. METHODS In the study, RL14 cell line was treated with vehicle and either of the 16-HETE enantiomers for 24 h. Subsequently, the following markers were assessed: cell viability, cellular size, hypertrophic markers, CYP1B1 gene expression (at mRNA, protein, and activity levels), luciferase activity, and CYP1B1 mRNA and protein half-lives. RESULTS The results of the study showed that 16-HETE enantiomers significantly increased hypertrophic markers and upregulated CYP1B1 mRNA and protein expressions in RL-14 cell line. The upregulation of CYP1B1 by 16-HETE enantiomers occurs via a transcriptional mechanism as evidenced by transcriptional induction and luciferase reporter assay. Furthermore, neither post-transcriptional nor post-translational modification was involved in such modulation since there was no change in CYP1B1 mRNA and protein stabilities upon treatment with 16-HETE enantiomers. CONCLUSION The current study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 gene expression through a transcriptional mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
30
|
Li W, Zhu Y, Wang W, He D, Feng L, Li Z. Src tyrosine kinase promotes cardiac remodeling induced by chronic sympathetic activation. Biosci Rep 2023; 43:BSR20231097. [PMID: 37650260 PMCID: PMC10611920 DOI: 10.1042/bsr20231097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Cardiac remodeling serves as the underlying pathological basis for numerous cardiovascular diseases and represents a pivotal stage for intervention. The excessive activation of β-adrenergic receptors (β-ARs) assumes a crucial role in cardiac remodeling. Nonetheless, the underlying molecular mechanisms governing β-AR-induced cardiac remodeling remain largely unresolved. In the present study, we identified Src tyrosine kinase as a key player in the cardiac remodeling triggered by excessive β-AR activation. Our findings demonstrated that Src mediates isoproterenol (ISO)-induced cardiac hypertrophy, fibrosis, and inflammation in vivo. Furthermore, Src facilitates β-AR-mediated proliferation and transdifferentiation of cardiac fibroblasts, and hypertrophy and cardiomyocytes in vitro. Subsequent investigations have substantiated that Src mediates β-AR induced the extracellular signal-regulated protein kinase (ERK1/2) signaling pathway activated by β-AR. Our research presents compelling evidence that Src promotes β-AR-induced cardiac remodeling in both in vivo and in vitro settings. It establishes the promoting effect of the β-AR/Src/ERK signaling pathway on overall cardiac remodeling in cardiac fibroblasts and underscores the potential of Src as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Wenqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Dan He
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Ma E, Wu C, Chen J, Wo D, Ren DN, Yan H, Peng L, Zhu W. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomed Pharmacother 2023; 165:115275. [PMID: 37541173 DOI: 10.1016/j.biopha.2023.115275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Pathological cardiac hypertrophy is a hallmark of various cardiovascular diseases (CVD) including chronic heart failure (HF) and an important target for the treatment of these diseases. Aberrant activation of Angiotensin II (Ang II)/AT1R signaling pathway is one of the main triggers of cardiac hypertrophy, which further gives rise to excessive inflammation that is mediated by the key transcription factor NF-κB. Resveratrol (REV) is a natural polyphenol with multiple anti-inflammatory and anti-oxidative effects, however the ability of REV in preventing Ang II-induced cardiac hypertrophy in combination with NF-κB signaling activation remains unclear. METHODS Murine models of cardiac hypertrophy was conducted via implantation of Ang II osmotic pumps. Primary neonatal rat cardiomyocyte and heart tissues were examined to determine the effect and underlying mechanism of REV in preventing Ang II-induced cardiac hypertrophy. RESULTS Administrations of REV significantly prevented Ang II-induced cardiac hypertrophy, as well as robustly attenuated Ang II-induced cardiac fibrosis, and cardiac dysfunction. Furthermore, REV not only directly prevented Ang II/AT1R signal transductions, but also prevented Ang II-induced expressions of pro-inflammatory cytokines and activation of NF-κB signaling pathway. CONCLUSIONS Our study provides important new mechanistic insight into the cardioprotective effects of REV in preventing Ang II-induced cardiac hypertrophy via inhibiting adverse NF-κB signaling activation. Our findings further suggest the therapeutic potential of REV as a promising drug for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- En Ma
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Celiang Wu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hongwei Yan
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China.
