1
|
Kim JH, Bak SH, Yang HJ, Doo SW, Kim DK, Yang WJ, Kim SU, Lee HJ, Song YS. Improvement of erectile dysfunction using endothelial progenitor cells from fetal cerebral vasculature in the cavernous nerve injury of rats. Basic Clin Androl 2022; 32:21. [PMID: 36451096 PMCID: PMC9714194 DOI: 10.1186/s12610-022-00171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Because of limited differentiation to endothelium from mesenchymal stem cells, it has been strongly recommended to use endothelial progenitor cells for the regeneration of the damaged endothelium of corpora cavernosa. This study was performed to investigate the immortalized human cerebral endothelial cells and their capability for repairing erectile dysfunction in a rat model of cavernous nerve injury. Circulating endothelial progenitor cells were isolated from human fetal brain vasculature at the periventricular region of telencephalic tissues. Over 95% of CD 31-positive cells were sorted and cultured for 10 days. Human cerebral endothelial progenitor cells were injected into the cavernosa of rats with cavernous nerve injury. Erectile response was then assessed. In in vivo assays, rats were divided into three groups: group 1, sham operation: group 2, bilateral cavernous nerve injury: and group 3, treatment with human cerebral endothelial cells after cavernous nerve injury. RESULTS Established immortalized circulating endothelial progenitor cells showed expression of human telomerase reverse transcriptase transcript by RT-PCR. They also showed the expression of vascular endothelial growth factor, von Willebrand factor, vascular endothelial growth factor receptor, and CD31, cell type-specific markers for endothelial cells by RT-PCR. In in vitro angiogenesis assays, they demonstrated tube formation that suggested morphological properties of endothelial progenitor cells. In in vivo assays, impaired erectile function of rat with cavernous nerve injury recovered at 2, 4, and 12 weeks after transplantation of human cerebral endothelial cells into the cavernosa. CONCLUSIONS Telomerase reverse transcriptase-circulating endothelial progenitor cells from fetal brain vasculature could repair erectile dysfunction of rats with cavernous nerve injury.
Collapse
Affiliation(s)
- Jae Heon Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Sang Hong Bak
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea
| | - Hee Jo Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Seung Whan Doo
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Do Kyung Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Won Jae Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Seung U. Kim
- grid.416957.80000 0004 0633 8774Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J. Lee
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea ,grid.254229.a0000 0000 9611 0917Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Yun Seob Song
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| |
Collapse
|
2
|
Kim CW, Hwang BH, Moon H, Kang J, Park EH, Ihm SH, Chang K, Hong KS. In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis. J Appl Biomater Funct Mater 2021; 19:22808000211014751. [PMID: 34520279 DOI: 10.1177/22808000211014751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Identification of a vulnerable atherosclerotic plaque before rupture is an unmet clinical need. Integrating nanomedicine with multimodal imaging has the potential to precisely detect biological processes in atherosclerosis. We synthesized silica-coated iron oxide nanoparticles (SIONs) coated with rhodamine B isothiocyanate and polyethylene glycol and investigated their feasibility in the detection of macrophages in inflamed atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice via magnetic resonance (MR) and fluorescence reflectance (FR) imaging. In vitro cellular uptake of SIONs was assessed in macrophages using confocal laser scanning microscopy (CLSM). In vivo MR imaging was performed 24 h after SION injection via the tail vein in 26-week-old ApoE-/- mice fed a high-cholesterol diet (HCD). We also performed FR imaging of the extracted aortas from four different mice: two normal-diet-fed C57BL/6 mice injected with saline or 10 mg/kg SIONs and two HCD-fed ApoE-/- mice injected with 5 or 10 mg/kg SIONs. The harvested aortas were cryosectioned and stained with immunohistochemical staining. The CLSM images at 24 h after incubation showed efficient uptake of SIONs by macrophages, with no evidence of cytotoxicity. The in vivo and ex vivo MR and FR images demonstrated SION deposition in the atheroma. Upon immunohistochemical staining of the aorta, CLSM images revealed colocalization of macrophages and SIONs in the atherosclerotic plaque. These results demonstrate that polyethylene glycosylated SIONs could be a highly effective method to identify macrophage activity in atherosclerotic plaques as a multimodal imaging agent.
Collapse
Affiliation(s)
- Chan Woo Kim
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Hee Hwang
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeyoung Moon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jongeun Kang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Park
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyun Ihm
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kiyuk Chang
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Amirshaghaghi A, Cheng Z, Josephson L, Tsourkas A. Magnetic Nanoparticles. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
5
|
Cheng X, Xu J, Hu Z, Jiang J, Wang Z, Lu M. Dual-modal magnetic resonance and photoacoustic tracking and outcome of transplanted tendon stem cells in the rat rotator cuff injury model. Sci Rep 2020; 10:13954. [PMID: 32811841 PMCID: PMC7435193 DOI: 10.1038/s41598-020-69214-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/21/2020] [Indexed: 02/05/2023] Open
Abstract
Stem cells have been used to promote the repair of rotator cuff injury, but their fate after transplantation is not clear. Therefore, contrast agents with good biocompatibility for labeling cell and a reliable technique to track cell are necessary. Here, we developed a micron-sized PLGA/IO MPs to label tendon stem cells (TSCs) and demonstrated that PLGA/IO MPs were safe and efficient for long-term tracking of TSCs by using dual-modal MR and Photoacoustic (PA) imaging both in vitro and in rat rotator cuff injury. Moreover, TSCs improved the repair of injury and the therapeutic effect was not affected by PLGA/IO MPs labeling. We concluded that PLGA/IO particle was a promising dual-modal MR/PA contrast for noninvasive long-term stem cell tracking.
