1
|
Turkbey B, Oto A, Allen BC, Akin O, Alexander LF, Ari M, Froemming AT, Fulgham PF, Gettle LM, Maranchie JK, Rosenthal SA, Schieda N, Schuster DM, Venkatesan AM, Lockhart ME. ACR Appropriateness Criteria® Post-Treatment Follow-up of Prostate Cancer: 2022 Update. J Am Coll Radiol 2023; 20:S164-S186. [PMID: 37236741 DOI: 10.1016/j.jacr.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer has a wide spectrum ranging between low-grade localized disease and castrate-resistant metastatic disease. Although whole gland and systematic therapies result in cure in the majority of patients, recurrent and metastatic prostate cancer can still occur. Imaging approaches including anatomic, functional, and molecular modalities are continuously expanding. Currently, recurrent and metastatic prostate cancer is grouped in three major categories: 1) Clinical concern for residual or recurrent disease after radical prostatectomy, 2) Clinical concern for residual or recurrent disease after nonsurgical local and pelvic treatments, and 3) Metastatic prostate cancer treated by systemic therapy (androgen deprivation therapy, chemotherapy, immunotherapy). This document is a review of the current literature regarding imaging in these settings and the resulting recommendations for imaging. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Baris Turkbey
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Aytekin Oto
- Panel Chair, University of Chicago, Chicago, Illinois
| | - Brian C Allen
- Panel Vice-Chair, Duke University Medical Center, Durham, North Carolina
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mim Ari
- The University of Chicago, Chicago, Illinois, Primary care physician
| | | | - Pat F Fulgham
- Urology Clinics of North Texas, Dallas, Texas; American Urological Association
| | | | | | - Seth A Rosenthal
- Sutter Medical Group, Sacramento, California; Commission on Radiation Oncology
| | - Nicola Schieda
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada
| | - David M Schuster
- Emory University, Atlanta, Georgia; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Mark E Lockhart
- Specialty Chair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Correlation of in-vivo imaging with histopathology: A review. Eur J Radiol 2021; 144:109964. [PMID: 34619617 DOI: 10.1016/j.ejrad.2021.109964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Despite tremendous advancements in in vivo imaging modalities, there remains substantial uncertainty with respect to tumor delineation on in these images. Histopathology remains the gold standard for determining the extent of malignancy, with in vivo imaging to histopathologic correlation enabling spatial comparisons. In this review, the steps necessary for successful imaging to histopathologic correlation are described, including in vivo imaging, resection, fixation, specimen sectioning (sectioning technique, securing technique, orientation matching, slice matching), microtome sectioning and staining, correlation (including image registration) and performance evaluation. The techniques used for each of these steps are also discussed. Hundreds of publications from the past 20 years were surveyed, and 62 selected for detailed analysis. For these 62 publications, each stage of the correlative pathology process (and the sub-steps of specimen sectioning) are listed. A statistical analysis was conducted based on 19 studies that reported target registration error as their performance metric. While some methods promise greater accuracy, they may be expensive. Due to the complexity of the processes involved, correlative pathology studies generally include a small number of subjects, which hinders advanced developments in this field.
Collapse
|
3
|
Kowa JY, Soneji N, Sohaib SA, Mayer E, Hazell S, Butterfield N, Shur J, Ap Dafydd D. Detection and staging of radio-recurrent prostate cancer using multiparametric MRI. Br J Radiol 2021; 94:20201423. [PMID: 33586998 DOI: 10.1259/bjr.20201423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We determined the sensitivity and specificity of multiparametric magnetic resonance imaging (MP-MRI) in detection of locally recurrent prostate cancer and extra prostatic extension in the post-radical radiotherapy setting. Histopathological reference standard was whole-mount prostatectomy specimens. We also assessed for any added value of the dynamic contrast enhancement (DCE) sequence in detection and staging of local recurrence. METHODS This was a single centre retrospective study. Participants were selected from a database of males treated with salvage prostatectomy for locally recurrent prostate cancer following radiotherapy. All underwent pre-operative prostate-specific antigen assay, positron emission tomography CT, MP-MRI and transperineal template prostate mapping biopsy prior to salvage prostatectomy. MP-MRI performance was assessed using both Prostate Imaging-Reporting and Data System v. 2 and a modified scoring system for the post-treatment setting. RESULTS 24 patients were enrolled. Using Prostate Imaging-Reporting and Data System v. 2, sensitivity, specificity, positive predictive value and negative predictive value was 64%, 94%, 98% and 36%. MP-MRI under staged recurrent cancer in 63%. A modified scoring system in which DCE was used as a co-dominant sequence resulted in improved diagnostic sensitivity (61%-76%) following subgroup analysis. CONCLUSION Our results show MP-MRI has moderate sensitivity (64%) and high specificity (94%) in detecting radio-recurrent intraprostatic disease, though disease tends to be under quantified and under staged. Greater emphasis on dynamic contrast images in overall scoring can improve diagnostic sensitivity. ADVANCES IN KNOWLEDGE MP-MRI tends to under quantify and under stage radio-recurrent prostate cancer. DCE has a potentially augmented role in detecting recurrent tumour compared with the de novo setting. This has relevance in the event of any future modified MP-MRI scoring system for the irradiated gland.
Collapse
Affiliation(s)
- Jie-Ying Kowa
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Neil Soneji
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - S Aslam Sohaib
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Erik Mayer
- Department of Surgery, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK.,Department of Surgery & Cancer, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Stephen Hazell
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Nicholas Butterfield
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Joshua Shur
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Derfel Ap Dafydd
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| |
Collapse
|
4
|
Chesnut GT, Tin AL, Sivaraman A, Takeda T, Lee T, Fainberg J, Benfante N, Sjoberg DD, Vargas HA, Fine SW, Scardino PT, Eastham JA, Coleman JA, Touijer KA, Zelefsky MJ, Ehdaie B. Defining the index lesion for potential salvage partial or hemi-gland ablation after radiation therapy for localized prostate cancer. Urol Oncol 2021; 39:495.e17-495.e24. [PMID: 33583697 DOI: 10.1016/j.urolonc.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Salvage partial gland ablation (sPGA) has been proposed to treat some localized radiorecurrent prostate cancer. The role of prostate biopsy and magnetic resonance imaging (MRI) characteristics to identify patients eligible for sPGA is unknown. OBJECTIVE To evaluate the ability of MRI and prostate biopsy characteristics to identify an index lesion suitable for sPGA and validate this selection using detailed tumor maps created from whole-mount slides from salvage radical prostatectomy (sRP) specimens. DESIGN, SETTING, AND PARTICIPANTS Men who underwent sRP for recurrent prostate cancer following primary radiotherapy with external beam radiotherapy (EBRT) and/or brachytherapy between 2000 and 2014 at a single high-volume cancer center were eligible. Those with tumor maps, MRI and biopsy data were included in analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Primary outcome was the ability of clinicopathologic and imaging criteria to identify patients who may be eligible for sPGA based on detailed tumor map from whole-mount sRP slides. RESULTS AND LIMITATIONS Of 216 men who underwent sRP following whole gland radiotherapy, tumor maps, MRI, and biopsy data were available for 77. Of these, 15 (19%) were determined to be eligible for sPGA based on biopsy-proven unilateral disease in contiguous sextant segments, a dominant lesion on MRI concordant with biopsy location or no focal region of interest, and no imaging evidence of extraprostatic disease. Review of tumor maps identified 6 additional men who would have met criteria for sPGA, resulting in sensitivity of 71% (95% C.I. 48%-89%) and specificity of 100% (lower bound of 95% C.I. 94%). None of the 15 men who met the criteria for sPGA on clinical data were identified incorrectly on tumor maps to require full gland surgery (upper bound of 95% C.I. 22%). Median tumor volume of the index lesion was 0.4 cc and recurrent cancer was noted in the apex, mid-gland, and base in 81%, 100%, and 29% of men. CONCLUSIONS In men with recurrent prostate cancer after radiotherapy, biopsy findings and MRI can be used to select index lesions potentially amenable for sPGA and can guide patient evaluation for inclusion in clinical trials of sPGA following radiation failure. Larger, prospective studies are required to evaluate both the role of MRI and clinical criteria in guiding focal salvage therapy and the effectiveness of this modality for radiorecurrent prostate cancer.