| | - Weidong Zhu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
33
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
34
|
Silva JMA, Antonio EL, Dos Santos LFN, Serra AJ, Feliciano RS, Junior JAS, Ihara SSM, Tucci PJF, Moises VA. Hypertrophy of the right ventricle by pulmonary artery banding in rats: a study of structural, functional, and transcriptomics alterations in the right and left ventricles. Front Physiol 2023; 14:1129333. [PMID: 37576341 PMCID: PMC10414540 DOI: 10.3389/fphys.2023.1129333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Right ventricular remodeling with subsequent functional impairment can occur in some clinical conditions in adults and children. The triggering factors, molecular mechanisms, and, especially, the evolution over time are still not well known. Left ventricular (LV) changes associated with right ventricular (RV) remodeling are also poorly understood. Objectives: The study aimed to evaluate RV morphological, functional, and gene expression parameters in rats submitted to pulmonary artery banding compared to control rats, with the temporal evolution of these parameters, and to analyze the influence of RV remodeling by pulmonary artery banding in rats and their controls over time on LV geometry, histology, gene expression, and functional performance. Methods: Healthy 6-week-old male Wistar-EPM rats weighing 170-200 g were included. One day after the echocardiogram, depending on the animals undergoing the pulmonary artery banding (PAB) procedure or not (control group), they were then randomly divided into subgroups according to the follow-up time: 72 h, or 2, 4, 6, or 8 weeks. In each subgroup, the following were conducted: a new echocardiogram, a hemodynamic study, the collection of material for morphological analysis (hypertrophy and fibrosis), and molecular biology (gene expression). The results were presented as the mean ± standard deviation of the mean. A two-way ANOVA and Tukey post-test compared the variables of the subgroups and evolution follow-up times. The adopted significance level was 5%. Results: There was no significant difference among the subgroups in the percentage of water in both the lungs and the liver (the percentage of water in the lungs ranged from 76% to 78% and that of the liver ranged from 67% to 71%). The weight of the right chambers was significantly higher in PAB animals in all subgroups (RV PAB weighed from 0.34 to 0.48 g, and control subjects, from 0.17 to 0.20 g; right atrium (RA) with PAB from 0.09 to 0.14 g; and control subjects from 0.02 to 0.03 g). In the RV of PAB animals, there was a significant increase in myocyte nuclear volume (97 μm3-183.6 μm3) compared to control subjects (34.2 μm3-57.2 μm3), which was more intense in subgroups with shorter PAB follow-up time, and the fibrosis percentage (5.9%-10.4% vs. 0.96%-1.18%) was higher as the PAB follow-up time was longer. In the echocardiography result, there was a significant increase in myocardial thickness in all PAB groups (0.09-0.11 cm compared to control subjects-0.04-0.05 cm), but there was no variation in RV diastolic diameter. From 2 to 8 weeks of PAB, the S-wave (S') (0.031 cm/s and 0.040 cm/s), and fractional area change (FAC) (51%-56%), RV systolic function parameters were significantly lower than those of the respective control subjects (0.040 cm/s to 0.050 cm/s and 61%-67%). Furthermore, higher expression of genes related to hypertrophy and extracellular matrix in the initial subgroups and apoptosis genes in the longer follow-up PAB subgroups were observed in RV. On the other hand, LV weight was not different between animals with and without PAB. The nuclear volume of the PAB animals was greater than that of the control subjects (74 μm3-136 μm3; 40.8 μm3-46.9 μm3), and the percentage of fibrosis was significantly higher in the 4- and 8-week PAB groups (1.2% and 2.2%) compared to the control subjects (0.4% and 0.7%). Echocardiography showed that the diastolic diameter and LV myocardial thickness were not different between PAB animals and control subjects. Measurements of isovolumetric relaxation time and E-wave deceleration time at the echocardiography were different between PAB animals and control subjects in all subgroups, but there were no changes in diastolic function in the hemodynamic study. There was also increased expression of genes related to various functions, particularly hypertrophy. Conclusion: 1) Rats submitted to pulmonary artery banding presented RV remodeling compatible with hypertrophy. Such alterations were mediated by increased gene expression and functional alterations, which coincide with the onset of fibrosis. 2) Structural changes of the RV, such as weight, myocardial thickness, myocyte nuclear volume, and degree of fibrosis, were modified according to the time of exposure to pulmonary artery banding and related to variations in gene expression, highlighting the change from an alpha to a beta pattern from early to late follow-up times. 3) The study suggests that the left ventricle developed histological alterations accompanied by gene expression modifications simultaneously with the alterations found in the right ventricle.