Collapse
Affiliation(s)
- Xueqing Cheng
- Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinshun Xu
- Department of Ultrasound, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyue Hu
- Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
- North Sichuan Medical College, Nanchong, 637100, China
| | - Jingzhen Jiang
- Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
- North Sichuan Medical College, Nanchong, 637100, China
| | - Zhigang Wang
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Man Lu
- Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
6
|
Fahmy HM, Abd El-Daim TM, Mohamed HAAENE, Mahmoud EAAEQ, Abdallah EAS, Mahmoud Hassan FEZ, Maihop DI, Amin AEAE, Mustafa ABE, Hassan FMA, Mohamed DME, Shams-Eldin EMM. Multifunctional nanoparticles in stem cell therapy for cellular treating of kidney and liver diseases. Tissue Cell 2020; 65:101371. [PMID: 32746989 DOI: 10.1016/j.tice.2020.101371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The review gives an overview of the mechanisms of internalization and distribution of nanoparticles in stem cells this is achieved via providing analysis of the methods used in exploring the migration routes of stem cells, and their reciprocity. In addition, exploring microenvironment target in the body, and tracking the fate of exogenously transplanted stem cells by using innovative and non-invasive techniques will also be discussed. Such techniques like magnetic resonance imaging (MRI), multimodality tracking, optical imaging, and nuclear medicine imaging, which were designed to follow up stem cell migration. This review will explain the various distinctive strategies to enhance homing of labeled stem cells with nanoparticles into damaged hepatic and renal tissues, this purpose was obtained by inducing a specific gene into stem cells, various chemokines, and applying an external magnetic field. Also, this work illustrates how to improve nanoparticles uptake by using transfection agents or covalently binding an exogenous protein (i.e., Human immunodeficiency virus-Tat protein) or conjugating a receptor-specific monoclonal antibody or make modifications to iron coat. It contains stem cell labeling methods such as extracellular labeling and internalization approaches. Ultimately, our review indicates trails of researchers in nanoparticles utilization in stem cell therapy in both kidney and liver diseases.
Collapse
|
7
|
Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology 2020; 14:504-532. [PMID: 32037933 DOI: 10.1080/17435390.2019.1698779] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.
Collapse
Affiliation(s)
- Emily J Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Core Technologies for Life Sciences, Boston College, MA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Son HY, Kim KR, Hong CA, Nam YS. Morphological Evolution of Gold Nanoparticles into Nanodendrites Using Catechol-Grafted Polymer Templates. ACS OMEGA 2018; 3:6683-6691. [PMID: 31458842 PMCID: PMC6644758 DOI: 10.1021/acsomega.8b00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/08/2018] [Indexed: 05/21/2023]
Abstract
Morphology, dimension, size, and surface chemistry of gold nanoparticles are critically important in determining their optical, catalytic, and photothermal properties. Although many techniques have been developed to synthesize various gold nanostructures, complicated and multistep procedures are required to generate three-dimensional, dendritic gold nanostructures. Here, we present a simple method to synthesize highly branched gold nanodendrites through the well-controlled reduction of gold ions complexed with a catechol-grafted polymer. Dextran grafted with catechols guides the morphological evolution as a polymeric ligand to generate dendritic gold structures through the interconnection of the spherical gold nanoparticles. The reduction kinetics, which is critical for morphological changes, is controllable using dimethylacetamide, which can decrease the metal-ligand dissociation and gold ion diffusivity. This study suggests that mussel-inspired polymer chemistry provides a simple one-pot synthetic route to colloidal gold nanodendrites that are potentially applicable to biosensing and catalysis.
Collapse
Affiliation(s)
- Ho Yeon Son
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeong Rak Kim
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol Am Hong
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: . Phone: +82-42-350-3311. Fax: +82-42-350-3310 (C.A.H.)
| | - Yoon Sung Nam
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: (Y.S.N.)
| |
Collapse
|
9
|
Lu M, Cheng X, Jiang J, Li T, Zhang Z, Tsauo C, Liu Y, Wang Z. Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro. PLoS One 2018; 13:e0193362. [PMID: 29608568 PMCID: PMC5880337 DOI: 10.1371/journal.pone.0193362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
Reliable cell tracking is essential to understand the fate of stem cells following implantation, and thus promote the clinical application of stem cell therapy. Dual or multiple modal imaging modalities mediated by different types of multifunctional contrast agent are generally needed for efficient cell tracking. Here, we created a new contrast agent-PLGA/iron oxide microparticles (PLGA/IO MPs) and characterized the morphology, structure and function of enhancing both photoacoustic (PA) and magnetic resonance imaging (MRI). Both PA and MRI signal increased with increased Fe concentration of PLGA/IO MPs. Fluorescent staining, Prussian blue staining and transmission electron microscope (TEM) certified that PLGA/IO MPs were successfully encapsulated in the labeled TSCs. The established PLGA/IO MPs demonstrated superior ability of dual-modal PA/MRI tracking of TSCs without cytotoxicity at relatively lower Fe concentrations (50, 100 and 200 μg/mL). The optimal Fe concentration of PLGA/IO MPs was determined to be 100 μg/mL, thus laying a foundation for the further study of dual-modal PA/MRI tracking of TSCs in vivo and promoting the repair of injured tendon.
Collapse
Affiliation(s)
- Man Lu
- Chongqing Key laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Ultrasound Medical Center, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueqing Cheng
- Ultrasound Medical Center, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingzhen Jiang
- Ultrasound Medical Center, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- North Sichuan Medical College, Nanchong, China
| | - TingTing Li
- Ultrasound Medical Center, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenqi Zhang
- Ultrasound Medical Center, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chialing Tsauo
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhigang Wang
- Chongqing Key laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
10
|
Neural Induction Potential and MRI of ADSCs Labeled Cationic Superparamagnetic Iron Oxide Nanoparticle In Vitro. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6268437. [PMID: 29666564 PMCID: PMC5832102 DOI: 10.1155/2018/6268437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 01/28/2023]
Abstract
Magnetic resonance imaging (MRI) combined with contrast agents is believed to be useful for stem cell tracking in vivo, and the aim of this research was to investigate the biosafety and neural induction of SD rat-originated adipose derived stem cells (ADSCs) using cationic superparamagnetic iron oxide (SPIO) nanoparticle which was synthesized by the improved polyol method, in order to allow visualization using in vitro MRI. The scan protocols were performed with T2-mapping sequence; meanwhile, the ultrastructure of labeled cells was observed by transmission electron microscopy (TEM) while the iron content was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). After neural induction, nestin and NSE (neural markers) were obviously expressed. In vitro MRI showed that the cationic PEG/PEI-modified SPIO nanoparticles could achieve great relaxation performance and favourable longevity. And the ICP-AES quantified the lowest iron content that could be detected by MRI as 1.56~1.8 pg/cell. This study showed that the cationic SPIO could be directly used to label ADSCs, which could then inductively differentiate into nerve and be imaged by in vitro MRI, which would exhibit important guiding significance for the further in vivo MRI towards animal models with neurodegenerative disorders.
