1
|
Oya H, Adolphs R, Howard MA, Michael Tyszka J. Depth-electrode stimulation and concurrent functional MRI in humans: Factors influencing heating with body coil transmission. Neuroimage Clin 2025; 45:103741. [PMID: 39889543 DOI: 10.1016/j.nicl.2025.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Electrical-stimulation fMRI (es-fMRI) combines direct stimulation of the brain via implanted electrodes with simultaneous rapid functional magnetic resonance imaging of the evoked response. Widely used to map effective functional connectivity in animal studies, its application to the human brain has been limited due to safety concerns. In particular, the method requires reliable prediction and minimization of local tissue heating close to the electrodes, which will vary with imaging parameters and hardware configurations. Electrode leads for such experiments typically remain connected to stimulators outside the magnet room and cannot therefore be treated as electrically short at the radio frequencies employed for 1.5 T and 3 T fMRI. The potential for significant absorption and scattering of radiofrequency energy from excitation pulses during imaging is therefore a major concern. We report a series of temperature measurements conducted in human brain phantoms at two independent imaging centers to characterize factors effecting RF heating of electrically long leads with body coil transmission at 3 Tesla for temporal RMS RF transmit fields ( [Formula: see text] ) up to 3.5 µT including multiband echo planar imaging and 3D T2w turbo spin echo imaging. Under all conditions tested, with one exception, the temperature rise measured immediately adjacent to electrode contacts in a head-torso phantom with body coil RF transmission was less than 0.75 °C. We provide detailed quantification across a range of configurations and conclude with specific recommendations for cable routing that will help ensure the safety of es-fMRI in humans and provide essential data to institutional review boards.
Collapse
Affiliation(s)
- Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - J Michael Tyszka
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Ludovichetti R, Chow CT, Kashyap S, Connell I, Yang B, Graham SJ, Elias G, Santyr B, Naheed A, Martinez D, Colditz M, Germann J, Vetkas A, Uludağ K, Lozano AM, Boutet A. Phantom Safety Assessment of 3 Tesla Magnetic Resonance Imaging in Directional and Sensing Deep Brain Stimulation Devices. Stereotact Funct Neurosurg 2024; 103:42-54. [PMID: 39602889 DOI: 10.1159/000542725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have limited such imaging. Rigorous safety testing has demonstrated that scanning outside of vendor guidelines may be both safe and feasible, unlocking unique opportunities for advanced imaging in this patient population. Currently, however, 3T MRI safety data including advanced MRI sequences in novel directional and sensing DBS devices is lacking. METHODS An anthropomorphic phantom replicating bilateral DBS system was used to assess the temperature rise at the electrode tips, implantable pulse generator, and cranial loop during acquisition of routine clinical sequences (three dimensional [3D] T1, GRE T2*, T2 FSE) and advanced imaging sequences including functional MRI (fMRI), arterial spin labelling (ASL), and diffusion weighted imaging (DWI). Measures of radiofrequency exposure (specific absorption rate [SAR] and root-mean square value of the MRI effective component of the radiofrequency transmission field [B1+rms]) were also recorded as an indirect measure of heating. Testing involved both a new directional and sensing DBS device (Medtronic: B30015 leads and Percept PC neurostimulator) and a previous-generation DBS device (Medtronic: 3,387 leads and Percept PC neurostimulator) in combination with a state-of-the-art (Siemens MAGNETOM Prisma) and a previous-generation (GE Signa HDxt) 3T MRI scanner. RESULTS On the state-of-the-art 3T MRI scanner, the new DBS device produced safe temperature rises with clinically used sequences and fMRI but not with other advanced sequences such as DWI and ASL, which also exceeded B1+rms vendor guidelines (i.e., ≤2 μT). When scanned on the previous MRI scanner, the recent DBS device produced overall lower and slower temperature rises compared to the previous DBS model. Among the sequences performed on this scanner, several (3D T1, DWI, T2 FSE, and ASL) exceeded the approved SAR vendor limit (<1 W/kg), but only ASL resulted in an unacceptable temperature rise during scanning of the previous DBS model. CONCLUSION These phantom safety data show that both clinically used MRI sequences and research sequences such as fMRI can be successfully acquired on 3T MRI scanners with a novel directional and sensing DBS model. As several of these sequences were obtained outside regulatory-approved vendor guidelines, preemptive safety testing should be done. As directional leads become increasingly common, improving MRI safety knowledge is crucial to expand clinical and research possibilities. INTRODUCTION Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have limited such imaging. Rigorous safety testing has demonstrated that scanning outside of vendor guidelines may be both safe and feasible, unlocking unique opportunities for advanced imaging in this patient population. Currently, however, 3T MRI safety data including advanced MRI sequences in novel directional and sensing DBS devices is lacking. METHODS An anthropomorphic phantom replicating bilateral DBS system was used to assess the temperature rise at the electrode tips, implantable pulse generator, and cranial loop during acquisition of routine clinical sequences (three dimensional [3D] T1, GRE T2*, T2 FSE) and advanced imaging sequences including functional MRI (fMRI), arterial spin labelling (ASL), and diffusion weighted imaging (DWI). Measures of radiofrequency exposure (specific absorption rate [SAR] and root-mean square value of the MRI effective component of the radiofrequency transmission field [B1+rms]) were also recorded as an indirect measure of heating. Testing involved both a new directional and sensing DBS device (Medtronic: B30015 leads and Percept PC neurostimulator) and a previous-generation DBS device (Medtronic: 3,387 leads and Percept PC neurostimulator) in combination with a state-of-the-art (Siemens MAGNETOM Prisma) and a previous-generation (GE Signa HDxt) 3T MRI scanner. RESULTS On the state-of-the-art 3T MRI scanner, the new DBS device produced safe temperature rises with clinically used sequences and fMRI but not with other advanced sequences such as DWI and ASL, which also exceeded B1+rms vendor guidelines (i.e., ≤2 μT). When scanned on the previous MRI scanner, the recent DBS device produced overall lower and slower temperature rises compared to the previous DBS model. Among the sequences performed on this scanner, several (3D T1, DWI, T2 FSE, and ASL) exceeded the approved SAR vendor limit (<1 W/kg), but only ASL resulted in an unacceptable temperature rise during scanning of the previous DBS model. CONCLUSION These phantom safety data show that both clinically used MRI sequences and research sequences such as fMRI can be successfully acquired on 3T MRI scanners with a novel directional and sensing DBS model. As several of these sequences were obtained outside regulatory-approved vendor guidelines, preemptive safety testing should be done. As directional leads become increasingly common, improving MRI safety knowledge is crucial to expand clinical and research possibilities.