Collapse
Affiliation(s)
- Gregory T Chesnut
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Amy L Tin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arjun Sivaraman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Toshikazu Takeda
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Taehyoung Lee
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Fainberg
- Department of Urology, New York-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - Nicole Benfante
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Peter T Scardino
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James A Eastham
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan A Coleman
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karim A Touijer
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Behfar Ehdaie
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Panebianco V, Villeirs G, Weinreb JC, Turkbey BI, Margolis DJ, Richenberg J, Schoots IG, Moore CM, Futterer J, Macura KJ, Oto A, Bittencourt LK, Haider MA, Salomon G, Tempany CM, Padhani AR, Barentsz JO. Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR): International Consensus -based Guidelines on Multiparametric Magnetic Resonance Imaging for Prostate Cancer Recurrence after Radiation Therapy and Radical Prostatectomy. Eur Urol Oncol 2021; 4:868-876. [PMID: 33582104 DOI: 10.1016/j.euo.2021.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Imaging techniques are used to identify local recurrence of prostate cancer (PCa) for salvage therapy and to exclude metastases that should be addressed with systemic therapy. For magnetic resonance imaging (MRI), a reduction in the variability of acquisition, interpretation, and reporting is required to detect local PCa recurrence in men with biochemical relapse after local treatment with curative intent. OBJECTIVE To propose a standardised method for image acquisition and assessment of PCa local recurrence using MRI after radiation therapy (RP) and radical prostatectomy (RT). EVIDENCE ACQUISITION Prostate Imaging for Recurrence Reporting (PI-RR) was formulated using the existing literature. An international panel of experts conducted a nonsystematic review of the literature. The PI-RR system was created via consensus through a combination of face-to-face and online discussions. EVIDENCE SYNTHESIS Similar to with PI-RADS, based on the best available evidence and expert opinion, the minimum acceptable MRI parameters for detection of recurrence after radiation therapy and radical prostatectomy are set. Also, a simplified and standardised terminology and content of the reports that use five assessment categories to summarise the suspicion of local recurrence (PI-RR) are designed. PI-RR scores of 1 and 2 are assigned to lesions with a very low and low likelihood of recurrence, respectively. PI-RR 3 is assigned if the presence of recurrence is uncertain. PI-RR 4 and 5 are assigned for a high and very high likelihood of recurrence, respectively. PI-RR is intended to be used in routine clinical practice and to facilitate data collection and outcome monitoring for research. CONCLUSIONS This paper provides a structured reporting system (PI-RR) for MRI evaluation of local recurrence of PCa after RT and RP. PATIENT SUMMARY A new method called PI-RR was developed to promote standardisation and reduce variations in the acquisition, interpretation, and reporting of magnetic resonance imaging for evaluating local recurrence of prostate cancer and guiding therapy.
Collapse
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy.
| | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey C Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Baris I Turkbey
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - Jonathan Richenberg
- Department of Imaging, Brighton and Sussex University Hospitals NHS Trust and Brighton and Sussex Medical School, Brighton, UK
| | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Jurgen Futterer
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Katarzyna J Macura
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | - Masoom A Haider
- Department of Medical Imaging, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Georg Salomon
- Martini-Clinic Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Clare M Tempany
- Department of Radiology, Brigham &Women's Hospital, Boston, MA, USA
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Jelle O Barentsz
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Abstract
Prostate cancer is the fifth leading cause of death worldwide. A variety of treatment options is available for localized prostate cancer and may range from active surveillance to focal therapy or whole gland treatment, that is, surgery or radiotherapy. Serum prostate-specific antigen levels are an important tool to monitor treatment success after whole gland treatment, unfortunately prostate-specific antigen is unreliable after focal therapy. Multiparametric magnetic resonance imaging of the prostate is rapidly gaining field in the management of prostate cancer and may play a crucial role in the evaluation of recurrent prostate cancer. This article will focus on postprocedural magnetic resonance imaging after different forms of local therapy in patients with prostate cancer.
Collapse
|
7
|
Gholizadeh N, Pundavela J, Nagarajan R, Dona A, Quadrelli S, Biswas T, Greer PB, Ramadan S. Nuclear magnetic resonance spectroscopy of human body fluids and in vivo magnetic resonance spectroscopy: Potential role in the diagnosis and management of prostate cancer. Urol Oncol 2020; 38:150-173. [PMID: 31937423 DOI: 10.1016/j.urolonc.2019.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Prostate cancer is the most common solid organ cancer in men, and the second most common cause of male cancer-related mortality. It has few effective therapies, and is difficult to diagnose accurately. Prostate-specific antigen (PSA), which is currently the most effective diagnostic tool available, cannot reliably discriminate between different pathologies, and in fact only around 30% of patients found to have elevated levels of PSA are subsequently confirmed to actually have prostate cancer. As such, there is a desperate need for more reliable diagnostic tools that will allow the early detection of prostate cancer so that the appropriate interventions can be applied. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopy (MRS) are 2 high throughput, noninvasive analytical procedures that have the potential to enable differentiation of prostate cancer from other pathologies using metabolomics, by focusing specifically on certain metabolites which are associated with the development of prostate cancer cells and its progression. The value that this type of approach has for the early detection, diagnosis, prognosis, and personalized treatment of prostate cancer is becoming increasingly apparent. Recent years have seen many promising developments in the fields of NMR spectroscopy and MRS, with improvements having been made to hardware as well as to techniques associated with the acquisition, processing, and analysis of related data. This review focuses firstly on proton NMR spectroscopy of blood serum, urine, and expressed prostatic secretions in vitro, and then on 1- and 2-dimensional proton MRS of the prostate in vivo. Major advances in these fields and methodological principles of data collection, acquisition, processing, and analysis are described along with some discussion of related challenges, before prospects that proton MRS has for future improvements to the clinical management of prostate cancer are considered.
Collapse
Affiliation(s)
- Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Jay Pundavela
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Anthony Dona
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - Scott Quadrelli
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Radiology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Tapan Biswas
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia; Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Imaging Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
8
|
Hyperpolarized MRI of Human Prostate Cancer Reveals Increased Lactate with Tumor Grade Driven by Monocarboxylate Transporter 1. Cell Metab 2020; 31:105-114.e3. [PMID: 31564440 PMCID: PMC6949382 DOI: 10.1016/j.cmet.2019.08.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 01/17/2023]
Abstract
Metabolic imaging using hyperpolarized magnetic resonance can increase the sensitivity of MRI, though its ability to inform on relevant changes to biochemistry in humans remains unclear. In this work, we image pyruvate metabolism in patients, assessing the reproducibility of delivery and conversion in the setting of primary prostate cancer. We show that the time to max of pyruvate does not vary significantly within patients undergoing two separate injections or across patients. Furthermore, we show that lactate increases with Gleason grade. RNA sequencing data demonstrate a significant increase in the predominant pyruvate uptake transporter, monocarboxylate transporter 1. Increased protein expression was also observed in regions of high lactate signal, implicating it as the driver of lactate signal in vivo. Targeted DNA sequencing for actionable mutations revealed the highest lactate occurred in patients with PTEN loss. This work identifies a potential link between actionable genomic alterations and metabolic information derived from hyperpolarized pyruvate MRI.
Collapse
|
9
|
Alexander EJ, Murray JR, Morgan VA, Giles SL, Riches SF, Hazell S, Thomas K, Sohaib SA, Thompson A, Gao A, Dearnaley DP, DeSouza NM. Validation of T2- and diffusion-weighted magnetic resonance imaging for mapping intra-prostatic tumour prior to focal boost dose-escalation using intensity-modulated radiotherapy (IMRT). Radiother Oncol 2019; 141:181-187. [PMID: 31493904 PMCID: PMC6908966 DOI: 10.1016/j.radonc.2019.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE To assess the diagnostic accuracy and inter-observer agreement of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for mapping intra-prostatic tumour lesions (IPLs) for the purpose of focal dose-escalation in prostate cancer radiotherapy. MATERIALS AND METHODS Twenty-six men selected for radical treatment with radiotherapy were recruited prospectively and underwent pre-treatment T2W+DW-MRI and 5 mm spaced transperineal template-guided mapping prostate biopsies (TTMPB). A 'traffic-light' system was used to score both data sets. Radiologically suspicious lesions measuring ≥0.5 cm3 were classified as red; suspicious lesions 0.2-0.5 cm3 or larger lesions equivocal for tumour were classified as amber. The histopathology assessment combined pathological grade and tumour length on biopsy (red = ≥4 mm primary Gleason grade 4/5 or ≥6 mm primary Gleason grade 3). Two radiologists assessed the MRI data and inter-observer agreement was measured with Cohens' Kappa co-efficient. RESULTS Twenty-five of 26 men had red image-defined IPLs by both readers, 24 had red pathology-defined lesions. There was a good correlation between lesions ≥0.5 cm3 classified "red" on imaging and "red" histopathology in biopsies (Reader 1: r = 0.61, p < 0.0001, Reader 2: r = 0.44, p = 0.03). Diagnostic accuracy for both readers for red image-defined lesions was sensitivity 85-86%, specificity 93-98%, positive predictive value (PPV) 79-92% and negative predictive value (NPV) 96%. Inter-observer agreement was good (Cohen's Kappa 0.61). CONCLUSIONS MRI is accurate for mapping clinically significant prostate cancer; diffusion-restricted lesions ≥0.5 cm3 can be confidently identified for radiation dose boosting.