Collapse
Affiliation(s)
| | - Ednei Luiz Antonio
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Milenkovic I, Santos Vieira HG, Lucas MC, Ruiz-Orera J, Patone G, Kesteven S, Wu J, Feneley M, Espadas G, Sabidó E, Hübner N, van Heesch S, Völkers M, Novoa EM. Dynamic interplay between RPL3- and RPL3L-containing ribosomes modulates mitochondrial activity in the mammalian heart. Nucleic Acids Res 2023; 51:5301-5324. [PMID: 36882085 PMCID: PMC10287911 DOI: 10.1093/nar/gkad121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralogue of RPL3 (uL3) that is exclusively expressed in skeletal muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes up-regulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L modulates neither translational efficiency nor ribosome affinity towards a specific subset of transcripts. In contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of fine-tuning of mitochondrial activity. Our results demonstrate that the existence of tissue-specific RP paralogues does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Helaine Graziele Santos Vieira
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Morghan C Lucas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
| | - Scott Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Michael Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Guadalupe Espadas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
- Charité -Universitätsmedizin, D-10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, D-13347 Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | | | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
36
|
Xu J, Qian B, Wang F, Huang Y, Yan X, Li P, Zhang Q, Li Y, Sun K. Global Profile of tRNA-Derived Small RNAs in Pathological Cardiac Hypertrophy Plasma and Identification of tRF-21-NB8PLML3E as a New Hypertrophy Marker. Diagnostics (Basel) 2023; 13:2065. [PMID: 37370960 DOI: 10.3390/diagnostics13122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It remains unclear whether transfer RNA-derived small RNAs (tsRNAs) play a role in pathological cardiac hypertrophy (PCH). We aimed to clarify the expression profile of tsRNAs and disclose their relationship with the clinical phenotype of PCH and the putative role. METHODS Small RNA sequencing was performed on the plasma of PCH patients and healthy volunteers. In the larger sample size and angiotensin II (Ang II)-stimulated H9c2 cells, the data were validated by real-time qPCR. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were examined in Ang II-stimulated H9c2 cells. The potential role of tsRNAs in the pathogenesis of PCH was explored by bioinformatics analysis. RESULTS A total of 4185 differentially expressed tsRNAs were identified, of which four and five tsRNAs were observed to be significantly upregulated and downregulated, respectively. Of the five downregulated tsRNAs, four were verified to be significantly downregulated in the larger sample group, including tRF-30-3JVIJMRPFQ5D, tRF-16-R29P4PE, tRF-21-NB8PLML3E, and tRF-21-SWRYVMMV0, and the AUC values for diagnosis of concentric hypertrophy were 0.7893, 0.7825, 0.8475, and 0.8825, respectively. The four downregulated tsRNAs were negatively correlated with the left ventricular posterior wall dimensions in PCH patients (r = -0.4227; r = -0.4517; r = -0.5567; r = -0.4223). The levels of ANP and BNP, as well as cell size, were decreased in Ang II-stimulated H9c2 cells with 21-NB8PLML3E mimic transfection. Bioinformatics analysis revealed that the target genes of tRF-21-NB8PLML3E were mainly enriched in the metabolic pathway and involved in the regulation of ribosomes. CONCLUSIONS The plasma tRF-21-NB8PLML3E might be considered as a biomarker and offers early screening potential in patients with PCH.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Buyun Qian
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ying Huang
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| |
Collapse
|
37
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Inhibit Subcellular Phospholipase C-Dependent Cardiac Hypertrophic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544153. [PMID: 37333278 PMCID: PMC10274790 DOI: 10.1101/2023.06.07.544153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR and β2-ARs are the two major subtypes of β-ARs present in the human heart, however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1ARs drives detrimental cardiac remodeling while β2AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2ARs remain unclear. Here we show that β2-AR protects against hypertrophy through inhibition of PLCε signaling at the Golgi apparatus. The mechanism for β2AR-mediated PLC inhibition requires internalization of β2AR, activation of Gi and Gβγ subunit signaling at endosomes and ERK activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD and HDAC5 phosphorylation and protection against cardiac hypertrophy. This reveals a mechanism for β2-AR antagonism of the PLCε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