Collapse
Affiliation(s)
- Riccardo Ludovichetti
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada,
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sriranga Kashyap
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ian Connell
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Medical Engineering, University Health Network, Toronto, Ontario, Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Simon J Graham
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gavin Elias
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Asma Naheed
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Diego Martinez
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Medical Engineering, University Health Network, Toronto, Ontario, Canada
| | - Michael Colditz
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kâmil Uludağ
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zulkarnain NIH, Sadeghi-Tarakameh A, Lagore RL, Koski DM, Metzger GJ, Cayci Z, Harel N, Eryaman Y. Feasibility of using toroidal transceivers for acquiring intraoperative MR images around deep brain stimulation electrodes. Neuroimage 2024; 302:120912. [PMID: 39486494 DOI: 10.1016/j.neuroimage.2024.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for visualizing of deep brain stimulation (DBS) targets, allowing validation of the electrode placement, and assessing complications such as microhemorrhage and edema. However, the presence of the electrodes can introduce challenges such as radiofrequency (RF) induced current artifacts and excessive heating of the electrode contacts. Additionally, extended procedure times are also considered a disadvantage when using MRI as an intraoperative imaging modality following DBS electrode placement. METHOD We propose a novel approach of using toroidal resonators to inductively couple the shaft of the electrode to the scanner's transmit-receive chain thereby utilizing it as a localized imaging antenna. The small extent of the field generated by the electrode antenna allows fast imaging with smaller field-of-views (FOVs) spanning only a few centimeters. Furthermore, we present a fast and accurate safety monitoring strategy that can be used to predict the temperature increase at the electrical contacts of the electrode. RESULTS AND DISCUSSION Imaging with the toroidal transceiver yields a higher signal-to-noise ratio (SNR) efficiency in proximity to the electrodes. This approach reduced the RF induced current artifacts around the electrode which enhanced the visibility of the shaft and improved electrode localization. Moreover, the limited sensitivity around the electrode can be exploited to perform fast scans with small FOVs. The predicted heating around DBS contacts was in quantitative agreement with the experimental heating in swine studies with a normalized root-mean-square error (NRMSE) ≤ 0.09.
Collapse
Affiliation(s)
| | | | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dee M Koski
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Zuzan Cayci
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Sahinovic M, Absalom A, Adapa R. Movement disorder surgery part 2: anaesthetic techniques. BJA Educ 2024; 24:381-388. [PMID: 39484007 PMCID: PMC11522732 DOI: 10.1016/j.bjae.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- M.M. Sahinovic
- University Medical Center Groningen, Groningen, The Netherlands
| | - A.R. Absalom
- University Medical Center Groningen, Groningen, The Netherlands
| | - R. Adapa
- Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
5
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
7
|
Dib A, Polo G, Danaila T, Laurencin C, Prange S, Thobois S. Falsely reassuring impedance in a patient with deep brain stimulation: a case report. J Neurol 2024; 271:5647-5649. [PMID: 38831109 DOI: 10.1007/s00415-024-12482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Affiliation(s)
- A Dib
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
| | - G Polo
- Department of Neurosurgery, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Bron, France
| | - T Danaila
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
| | - C Laurencin
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France
| | - S Prange
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France
- Faculté de Médecine Et Maïeutique, Université de Lyon, Université Claude-Bernard Lyon I, Lyon Sud Charles-Mérieux, Lyon, France
| | - S Thobois
- Department of Neurology C, NS-PARK/FCRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Expert Parkinson Center, Bron, France.
- Lyon Neuroscience Research Center, UMR5292, INSERM U1028, CNRS, Lyon, France.