Collapse
Affiliation(s)
- E J Alexander
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK.
| | - J R Murray
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK.
| | - V A Morgan
- The Institute of Cancer Research, Sutton, UK.
| | - S L Giles
- The Institute of Cancer Research, Sutton, UK.
| | - S F Riches
- The Institute of Cancer Research, Sutton, UK.
| | - S Hazell
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - K Thomas
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - S A Sohaib
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - A Thompson
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - A Gao
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK.
| | - D P Dearnaley
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK.
| | - N M DeSouza
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK.
| |
Collapse
|
10
|
Kishan AU, Chu FI, King CR, Seiferheld W, Spratt DE, Tran P, Wang X, Pugh SE, Sandler KA, Bolla M, Maingon P, De Reijke T, Nickols NG, Rettig M, Drakaki A, Liu ST, Reiter RE, Chang AJ, Feng FY, Sajed D, Nguyen PL, Kupelian PA, Steinberg ML, Boutros PC, Elashoff D, Collette L, Sandler HM. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur Urol 2019; 77:201-208. [PMID: 31718822 DOI: 10.1016/j.eururo.2019.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The importance of local failure (LF) after treatment of high-grade prostate cancer (PCa) with definitive radiotherapy (RT) remains unknown. OBJECTIVE To evaluate the clinical implications of LF after definitive RT. DESIGN, SETTING, AND PARTICIPANTS Individual patient data meta-analysis of 992 patients (593 Gleason grade group [GG] 4 and 399 GG 5) enrolled in six randomized clinical trials. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Multivariable Cox proportional hazard models were developed to evaluate the relationship between overall survival (OS), PCa-specific survival (PCSS), and distant metastasis (DM)-free survival (DMFS) and LF as a time-dependent covariate. Markov proportional hazard models were developed to evaluate the impact of specific transitions between disease states on these endpoints. RESULTS AND LIMITATIONS Median follow-up was 6.4 yr overall and 7.2 yr for surviving patients. LF was significantly associated with OS (hazard ratio [HR] 1.70 [95% confidence interval {CI} 1.37-2.10]), PCSS (3.10 [95% CI 2.33-4.12]), and DMFS (HR 1.92 [95% CI 1.54-2.39]), p < 0.001 for all). Patients who had not transitioned to the LF state had a significantly lower hazard of transitioning to a PCa-specific death state than those who transitioned to the LF state (HR 0.13 [95% CI 0.04-0.41], p < 0.001). Additionally, patients who transitioned to the LF state had a greater hazard of DM or death (HR 2.46 [95% CI 1.22-4.93], p = 0.01) than those who did not. CONCLUSIONS LF is an independent prognosticator of OS, PCSS, and DMFS in high-grade localized PCa and a subset of DM events that are anteceded by LF events. LF events warrant consideration for intervention, potentially suggesting a rationale for upfront treatment intensification. However, whether these findings apply to all men or just those without significant comorbidity remains to be determined. PATIENT SUMMARY Men who experience a local recurrence of high-grade prostate cancer after receiving upfront radiation therapy are at significantly increased risks of developing metastases and dying of prostate cancer.
Collapse
Affiliation(s)
- Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA.
| | - Fang-I Chu
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Christopher R King
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Wendy Seiferheld
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Phuoc Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, CA, USA
| | - Stephanie E Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA, USA
| | - Kiri A Sandler
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Michel Bolla
- Department of Radiation Oncology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Philippe Maingon
- Centre Georges-François Leclerc, Dijon, France; Sorbonne Université Paris, Paris, France
| | - Theo De Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA; Department of Radiation Oncology, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Matthew Rettig
- Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Alexandra Drakaki
- Division of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Sandy T Liu
- Division of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, CA, USA
| | - Albert J Chang
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, CA, USA
| | - Dipti Sajed
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick A Kupelian
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Urology, University of California, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - David Elashoff
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, CA, USA
| | - Laurence Collette
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Howard M Sandler
- Department of Radiation Oncology, Cedars Sinai, Los Angeles, CA, USA
| |
Collapse
|
11
|
Dinis Fernandes C, van Houdt PJ, Heijmink SWTPJ, Walraven I, Keesman R, Smolic M, Ghobadi G, van der Poel HG, Schoots IG, Pos FJ, van der Heide UA. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson Imaging 2018; 50:269-278. [PMID: 30585368 PMCID: PMC6618021 DOI: 10.1002/jmri.26581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
Background Post‐radiotherapy locally recurrent prostate cancer (PCa) patients are candidates for focal salvage treatment. Multiparametric MRI (mp‐MRI) is attractive for tumor localization. However, radiotherapy‐induced tissue changes complicate image interpretation. To develop focal salvage strategies, accurate tumor localization and distinction from benign tissue is necessary. Purpose To quantitatively characterize radio‐recurrent tumor and benign radiation‐induced changes using mp‐MRI, and investigate which sequences optimize the distinction between tumor and benign surroundings. Study Type Prospective case–control. Subjects Thirty‐three patients with biochemical failure after external‐beam radiotherapy (cases), 35 patients without post‐radiotherapy recurrent disease (controls), and 13 patients with primary PCa (untreated). Field Strength/Sequences 3T; quantitative mp‐MRI: T2‐mapping, ADC, and Ktrans and kep maps. Assessment Quantitative image‐analysis of prostatic regions, within and between cases, controls, and untreated patients. Statistical Tests Within‐groups: nonparametric Friedman analysis of variance with post‐hoc Wilcoxon signed‐rank tests; between‐groups: Mann–Whitney tests. All with Bonferroni corrections. Generalized linear mixed modeling to ascertain the contribution of each map and location to tumor likelihood. Results Benign imaging values were comparable between cases and controls (P = 0.15 for ADC in the central gland up to 0.91 for kep in the peripheral zone), both with similarly high peri‐urethral Ktrans and kep values (min−1) (median [range]: Ktrans = 0.22 [0.14–0.43] and 0.22 [0.14–0.36], P = 0.60, kep = 0.43 [0.24–0.57] and 0.48 [0.32–0.67], P = 0.05). After radiotherapy, benign central gland values were significantly decreased for all maps (P ≤ 0.001) as well as T2, Ktrans, and kep of benign peripheral zone (all with P ≤ 0.002). All imaging maps distinguished recurrent tumor from benign peripheral zone, but only ADC, Ktrans, and kep were able to distinguish it from benign central gland. Recurrent tumor and peri‐urethral Ktrans values were not significantly different (P = 0.81), but kep values were (P < 0.001). Combining all quantitative maps and voxel location resulted in an optimal distinction between tumor and benign voxels. Data Conclusion Mp‐MRI can distinguish recurrent tumor from benign tissue. Level of Evidence: 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:269–278.
Collapse
Affiliation(s)
| | - Petra J van Houdt
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Iris Walraven
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rick Keesman
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Milena Smolic
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ghazaleh Ghobadi
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo G Schoots
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Dinis Fernandes C, Ghobadi G, van der Poel HG, de Jong J, Heijmink SWTPJ, Schoots I, Walraven I, van Houdt PJ, Smolic M, Pos FJ, van der Heide UA. Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy. Eur Radiol 2018; 29:4160-4168. [PMID: 30421016 PMCID: PMC6610274 DOI: 10.1007/s00330-018-5819-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Abstract
Objectives Diagnosis of radio-recurrent prostate cancer using multi-parametric MRI (mp-MRI) can be challenging due to the presence of radiation effects. We aim to characterize imaging of prostate tissue after radiation therapy (RT), using histopathology as ground truth, and to investigate the visibility of tumor lesions on mp-MRI. Methods Tumor delineated histopathology slides from salvage radical prostatectomy patients, primarily treated with RT, were registered to MRI. Median T2-weighted, ADC, Ktrans, and kep values in tumor and other regions were calculated. Two radiologists independently performed mp-MRI-based tumor delineations which were compared with the true pathological extent. General linear mixed-effect modeling was used to establish the contribution of each imaging modality and combinations thereof in distinguishing tumor and benign voxels. Results Nineteen of the 21 included patients had tumor in the available histopathology slides. Recurrence was predominantly multifocal with large tumor foci seen after external beam radiotherapy, whereas these were small and sparse after low-dose-rate brachytherapy. MRI-based delineations missed small foci and slightly underestimated tumor extent. The combination of T2-weighted, ADC, Ktrans, and kep had the best performance in distinguishing tumor and benign voxels. Conclusions Using high-resolution histopathology delineations, the real tumor extent and size were found to be underestimated on MRI. mp-MRI obtained the best performance in identifying tumor voxels. Appropriate margins around the visible tumor-suspected region should be included when designing focal salvage strategies. Recurrent tumor delineation guidelines are warranted. Key Points • Compared to the use of individual sequences, multi-parametric MRI obtained the best performance in distinguishing recurrent tumor from benign voxels. • Delineations based on mp-MRI miss smaller foci and slightly underestimate tumor volume of local recurrent prostate cancer. • Focal salvage strategies should include appropriate margins around the visible tumor. Electronic supplementary material The online version of this article (10.1007/s00330-018-5819-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catarina Dinis Fernandes
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ghazaleh Ghobadi
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ivo Schoots
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris Walraven
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Petra J van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Milena Smolic
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Liao XL, Wei JB, Li YQ, Zhong JH, Liao CC, Wei CY. Functional Magnetic Resonance Imaging in the Diagnosis of Locally Recurrent Prostate Cancer: Are All Pulse Sequences Helpful? Korean J Radiol 2018; 19:1110-1118. [PMID: 30386142 PMCID: PMC6201967 DOI: 10.3348/kjr.2018.19.6.1110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Objective To perform a meta-analysis to quantitatively assess functional magnetic resonance imaging (MRI) in the diagnosis of locally recurrent prostate cancer. Materials and Methods A comprehensive search of the PubMed, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews was conducted from January 1, 1995 to December 31, 2016. Diagnostic accuracy was quantitatively pooled for all studies by using hierarchical logistic regression modeling, including bivariate modeling and hierarchical summary receiver operating characteristic (HSROC) curves (AUCs). The Z test was used to determine whether adding functional MRI to T2-weighted imaging (T2WI) results in significantly increased diagnostic sensitivity and specificity. Results Meta-analysis of 13 studies involving 826 patients who underwent radical prostatectomy showed a pooled sensitivity and specificity of 91%, and the AUC was 0.96. Meta-analysis of 7 studies involving 329 patients who underwent radiotherapy showed a pooled sensitivity of 80% and specificity of 81%, and the AUC was 0.88. Meta-analysis of 11 studies reporting 1669 sextant biopsies from patients who underwent radiotherapy showed a pooled sensitivity of 54% and specificity of 91%, and the AUC was 0.85. Sensitivity after radiotherapy was significantly higher when diffusion-weighted MRI data were combined with T2WI than when only T2WI results were used. This was true when meta-analysis was performed on a per-patient basis (p = 0.027) or per sextant biopsy (p = 0.046). A similar result was found when 1H-magnetic resonance spectroscopy (1H-MRS) data were combined with T2WI and sextant biopsy was the unit of analysis (p = 0.036). Conclusion Functional MRI data may not strengthen the ability of T2WI to detect locally recurrent prostate cancer in patients who have undergone radical prostatectomy. By contrast, diffusion-weight MRI and 1H-MRS data may improve the sensitivity of T2WI for patients who have undergone radiotherapy.