38
|
Su H, Xu J, Su Z, Xiao C, Wang J, Zhong W, Meng C, Yang D, Zhu Y. Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α-sXBP1-GATA4 pathway. Cell Mol Life Sci 2023; 80:161. [PMID: 37219631 DOI: 10.1007/s00018-023-04805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pressure overload-induced pathological cardiac hypertrophy is an independent predecessor of heart failure (HF), which remains the leading cause of worldwide mortality. However, current evidence on the molecular determinants of pathological cardiac hypertrophy is still inadequacy. This study aims to elucidate the role and mechanisms of Poly (ADP-ribose) polymerases 16 (PARP16) in the pathogenesis of pathological cardiac hypertrophy. METHODS Gain and loss of function approaches were used to demonstrate the effects of genetic overexpression or deletion of PARP16 on cardiomyocyte hypertrophic growth in vitro. Ablation of PARP16 by transducing the myocardium with serotype 9 adeno-associated virus (AAV9)-encoding PARP16 shRNA were then subjected to transverse aortic construction (TAC) to investigate the effect of PARP16 on pathological cardiac hypertrophy in vivo. Co-immunoprecipitation (IP) and western blot assay were used to detect the mechanisms of PARP16 in regulating cardiac hypertrophic development. RESULTS PARP16 deficiency rescued cardiac dysfunction and ameliorated TAC-induced cardiac hypertrophy and fibrosis in vivo, as well as phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro. Whereas overexpression of PARP16 exacerbated hypertrophic responses including the augmented cardiomyocyte surface area and upregulation of the fetal gene expressions. Mechanistically, PARP16 interacted with IRE1α and ADP-ribosylated IRE1α and then mediated the hypertrophic responses through activating the IRE1α-sXBP1-GATA4 pathway. CONCLUSIONS Collectively, our results implicated that PARP16 is a contributor to pathological cardiac hypertrophy at least in part via activating the IRE1α-sXBP1-GATA4 pathway, and may be regarded as a new potential target for exploring effective therapeutic interventions of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Haibi Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jie Xu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Zhenghua Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Chenxi Xiao
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinghuan Wang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Wen Zhong
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Chen Meng
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Di Yang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, People's Republic of China.
| |
Collapse
|
39
|
Ye J, Yan S, Liu R, Weng L, Jia B, Jia S, Xiong Y, Zhou Y, Leng M, Zhao J, Yang F, Zheng M. CMTM3 deficiency induces cardiac hypertrophy by regulating MAPK/ERK signaling. Biochem Biophys Res Commun 2023; 667:162-169. [PMID: 37229825 DOI: 10.1016/j.bbrc.2023.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Cardiac hypertrophy is the heart's compensatory response stimulated by various pathophysiological factors. However, prolonged cardiac hypertrophy poses a significant risk of progression to heart failure, lethal arrhythmias, and even sudden cardiac death. For this reason, it is crucial to effectively prevent the occurrence and development of cardiac hypertrophy. CMTM is a superfamily of human chemotaxis, which is involved in immune response and tumorigenesis. CMTM3 expressed widely in tissues, including the heart, but its cardiac function remains unclear. This research aims to explore the effect and mechanism of CMTM3 in the development of cardiac hypertrophy. METHODS AND RESULTS We generated a Cmtm3 knockout mouse model (Cmtm3-/-) as the loss-of-function approach. CMTM3 deficiency induced cardiac hypertrophy and further exacerbated hypertrophy and cardiac dysfunction stimulated by Angiotensin Ⅱ infusion. In Ang Ⅱ-infusion stimulated hypertrophic hearts and phenylephrine-induced hypertrophic neonatal cardiomyocytes, CMTM3 expression significantly increased. However, adenovirus-mediated overexpression of CMTM3 inhibited the hypertrophy of rat neonatal cardiomyocytes induced by PE stimulation. In terms of mechanism, RNA-seq data revealed that Cmtm3 knockout-induced cardiac hypertrophy was related to MAPK/ERK activation. In vitro, CMTM3 overexpression significantly inhibited the increased phosphorylation of p38 and ERK induced by PE stimulation. CONCLUSIONS CMTM3 deficiency induces cardiac hypertrophy and aggravates hypertrophy and impaired cardiac function stimulated by angiotensin Ⅱ infusion. The expression of CMTM3 increases during cardiac hypertrophy, and the increased CMTM3 can inhibit further hypertrophy of cardiomyocytes by inhibiting MAPK signaling. Thus, CMTM3 plays a negative regulatory effect in the occurrence and development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, PR China