Collapse
|
11
|
Jiang C, Wu D, Haacke EM. Ferritin-EGFP Chimera as an Endogenous Dual-Reporter for Both Fluorescence and Magnetic Resonance Imaging in Human Glioma U251 Cells. ACTA ACUST UNITED AC 2017; 3:1-8. [PMID: 30042970 PMCID: PMC6024424 DOI: 10.18383/j.tom.2015.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A unique hybrid protein ferritin–enhanced green fluorescent protein (EGFP) was built to serve as an endogenous dual reporter for both fluorescence and magnetic resonance imaging (MRI). It consists of a human ferritin heavy chain (an iron-storage protein) at the N terminus, a flexible polypeptide in the middle as a linker, and an EGFP at the C terminus. Through antibiotic screening, we established stable human glioma U251 cell strains that expressed ferritin–EGFP under the control of tetracycline. These cells emitted bright green fluorescence and were easily detected by a fluorescent microscope. Ferritin–EGFP overexpression proved effective in triggering obvious intracellular iron accumulation as shown by Prussian blue staining and by MRI. Further, we found that ferritin–EGFP overexpression did not cause proliferation differences between experimental and control group cells when ferritin–EGFP was expressed for <96 hours. Application of this novel ferritin–EGFP chimera has a promising future for combined optical and MRI approaches to study in vivo imaging at a cellular level.
Collapse
Affiliation(s)
- Caihong Jiang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and
| | - E Mark Haacke
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and.,Department of Radiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
12
|
Groot Nibbelink M, Daoudi K, Slegers S, Grootendorst D, Dantuma M, Steenbergen W, Karperien M, Manohar S, van Apeldoorn A. Opening the "White Box" in Tissue Engineering: Visualization of Cell Aggregates in Optically Scattering Scaffolds. Tissue Eng Part C Methods 2016; 22:534-42. [PMID: 27056242 DOI: 10.1089/ten.tec.2015.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The noninvasive and longitudinal imaging of cells or cell aggregates in large optically scattering scaffolds is still a largely unresolved problem in tissue engineering. In this work, we investigated the potential of near-infrared (NIR) photoacoustic (PA) tomography imaging to address this issue. We used clinically relevant sizes of highly light scattering polyethersulfone multibore(®) hollow fiber scaffolds seeded with cells. Since cells have little optical absorption at NIR wavelengths, we studied labeling of cells with absorbers. Four NIR labels were examined for their suitability based on absorption characteristics, resistance to bleaching, and influence on cell viability. On the basis of these criteria, carbon nanoparticles proved most suitable in a variety of cells. For PA imaging, we used a research setup, based on computed tomography geometry. As proof of principle, using this imager we monitored the distribution and clustering of labeled rat insulinoma beta cell aggregates in the scaffolds. This was performed for the duration of 1 week in a nondestructive manner. The results were validated using fluorescence imaging, histology, and light microscopy imaging. Based on our findings, we conclude that PA tomography is a powerful tool for the nondestructive imaging of cells in optically scattering tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Milou Groot Nibbelink
- 1 Developmental Bioengineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Khalid Daoudi
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Sanne Slegers
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands .,3 Albert Schweitzer Hospital , Dordrecht, The Netherlands
| | - Diederik Grootendorst
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Maura Dantuma
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Wiendelt Steenbergen
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Marcel Karperien
- 1 Developmental Bioengineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Srirang Manohar
- 2 Biomedical Photonic Imaging, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Aart van Apeldoorn
- 1 Developmental Bioengineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
13
|
Shen WB, Vaccaro DE, Fishman PS, Groman EV, Yarowsky P. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:222-8. [PMID: 26809657 DOI: 10.1002/cmmi.1684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022]
Abstract
This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Bin Shen
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, 21201, USA
| | | | - Paul S Fishman
- Neurology Service, VA Maryland Healthcare System, Baltimore, MD, 21201, USA.,University of Maryland School of Medicine, Department of Neurology, Baltimore, MD, 21201, USA
| | | | - Paul Yarowsky
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, 21201, USA.,Research Service, VA Maryland Healthcare System, Baltimore, MD, 21201, USA
| |
Collapse
|
14
|
Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine. JOURNAL OF MATERIALS SCIENCE 2016; 51:513-553. [PMID: 26586919 PMCID: PMC4646229 DOI: 10.1007/s10853-015-9324-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 05/05/2023]
Abstract
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.
Collapse
Affiliation(s)
- Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Tianlong Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | - Kannan M. Krishnan
- Materials Science and Engineering, University of Washington, Seattle, 98195
| |
Collapse
|
15
|
Beeran AE, Fernandez FB, Nazeer SS, Jayasree RS, John A, Anil S, Vellappally S, Al Kheraif AAA, Varma PRH. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application. Colloids Surf B Biointerfaces 2015; 136:1089-97. [PMID: 26595389 DOI: 10.1016/j.colsurfb.2015.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Ferrofluid-based manganese (Mn(2+)) substituted superparamagnetic iron oxide nanoparticles stabilized by surface coating with trisodium citrate (MnIOTCs) were synthesized for enhanced hyperthermic activity and use as negative magnetic resonance imaging (MRI) contrast media intended for applications in theranostics. The synthesized MnIOTC materials were characterized based on their physicochemical and biological features. The crystal size and the particle size at the nano level were studied using XRD and TEM. The presence of citrate molecules on the crystal surface of the iron oxide was established by FTIR, TGA, DLS and zeta potential measurements. The superparamagnetic property of MnIOTCs was measured using a vibrating sample magnetometer. Superparamagnetic iron oxide substituted with Mn(2+) with a 3:1 molar concentration of Mn(2+) to Fe(2+) and surface modified with trisodium citrate (MnIO75TC) that exhibited a high T2 relaxivity of 184.6mM(-1)s(-1) and showed excellent signal intensity variation in vitro. Hyperthermia via application of an alternating magnetic field to MnIO75TC in a HeLa cell population induced apoptosis, which was further confirmed by FACS and cLSM observations. The morphological features of the cells were highly disrupted after the hyperthermia experiment, as evidenced from E-SEM images. Biocompatibility evaluation was performed using an alamar blue assay and hemolysis studies, and the results indicated good cytocompatibility and hemocompatibility for the synthesized particles. In the current study, the potential of MnIO75TC as a negative MRI contrast agent and a hyperthermia agent was demonstrated to confirm its utility in the burgeoning field of theranostics.