Collapse
Affiliation(s)
- Xiao-Li Liao
- Department of First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jun-Bao Wei
- Department of Therapeutic Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yong-Qiang Li
- Department of First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Cheng-Cheng Liao
- Department of Third Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chang-Yuan Wei
- Department of Breast Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Hedgire S, Kilcoyne A, Tonyushkin A, Mao Y, Uyeda JW, Gervais DA, Harisinghani MG. Effect of androgen deprivation and radiation therapy on MRI fiber tractography in prostate cancer: can we assess treatment response on imaging? Br J Radiol 2018; 92:20170170. [PMID: 30209952 DOI: 10.1259/bjr.20170170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate quantitative changes in Diffusion Tensor Magnetic Resonance Tractography in prostate cancer following androgen deprivation and radiation therapy. METHODS 22 patients with elevated PSA and biopsy proven prostate carcinoma who underwent MRI of the prostate at 1.5 T with an endorectal coil were included. Group A) was the study group (n = 11), participants who underwent androgen deprivation and/or radiation therapy and group B) were Gleason-matched control group (n = 11) participants who did not undergo such therapy. Diffusion weighted images were used to generate three-dimensional (3D) map of fiber tracts from DTI. 3D regions of interest (ROI) were drawn over the tumor and healthy prostatic parenchyma in both groups to record tract number and tract density. Tumor region and normal parenchymal tract densities within each group were compared. RESULTS Mean tract density in the tumor region and normal parenchyma was 2.3 and 3.3 in study group (tract numbers: 116.6 and 170.2 respectively) and 1.6 and 2.7 in the control group respectively (tract numbers: 252.5 and 346.3 respectively). The difference between these values was statistically significant for the control group (p = 0.0018) but not for the study group (p = 0.11). The difference between the tract numbers of tumor and normal parenchyma appears to narrow following therapy. CONCLUSION The study demonstrated utility in using tractography as a biomarker in prostate cancer patients post treatment. ADVANCES IN KNOWLEDGE Quantitative DTI fiber tractography is a promising imaging biomarker to quantitatively assess treatment response in the setting of post-androgen deprivation and radiation therapy for prostate cancer.
Collapse
Affiliation(s)
- Sandeep Hedgire
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Aoife Kilcoyne
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Alexey Tonyushkin
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA.,Physics Department, University of Massachusetts Boston, Boston, MA, USA
| | - Yun Mao
- Department of Radiology, The first affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Jennifer W Uyeda
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Debra A Gervais
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Mukesh G Harisinghani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
15
|
ACR Appropriateness Criteria ® Post-treatment Follow-up Prostate Cancer. J Am Coll Radiol 2018; 15:S132-S149. [DOI: 10.1016/j.jacr.2018.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/04/2018] [Indexed: 11/23/2022]
|
16
|
Caulfield S, Menezes G, Marignol L, Poole C. Nomograms are key decision-making tools in prostate cancer radiation therapy. Urol Oncol 2018; 36:283-292. [PMID: 29680180 DOI: 10.1016/j.urolonc.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The use of nomograms for predicting clinical endpoints has been well documented. Nomograms provide an individualized prognosis and help clinicians determine the effectiveness of treatment for a given patient. Early identification of potential treatment failure or toxicity allows alternative approaches to be considered, reducing unnecessary treatment, morbidity, and cost. This review aims to evaluate clinical potential of nomogram use for the management of prostate cancer radiotherapy patients. METHODS PubMed, Embase, and Scopus were searched for literature published between 2006 and 2016. The reported correlation between measured and nomogram-predicted probabilities of biochemical control, disease progression, survival and toxicity was reviewed, through an analysis of concordance indexes and areas under the curves. RESULTS Sixteen studies were reviewed. Outcomes predicted by the nomogram were very close to outcomes measured (concordance index of 0.7 and above) in the majority. But a combination of under and overestimation of outcome was also reported. The predictive accuracy of nomograms was very variable, however, most nomograms had accuracy greater than chance, indicated by a concordance index higher than 0.5. CONCLUSION Nomograms can be used as prognostic guides to aid clinical decision-making for prostate cancer patients until further research addresses the limitations presented in this review. Strict definitions of end points should be added to future models and perhaps models could be enhanced with the incorporation of genomic variables or tumor specific parameters.
Collapse
Affiliation(s)
- Sarah Caulfield
- Trinity College Dublin, Applied Radiation Therapy Trinity Research Group, Discipline of Radiation Therapy, School of Medicine, Dublin, Ireland
| | - Gerard Menezes
- Trinity College Dublin, Applied Radiation Therapy Trinity Research Group, Discipline of Radiation Therapy, School of Medicine, Dublin, Ireland
| | - Laure Marignol
- Trinity College Dublin, Applied Radiation Therapy Trinity Research Group, Discipline of Radiation Therapy, School of Medicine, Dublin, Ireland
| | - Claire Poole
- Trinity College Dublin, Applied Radiation Therapy Trinity Research Group, Discipline of Radiation Therapy, School of Medicine, Dublin, Ireland.
| |
Collapse
|
17
|
Shukla-Dave A, Wassberg C, Pucar D, Schöder H, Goldman DA, Mazaheri Y, Reuter VE, Eastham J, Scardino PT, Hricak H. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer. World J Radiol 2017; 9:134-142. [PMID: 28396727 PMCID: PMC5368629 DOI: 10.4329/wjr.v9.i3.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients.
METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score.
RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79).
CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa.
Collapse
|
18
|
Venkatesan AM, Stafford RJ, Duran C, Soni PD, Berlin A, McLaughlin PW. Prostate magnetic resonance imaging for brachytherapists: Diagnosis, imaging pitfalls, and post-therapy assessment. Brachytherapy 2017; 16:688-697. [PMID: 28139419 DOI: 10.1016/j.brachy.2016.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Optimal integration of multiparametric MRI (mp MRI) into prostate brachytherapy practice necessitates an understanding of imaging findings pertinent to prostate cancer detection and staging. This review will summarize prostate cancer imaging findings and tumor staging on mp MRI, including an overview of the Prostate Imaging Reporting and Data System (PIRADS)-structured reporting schema, mp MRI findings observed in the post-therapy setting including cases of post-treatment recurrence, and MRI concepts integral to successful salvage brachytherapy.
Collapse
Affiliation(s)
- A M Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, TX.
| | - R J Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX
| | - Cihan Duran
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, TX
| | - P D Soni
- Department of Radiation Oncology, University of Michigan, Novi, MI
| | - A Berlin
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON
| | - P W McLaughlin
- Department of Radiation Oncology, University of Michigan, Novi, MI
| |
Collapse
|
19
|
Zattoni F, Kawashima A, Morlacco A, Davis BJ, Nehra AK, Mynderse LA, Froemming AT, Jeffrey Karnes R. Detection of recurrent prostate cancer after primary radiation therapy: An evaluation of the role of multiparametric 3T magnetic resonance imaging with endorectal coil. Pract Radiat Oncol 2017; 7:42-49. [DOI: 10.1016/j.prro.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/27/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
|
20
|
Hoffner MKM, Huebner F, Scholtz JE, Zangos S, Schulz B, Luboldt W, Vogl TJ, Bodelle B. Impact of an endorectal coil for 1H-magnetic resonance spectroscopy of the prostate at 3.0T in comparison to 1.5T: Do we need an endorectal coil? Eur J Radiol 2016; 85:1432-8. [PMID: 27423684 DOI: 10.1016/j.ejrad.2016.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate the influence of endorectal coil (ERC) regarding spectral quality and diagnostic suitability and diagnostic performance in 3.0T 1H-magnetic resonance spectroscopy imaging (MRSI) compared to 1.5T MRSI. MATERIALS AND METHODS The study was approved by the Institutional Review Board. MRSI of the prostate was performed on 19 patients at 1.5T with ERC (protocol 1), at 3.0T with a disabled ERC (protocol 2) and at 3.0T with ERC (protocol 3). Age, weight, body size, body-mass-index, prostate volume, time between measurements, diagnostic suitability of spectra, histopathological results after biopsy of cancer suspect lesions (CSL), sensitivity and specificity were evaluated. Signal-to-noise ratio (SNR) was calculated and compared using semiparametrical multiple Conover-comparisons. Correlations between SNR and prostate volume and BMI were indicated using Pearson correlation coefficient. Distribution of SNR was evaluated for prostate quadrants. RESULTS Diagnostic suitable spectra were achieved in 76 % (protocol 1, 100% in CSL), 32 % (protocol 2, 59% in CSL) and 50 % (protocol 3, 80% in CSL) of the voxels. SNR was significantly higher in protocol 3 compared to protocol 2 and 1 (93,729 vs. 27,836 vs. 32,897, p<0.0001) with significant difference between protocol 2 and 1 (p<0.023). Highest SNR was achieved in the dorsal prostate (protocols 1 and 3; p<0.0001). Sensitivity at 3.0T was higher with use of ERC. Specificity was highest at 1.5T with ERC. CONCLUSION The ERC improves the diagnostic suitability and the SNR in MRSI at 3.0T. Less voxels at 3.0T with disabled ERC are suitable for diagnosis compared to 1.5T with ERC. MRSI at 3.0T with ERC shows the highest SNR. SNR in dorsal quadrants of the prostate was higher using ERC.