| | - Saifang Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, PR China
| | - Lin Weng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Bo Jia
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, PR China
| | - Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yufei Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yiqing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Minghong Leng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Junhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Fenghe Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
40
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
41
|
Gorący I, Łoniewska B, Lewandowska K, Boroń A, Grzegorczyk M, Nowak R, Clark JSC, Ciechanowicz A. Association of the rs3039851 Insertion/Deletion in the Gene PPP3R1, Which Encodes the Regulatory Calcineurin Subunit B Type 1, with Left Ventricular Mass in Polish Full-Term Newborns. Biomedicines 2023; 11:biomedicines11051415. [PMID: 37239086 DOI: 10.3390/biomedicines11051415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The five base-pair (bp) insertion/deletion (rs3039851) polymorphism in the PPP3R1 gene, which encodes calcineurin subunit B type 1, has been found to be associated with left ventricular hypertrophy (LVH) in hypertensive patients and in athletes. The aim of this study is to analyze the possible association between PPP3R1:rs3039851 polymorphism and left ventricular mass (LVM) in full-term healthy newborns. METHODS The study group consisted of 162 consecutive, full-term, healthy newborns. Two-dimensional M-mode echocardiography was used to assess LVM. The PPP3R1:rs3039851 polymorphism was identified by PCR-RFLP in genomic DNA extracted from cord blood leukocytes. RESULTS No significant differences were found between newborns homozygous for the reference allele (5I/5I, n = 135) and newborns carrying at least one 5D allele (n = 27) for LVM standardized for body mass, body length or body surface area (LVM/BM, LVM/BL or LVM/BSA, respectively). However, the frequency of PPP3R1:rs3039851 genotypes with a 5D allele (5I/5D + 5D/5D) among newborns with the largest LVM/BM or LVM/BSA (upper tertile) was statistically significantly higher compared with the prevalence in individuals with the lowest values of both indices (lower tertile). CONCLUSIONS Our results suggest that the PPP3R1:rs3039851 polymorphism may contribute to subtle variation in left ventricular mass at birth.
Collapse
Affiliation(s)
- Iwona Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Klaudyna Lewandowska
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Małgorzata Grzegorczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 71-650 Szczecin, Poland
- Department of Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jeremy Simon C Clark
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
42
|
Jiang XY, Guan FF, Ma JX, Dong W, Qi XL, Zhang X, Chen W, Gao S, Gao X, Pan S, Wang JZ, Ma YW, Zhang LF, Lu D. Cardiac-specific Trim44 knockout in rat attenuates isoproterenol-induced cardiac remodeling via inhibition of AKT/mTOR pathway. Dis Model Mech 2023; 16:276033. [PMID: 35855640 PMCID: PMC9441189 DOI: 10.1242/dmm.049444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
When pathological hypertrophy progresses to heart failure (HF), the prognosis is often very poor. Therefore, it is crucial to find new and effective intervention targets. Here, myocardium-specific Trim44 knockout rats were generated using CRISPR-Cas9 technology. Cardiac phenotypic observations revealed that Trim44 knockout affected cardiac morphology at baseline. Rats with Trim44 deficiency exhibited resistance to cardiac pathological changes in response to stimulation via isoproterenol (ISO) treatment, including improvement of cardiac remodeling and dysfunction by morphological and functional observations, reduced myocardial fibrosis and reduced expression of molecular markers of cardiac stress. Furthermore, signal transduction validation associated with growth and hypertrophy development in vivo and in vitro demonstrated that Trim44 deficiency inhibited the activation of signaling pathways involved in myocardial hypertrophy, especially response to pathological stress. In conclusion, the present study indicates that Trim44 knockout attenuates ISO-induced pathological cardiac remodeling through blocking the AKT/mTOR/GSK3β/P70S6K signaling pathway. This is the first study to demonstrate the function and importance of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy and HF. Summary: This is the first study to demonstrate the function of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Yu Jiang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jia-Xin Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Ji-Zheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Yuan-Wu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| |