Collapse
Affiliation(s)
- Ansar Ereath Beeran
- Bioceramics Laboratory, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India
| | - Francis Boniface Fernandez
- Transmission Electron Microscopy Laboratory, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India
| | - Shaiju S Nazeer
- Biophotonics and Imaging Lab, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India
| | - Ramapurath S Jayasree
- Biophotonics and Imaging Lab, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India
| | - Annie John
- Transmission Electron Microscopy Laboratory, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India
| | - Sukumaran Anil
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sajith Vellappally
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Aziz A Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - P R Harikrishna Varma
- Bioceramics Laboratory, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, India.
| |
Collapse
|
16
|
Palma SICJ, Rodrigues CAV, Carvalho A, Morales MDP, Freitas F, Fernandes AR, Cabral JMS, Roque ACA. A value-added exopolysaccharide as a coating agent for MRI nanoprobes. NANOSCALE 2015; 7:14272-14283. [PMID: 26186402 DOI: 10.1039/c5nr01979f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNPs). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNPs were synthesized by a thermal decomposition method and transferred to an aqueous medium by a ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP-DMSA) resulted in a hybrid magnetic-biopolymeric nanosystem (MNP-DMSA-EPS) with a hydrodynamic size of 170 nm, a negative surface charge under physiological conditions and transverse to longitudinal relaxivity ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma - HCT116 - and neural stem/progenitor cells - ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms showed a superior performance of MNP-DMSA-EPS in ReNcell VM, for which the iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12-20 μg Fe per ml) and short incubation times. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP-DMSA or MNP-DMSA-EPS for 14 days. Our study suggests that Fucopol-coated MNPs represent useful cell labeling nanoprobes for MRI.
Collapse
Affiliation(s)
- Susana I C J Palma
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tracking Transplanted Stem Cells Using Magnetic Resonance Imaging and the Nanoparticle Labeling Method in Urology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:231805. [PMID: 26413510 PMCID: PMC4564577 DOI: 10.1155/2015/231805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
A reliable in vivo imaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cells in vivo in the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics.
Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.
Collapse
|
18
|
Vedernikova IA. Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079978015030036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Bernsen MR, Guenoun J, van Tiel ST, Krestin GP. Nanoparticles and clinically applicable cell tracking. Br J Radiol 2015; 88:20150375. [PMID: 26248872 DOI: 10.1259/bjr.20150375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced.
Collapse
Affiliation(s)
- Monique R Bernsen
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands.,2 Department of Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jamal Guenoun
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands
| | | | | |
Collapse
|
20
|
Vargo KB, Al Zaki A, Warden-Rothman R, Tsourkas A, Hammer DA. Superparamagnetic iron oxide nanoparticle micelles stabilized by recombinant oleosin for targeted magnetic resonance imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1409-13. [PMID: 25418741 PMCID: PMC4746475 DOI: 10.1002/smll.201402017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/20/2014] [Indexed: 05/29/2023]
Abstract
Recombinant surfactants present a new platform for stabilizing and targeting nanoparticle imaging agents. Superparamagnetic iron oxide nanoparticle-loaded micelles for MRI contrast are stabilized by an engineered variant of the naturally occurring protein oleosin and targeted using a Her2/neu affibody-oleosin fusion. The recombinant oleosin platform allows simple targeting and the ability to easily swap the ligand for numerous targets.
Collapse
Affiliation(s)
- Kevin B. Vargo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19103
| | - Ajlan Al Zaki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19103
| | | | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19103
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19103
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19103
| |
Collapse
|
21
|
Kim JH, Lee HJ, Doo SH, Yang WJ, Choi D, Kim JH, Won JH, Song YS. Use of nanoparticles to monitor human mesenchymal stem cells transplanted into penile cavernosum of rats with erectile dysfunction. Korean J Urol 2015; 56:280-7. [PMID: 25874041 PMCID: PMC4392027 DOI: 10.4111/kju.2015.56.4.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 12/14/2022] Open
Abstract
Purpose This study was performed to examine the treatment of erectile dysfunction by use of superparamagnetic iron oxide nanoparticles-labeled human mesenchymal stem cells (SPION-MSCs) transplanted into the cavernous nerve injured cavernosa of rats as monitored by molecular magnetic resonance imaging (MRI). Materials and Methods Eight-week-old male Sprague-Dawley rats were divided into three groups of 10 rats each: group 1, sham operation; group 2, cavernous nerve injury; group 3, SPION-MSC treatment after cavernous nerve injury. Immediately after the cavernous nerve injury in group 3, SPION-MSCs were injected into the cavernous nerve injured cavernosa. Serial T2-weighted MRI was done immediately after injection and at 2 and 4 weeks. Erectile response was assessed by cavernous nerve stimulation at 2 and 4 weeks. Results Prussian blue staining of SPION-MSCs revealed abundant uptake of SPION in the cytoplasm. After injection of 1×106 SPION-MSCs into the cavernosa of rats, T2-weighted MRI showed a clear hypointense signal induced by the injection. The presence of SPION in the corpora cavernosa was confirmed with Prussian blue staining. At 2 and 4 weeks, rats with cavernous nerve injury had significantly lower erectile function than did rats without cavernous nerve injury (p<0.05). The group transplanted with SPION-MSCs showed higher erectile function than did the group without SPION-MSCs (p<0.05). The presence of SPION-MSCs for up to 4 weeks was confirmed by MRI imaging and Prussian blue staining in the corpus cavernosa. Conclusions Transplanted SPION-MSCs existed for up to 4 weeks in the cavernous nerve injured cavernosa of rats. Erectile dysfunction recovered and could be monitored by MRI.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hwan Doo
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Won Jae Yang
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University School of Medicine, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Ho Won
- Department of Oncology and Hematology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Watada Y, Yamashita D, Toyoda M, Tsuchiya K, Hida N, Tanimoto A, Ogawa K, Kanzaki S, Umezawa A. Magnetic resonance monitoring of superparamagnetic iron oxide (SPIO)-labeled stem cells transplanted into the inner ear. Neurosci Res 2015; 95:21-6. [PMID: 25645157 DOI: 10.1016/j.neures.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
In the field of regenerative medicine, cell transplantation or cell-based therapies for inner ear defects are considered to be promising candidates for a therapeutic strategy. In this paper, we report on a study that examined the use of magnetic resonance imaging (MRI) to monitor stem cells transplanted into the cochlea labeled with superparamagnetic iron oxide (SPIO), a contrast agent commonly used with MRI. First, we demonstrated in vitro that stem cells efficiently took up SPIO particles. This was confirmed by Prussian blue staining and TEM. In MRI studies, T2 relaxation times of SPIO-labeled cells decreased in a dose-dependent manner. Next, we transplanted SPIO-labeled cells directly into the cochlea in vivo and then performed MRI 1h, 2 weeks, and 4 weeks after transplantation. The images were evaluated objectively by measuring signal intensity (SI). SI within the ears receiving transplants was significantly lower (P<0.05) than that of control sides at the 1-h assessment. This novel method will be helpful for evaluating stem cell therapies, which represents a new strategy for inner ear regeneration. To the best of our knowledge, this study is the first to demonstrate that local transplantation of labeled stem cells into the inner ear can be visualized in vivo via MRI.