Collapse
Affiliation(s)
- Maximilian K M Hoffner
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Frank Huebner
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Jan Erik Scholtz
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Stephan Zangos
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Boris Schulz
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Wolfgang Luboldt
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| | - Boris Bodelle
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Theodor-Stern-Kai 7, Haus 23c, 60590 Frankfurt am Main, Hesse, Germany.
| |
Collapse
|
21
|
Bhowmik NM, Yu J, Fulcher AS, Turner MA. Benign causes of diffusion restriction foci in the peripheral zone of the prostate: diagnosis and differential diagnosis. Abdom Radiol (NY) 2016; 41:910-8. [PMID: 27072933 PMCID: PMC4871918 DOI: 10.1007/s00261-016-0719-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiparametric-MRI is an important tool in the diagnosis of prostate cancer (PCa), particularly diffusion-weighted imaging for peripheral zone (PZ) cancer in the untreated prostate. However, there are many benign entities that demonstrate diffusion restriction in the PZ mimicking PCa resulting in diagnostic challenges. Fortunately, these benign entities usually have unique MR features that may help to distinguish them from PCa. The purpose of this pictorial review is to discuss benign entities with diffusion restriction in the PZ and to emphasize the key MR features of these entities that may help to differentiate them from PCa.
Collapse
Affiliation(s)
- Nirjhor M Bhowmik
- Department of Radiology, Virginia Commonwealth University Health System, Main Hospital, 3rd Floor, 401 North 12th Street, P.O. Box 980615, Richmond, VA, 23298, USA.
| | - Jinxing Yu
- Department of Radiology, Virginia Commonwealth University Health System, Main Hospital, 3rd Floor, 401 North 12th Street, P.O. Box 980615, Richmond, VA, 23298, USA
| | - Ann S Fulcher
- Department of Radiology, Virginia Commonwealth University Health System, Main Hospital, 3rd Floor, 401 North 12th Street, P.O. Box 980615, Richmond, VA, 23298, USA
| | - Mary A Turner
- Department of Radiology, Virginia Commonwealth University Health System, Main Hospital, 3rd Floor, 401 North 12th Street, P.O. Box 980615, Richmond, VA, 23298, USA
| |
Collapse
|
22
|
Lopes Dias J, Lucas R, Magalhães Pina J, João R, Costa NV, Leal C, Bilhim T, Campos Pinheiro L, Mateus Marques R. Post-treated prostate cancer: normal findings and signs of local relapse on multiparametric magnetic resonance imaging. ACTA ACUST UNITED AC 2016; 40:2814-38. [PMID: 26105522 DOI: 10.1007/s00261-015-0473-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of multiparametric magnetic resonance imaging (mp-MRI) for prostate cancer has increased over recent years, mainly for detection, staging, and active surveillance. However, suspicion of recurrence in the set of biochemical failure is becoming a significant reason for clinicians to request mp-MRI. Radiologists should be able to recognize the normal post-treatment MRI findings. Fibrosis and atrophic remnant seminal vesicles after prostatectomy are often found and must be differentiated from local relapse. Moreover, brachytherapy, external beam radiotherapy, cryosurgery, and hormonal therapy tend to diffusely decrease the signal intensity of the peripheral zone on T2-weighted images (T2WI) due to the loss of water content, consequently mimicking tumor and hemorrhage. The combination of T2WI and functional studies like diffusion-weighted imaging and dynamic contrast-enhanced improves the identification of local relapse. Tumor recurrence tends to restrict on diffusion images and avidly enhances after contrast administration either within or outside the gland. The authors provide a pictorial review of the normal findings and the signs of local tumor relapse after radical prostatectomy, external beam radiotherapy, brachytherapy, cryosurgery, and hormonal therapy.
Collapse
Affiliation(s)
- João Lopes Dias
- Department of Radiology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal. .,, Rua Herculano Rodrigues, n15, 2esq, 2695-044, Lisbon, Portugal. .,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal.
| | - Rita Lucas
- Department of Radiology, Hospital de Santo António dos Capuchos, Alameda de Santo António dos Capuchos, 1169-050, Lisbon, Portugal
| | - João Magalhães Pina
- Department of Urology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Raquel João
- Department of Urology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Nuno Vasco Costa
- Department of Radiology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Cecília Leal
- Department of Radiology, Hospital de Santa Marta, Rua de Santa Marta, 1169-1024, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Tiago Bilhim
- Department of Radiology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Luís Campos Pinheiro
- Department of Radiology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| | - Rui Mateus Marques
- Department of Radiology, Hospital de S. José, Rua José António Serrano, 1150-199, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medica School, Lisbon, Portugal
| |
Collapse
|
23
|
State-of-the-art imaging of prostate cancer. Urol Oncol 2016; 34:134-46. [DOI: 10.1016/j.urolonc.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022]
|
24
|
Paparo F, Piccardo A, Bacigalupo L, Romagnoli A, Piccazzo R, Monticone M, Cevasco L, Campodonico F, Conzi GM, Carmignani G, Rollandi GA. Value of bimodal (18)F-choline-PET/MRI and trimodal (18)F-choline-PET/MRI/TRUS for the assessment of prostate cancer recurrence after radiation therapy and radical prostatectomy. ACTA ACUST UNITED AC 2016; 40:1772-87. [PMID: 25579170 DOI: 10.1007/s00261-014-0345-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Between 27% and 53% of all patients who undergo radical prostatectomy (RP) or radiation therapy (RT) as the first-line treatment of prostate cancer (PCa) develop a biochemical recurrence. Imaging plays a pivotal role in restaging by helping to distinguish between local relapse and metastatic disease (i.e., lymph-node and skeletal metastases). At present, the most promising tools for assessing PCa patients with biochemical recurrence are multiparametric magnetic resonance imaging (mpMRI) and positron emission tomography (PET)/computed tomography (CT) with radio-labeled choline derivatives. The main advantage of mpMRI is its high diagnostic accuracy in detecting local recurrence, while choline-PET/CT is able to identify lymph-node metastases when they are not suspicious on morphological imaging. The most recent advances in the field of fusion imaging have shown that multimodal co-registration, synchronized navigation, and combined interpretation are more valuable than the individual; separate assessment offered by different diagnostic techniques. The objective of the present essay was to describe the value of bimodal choline-PET/mpMRI fusion imaging and trimodal choline-PET/mpMRI/transrectal ultrasound (TRUS) in the assessment of PCa recurrence after RP and RT. Bimodal choline-PET/mpMRI fusion imaging allows morphological, functional, and metabolic information to be combined, thereby overcoming the limitations of each separate imaging modality. In addition, trimodal real-time choline-PET/mpMRI/TRUS fusion imaging may be useful for the planning and real-time guidance of biopsy procedures in order to obtain histological confirmation of the local recurrence.