- Faculté de Médecine Et Maïeutique, Université de Lyon, Université Claude-Bernard Lyon I, Lyon Sud Charles-Mérieux, Lyon, France.
| |
Collapse
|
8
|
Silva NA, Barrios-Martinez J, Yeh FC, Hodaie M, Roque D, Boerwinkle VL, Krishna V. Diffusion and functional MRI in surgical neuromodulation. Neurotherapeutics 2024; 21:e00364. [PMID: 38669936 PMCID: PMC11064589 DOI: 10.1016/j.neurot.2024.e00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nicole A Silva
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Daniel Roque
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Varina L Boerwinkle
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Vibhor Krishna
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Vöröslakos M, Yaghmazadeh O, Alon L, Sodickson DK, Buzsáki G. Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks. Bioelectromagnetics 2024; 45:139-155. [PMID: 37876116 PMCID: PMC10947979 DOI: 10.1002/bem.22489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Omid Yaghmazadeh
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Leeor Alon
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
10
|
Zulkarnain NIH, Sadeghi-Tarakameh A, Thotland J, Harel N, Eryaman Y. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI. Med Phys 2024; 51:1007-1018. [PMID: 38153187 PMCID: PMC10922480 DOI: 10.1002/mp.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/04/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Heating around deep brain stimulation (DBS) in magnetic resonance imaging (MRI) occurs when the time-varying electromagnetic (EM) fields induce currents in the electrodes which can generate heat and potentially cause tissue damage. Predicting the heating around the electrode contacts is important to ensure the safety of patients with DBS implants undergoing an MRI scan. We previously proposed a workflow to predict heating around DBS contacts and introduced a parameter, equivalent transimpedance, that is independent of electrode trajectories, termination, and radiofrequency (RF) excitations. The workflow performance was validated in a unilateral DBS system. PURPOSE To predict RF heating around the contacts of bilateral (DBS) electrodes during an MRI scan in an anthropomorphic head phantom. METHODS Bilateral electrodes were fixed in a skull phantom filled with hydroxyethyl cellulose (HEC) gel. The electrode shafts were suspended extracranially, in a head and torso phantom filled with the same gel material. The current induced on the electrode shaft was experimentally measured using an MR-based technique 3 cm above the tip. A transimpedance value determined in a previous offline calibration was used to scale the shaft current and calculate the contact voltage. The voltage was assigned as a boundary condition on the electrical contacts of the electrode in a quasi-static (EM) simulation. The resulting specific absorption rate (SAR) distribution became the input for a transient thermal simulation and was used to predict the heating around the contacts. RF heating experiments were performed for eight different lead trajectories using circularly polarized (CP) excitation and two linear excitations for one trajectory. The measured temperatures for all experiments were compared with the simulated temperatures and the root-mean-squared errors (RMSE) were calculated. RESULTS The RF heating around the contacts of both bilateral electrodes was predicted with ≤ 0.29°C of RMSE for 20 heating scenarios. CONCLUSION The workflow successfully predicted the heating for different bilateral DBS trajectories and excitation patterns in an anthropomorphic head phantom.
Collapse
Affiliation(s)
- Nur Izzati Huda Zulkarnain
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Jeromy Thotland
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Noam Harel
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
11
|
Esplin N, Kusyk D, Jeong SW, Elhamdani S, Abdel Aziz K, Webb A, Angle C, Whiting D, Tomycz ND. Movement disorder Deep brain stimulation Hybridization: Patient and caregiver outcomes. Clin Park Relat Disord 2024; 10:100234. [PMID: 38292816 PMCID: PMC10827541 DOI: 10.1016/j.prdoa.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Background and Objectives Deep brain stimulation (DBS) is a well-established surgical treatment for certain movement disorders and involves the implantation of brain electrodes connected to implantable pulse generators (IPGs). As more device manufacturers have entered the market, some IPG technology has been designed to be compatible with brain electrodes from other manufacturers, which has facilitated the hybridization of implant technology. The aim of this study was to assess the benefits of hybridization of non-rechargeable, constant voltage IPGs to rechargeable, constant current IPGs. Methods A list of DBS movement disorder patients who had their non-rechargeable, constant voltage IPGs replaced with rechargeable, constant current IPGs from a different manufacturer was compiled. Structured surveys of these patients, and their caregivers when applicable, were undertaken to determine both patient and caregiver satisfaction in this DBS hybridization strategy. Results Eighteen patients met inclusion criteria and twelve patients or their caregivers completed the structured survey (67% response rate). Nine patients had Parkinson's disease (75%), three had essential tremor (25%). Nine (75%) were converted from bilateral single-channel IPGs, and three (25%) were converted from a unilateral dual-channel IPGs. Overall, 92% of patients and caregivers surveyed reported improvement or no change in their symptoms, 92% reported a decrease or no change in their medication requirements, and 92% report they are satisfied or very satisfied with their IPG hybridization and would recommend the surgery to similar patients. There were no immediate surgical complications. Conclusion In this series of movement disorder DBS patients, surgery was safe and patient and caregiver satisfaction were high with a hybridization of non-rechargeable, constant voltage IPGs to rechargeable, constant current IPGs.