Collapse
Affiliation(s)
- Yukiko Watada
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Kobe University Hospital, Kobe, Japan
| | - Masashi Toyoda
- Department of Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Research Team for Vascular Medicine, Tokyo, Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kohei Tsuchiya
- Department of Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Naoko Hida
- Department of Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Research Team for Vascular Medicine, Tokyo, Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akihiro Tanimoto
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Sho Kanzaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Akihiro Umezawa
- Department of Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
23
|
Dong H, Parekh HS, Xu ZP. Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. J Colloid Interface Sci 2015; 437:10-16. [DOI: 10.1016/j.jcis.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
|
24
|
Naha PC, Zaki AA, Hecht E, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WRT, Litt HI, Tsourkas A, Cormode DP. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B 2014; 2:8239-8248. [PMID: 25485115 PMCID: PMC4251562 DOI: 10.1039/c4tb01159g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.
Collapse
Affiliation(s)
- Pratap C. Naha
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajlan Al Zaki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hecht
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Chorny
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Blankemeyer
- Small Animal Imaging Facility, University of Pennsylvania, PA, USA
| | - Douglas M. Yates
- Nanoscale Characterization Facility, University of Pennsylvania, PA, USA
| | - Walter R. T. Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harold I. Litt
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
26
|
Lindemann A, Lüdtke-Buzug K, Fräderich BM, Gräfe K, Pries R, Wollenberg B. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 2014; 9:5025-40. [PMID: 25378928 PMCID: PMC4218924 DOI: 10.2147/ijn.s63873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background As a tomographic imaging technology, magnetic particle imaging (MPI) allows high spatial resolution and sensitivity, and the possibility to create real-time images by determining the spatial distribution of magnetic particles. To ensure a prospective biosafe application of UL-D (University of Luebeck-Dextran coated superparamagnetic nanoparticles), we evaluated the biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs), their impact on biological properties, and their cellular uptake using head and neck squamous cancer cells (HNSCCs). Methods SPIONs that met specific MPI requirements were synthesized as tracers. Labeling and uptake efficiency were analyzed by hematoxylin and eosin staining and magnetic particle spectrometry. Flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, and real-time cell analyzer assays were used to investigate apoptosis, proliferation, and the cytokine response of SPION-labeled cells. The production of reactive oxygen species (ROS) was determined using a fluorescent dye. Experimental results were compared to the contrast agent Resovist®, a standard agent used in MPI. Results UL-D nanoparticles and Resovist particles were taken up in vitro by HNSCCs via unspecific phagocytosis followed by cytosolic accumulation. To evaluate toxicity, flow cytometry analysis was performed; results showed that dose- and time-dependent administration of Resovist induced apoptosis whereas cell viability of UL-D-labeled cells was not altered. We observed decreased cell proliferation in response to increased SPION concentrations. An intracellular production of ROS could not be detected, suggesting that the particles did not cause oxidative stress. Tumor necrosis factor alpha (TNF-α) and interleukins IL-6, IL-8, and IL-1β were measured to distinguish inflammatory responses. Only the primary tumor cell line labeled with >0.5 mM Resovist showed a significant increase in IL-1β secretion. Conclusion Our data suggest that UL-D SPIONs are a promising tracer material for use in innovative tumor cell analysis in MPI.
Collapse
Affiliation(s)
- Antje Lindemann
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | | | - Bianca M Fräderich
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ksenija Gräfe
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
27
|
Hua P, Wang YY, Liu LB, Liu JL, Liu JY, Yang YQ, Yang SR. In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction. Mol Med Rep 2014; 11:113-20. [PMID: 25323652 PMCID: PMC4237077 DOI: 10.3892/mmr.2014.2649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles generate superparamagnetism, thereby resulting in an inhomogeneous local magnetic field, which shortens the T2 value on magnetic resonance imaging (MRI). The purpose of the present study was to use MRI to track bone marrow mesenchymal stem cells (BMSCs) labeled with SPIO in a rat model of myocardial infarction. The BMSCs were isolated from rats and labeled with SPIO. The anterior descending branch of the coronary artery was ligated under anesthesia. Two weeks later, the rats received, at random, 5×107 SPIO-labeled BMSCs, 5×107 unlabeled BMSCs or a vehicle (100 μl phosphate-buffered saline) via direct injection into the ischemic area (20 animals/group). MRI was used to track the SPIO-labeled BMSCs and the rats were then sacrificed to verify the presence of BMSCs using immunohistochemistry with an anti-CD90 antibody. The procedure labeled 99% of the BMSCs with SPIO, which exhibited low-intensity signals on T2 and T2* MRI imaging. At 24 h post-BMSC transplantation, low-intensity MRI signals were detected on the T2 and T2* sequences at the infarction margins. After 3 weeks following transplantation, low-intensity signals started to appear within the infarcted area; however, the signal intensity subsequently decreased and became indistinct. Immunohistochemistry revealed that the SPIO-labeled BMSCs migrated from the margin into the infarcted region. In conclusion, the BMSCs were readily labeled with SPIO and in vivo and MRI tracking demonstrated that the SPIO-labeled BMSCs established and grew in the infarcted myocardium.
Collapse
Affiliation(s)
- Ping Hua
- Department of Cardiothoracic Surgery, The Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - You-Yu Wang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Li-Bao Liu
- Department of Cardiothoracic Surgery, The Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Liang Liu
- Department of Cardiothoracic Surgery, The Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian-Yang Liu
- Department of Cardiothoracic Surgery, The Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan-Qi Yang
- Department of Cardiothoracic Surgery, The Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Song-Ran Yang
- Department of Neurology, Guangzhou First Municipal People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
28
|
Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking. PLoS One 2014; 9:e100259. [PMID: 24959883 PMCID: PMC4069012 DOI: 10.1371/journal.pone.0100259] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/24/2014] [Indexed: 12/25/2022] Open
Abstract
Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI) of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the ‘3Rs’, the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.