Collapse
Affiliation(s)
- Francesco Paparo
- Unit of Radiology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pitfalls in Interpreting mp-MRI of the Prostate: A Pictorial Review with Pathologic Correlation. Insights Imaging 2015; 6:611-30. [PMID: 26385690 PMCID: PMC4656245 DOI: 10.1007/s13244-015-0426-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023] Open
Abstract
Objectives The purpose of this pictorial review is to present a wide spectrum of prostate multiparametric MRI (mp-MRI) pitfalls that may occur in clinical practice, with radiological and pathological correlation. Methods All examinations were performed according to ESUR Guidelines protocols. Results and Conclusion mp-MRI imaging of the prostate often leads to interpreting doubts and misdiagnosis due to the many interpretative pitfalls that a tissue, whether healthy or treated, may cause. These “false-positive” findings may occur in each stage of the disease history, from the primary diagnosis and staging, to the post-treatment stage, and whether they are caused by the tissue itself or are iatrogenic, their recognition is critical for proper treatment and management. Knowledge of these known pitfalls and their interpretation in the anatomical-radiological context can help radiologists avoid misdiagnosis and consequently mistreatment. Main Messages • Some physiological changes in the peripheral and central zone may simulate prostate cancer. • Technical errors, such as mispositioned endorectal coils, can affect the mp-MRI interpretation. • Physiological changes post-treatment can simulate recurrence
Collapse
|
26
|
Paparo F, Massollo M, Rollandi L, Piccardo A, Ruggieri FG, Rollandi GA. The clinical role of multimodality imaging in the detection of prostate cancer recurrence after radical prostatectomy and radiation therapy: past, present, and future. Ecancermedicalscience 2015; 9:570. [PMID: 26435743 PMCID: PMC4583244 DOI: 10.3332/ecancer.2015.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/18/2022] Open
Abstract
Detection of the recurrence sites in prostate cancer (PCa) patients affected by biochemical recurrence after radical prostatectomy (RP) and radiation therapy (RT) is still a challenge for clinicians, nuclear medicine physicians, and radiologists. In the era of personalised and precision care, this task requires the integration, amalgamation, and combined analysis of clinical and imaging data from multiple sources. At present, multiparametric Magnetic Resonance Imaging (mpMRI) and choline–positron emission tomography (PET) are giving encouraging results; their combination allows the effective detection of local, lymph nodal, and skeletal recurrences at low PSA levels. Future diagnostic perspectives include the clinical implementation of PET/MRI scanners, multimodal fusion imaging platforms for retrospective co-registration of PET and MR images, real-time transrectal ultrasound/mpMRI fusion imaging, and novel organ-specific PET radiotracers.
Collapse
Affiliation(s)
- Francesco Paparo
- Radiology Unit, Department of Diagnostic Imaging, E O Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Michela Massollo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, E O Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Ludovica Rollandi
- Klinikum Augsburg Radiologie, Stelingstrasse 2, 86156 Augsburg, Germany
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, E O Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Filippo Grillo Ruggieri
- Radiotherapy Unit, Department of Diagnostic Imaging, E O Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Gian Andrea Rollandi
- Radiology Unit, Department of Diagnostic Imaging, E O Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| |
Collapse
|
27
|
Abstract
Multiparametric-magnetic resonance imaging (mp-MRI) has shown promising results in diagnosis, localization, risk stratification and staging of clinically significant prostate cancer. It has also opened up opportunities for focal treatment of prostate cancer. Combinations of T2-weighted imaging, diffusion imaging, perfusion (dynamic contrast-enhanced imaging) and spectroscopic imaging have been used in mp-MRI assessment of prostate cancer, but T2 morphologic assessment and functional assessment by diffusion imaging remains the mainstay for prostate cancer diagnosis on mp-MRI. Because assessment on mp-MRI can be subjective, use of the newly developed standardized reporting Prostate Imaging and Reporting Archiving Data System scoring system and education of specialist radiologists are essential for accurate interpretation. This review focuses on the present status of mp-MRI in prostate cancer and its evolving role in the management of prostate cancer.
Collapse
Affiliation(s)
- Sangeet Ghai
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Ontario, Canada
| | - Masoom A Haider
- Department of Medical Imaging, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Hedgire SS, Eberhardt SC, Borczuk R, McDermott S, Harisinghani MG. Interpretation and reporting multiparametric prostate MRI: a primer for residents and novices. ACTA ACUST UNITED AC 2015; 39:1036-51. [PMID: 24566965 DOI: 10.1007/s00261-014-0097-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiparametric MRI has developed as a tool for prostate cancer lesion detection, characterization, staging, surveillance, and imaging of local recurrence. Given the disease frequency and the growing importance of imaging, as reliance on PSA declines, radiologists involved in prostate MRI imaging must become proficient with the fundamentals of multiparametric prostate MRI (T2WI, DWI, DCE-MRI, and MR spectroscopy). Interpretation and reporting must yield accuracy, consistency, and add value to clinical care. This review provides a primer to novices and trainees learning about multiparametric prostate MRI. MRI technique is presented along with the use of particular MRI sequences. Relevant prostate anatomy is outlined and imaging features of prostate cancer with staging are discussed. Finally structured reporting is introduced, and some limitations of prostate MRI are discussed.
Collapse
Affiliation(s)
- Sandeep S Hedgire
- Department of Abdominal Imaging and Intervention, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA,
| | | | | | | | | |
Collapse
|
29
|
Lagemaat MW, Breukels V, Vos EK, Kerr AB, van Uden MJ, Orzada S, Bitz AK, Maas MC, Scheenen TWJ. (1)H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses. Magn Reson Med 2015; 75:933-45. [PMID: 25943445 DOI: 10.1002/mrm.25569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. RESULTS Prostate (1)H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. CONCLUSION It is possible to perform prostate (1)H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vincent Breukels
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eline K Vos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adam B Kerr
- Magnetic Resonance Systems Research Lab, Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mark J van Uden
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Marnix C Maas
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Aydın H, Kızılgöz V, Tekin BO. Overview of current multiparametric magnetic resonance imaging approach in the diagnosis and staging of prostate cancer. Kaohsiung J Med Sci 2015; 31:167-78. [DOI: 10.1016/j.kjms.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 10/07/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
|
31
|
Abstract
For many clinical issues regarding prostate cancer magnetic resonance imaging (MRI) is gaining increasing importance for prostate diagnostics. The high morphological resolution of T2-weighted sequences is unsurpassed compared to other imaging modalities. It enables not only the detection and localization of prostate cancer but also allows the evaluation of extracapsular extensions. Functional MRI methods, such as diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI and proton magnetic resonance spectroscopy ((1)H-MRS) increase the specificity and to a lesser extent, the sensitivity of diagnostics. In accordance with the interdisciplinary S3 guidelines, prostate MRI is recommended for patients with at least one negative biopsy for cancer detection. According to the guidelines areas suspected of being cancerous should be selectively biopsied in addition to the systematic biopsy. The transmission of findings about the suspected tumor areas according to the structured PI-RADS classification system has proven its worth. The localization and staging of prostate carcinoma is best achieved with the help of MRI and is recommended in the S3 guidelines especially for tumors with a clinical stage cT3/4 or with a Gleason grading system score ≥8. In addition to these applications MRI is mainly used under study conditions for local recurrence or active surveillance.
Collapse
Affiliation(s)
- T Franiel
- Institut für Diagnostische und Interventionelle Radiologie II, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Deutschland,
| | | | | | | |
Collapse
|
32
|
Cochet A, Kanoun S, Humbert O, Walker PM, Cormier L, Créhange G, Brunotte F. Quelle imagerie pour la prise en charge de la rechute biochimique du cancer de la prostate : TEP ou IRM ? Cancer Radiother 2014; 18:509-16. [DOI: 10.1016/j.canrad.2014.07.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/25/2022]
|
33
|
Multiparametric MRI for recurrent prostate cancer post radical prostatectomy and postradiation therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316272. [PMID: 24967355 PMCID: PMC4055489 DOI: 10.1155/2014/316272] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
Abstract
The clinical suspicion of local recurrence of prostate cancer (PCa) after radical prostatectomy (RP) and after radiation therapy (RT) is based on the onset of biochemical failure. The aim of this paper was to review the current role of multiparametric-MRI (mp-MRI) in the detection of locoregional recurrence. A systematic literature search using the Medline and Cochrane Library databases was performed from January 1995 up to November 2013. Bibliographies of retrieved and review articles were also examined. Only those articles reporting complete data with clinical relevance for the present review were selected. This review article is divided into two major parts: the first one considers the role of mp-MRI in the detection of PCa local recurrence after RP; the second part provides an insight about the impact of mp-MRI in the depiction of locoregional recurrence after RT (interstitial or external beam). Published data indicate an emerging role for mp-MRI in the detection and localization of locally recurrent PCa both after RP and RT which represents an information of paramount importance to perform focal salvage treatments.
Collapse
|
34
|
Nguyen ML, Willows B, Khan R, Chi A, Kim L, Nour SG, Sroka T, Kerr C, Godinez J, Mills M, Karlsson U, Altdorfer G, Nguyen NP, Jendrasiak G. The potential role of magnetic resonance spectroscopy in image-guided radiotherapy. Front Oncol 2014; 4:91. [PMID: 24847443 PMCID: PMC4017160 DOI: 10.3389/fonc.2014.00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/14/2014] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique to detect metabolites within the normal and tumoral tissues. The ability of MRS to diagnose areas of high metabolic activity linked to tumor cell proliferation is particularly useful for radiotherapy treatment planning because of better gross tumor volume (GTV) delineation. The GTV may be targeted with higher radiation dose, potentially improving local control without excessive irradiation to the normal adjacent tissues. Prostate cancer and glioblastoma multiforme (GBM) are two tumor models that are associated with a heterogeneous tumor distribution. Preliminary studies suggest that the integration of MRS into radiotherapy planning for these tumors is feasible and safe. Image-guided radiotherapy (IGRT) by virtue of daily tumor imaging and steep dose gradient may allow for tumor dose escalation with the simultaneous integrated boost technique (SIB) and potentially decrease the complications rates in patients with GBM and prostate cancers.