Collapse
|
43
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
44
|
Kawaguchi S, Moukette B, Hayasaka T, Haskell AK, Mah J, Sepúlveda MN, Tang Y, Kim IM. Noncoding RNAs as Key Regulators for Cardiac Development and Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040166. [PMID: 37103045 PMCID: PMC10143661 DOI: 10.3390/jcdd10040166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Noncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruno Moukette
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Taiki Hayasaka
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angela K Haskell
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jessica Mah
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marisa N Sepúlveda
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
[Mechano-energetic defects in heart failure]. Herz 2023; 48:123-133. [PMID: 36700949 DOI: 10.1007/s00059-022-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Heart failure is characterized by defects in excitation-contraction coupling, energetic deficit and oxidative stress. The energy for cardiac contraction and relaxation is provided in mitochondria, whose function is tightly regulated by excitation-contraction coupling in cardiac myocytes. In heart failure with reduced ejection fraction (HFrEF), alterations in the ion balance in cardiac myocytes impair mitochondrial Ca2+ uptake, which is required for activation of the Krebs cycle, causing an energetic deficit and oxidative stress in mitochondria. Recent clinical studies suggest that in heart failure with preserved ejection fraction (HFpEF), in stark contrast to HFrEF, hypercontractility often occurs as an attempt to compensate for a pathological increase in systemic and pulmonary vascular resistance. This hypercontractility increases cardiac energy and oxygen demands at rest and reduces the contractile, diastolic and coronary reserves, preventing an adequate increase in cardiac output during exercise. Moreover, increased contractility causes long-term maladaptive remodeling processes due to oxidative stress and redox-sensitive prohypertrophic signaling pathways. As overweight and diabetes, particularly in the interplay with hemodynamic stress, are important risk factors for the development of HFpEF, interventions targeting metabolism in particular could ameliorate the development and progression of HFpEF.
Collapse
|
46
|
A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway. Hypertens Res 2023; 46:421-436. [PMID: 36474029 DOI: 10.1038/s41440-022-01111-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
Due to the complicated pathophysiology of cardiac hypertrophy, there are no effective therapies for the treatment of pathological cardiac hypertrophy. Accumulating evidence has demonstrated that circRNAs participate in the pathophysiology of cardiac hypertrophy. In this study, we investigated the regulatory mechanisms of the novel circ_0018553 in angiotensin II (Ang II)-induced cardiac hypertrophy. Circ_0018553 was enriched in endothelial progenitor cell (EPC)-derived exosomes, and circ_0018553 expression was downregulated in a cellular model of Ang II-induced cardiac hypertrophy. Silencing circ_0018553 promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while overexpression of circ_0018553 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. Moreover, mechanistic studies revealed that circ_0018553 acted as a sponge for miR-4731 and that miR-4731 repressed sirtuin 2 (SIRT2) expression by targeting the 3'UTR of SIRT2. MiR-4731 overexpression promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while inhibition of miR-4731 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. The rescue experiments showed that miR-4731 overexpression attenuated the protective effects of circ_0018553 overexpression on the cardiac hypertrophy induced by Ang II; SIRT2 silencing also attenuated the protective effects of miR-4731 inhibition on the Ang II-induced cardiac hypertrophy. In conclusion, our results indicated that EPC-derived exosomal circ_0018553 protected against Ang II-induced cardiac hypertrophy by modulating the miR-4731/SIRT2 signaling pathway.