Collapse
|
29
|
MR detection of LPS-induced neutrophil activation using mannan-coated superparamagnetic iron oxide nanoparticles. Mol Imaging Biol 2014; 15:685-92. [PMID: 23670353 DOI: 10.1007/s11307-013-0643-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the potential of the phagocytic activity of lipopolysaccharide (LPS) induced neutrophils that are mannan coated with superparamagnetic iron oxide nanoparticles (M-SPION). PROCEDURES Human neutrophils were divided into control and LPS groups. The neutrophils were labeled with M-SPION and dextran-coated SPION. After labeling of M-SPION, the mean signal intensity (SI) of the LPS group was significantly lower than that of the control group. RESULTS The labeling of both control and LPS groups with M-SPION showed significantly lower SI than those labeled with D-SPION. After labeling with M-SPION, the intracellular iron uptake of neutrophil in Prussian blue staining was markedly demonstrated in the LPS group, but not in the control group. M-SPION was more effective than D-SPION in the labeling of neutrophils in vitro. CONCLUSIONS The in vitro labeling technique of LPS neutrophil with M-SPION on MR imaging could be developed into a diagnostic method of LPS-induced neutrophils.
Collapse
|
30
|
Wang YXJ, Xuan S, Port M, Idee JM. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 2014; 19:6575-93. [PMID: 23621536 PMCID: PMC4082310 DOI: 10.2174/1381612811319370003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/22/2013] [Indexed: 12/15/2022]
Abstract
Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, The Chinese university of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
31
|
Albukhaty S, Naderi-Manesh H, Tiraihi T. In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. IRANIAN BIOMEDICAL JOURNAL 2014; 17:71-6. [PMID: 23567848 DOI: 10.6091/ibj.1114.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). METHODS The SPION was prepared and coated with PLL as transfection agent and the transfection efficiency was evaluated in rat NSC using enhanced green fluorescent protein-N1 plasmid containing GFP as a reporter gene. NSC was incubated for 24 h in cell culture media containing 25 µg/ml SPION and in different concentrations of PLL (0.25, 0.50, 0.75, 1 and 2 µg/ml). Cell viability was determined before and after transfection for every concentration using Trypan blue assay. Characterization of prepared uncoated (SPION) and coated (SPION-PLL) complexes were evaluated by a transmission electron microscope and the zeta potential. RESULTS PLL at 0.75 μg/ml showed optimal results with 25 μg/ml SPION concentration compared with other PLL concentrations (0.25, 0.50, 1 and 2 μg/ml). The 18% efficiency of the transfected cells showed green fluorescence. CONCLUSION Transfection with SPION is an efficient, non-viral gene transfere method.
Collapse
Affiliation(s)
- Salim Albukhaty
- Dept. of Nanobiotechnology, Faculty of Biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Dept. of Nanobiotechnology, Faculty of Biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- 2Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
32
|
Wang Q, Li K, Quan Q, Zhang G. R2* and R2 mapping for quantifying recruitment of superparamagnetic iron oxide-tagged endothelial progenitor cells to injured liver: tracking in vitro and in vivo. Int J Nanomedicine 2014; 9:1815-22. [PMID: 24748791 PMCID: PMC3990372 DOI: 10.2147/ijn.s58269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate clinical 3.0T magnetic resonance for tracking and quantifying superparamagnetic iron oxide (SPIO)-labeled endothelial progenitor cells (EPCs) in vitro and homing to liver with acute injury in vivo. METHODS The bone marrow-derived EPCs were isolated and cultured for 4 days and examined in vitro for lineage markers. Then the cultured cells were labeled with a ferumoxides-protamine sulfate complex. Iron uptake was analyzed with an electron microscope and Prussian blue staining. Agarose gel phantoms containing different amounts of EPCs (0-2.5 × 10(6) cells per milliliter of 1.0% agarose gel) were analyzed with 3.0T R2 and R2* relaxometry. For in vivo tracking, liver injury was induced in healthy C57 mice (female, 6 weeks old, weight 19-20 g) by administration of carbon tetrachloride by single intraperitoneal injection. The R2* and R2 mapping of injured and normal livers of C57 mice were conducted by using 3.0T magnetic resonance on Days 0, 1, 4, and 8 after intravenous SPIO-tagged cells transplantation. RESULTS Electron microscope and Perls Prussian blue stain revealed the efficiency of SPIO particles uptake was more than 95% and no structural changes of labeled cells were found compared with control group. R2 and R2* values were linearly correlated with the number of iron-loaded cells in the agarose gel phantoms, and R2* values were significantly greater than R2 (P<0.01). R2* values in all groups were obviously greater than R2 (P<0.01). The R2* values of the injured livers were greater than normal on Days 1 and 4 (P<0.01). No significant difference of R2 values could be found among the three groups. CONCLUSION Quantitative R2* mapping provides a useful method for quantifying intravascular administered SPIO-tagged EPCs homing to injured livers.
Collapse
Affiliation(s)
- Qingguo Wang
- Department of Radiology, Shanghai Jiaotong University Affiliated First People's Hospital, Hongkou District, Shanghai, People's Republic of China
| | - Kangan Li
- Department of Radiology, Shanghai Jiaotong University Affiliated First People's Hospital, Hongkou District, Shanghai, People's Republic of China
| | - Qimeng Quan
- Department of Radiology, Shanghai Jiaotong University Affiliated First People's Hospital, Hongkou District, Shanghai, People's Republic of China
| | - Guixiang Zhang
- Department of Radiology, Shanghai Jiaotong University Affiliated First People's Hospital, Hongkou District, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Shen WB, Plachez C, Chan A, Yarnell D, Puche AC, Fishman PS, Yarowsky P. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B. Int J Nanomedicine 2013; 8:4593-600. [PMID: 24348036 PMCID: PMC3849141 DOI: 10.2147/ijn.s53012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Research Service, VA Maryland Health Care System, Baltimore, MD, USA ; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Celine Plachez
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA ; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amanda Chan
- Notre Dame of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Deborah Yarnell
- Research Service, VA Maryland Health Care System, Baltimore, MD, USA
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul S Fishman
- Research Service, VA Maryland Health Care System, Baltimore, MD, USA ; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul Yarowsky
- Research Service, VA Maryland Health Care System, Baltimore, MD, USA ; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Tsuchiya K, Nitta N, Sonoda A, Otani H, Takahashi M, Murata K, Shiomi M, Tabata Y, Nohara S. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles. Eur J Radiol 2013; 82:1919-25. [DOI: 10.1016/j.ejrad.2013.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/27/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022]
|
35
|
Fayol D, Le Visage C, Ino J, Gazeau F, Letourneur D, Wilhelm C. Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplant 2013; 22:2105-18. [DOI: 10.3727/096368912x661300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.