Collapse
Affiliation(s)
- Mai Lin Nguyen
- Department of Psychology, Stanford University , Palo Alto, CA , USA
| | - Brooke Willows
- School of Medicine, University of Arizona , Phoenix, AZ , USA
| | - Rihan Khan
- Department of Radiology, University of Arizona , Tucson, AZ , USA
| | - Alexander Chi
- Department of Radiation Oncology, University of West Virginia , Morgantown, WV , USA
| | - Lyndon Kim
- Division of Neuro-Oncology, Department of Neurosurgery and Medical Oncology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Sherif G Nour
- Department of Radiology, Emory University , Atlanta, GA , USA
| | - Thomas Sroka
- Department of Radiation Oncology, Darmouth College , New Lebanon, NH , USA
| | - Christine Kerr
- Department of Radiation Oncology, Centre Val d'Aurelle , Montpellier , France
| | - Juan Godinez
- Department of Radiation Oncology, Florida Radiation Oncology Group , Jacksonville, FL , USA
| | - Melissa Mills
- Department of Radiation Oncology, University of Arizona , Tucson, AZ , USA
| | - Ulf Karlsson
- Department of Radiation Oncology, Marshfield Clinic , Marshfield, WI , USA
| | - Gabor Altdorfer
- Department of Radiation Oncology, Camden Clark Cancer Center , Parkersburg, WV , USA
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University Hospital , Washington DC , USA
| | - Gordon Jendrasiak
- Department of Radiation Oncology, East Carolina University , Greenville, NC , USA
| | | |
Collapse
|
35
|
Abstract
BACKGROUND Imaging of prostate carcinoma is an important adjunct to clinical evaluation and prostate specific antigen measurement for detecting metastases and tumor recurrence. In the past, the ability to assess intraprostatic tumor was limited. METHODS Pertinent literature was reviewed to describe the capabilities and limitations of the currently available imaging techniques for assessing prostate carcinoma. Evaluation of primary tumor and metastatic disease by ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine techniques is discussed. RESULTS Ultrasonography and MRI have limited usefulness for local staging of prostate cancer because of suboptimal sensitivity and specificity for identifying tumor extent and capsular penetration. Additional MRI techniques such as magnetic resonance-based perfusion imaging, diffusion imaging, and spectroscopy may provide incremental benefit. CT and bone scanning provide an assessment of metastatic disease but are also limited by the poor sensitivity of lymph node size as a criterion for detecting metastases. Novel imaging techniques such as hybrid imaging devices in the form of single-photon emission CT/CT gamma cameras, positron emission tomography/CT cameras, and, in the near future, positron emission tomography/MRI combined with tumor specific imaging radiotracers may have a significant impact on tumor staging and treatment response. CONCLUSIONS Cross-sectional imaging and scintigraphy have an important role in assessing prostate carcinoma metastases and treatment response. Increasingly, the incremental value of primary tumor imaging through MRI is being realized.
Collapse
Affiliation(s)
- Eric K Outwater
- Department of Diagnostic Imaging, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | |
Collapse
|
36
|
Fütterer JJ, Barentsz JO, Heijmijnk STWPJ. Imaging modalities for prostate cancer. Expert Rev Anticancer Ther 2014; 9:923-37. [DOI: 10.1586/era.09.63] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Bjerklund Johansen TE, Witzsch U, Greene D. Salvage treatment in prostate cancer: a clinical approach. Expert Rev Anticancer Ther 2014; 13:613-23. [DOI: 10.1586/era.13.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Zhang VY, Westphalen A, Delos Santos L, Tabatabai ZL, Shinohara K, Vigneron DB, Kurhanewicz J. The role of metabolic imaging in radiation therapy of prostate cancer. NMR IN BIOMEDICINE 2014; 27:100-11. [PMID: 23940096 PMCID: PMC3864570 DOI: 10.1002/nbm.3007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 05/10/2023]
Abstract
The goal of this study was to correlate prostatic metabolite concentrations from snap-frozen patient biopsies of recurrent cancer after failed radiation therapy with histopathological findings, including Ki-67 immunohistochemistry and pathologic grade, in order to identify quantitative metabolic biomarkers that predict for residual aggressive versus indolent cancer. A total of 124 snap-frozen transrectal ultrasound (TRUS)-guided biopsies were acquired from 47 men with untreated prostate cancer and from 39 men with a rising prostate-specific antigen and recurrent prostate cancer following radiation therapy. Biopsy tissues with Ki-67 labeling index ≤ 5% were classified as indolent cancer, while biopsy tissues with Ki-67 labeling index > 5% were classified as aggressive cancer. The majority (15 out of 17) of cancers classified as aggressive had a primary Gleason 4 pattern (Gleason score ≥ 4 + 3). The concentrations of choline-containing phospholipid metabolites (PC, GPC, and free Cho) and lactate were significantly elevated in recurrent cancer relative to surrounding benign tissues. There was also a significant increase in [PC] and reduction in [GPC] between untreated and irradiated prostate cancer biopsies. The concentration of the choline-containing phospholipid metabolites was significantly higher in recurrent aggressive (≈ twofold) than in recurrent indolent cancer biopsies, and the receiver operating characteristic (ROC) curve analysis of total choline to creatine ratio (tCho/Cr) demonstrated an accuracy of 95% (confidence interval = 0.88-1.00) for predicting aggressive recurrent disease. The tCho/Cr was significantly higher for identifying recurrent aggressive versus indolent cancer (tCho/Cr = 2.4 ± 0.4 versus 1.5 ± 0.2), suggesting that use of a higher threshold tCho/Cr ratio in future in vivo (1)H MRSI studies could improve the selection and therapeutic planning for patients who would benefit most from salvage focal therapy after failed radiation therapy.
Collapse
Affiliation(s)
- V Y Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), CA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kobus T, Wright AJ, Scheenen TWJ, Heerschap A. Mapping of prostate cancer by 1H MRSI. NMR IN BIOMEDICINE 2014; 27:39-52. [PMID: 23761200 DOI: 10.1002/nbm.2973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/08/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
In many studies, it has been demonstrated that (1)H MRSI of the human prostate has great potential to aid prostate cancer management, e.g. in the detection and localisation of cancer foci in the prostate or in the assessment of its aggressiveness. It is particularly powerful in combination with T2 -weighted MRI. Nevertheless, the technique is currently mainly used in a research setting. This review provides an overview of the state-of-the-art of three-dimensional MRSI, including the specific hardware required, dedicated data acquisition sequences and information on the spectral content with background on the MR-visible metabolites. In clinical practice, it is important that relevant MRSI results become available rapidly, reliably and in an easy digestible way. However, this functionality is currently not fully available for prostate MRSI, which is a major obstacle for routine use by inexperienced clinicians. Routine use requires more automation in the processing of raw data than is currently available. Therefore, we pay specific attention in this review on the status and prospects of the automated handling of prostate MRSI data, including quality control. The clinical potential of three-dimensional MRSI of the prostate is illustrated with literature examples on prostate cancer detection, its localisation in the prostate, its role in the assessment of cancer aggressiveness and in the selection and monitoring of therapy.
Collapse
Affiliation(s)
- Thiele Kobus
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | |
Collapse
|
40
|
A radiologist's guide to treatment response criteria in oncologic imaging: functional, molecular, and disease-specific imaging biomarkers. AJR Am J Roentgenol 2013; 201:246-56. [PMID: 23883206 DOI: 10.2214/ajr.12.9878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This article reviews the functional, molecular, and disease-specific imaging biomarkers of treatment response. CONCLUSION Substantial progress has been made in the evolution of drugs directed at specific targets of the tumor lifecycle. These novel agents are predominantly cytostatic, and their efficacy may be optimally evaluated by functional, molecular, and disease-specific imaging biomarkers.
Collapse
|
41
|
|
42
|
Kasivisvanathan V, Emberton M, Ahmed HU. Focal therapy for prostate cancer: rationale and treatment opportunities. Clin Oncol (R Coll Radiol) 2013; 25:461-73. [PMID: 23759249 PMCID: PMC4042323 DOI: 10.1016/j.clon.2013.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/21/2013] [Accepted: 05/08/2013] [Indexed: 01/20/2023]
Abstract
Focal therapy is an emerging treatment modality for localised prostate cancer that aims to reduce the morbidity seen with radical therapy, while maintaining cancer control. Focal therapy treatment strategies minimise damage to non-cancerous tissue, with priority given to the sparing of key structures such as the neurovascular bundles, external sphincter, bladder neck and rectum. There are a number of ablative technologies that can deliver energy to destroy cancer cells as part of a focal therapy strategy. The most widely investigated are cryotherapy and high-intensity focussed ultrasound. Existing radical therapies, such as brachytherapy and external beam radiotherapy, also have the potential to be applied in a focal manner. The functional outcomes of focal therapy from several phase I and II trials have been encouraging, with low rates of urinary incontinence and erectile dysfunction. Robust medium- and long-term cancer control outcomes are currently lacking. Controversies in focal therapy remain, notably treatment paradigms based on the index lesion hypothesis, appropriate patient selection for focal therapy and how the efficacy of focal therapy should be assessed. This review articles discusses the current status of focal therapy, highlighting controversies and emerging strategies that can influence treatment outcomes for the future.