Collapse
Affiliation(s)
- Nathan Esplin
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Dorian Kusyk
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Seung W Jeong
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Shahed Elhamdani
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Khaled Abdel Aziz
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Amanda Webb
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Cindy Angle
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Donald Whiting
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| | - Nestor D. Tomycz
- Department of Neurosurgery, Allegheny Health Network, 320 East North Ave, Pittsburgh PA 15212, United States
| |
Collapse
|
12
|
Germann J, Gouveia FV, Beyn ME, Elias GJB, Lozano AM. Computational Neurosurgery in Deep Brain Stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:435-451. [PMID: 39523281 DOI: 10.1007/978-3-031-64892-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Computational methods and technologies are critical for neurosurgery in general and in deep brain stimulation (DBS) in particular. They increasingly inform every aspect of clinical DBS therapy, from presurgical planning and hardware implantation to postoperative adjustment of stimulation parameters. Computational methods also occupy a prominent position within the DBS research sphere, where they facilitate efforts to better understand DBS' underlying mechanisms and optimize and individualize its delivery. This chapter provides a high-level overview of the various computational tools and methods that have been applied to DBS. First, we discuss the invaluable contribution of computational neuroimaging (primarily magnetic resonance imaging) to DBS, targeting and the role of postoperative methods of image analysis-specifically, electrode localization, volume of activated tissue modeling, and sweet-spot mapping-in precisely localizing DBS' targets in the brain and discerning optimal treatment loci. We then address the growing field of connectomics, which leverages specific magnetic resonance imaging (MRI) sequences and post-acquisition processing algorithms to explore how DBS operates at the level of brain-wide networks. Next, the search for electrophysiological and imaging-based biomarkers of optimal DBS therapy is explored. We lastly touch on the incipient field of spatial characterization analysis and discuss the ongoing development of adaptive, closed-loop DBS systems.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Silemek B, Seifert F, Petzold J, Brühl R, Ittermann B, Winter L. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging. Magn Reson Med 2023; 90:2608-2626. [PMID: 37533167 DOI: 10.1002/mrm.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS The implant, consisting of a generator case and a lead, measures RF-inducedE $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS The implant successfully measured RF-inducedE $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
14
|
Sandoval-Pistorius SS, Hacker ML, Waters AC, Wang J, Provenza NR, de Hemptinne C, Johnson KA, Morrison MA, Cernera S. Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci 2023; 43:7575-7586. [PMID: 37940596 PMCID: PMC10634582 DOI: 10.1523/jneurosci.1427-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Deep brain stimulation (DBS) is an effective therapy for various neurologic and neuropsychiatric disorders, involving chronic implantation of electrodes into target brain regions for electrical stimulation delivery. Despite its safety and efficacy, DBS remains an underutilized therapy. Advances in the field of DBS, including in technology, mechanistic understanding, and applications have the potential to expand access and use of DBS, while also improving clinical outcomes. Developments in DBS technology, such as MRI compatibility and bidirectional DBS systems capable of sensing neural activity while providing therapeutic stimulation, have enabled advances in our understanding of DBS mechanisms and its application. In this review, we summarize recent work exploring DBS modulation of target networks. We also cover current work focusing on improved programming and the development of novel stimulation paradigms that go beyond current standards of DBS, many of which are enabled by sensing-enabled DBS systems and have the potential to expand access to DBS.
Collapse
Affiliation(s)
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Allison C Waters
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida 32608
| | - Kara A Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida 32608
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Stephanie Cernera
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California 94143
| |
Collapse
|
15
|
Jooma Z. Anesthetic Management of a Patient With Parkinson's Disease and a Deep Brain Stimulator Device for Hemiarthroplasty Surgery: A Case Report. Cureus 2023; 15:e41400. [PMID: 37546148 PMCID: PMC10402651 DOI: 10.7759/cureus.41400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The multisystem effects of the disease and its pharmacological treatment have several anesthetic implications. With increasing duration of therapy, pharmacoresistance develops. Deep brain stimulation is a safe and effective treatment for symptom control in advanced PD. Its titratability and reversibility make it an attractive treatment option, and it has replaced surgical ablative procedures for advanced disease management. These devices have several implications in the perioperative period. A case is presented of a 75-year-old patient for urgent hemiarthroplasty surgery with advanced PD and a deep brain stimulator device in situ.
Collapse
Affiliation(s)
- Zainub Jooma
- Department of Anesthesia, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, ZAF
- Department of Anesthesia, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, ZAF
| |
Collapse
|
16
|
Betz LH, Dillman JR, Jones BV, Tkach JA. MRI safety screening of children with implants: updates and challenges. Pediatr Radiol 2023; 53:1454-1468. [PMID: 37079039 DOI: 10.1007/s00247-023-05651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023]
Abstract
MRI is the imaging modality of choice for assessing many pediatric medical conditions. Although there are several inherent potential safety risks associated with the electromagnetic fields exploited for MRI, they are effectively mitigated through strict adherence to established MRI safety practices, enabling the safe and effective use of MRI in clinical practice. The potential hazards of the MRI environment may be exacerbated by/in the presence of implanted medical devices. Awareness of the unique MRI safety and screening challenges associated with these implanted devices is critical to ensuring MRI safety for the affected patients. In this review article, we will discuss the basics of MRI physics as they relate to MRI safety in the presence of implanted medical devices, strategies for assessing children with known or suspected implanted medical devices, and the particular management of several well-established common, as well as recently developed, implanted devices encountered at our institution.
Collapse
Affiliation(s)
- Lisa H Betz
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA.
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Blaise V Jones
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
17
|
Perioperative Management of Nonorthopaedic Devices in the Pediatric Neuromuscular Patient Population. J Am Acad Orthop Surg 2023; 31:e403-e411. [PMID: 36853883 DOI: 10.5435/jaaos-d-22-00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/25/2023] [Indexed: 03/01/2023] Open
Abstract
Pediatric patients with neuromuscular conditions often have nonorthopaedic implants that can pose a challenge for MRI acquisition and surgical planning. Treating physicians often find themselves in the position of navigating between seemingly overly risk-averse manufacturer's guidelines and an individual patient's benefits of an MRI or surgery. Most nonorthopaedic implants are compatible with MRI under specific conditions, though often require reprogramming or interrogation before and/or after the scan. For surgical procedures, the use of electrosurgical instrumentation poses a risk of electromagnetic interference and implants are thus often programmed or turned off for the procedures. Special considerations are needed for these patients to prevent device damage or malfunction, which can pose additional risk to the patient. Additional planning before surgery is necessary to ensure appropriate equipment, and staff are available to ensure patient safety.