Collapse
Affiliation(s)
- Delphine Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Catherine Le Visage
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Julia Ino
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Didier Letourneur
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| |
Collapse
|
36
|
Yang B, Cai H, Qin W, Zhang B, Zhai C, Jiang B, Wu Y. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging. Int J Nanomedicine 2013; 8:3977-90. [PMID: 24204136 PMCID: PMC3804583 DOI: 10.2147/ijn.s52058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic polymer (carboxylated polyethylene glycol monooleyl ether [OE-PEG-COOH]). These nanoparticles can be effectively internalized by beta cells and label primary islet cells, at relatively low iron concentration. The biocompatibility and cytotoxicity of these products were investigated by comparison with the commercial USPIO product, FeraSpin™ S. We also assessed the safe dosage range of the product. Although some cases showed a hypointensity change at the site of transplant, a strong magnetic resonance imaging (MRI) was detectable by a clinical MRI scanner, at field strength of 3.0 Tesla, in vivo, and the iron deposition/attached in islets was confirmed by Prussian blue and immunohistochemistry staining. It is noteworthy that based on our synthesis approach, in future, we could exchange the Bcl-2 with other probes that would be more specific for the targeted cells and that would have better labeling specificity in vivo. The combined results point to the promising potential of the novel Bcl-2-functionalized PEG-USPIO as a molecular imaging agent for in vivo monitoring of islet cells or other cells.
Collapse
Affiliation(s)
- Bin Yang
- Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Kang J, Lee H, Kim YN, Yeom A, Jeong H, Lim YT, Hong KS. Size-regulated group separation of CoFe2O4 nanoparticles using centrifuge and their magnetic resonance contrast properties. NANOSCALE RESEARCH LETTERS 2013; 8:376. [PMID: 24004536 PMCID: PMC3844441 DOI: 10.1186/1556-276x-8-376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities (r2) at 4.7 T and room temperature in the range of 60 to 300 mM-1s-1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis. PACS: 75.75.Fk, 78.67.Bf, 61.46.Df.
Collapse
Affiliation(s)
- Jongeun Kang
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Hyunseung Lee
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
| | - Young-Nam Kim
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
| | - Areum Yeom
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
| | - Heejeong Jeong
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
| | - Yong Taik Lim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Kwan Soo Hong
- Center for MR Research, Korea Basic Science Institute, Cheongwon 363-883, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| |
Collapse
|
38
|
Williams JP, Southern P, Lissina A, Christian HC, Sewell AK, Phillips R, Pankhurst Q, Frater J. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int J Nanomedicine 2013; 8:2543-54. [PMID: 23901272 PMCID: PMC3726440 DOI: 10.2147/ijn.s44013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells.
Collapse
Affiliation(s)
- James P Williams
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee HJ, Doo SW, Kim DH, Cha YJ, Kim JH, Song YS, Kim SU. Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice. Cancer Lett 2013; 335:58-65. [DOI: 10.1016/j.canlet.2013.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/14/2023]
|
40
|
Wang Z, Cuschieri A. Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci 2013; 14:9111-25. [PMID: 23624604 PMCID: PMC3676776 DOI: 10.3390/ijms14059111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023] Open
Abstract
Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO) ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS) results in rapid high uptake of SPIO nanoparticles (SPIONs) by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM) following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction.
Collapse
Affiliation(s)
- Zhigang Wang
- Authors to whom correspondence should be addressed; E-Mails: (Z.W.); (A.C.); Tel.: +44-1382-381-030 (Z.W.); +44-1382-381-009 (A.C.); Fax: +44-1382-386-588 (Z.W. & A.C.)
| | - Alfred Cuschieri
- Authors to whom correspondence should be addressed; E-Mails: (Z.W.); (A.C.); Tel.: +44-1382-381-030 (Z.W.); +44-1382-381-009 (A.C.); Fax: +44-1382-386-588 (Z.W. & A.C.)
| |
Collapse
|
41
|
Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 2013; 65:497-514. [PMID: 22820529 DOI: 10.1016/j.addr.2012.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
Materials offering the ability to change their characteristics in response to presented stimuli have demonstrated application in the biomedical arena, allowing control over drug delivery, protein adsorption and cell attachment to materials. Many of these smart systems are reversible, giving rise to finer control over material properties and biological interaction, useful for various therapeutic treatment strategies. Many smart materials intended for biological interaction are based around pH or thermo-responsive materials, although the use of magnetic materials, particularly in neural regeneration, has increased over the past decade. This review draws together a background of literature describing the design principles and mechanisms of smart materials. Discussion centres on recent literature regarding pH-, thermo-, magnetic and dual responsive materials, and their current applications for the treatment of neural tissue.
Collapse
|
42
|
Li XX, Li KA, Qin JB, Ye KC, Yang XR, Li WM, Xie QS, Jiang ME, Zhang GX, Lu XW. In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia. Int J Nanomedicine 2013; 8:1063-73. [PMID: 23515426 PMCID: PMC3598527 DOI: 10.2147/ijn.s42578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications. Methods In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation. Results With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen. Conclusion APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells.
Collapse
Affiliation(s)
- Xiang-Xiang Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdevices 2013; 14:947-54. [PMID: 22773161 DOI: 10.1007/s10544-012-9673-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).
Collapse
|
44
|
Puppi J, Modo M, Dhawan A, Lehec SC, Mitry RR, Hughes RD. Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant 2013; 23:329-43. [PMID: 23394812 DOI: 10.3727/096368913x663596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte transplantation is being evaluated as an alternative to liver transplantation. However, the fate of hepatocytes after transplantation is not well defined. The aims of the study were to improve hepatocyte labeling in vitro using superparamagnetic iron oxide nanoparticles (SPIOs) and to perform in vivo experiments on tracking labeled cells by magnetic resonance imaging (MRI). Human and rat hepatocytes were labeled in vitro for 16 h with clinically approved SPIOs (12.5 µg Fe/ml) and protamine sulfate (3 µg/ml) as a transfection agent. Increased cellular iron uptake was obtained, and cell viability and function were shown not to be affected by labeling. Labeled cells (2,000/µl) could be detected on T2-weighted images in vitro using a 7T MR scanner. In a rat model of acute liver failure (ALF), female recipients received intrasplenic transplantation of 2 × 10(7) male rat hepatocytes 28-30 h after intraperitoneal injection of d-galactosamine (1.2 g/kg). There were four groups (n = 4 each): vehicle injection, injection of freshly isolated cells labeled with CM-DiI, injection of cultured cells labeled with CM-DiI, and injection of cultured cells labeled with both SPIOs and CM-DiI. Ex vivo T2*-weighted gradient-echo images at 7T MRI were acquired at day 7 post-ALF induction. Six days after transplantation, SPIOs were detected in the rat liver as a decrease in the MRI signal intensity in the surviving animals. Histologically, most of the SPIOs were located in Kupffer cells, indicating clearance of labeled hepatocytes. Furthermore, labeled cells could not be detected in the liver by the fluorescent dye or by PCR for the Y-chromosome (Sry-2 gene). In conclusion, optimum conditions to label human hepatocytes with SPIOs were established and did not affect cell viability or metabolic function and were sufficient for in vitro MRI detection. However, the clearance of hepatocytes after transplantation limits the value of MRI for assessing long-term hepatocyte engraftment.