Collapse
|
47
|
Zhao H, Wang X, Tang Y, Zhao Q, Huang C. Inhibition of intermittent calcium-activated potassium channel (SK4) attenuates Ang II-induced hypertrophy of human-induced stem cell-derived cardiomyocytes via targeting Ras-Raf-MEK1/2-ERK1/2 and CN-NFAT signaling pathways. Cell Biol Int 2023; 47:480-491. [PMID: 36273427 DOI: 10.1002/cbin.11948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023]
Abstract
Cardiac hypertrophy caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. The intermediate calcium-activated potassium channel (SK4) has been shown to be involved in the process of the inflammatory response, cell proliferation, and apoptosis. However, the role of SK4 in cardiac hypertrophy has not been elucidated. Cardiac hypertrophy in human-induced pluripotent stem cells-derived cardiomyocytes (HiPSC-CMs) was induced by Ang II. Cells were transfected with SK4 adenovirus or treated with SK4 inhibitor (TRAM-34). TUNEL staining was used to assess the levels of apoptosis. Real-time polymerase chain reaction and Western blot analysis were used to measure messenger RNA (mRNA) and protein levels, respectively. The present results showed that SK4 expression was upregulated in HiPSC-CMs stimulated by Ang II. The downregulation of SK4 by a specific inhibitor TRAM-34 markedly ameliorated cardiac hypertrophy (reflected by the mRNA levels of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II treatment. The action of SK4 in cardiac hypertrophy was mediated by Ras-Raf-mitogen-activated protein kinases 1/2 (MEK1/2)-extracellular-regulated protein kinases 1/2 (ERK1/2) and calcineurin (CN)-nuclear factors of activated T cells (NFAT) activation. Our studies demonstrated that inhibition of SK4 significantly alleviated cardiac hypertrophy induced by Ang II in hiPSC-CMs by targeting Ras-Raf-MEK1/2-ERK1/2 signaling and CN-NFAT signaling pathway. Our studies suggest that SK4 may serve as a potential therapeutic target that could delay hypertrophy.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| |
Collapse
|
48
|
Higashikuni Y, Liu W, Numata G, Tanaka K, Fukuda D, Tanaka Y, Hirata Y, Imamura T, Takimoto E, Komuro I, Sata M. NLRP3 Inflammasome Activation Through Heart-Brain Interaction Initiates Cardiac Inflammation and Hypertrophy During Pressure Overload. Circulation 2023; 147:338-355. [PMID: 36440584 DOI: 10.1161/circulationaha.122.060860] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress on the heart, such as high blood pressure, initiates inflammation and causes hypertrophic heart disease. However, the regulatory mechanism of inflammation and its role in the stressed heart remain unclear. IL-1β (interleukin-1β) is a proinflammatory cytokine that causes cardiac hypertrophy and heart failure. Here, we show that neural signals activate the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3) inflammasome for IL-1β production to induce adaptive hypertrophy in the stressed heart. METHODS C57BL/6 mice, knockout mouse strains for NLRP3 and P2RX7 (P2X purinoceptor 7), and adrenergic neuron-specific knockout mice for SLC17A9, a secretory vesicle protein responsible for the storage and release of ATP, were used for analysis. Pressure overload was induced by transverse aortic constriction. Various animal models were used, including pharmacological treatment with apyrase, lipopolysaccharide, 2'(3')-O-(4-benzoylbenzoyl)-ATP, MCC950, anti-IL-1β antibodies, clonidine, pseudoephedrine, isoproterenol, and bisoprolol, left stellate ganglionectomy, and ablation of cardiac afferent nerves with capsaicin. Cardiac function and morphology, gene expression, myocardial IL-1β and caspase-1 activity, and extracellular ATP level were assessed. In vitro experiments were performed using primary cardiomyocytes and fibroblasts from rat neonates and human microvascular endothelial cell line. Cell surface area and proliferation were assessed. RESULTS Genetic disruption of NLRP3 resulted in significant loss of IL-1β production, cardiac hypertrophy, and contractile function during pressure overload. A bone marrow transplantation experiment revealed an essential role of NLRP3 in cardiac nonimmune cells in myocardial IL-1β production and cardiac phenotype. Pharmacological depletion of extracellular ATP or genetic disruption of the P2X7 receptor suppressed myocardial NLRP3 inflammasome activity during pressure overload, indicating an important role of ATP/P2X7 axis in cardiac inflammation and hypertrophy. Extracellular ATP induced hypertrophic changes of cardiac cells in an NLRP3- and IL-1β-dependent manner in vitro. Manipulation of the sympathetic nervous system suggested sympathetic efferent nerves as the main source of extracellular ATP. Depletion of ATP release from sympathetic efferent nerves, ablation of cardiac afferent nerves, or a lipophilic β-blocker reduced cardiac extracellular ATP level, and inhibited NLRP3 inflammasome activation, IL-1β production, and adaptive cardiac hypertrophy during pressure overload. CONCLUSIONS Cardiac inflammation and hypertrophy are regulated by heart-brain interaction. Controlling neural signals might be important for the treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Wenhao Liu
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Kimie Tanaka
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan.,Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (K. Tanaka)
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan (D.F.)