Collapse
|
18
|
Xu Y, Qin G, Tan B, Fan S, An Q, Gao Y, Fan H, Xie H, Wu D, Liu H, Yang G, Fang H, Xiao Z, Zhang J, Zhang H, Shi L, Yang A. Deep Brain Stimulation Electrode Reconstruction: Comparison between Lead-DBS and Surgical Planning System. J Clin Med 2023; 12:jcm12051781. [PMID: 36902568 PMCID: PMC10002993 DOI: 10.3390/jcm12051781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bojing Tan
- Department of Neurosurgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiying Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Houyou Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Huaying Fang
- Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100089, China
- Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100089, China
| | - Zunyu Xiao
- Molecular Imaging Research Center, Harbin Medical University, Harbin 150076, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| |
Collapse
|
19
|
Balachandar A, Boutet A, Vetkas A, Germann J, Chan IY, Mikulis D, Munhoz RP, Fasano A, Kalia SK, Lozano AM. The Role of Safe MRI in Diagnosing an Unusual Case of High-Grade Glioma Adjacent to Globus Pallidus Interna DBS Electrode. Mov Disord Clin Pract 2023; 10:138-140. [PMID: 36704068 PMCID: PMC9847298 DOI: 10.1002/mdc3.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023] Open
Affiliation(s)
- Arjun Balachandar
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Alexandre Boutet
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - Artur Vetkas
- Department of Neurosurgery, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
| | - Jurgen Germann
- Department of Neurosurgery, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
| | - Ian Y.M. Chan
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - David Mikulis
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - Renato P. Munhoz
- Krembil Research InstituteTorontoOntarioCanada
- Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
| | - Alfonso Fasano
- Krembil Research InstituteTorontoOntarioCanada
- Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
| | - Suneil K. Kalia
- Department of Neurosurgery, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteTorontoOntarioCanada
| | - Andres M. Lozano
- Department of Neurosurgery, Toronto Western Hospital, UHNUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteTorontoOntarioCanada
| |
Collapse
|
20
|
Nuzov NB, Bhusal B, Henry KR, Jiang F, Vu J, Rosenow JM, Pilitsis JG, Elahi B, Golestanirad L. Artifacts Can Be Deceiving: The Actual Location of Deep Brain Stimulation Electrodes Differs from the Artifact Seen on Magnetic Resonance Images. Stereotact Funct Neurosurg 2023; 101:47-59. [PMID: 36529124 PMCID: PMC9932848 DOI: 10.1159/000526877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a common treatment for a variety of neurological and psychiatric disorders. Recent studies have highlighted the role of neuroimaging in localizing the position of electrode contacts relative to target brain areas in order to optimize DBS programming. Among different imaging methods, postoperative magnetic resonance imaging (MRI) has been widely used for DBS electrode localization; however, the geometrical distortion induced by the lead limits its accuracy. In this work, we investigated to what degree the difference between the actual location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters such as acquisition plane and phase encoding direction, as well as the lead's extracranial configuration. Accordingly, an imaging technique to increase the accuracy of lead localization was devised and discussed. METHODS We designed and constructed an anthropomorphic phantom with an implanted DBS system following 18 clinically relevant configurations. The phantom was scanned at a Siemens 1.5 Tesla Aera scanner using a T1MPRAGE sequence optimized for clinical use and a T1TSE sequence optimized for research purposes. We varied slice acquisition plane and phase encoding direction and calculated the distance between the caudal tip of the DBS lead MRI artifact and the actual tip of the lead, as estimated from MRI reference markers. RESULTS Imaging parameters and lead configuration substantially altered the difference in the depth of the lead within its MRI artifact on the scale of several millimeters - with a difference as large as 4.99 mm. The actual tip of the DBS lead was found to be consistently more rostral than the tip estimated from the MR image artifact. The smallest difference between the tip of the DBS lead and the tip of the MRI artifact using the clinically relevant sequence (i.e., T1MPRAGE) was found with the sagittal acquisition plane and anterior-posterior phase encoding direction. DISCUSSION/CONCLUSION The actual tip of an implanted DBS lead is located up to several millimeters rostral to the tip of the lead's artifact on postoperative MR images. This distance depends on the MRI sequence parameters and the DBS system's extracranial trajectory. MRI parameters may be altered to improve this localization.
Collapse
Affiliation(s)
- Noa B Nuzov
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA, .,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA,
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kaylee R Henry
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Fuchang Jiang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jasmine Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Julie G Pilitsis
- Department of Neurosciences & Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Behzad Elahi
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Necessity of MRI-compatible deep brain stimulation systems - Hits and hints for decision making. Clin Neurol Neurosurg 2022; 224:107514. [PMID: 36446266 DOI: 10.1016/j.clineuro.2022.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a safe and effective treatment option for patients with movement disorders as Parkinson's disease, essential tremor and dystonia[1]. For many of these patients the need for imaging may arise in the following years after implantation. The study's aim was to get an overview of the amount of patients with a DBS system who needed an MRI after successful implantation, and if they did, whether the imaging led to a surgical consequence. MATERIALS AND METHODS In this retrospective descriptive work patients were included if they had their DBS implantation for at least 12 months at the time of analysis. Data were collected by retrospective analysis of the electronic patient files as well as a telephone interview. The reason of each imaging performed was assessed, if patients got MRI after the implantation, it was additionally recorded whether imaging led to a consequence (conservative treatment or surgery). An independent neurologist assessed if an MRI would have been better than a CT for the particular indication. RESULTS From 54 included patients, 28 patients received imaging after implantation, either CT or MRI. 7 patients underwent MRIs, of whom 3 patients received cranial MRIs and 4 patients received lumbar spine MRIs. All cranial MRIs led to conservative therapy, in 2 lumbar MRIs the diagnosis led to surgery. Nearly 13 % of the imaging performed in our study population occurred because of fall events, 9 of the included patients developed or have had a tumor diagnosis. CONCLUSIONS Safety of MRI for patients with implanted DBS-systems is and remains an important consideration. Since it can be assumed that patients at a younger age are more likely to get an MRI in the course of their disease, we suggest paying particular attention to the MRI's suitability of the DBS device by patients age. In the end it remains always an individual decision for the surgeon or the consulting physician, which system to use.