Collapse
Affiliation(s)
- Juliana Puppi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
45
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Danhier P, De Preter G, Boutry S, Mahieu I, Leveque P, Magat J, Haufroid V, Sonveaux P, Bouzin C, Feron O, Muller RN, Jordan BF, Gallez B. Electron paramagnetic resonance as a sensitive tool to assess the iron oxide content in cells for MRI cell labeling studies. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:302-7. [PMID: 22539400 DOI: 10.1002/cmmi.497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MRI cell tracking is a promising technique to track various cell types (stem cells, tumor cells, etc.) in living animals. Usually, cells are incubated with iron oxides (T(2) contrast agent) in order to take up the particles before being injected in vivo. Iron oxide quantification is important in such studies for validating the labeling protocols and assessing the dilution of the particles with cell proliferation. We here propose to implement electron paramagnetic resonance (EPR) as a very sensitive method to quantify iron oxide concentration in cells. Iron oxide particles exhibit a unique EPR spectrum, which directly reflects the number of particles in a sample. In order to compare EPR with existing methods (Perls's Prussian blue reaction, ICP-MS and fluorimetry), we labeled tumor cells (melanoma and renal adenocarcinoma cell lines) and fibroblasts with fluorescent iron oxide particles, and determined the limits of detection of the different techniques. We show that EPR is a very sensitive technique and is specific for iron oxide quantification as measurements are not affected by endogenous iron. As a consequence, EPR is well adapted to perform ex vivo analysis of tissues after cell tracking experiments in order to confirm MRI results.
Collapse
Affiliation(s)
- P Danhier
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guenoun J, Ruggiero A, Doeswijk G, Janssens RC, Koning GA, Kotek G, Krestin GP, Bernsen MR. In vivoquantitative assessment of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:165-74. [DOI: 10.1002/cmmi.1513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Jamal Guenoun
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Alessandro Ruggiero
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gabriela Doeswijk
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Roel C. Janssens
- Department of Genetics; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gerben A. Koning
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gyula Kotek
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gabriel P. Krestin
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | | |
Collapse
|
48
|
Saito S, Tsugeno M, Koto D, Mori Y, Yoshioka Y, Nohara S, Murase K. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages. Int J Nanomedicine 2012; 7:5415-21. [PMID: 23091384 PMCID: PMC3474462 DOI: 10.2147/ijn.s33709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) using contrast agents like superparamagnetic iron oxide (SPIO) is an extremely versatile technique to diagnose diseases and to monitor treatment. This study tested the relative importance of particle size and surface coating for the optimization of MRI contrast and labeling efficiency of macrophages migrating to remote inflammation sites. MATERIALS AND METHODS We tested four SPIO and ultrasmall superparamagnetic iron oxide (USPIO), alkali-treated dextran magnetite (ATDM) with particle sizes of 28 and 74 nm, and carboxymethyl dextran magnetite (CMDM) with particle sizes of 28 and 72 nm. Mouse macrophage RAW264 cells were incubated with SPIOs and USPIOs, and the labeling efficiency of the cells was determined by the percentage of Berlin blue-stained cells and by measuring T(2) relaxation times with 11.7-T MRI. We used trypan blue staining to measure cell viability. RESULTS Analysis of the properties of the nanoparticles revealed that ATDM-coated 74 nm particles have a lower T(2) relaxation time than the others, translating into a higher ability of MRI negative contrast agent. Among the other three candidates, CMDM-coated particles showed the highest T(2) relaxation time once internalized by macrophages. Regarding labeling efficiency, ATDM coating resulted in a cellular uptake higher than CMDM coating, independent of nanoparticle size. None of these particle formulations affected macrophage viability. CONCLUSION This study suggests that coating is more critical than size to optimize the SPIO labeling of macrophages. Among the formulations tested in this study, the best MRI contrast and labeling efficiency are expected with ATDM-coated 74 nm nanoparticles.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Drey F, Choi YH, Neef K, Ewert B, Tenbrock A, Treskes P, Bovenschulte H, Liakopoulos OJ, Brenkmann M, Stamm C, Wittwer T, Wahlers T. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI. Cell Transplant 2012; 22:1971-80. [PMID: 23050950 DOI: 10.3727/096368912x657747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for end-stage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10(5) labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.
Collapse
Affiliation(s)
- Florian Drey
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu Y, Sun D. Superparamagnetic iron oxide nanoparticle 'theranostics' for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 2012; 3:117-30. [PMID: 22111537 DOI: 10.1586/ecp.09.39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The superparamagnetic iron oxide nanoparticle (SPIO) 'theranostics', which contain imaging probes for tumor diagnosis and therapeutic compounds for therapy in a single nanoparticle, might provide significant benefits compared with exiting tumor imaging and therapeutic strategies. In this review, we summarize the progress of SPIO 'theranostics' that integrate tumor targeting, multimodality imaging, and gene delivery or targeted drug and prodrug delivery. This review describes various methods of SPIO synthesis, surface coating and characterization. Different tumor-targeting strategies, such as antibody fragments, nucleotides and receptor ligands, are discussed to improve SPIO delivery for multimodality imaging. We also examine the utility of SPIOs for gene delivery, siRNA delivery and imaging. Several methods for drug encapsulation and conjugation onto SPIOs are compared for targeted drug delivery, site-specific release and imaging-guided drug delivery. Finally, we also review the pharmacokinetics (including biodistribution) of SPIOs based on their characteristics.
Collapse
Affiliation(s)
- Yanke Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|