| | - Yu Tanaka
- Department of Pediatrics (Y. Tanaka, Y.H.), The University of Tokyo, Japan
| | - Yoichiro Hirata
- Department of Pediatrics (Y. Tanaka, Y.H.), The University of Tokyo, Japan
| | - Teruhiko Imamura
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan.,Second Department of Medicine, University of Toyama, Japan (T.I.)
| | - Eiki Takimoto
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (M.S.)
| |
Collapse
|
49
|
Rojo‐García AV, Vanmunster M, Pacolet A, Suhr F. Physical inactivity by tail suspension alters markers of metabolism, structure, and autophagy of the mouse heart. Physiol Rep 2023; 11:e15574. [PMID: 36695670 PMCID: PMC9875748 DOI: 10.14814/phy2.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023] Open
Abstract
Sedentary behavior has become ingrained in our society and has been linked to cardiovascular diseases. Physical inactivity is the main characteristic of sedentary behavior. However, its impact on cardiovascular disease is not clear. Therefore, we investigated the effect of physical inactivity in an established mouse model on gene clusters associated with cardiac fibrosis, electrophysiology, cell regeneration, and tissue degradation/turnover. We investigated a sedentary group (CTR, n = 10) versus a tail suspension group (TS, n = 11) that caused hindlimb unloading and consequently physical inactivity. Through histological, protein content, and transcript analysis approaches, we found that cardiac fibrosis-related genes partly change, with significant TS-associated increases in Tgfb1, but without changes in Col1a1 and Fn1. These changes are not translated into fibrosis at tissue level. We further detected TS-mediated increases in protein degradation- (Trim63, p < 0.001; Fbxo32, p = 0.0947 as well as in biosynthesis-related [P70s6kb1, p < 0.01]). Corroborating these results, we found increased expression of autophagy markers such as Atg7 (p < 0.01) and ULK1 (p < 0.05). Two cardiomyocyte regeneration- and sarcomerogenesis-related genes, Yap (p = 0.0535) and Srf (p < 0.001), increased upon TS compared to CTR conditions. Finally, we found significant upregulation of Gja1 (p < 0.05) and a significant downregulation of Aqp1 (p < 0.05). Our data demonstrate that merely 2 weeks of reduced physical activity induce changes in genes associated with cardiac structure and electrophysiology. Hence, these data should find the basis for novel research directed to evaluate the interplay of cardiac functioning and physical inactivity.
Collapse
Affiliation(s)
| | - Mathias Vanmunster
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Alexander Pacolet
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Frank Suhr
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| |
Collapse
|
50
|
A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice. Nat Commun 2022; 13:7028. [PMID: 36396643 PMCID: PMC9671911 DOI: 10.1038/s41467-022-34801-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The progressive decline of physiological function and the increased risk of age-related diseases challenge healthy aging. Multiple anti-aging manipulations, such as senolytics, have proven beneficial for health; however, the biomarkers that label in vivo senescence at systemic levels are lacking, thus hindering anti-aging applications. In this study, we generate a Glb1+/m‒Glb1-2A-mCherry (GAC) reporter allele at the Glb1 gene locus, which encodes lysosomal β-galactosidase-an enzyme elevated in tissues of old mice. A linear correlation between GAC signal and chronological age is established in a cohort of middle-aged (9 to 13 months) Glb1+/m mice. The high GAC signal is closely associated with cardiac hypertrophy and a shortened lifespan. Moreover, the GAC signal is exponentially increased in pathological senescence induced by bleomycin in the lung. Senolytic dasatinib and quercetin (D + Q) reduce GAC signal in bleomycin treated mice. Thus, the Glb1-2A-mCherry reporter mice monitors systemic aging and function decline, predicts lifespan, and may facilitate the understanding of aging mechanisms and help in the development of anti-aging interventions.
Collapse
|