Collapse
|
22
|
Ruan H, Wang Y, Li Z, Tong G, Wang Z. A Systematic Review of Treatment Outcome Predictors in Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12070936. [PMID: 35884742 PMCID: PMC9316868 DOI: 10.3390/brainsci12070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating mental disorder. Deep brain stimulation (DBS) is a promising approach for refractory OCD patients. Research aiming at treatment outcome prediction is vital to provide optimized treatments for different patients. The primary purpose of this systematic review was to collect and synthesize studies on outcome prediction of OCD patients with DBS implantations in recent years. This systematic review (PROSPERO registration number: CRD42022335585) followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. The search was conducted using three different databases with the following search terms related to OCD and DBS. We identified a total of 3814 articles, and 17 studies were included in our review. A specific tract confirmed by magnetic resonance imaging (MRI) was predictable for DBS outcome regardless of implant targets, but inconsistencies still exist. Current studies showed various ways of successful treatment prediction. However, considering the heterogeneous results, we hope that future studies will use larger cohorts and more precise approaches for predictors and establish more personalized ways of DBS surgeries.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai 200030, China
- Correspondence: ; Tel.: +86-180-1731-1286
| |
Collapse
|
23
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
24
|
Hayley J, Hart MG, Mostofi A, Morgante F, Pereira EA. No Adverse Effects following Off-Label Magnetic Resonance Imaging in a Patient with Two Deep Brain Stimulation Systems: A Case Report. Stereotact Funct Neurosurg 2022; 100:253-258. [PMID: 35820403 DOI: 10.1159/000525538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
Magnetic resonance imaging (MRI) in patients with implanted deep brain stimulation (DBS) systems is subject to strict guidelines in order to ensure patient safety. Criteria include limits on the number of implanted leads. Here, we describe the case of a 29-year-old patient with generalized dystonia implanted with 4 DBS electrodes and 2 implantable pulse generators, who had an off-label spinal MRI without regard for manufacturer guidance yet suffered no adverse effects. This suggests that manufacturer guidelines might be overly restrictive with regards to limits on implanted DBS hardware. Further research in this area is needed to widen access to this fundamental imaging modality for patients with DBS.
Collapse
Affiliation(s)
- James Hayley
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom
| | - Michael G Hart
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom.,St. George's University Hospital, London, United Kingdom
| | - Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom.,St. George's University Hospital, London, United Kingdom
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom.,St. George's University Hospital, London, United Kingdom.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erlick A Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom.,St. George's University Hospital, London, United Kingdom
| |
Collapse
|
25
|
Loh A, Boutet A, Chow CT, Elias GJB, Germann J, Kucharczyk W, Lozano AM. Letter: Unforeseen Hurdles Associated With Magnetic Resonance Imaging in Patients With Deep Brain Stimulation Devices. Neurosurgery 2022; 90:e129. [PMID: 35199650 DOI: 10.1227/neu.0000000000001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Walter Kucharczyk
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, Canada
| |
Collapse
|
26
|
Loh A, Gwun D, Chow CT, Boutet A, Tasserie J, Germann J, Santyr B, Elias G, Yamamoto K, Sarica C, Vetkas A, Zemmar A, Madhavan R, Fasano A, Lozano AM. Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimul 2022; 15:683-694. [PMID: 35447378 DOI: 10.1016/j.brs.2022.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established treatment for certain movement disorders and has additionally shown promise for various psychiatric, cognitive, and seizure disorders. However, the mechanisms through which stimulation exerts therapeutic effects are incompletely understood. A technique that may help to address this knowledge gap is functional magnetic resonance imaging (fMRI). This is a non-invasive imaging tool which permits the observation of DBS effects in vivo. OBJECTIVE The objective of this review was to provide a comprehensive overview of studies in which fMRI during active DBS was performed, including studied disorders, stimulated brain regions, experimental designs, and the insights gleaned from stimulation-evoked fMRI responses. METHODS We conducted a systematic review of published human studies in which fMRI was performed during active stimulation in DBS patients. The search was conducted using PubMED and MEDLINE. RESULTS The rate of fMRI DBS studies is increasing over time, with 37 studies identified overall. The median number of DBS patients per study was 10 (range = 1-67, interquartile range = 11). Studies examined fMRI responses in various disease cohorts, including Parkinson's disease (24 studies), essential tremor (3 studies), epilepsy (3 studies), obsessive-compulsive disorder (2 studies), pain (2 studies), Tourette syndrome (1 study), major depressive disorder, anorexia, and bipolar disorder (1 study), and dementia with Lewy bodies (1 study). The most commonly stimulated brain region was the subthalamic nucleus (24 studies). Studies showed that DBS modulates large-scale brain networks, and that stimulation-evoked fMRI responses are related to the site of stimulation, stimulation parameters, patient characteristics, and therapeutic outcomes. Finally, a number of studies proposed fMRI-based biomarkers for DBS treatment, highlighting ways in which fMRI could be used to confirm circuit engagement and refine DBS therapy. CONCLUSION A review of the literature reflects an exciting and expanding field, showing that the combination of DBS and fMRI represents a uniquely powerful tool for simultaneously manipulating and observing neural circuitry. Future work should focus on relatively understudied disease cohorts and stimulated regions, while focusing on the prospective validation of putative fMRI-based biomarkers.
Collapse
Affiliation(s)
- Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - David Gwun
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan University School of Medicine, Zhengzhou, China; Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Mapping Motor Pathways in Parkinson’s Disease Patients with Subthalamic Deep Brain Stimulator: A Diffusion MRI Tractography Study. Neurol Ther 2022; 11:659-677. [PMID: 35165822 PMCID: PMC9095781 DOI: 10.1007/s40120-022-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction This study assessed the safety of postoperative diffusion tensor imaging (DTI) with on-state deep brain stimulation (DBS) and the feasibility of reconstruction of the white matter tracts in the vicinity of the stimulation site of the subthalamic nucleus (STN). The association between the impact of DBS on the nigrostriatal pathway (NSP) and the treatment effect on motor symptoms in Parkinson’s disease (PD) was then evaluated. Methods Thirty-one PD patients implanted with STN-DBS (mean age: 66 years; 25 male) were scanned on a 1.5-T magnetic resonance imaging (MRI) scanner using the DTI sequence with DBS on. Twenty-three of them were scanned a second time with DBS off. The NSP, dentato-rubro-thalamic tract (DRTT), and hyperdirect pathway (HDP) were generated using both deterministic and probabilistic tractography methods. The DBS-on-state and off-state tractography results were validated and compared. Afterward, the relationships between the characteristics of the reconstructed white matter tracts and the clinical assessment of PD symptoms and the DBS effect were further examined. Results No adverse events related to DTI were identified in either the DBS-on-state or off-state. Overall, the NSP was best reconstructed, followed by the DRTT and HDP, using the probabilistic tractography method. The connection probability of the left NSP was significantly lower than that of the right side (p < 0.05), and a negative correlation (r = −0.39, p = 0.042) was identified between the preoperative symptom severity in the medication-on state and the connection probability of the left NSP in the DBS-on-state images. Furthermore, the distance from the estimated left-side volume of tissue activated (VTA) by STN-DBS to the ipsilateral NSP was significantly shorter in the DBS-responsive group compared to the DBS-non-responsive group (p = 0.046). Conclusions DTI scanning is safe and delineation of white matter pathway is feasible for PD patients implanted with the DBS device. Postoperative DTI is a useful technique to strengthen our current understanding of the therapeutic effect of DBS for PD and has the potential to refine target selection strategies for brain stimulation. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-022-00331-1. For some more seriously affected Parkinson’s disease (PD) patients, drugs are no longer effective in treating their symptoms. An alternate treatment is to use deep brain stimulation (DBS), a commonly used neurosurgical therapy for PD patients. For those DBS treatments targeting the subthalamic nucleus (STN), the electrical stimulation used may impact nearby white matter tracts and alter the effectiveness of the DBS treatment. The nigrostriatal pathway (NSP), dentato-rubro-thalamic tract, and hyperdirect pathway are three white matter tracts near the STN. They are all relevant to motor symptoms in PD. This study examined whether imaging these tracts using magnetic resonance imaging (MRI) is safe and feasible in the presence of DBS leads. The relationships between the fiber-tracking characteristics and distance to the DBS leads were then evaluated. For this purpose, 31 PD patients with stimulation-on were scanned on a 1.5 T MRI scanner using a diffusion tensor imaging sequence. A total of 23 subjects underwent another scan using the same sequence with stimulation-off. No adverse events related to diffusion tensor imaging were found. Among the white matter tracts near the STN, the NSP was best delineated, followed by the dentato-rubro-thalamic tract and the hyperdirect pathway. The connection probability of the left NSP was significantly lower than that of the right side as were the subject’s motor symptoms. The closer the distance between the NSP and the stimulation location, the better the DBS outcome. These findings indicate that imaging white matter tracts with DBS on is safe and useful in mapping DBS outcomes.
Collapse
|
28
|
Wang X, Xiong Y, Lin J, Lou X. Target Selection for Magnetic Resonance-Guided Focused Ultrasound in the Treatment of Parkinson's Disease. J Magn Reson Imaging 2022; 56:35-44. [PMID: 35081263 DOI: 10.1002/jmri.28080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a common, progressive, and incurable neurodegenerative disease. Pharmacological treatment is the first-line therapy for PD, including carbidopa-levodopa, dopamine agonists. However, some patients respond poorly to medication. For these patients, functional neurosurgical treatment is an important option. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, minimally invasive surgical option for patients refractory to drugs. Currently, several important anatomical structures can be targeted by MRgFUS in the treatment of PD. However, there is no uniform standard for target selection. This review summarizes the clinical studies on MRgFUS for PD, focusing on the relationship between different treatment targets and the relieved symptoms, to help clinicians determine the ideal therapeutic target for individual patients. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
29
|
Neuromodulation for Intractable Childhood Epilepsy. Semin Pediatr Neurol 2021; 39:100918. [PMID: 34620463 DOI: 10.1016/j.spen.2021.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
In the past few years significant advances made in the field of neuromodulation have led to practical therapeutic strategies for children with medically refractory epilepsy. Here, we briefly discuss the various options that are currently available including vagus nerve stimulation, responsive neurostimulation, deep brain stimulation, chronic subthreshold cortical stimulation, as well as repetitive transcranial magnetic and transcranial direct current stimulation. The current indications, proposed mechanisms, method of administration, efficacy, adverse effects, and mention of clinical trials currently in enrollment or development are discussed.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is a rapidly expanding surgical modality for the treatment of patients with movement disorders. Its ability to be adjusted, titrated, and optimized over time has given it a significant advantage over traditional more invasive surgical procedures. Therefore, the success and popularity of this procedure have led to the discovery of new indications and therapeutic targets as well as advances in surgical techniques. The aim of this review is to highlight the important updates in DBS surgery and to exam the anesthesiologist's role in providing optimal clinical management. RECENT FINDINGS New therapeutic indications have a significant implication on perioperative anesthesia management. In addition, new technologies like frameless stereotaxy and intraoperative magnetic resonance imaging to guide electrode placement have altered the need for intraoperative neurophysiological monitoring and hence increased the use of general anesthesia. With an expanding number of patients undergoing DBS implantation, patients with preexisting DBS increasingly require anesthesia for unrelated surgery and the anesthesiologist must be aware of the considerations for perioperative management of these devices and potential complications. SUMMARY DBS will continue to grow and evolve requiring adaptation and modification to the anesthetic management of these patients.
Collapse
Affiliation(s)
- Michael Dinsmore
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Sarica C, Iorio-Morin C, Aguirre-Padilla DH, Najjar A, Paff M, Fomenko A, Yamamoto K, Zemmar A, Lipsman N, Ibrahim GM, Hamani C, Hodaie M, Lozano AM, Munhoz RP, Fasano A, Kalia SK. Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Front Hum Neurosci 2021; 15:708481. [PMID: 34512295 PMCID: PMC8427803 DOI: 10.3389/fnhum.2021.708481] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) represents an important treatment modality for movement disorders and other circuitopathies. Despite their miniaturization and increasing sophistication, DBS systems share a common set of components of which the implantable pulse generator (IPG) is the core power supply and programmable element. Here we provide an overview of key hardware and software specifications of commercially available IPG systems such as rechargeability, MRI compatibility, electrode configuration, pulse delivery, IPG case architecture, and local field potential sensing. We present evidence-based approaches to mitigate hardware complications, of which infection represents the most important factor. Strategies correlating positively with decreased complications include antibiotic impregnation and co-administration and other surgical considerations during IPG implantation such as the use of tack-up sutures and smaller profile devices.Strategies aimed at maximizing battery longevity include patient-related elements such as reliability of IPG recharging or consistency of nightly device shutoff, and device-specific such as parameter delivery, choice of lead configuration, implantation location, and careful selection of electrode materials to minimize impedance mismatch. Finally, experimental DBS systems such as ultrasound, magnetoelectric nanoparticles, and near-infrared that use extracorporeal powered neuromodulation strategies are described as potential future directions for minimally invasive treatment.
Collapse
Affiliation(s)
- Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David H Aguirre-Padilla
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurology & Neurosurgery, Center Campus, Universidad de Chile, Santiago, Chile
| | - Ahmed Najjar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Surgery, College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University of California, Irvine, Irvine, CA, United States
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, Henan University School of Medicine, Zhengzhou, China.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada.,KITE, University Health Network, Toronto, ON, Canada
| |
Collapse
|
32
|
Blood oxygen level-dependent (BOLD) response patterns with thalamic deep brain stimulation in patients with medically refractory epilepsy. Epilepsy Behav 2021; 122:108153. [PMID: 34153639 DOI: 10.1016/j.yebeh.2021.108153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Anterior nucleus of thalamus (ANT) deep brain stimulation (DBS) has shown promise as a treatment for medically refractory epilepsy. To better understand the mechanism of this intervention, we used functional magnetic resonance imaging (fMRI) to map the acute blood oxygen level-dependent (BOLD) response pattern to thalamic DBS in fully implanted patients with epilepsy. METHODS Two patients with epilepsy implanted with bilateral ANT-DBS devices underwent four fMRI acquisitions each, during which active left-sided monopolar stimulation was delivered in a 30-s DBS-ON/OFF cycling paradigm. Each fMRI acquisition featured left-sided stimulation of a different electrode contact to vary the locus of stimulation within the thalamus and to map the brain regions modulated as a function of different contact selection. To determine the extent of peri-electrode stimulation and the engagement of local structures during each fMRI acquisition, volume of tissue activated (VTA) modeling was also performed. RESULTS Marked changes in the pattern of BOLD response were produced with thalamic stimulation, which varied with the locus of the active contact in each patient. BOLD response patterns to stimulation that directly engaged at least 5% of the anterior nuclear group by volume were characterized by changes in the bilateral putamen, thalamus, and posterior cingulate cortex, ipsilateral middle cingulate cortex and precuneus, and contralateral medial prefrontal and anterior cingulate. SIGNIFICANCE The differential BOLD response patterns associated with varying thalamic DBS parameters provide mechanistic insights and highlight the possibilities of fMRI biomarkers of optimizing stimulation in patients with epilepsy.
Collapse
|
33
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|