Collapse
Affiliation(s)
- V Kasivisvanathan
- Division of Surgery and Interventional Sciences, University College London, UK.
| | | | | |
Collapse
|
43
|
Grant K, Lindenberg ML, Shebel H, Pang Y, Agarwal HK, Bernardo M, Kurdziel KA, Turkbey B, Choyke PL. Functional and molecular imaging of localized and recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2013; 40 Suppl 1:S48-59. [PMID: 23649462 DOI: 10.1007/s00259-013-2419-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 01/17/2023]
Abstract
Prostate cancer is the most common malignancy among American men. Imaging of localized and recurrent prostate cancer is challenging since conventional imaging techniques are limited. New imaging techniques such as multiparametric MRI and PET with targeted tracers have been investigated extensively in the last decade. As a result, the role of novel imaging techniques for the detection of localized and recurrent prostate cancer has recently expanded. In this review, novel functional and molecular imaging techniques used in the management of localized and recurrent prostate cancer are discussed.
Collapse
Affiliation(s)
- Kinzya Grant
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Donati OF, Jung SI, Vargas HA, Gultekin DH, Zheng J, Moskowitz CS, Hricak H, Zelefsky MJ, Akin O. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology 2013; 268:440-50. [PMID: 23481164 DOI: 10.1148/radiol.13122149] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare diagnostic accuracy of T2-weighted magnetic resonance (MR) imaging with that of multiparametric (MP) MR imaging combining T2-weighted imaging with diffusion-weighted (DW) MR imaging, dynamic contrast material-enhanced (DCE) MR imaging, or both in the detection of locally recurrent prostate cancer (PCa) after radiation therapy (RT). MATERIALS AND METHODS This retrospective HIPAA-compliant study was approved by the institutional review board; informed consent was waived. Fifty-three men (median age, 70 years) suspected of having post-RT recurrence of PCa underwent MP MR imaging, including DW and DCE sequences, within 6 months after biopsy. Two readers independently evaluated the likelihood of PCa with a five-point scale for T2-weighted imaging alone, T2-weighted imaging with DW imaging, T2-weighted imaging with DCE imaging, and T2-weighted imaging with DW and DCE imaging, with at least a 4-week interval between evaluations. Areas under the receiver operating characteristic curve (AUC) were calculated. Interreader agreement was assessed, and quantitative parameters (apparent diffusion coefficient [ADC], volume transfer constant [K(trans)], and rate constant [k(ep)]) were assessed at sextant- and patient-based levels with generalized estimating equations and the Wilcoxon rank sum test, respectively. RESULTS At biopsy, recurrence was present in 35 (66%) of 53 patients. In detection of recurrent PCa, T2-weighted imaging with DW imaging yielded higher AUCs (reader 1, 0.79-0.86; reader 2, 0.75-0.81) than T2-weighted imaging alone (reader 1, 0.63-0.67; reader 2, 0.46-0.49 [P ≤ .014 for all]). DCE sequences did not contribute significant incremental value to T2-weighted imaging with DW imaging (reader 1, P > .99; reader 2, P = .35). Interreader agreement was higher for combinations of MP MR imaging than for T2-weighted imaging alone (κ = 0.34-0.63 vs κ = 0.17-0.20). Medians of quantitative parameters differed significantly (P < .0001 to P = .0233) between benign tissue and PCa (ADC, 1.64 × 10(-3) mm(2)/sec vs 1.13 × 10(-3) mm(2)/sec; K(trans), 0.16 min(-1) vs 0.33 min(-1); k(ep), 0.36 min(-1) vs 0.62 min(-1)). CONCLUSION MP MR imaging has greater accuracy in the detection of recurrent PCa after RT than T2-weighted imaging alone, with no additional benefit if DCE is added to T2-weighted imaging and DW imaging.
Collapse
Affiliation(s)
- Olivio F Donati
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu LM, Xu JR, Gu HY, Hua J, Zhu J, Chen J, Zhang W, Hu J. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radiol) 2013; 25:252-64. [PMID: 23313568 DOI: 10.1016/j.clon.2012.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/05/2012] [Accepted: 10/16/2012] [Indexed: 01/23/2023]
Abstract
AIMS To carry out a meta-analysis to assess the effectiveness of magnetic resonance imaging (MRI) during the follow-up of patients with prostate cancer after undergoing external beam radiotherapy (EBRT) or radical prostatectomy. MATERIALS AND METHODS MEDLINE, EMBASE and other databases were searched for relevant original articles published from January 1995 to October 2011. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. Pooled estimation and subgroup analysis data were obtained by statistical analysis. RESULTS Fourteen of 768 initially identified studies were included in the meta-analysis. Seven studies examining patient after radical prostatectomy had a pooled sensitivity and specificity on the patient level of 82% (95% confidence interval 78-86%) and 87% (95% confidence interval 81-92%), respectively. In the subgroup analysis, compared with T2-weighted imaging (T2WI), dynamic contrast-enhanced (DCE) MRI showed higher pooled sensitivity (85%, 95% confidence interval 78-90%) and specificity (95%, 95% confidence interval 88-99%). DCE MRI combined with magnetic resonance spectroscopic imaging (1H-MRSI) had the highest pooled sensitivity (92%, 95% confidence interval 83-97%). Nine studies examining men after EBRT had a pooled sensitivity and specificity on the patient level of 82% (95% confidence interval 75-88%) and 74% (95% confidence interval 64-82%), respectively. Compared with T2WI, DCE MRI showed higher pooled sensitivity (90%, 95% confidence interval 77-97%) and specificity (81%, 95% confidence interval 64-93%). DCE combined with 1H-MRSI had the highest pooled specificity (90%, 95% confidence interval 56-100%). The pooled sensitivity and specificity on sextant analysis was 58% (95% confidence interval 53-64%) and 85% (95% confidence interval 82-88%), respectively. DCE MRI showed the highest pooled sensitivity: 71% (95% confidence interval 60-80%). CONCLUSION A limited number of small studies suggest that MRI can accurately detect local recurrences after EBRT and radical prostatectomy. DCE MRI is particularly accurate. The addition of MRSI to DCE MRI can significantly improve the diagnostic accuracy of local prostate cancer recurrence. The eventual role of 1H-MRSI alone remains controversial and needs to be defined further.
Collapse
Affiliation(s)
- L M Wu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Greene DE, Mayadev JS, Valicenti RK. Radiation treatment for patients with intermediate-risk prostate cancer. Ther Adv Urol 2012; 4:113-24. [PMID: 22654963 DOI: 10.1177/1756287212442977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Around 70% of men presenting with prostate cancer will have organ-confined disease, with the majority presenting with low- or intermediate-risk prostate cancer. This article reviews the evidence supporting the current standard of care in radiation oncology for the evaluation and management of men with intermediate-risk prostate cancer. Dose escalation, hormonal therapy, combined modality therapy, and modern techniques for the delivery of radiation therapy are reviewed.
Collapse
Affiliation(s)
- David E Greene
- Lieutenant Commander, 4501 X st, Radiation Oncology, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
49
|
Weidner AM, Dinter DJ, Bohrer M, Sertdemir M, Hausmann D, Wenz F, Schoenberg SO. [Multiparametric prostate MRI for follow-up monitoring after radiation therapy]. Radiologe 2012; 52:235-42. [PMID: 22349898 DOI: 10.1007/s00117-011-2196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE Radiation therapy is a therapeutic option with curative intent for patients with prostate cancer. Monitoring of prostate-specific antigen (PSA) values is the current standard of care in the follow-up. Imaging is recommended only for symptomatic patients and/or for further therapeutic options. STANDARD RADIOLOGICAL METHODS For detection of local recurrence magnetic resonance imaging (MRI) of the prostate is acknowledged as the method of choice. PERFORMANCE Good results for primary diagnosis were found especially in combination with functional techniques, whereas in recurrent prostate cancer only few studies with heterogeneous study design are available for prostate MRI. Furthermore, changes in different MRI modalities due to radiation therapy have been insufficiently investigated to date. PRACTICAL RECOMMENDATIONS As the initial results were promising prostate MRI and available therapeutic options for detection of local recurrence should be considered in patients with increased PSA.
Collapse
Affiliation(s)
- A M Weidner
- Institut für Klinische Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim.
| | | | | | | | | | | | | |
Collapse
|
50
|
Westphalen AC, Reed GD, Vinh PP, Sotto C, Vigneron DB, Kurhanewicz J. Multiparametric 3T endorectal mri after external beam radiation therapy for prostate cancer. J Magn Reson Imaging 2012; 36:430-7. [PMID: 22535708 PMCID: PMC3565567 DOI: 10.1002/jmri.23672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/09/2012] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the best combination of magnetic resonance imaging (MRI) parameters for the detection of locally recurrent prostate cancer after external beam radiation therapy. MATERIALS AND METHODS Our Institutional Review Board approved this study with a waiver of informed consent. Twenty-six patients with suspected recurrence due to biochemical failure were part of this research. The MR protocol included T2-weighted, MR spectroscopy, and diffusion-weighted MRI. Transrectal ultrasound-guided biopsy was the standard of reference. We used logistic regression to model the probability of a positive outcome and generalized estimating equations to account for clustering. The diagnostic performance of imaging was described using receiver operating characteristic (ROC) curves. RESULTS The area under the ROC curve of MR spectroscopic imaging (MRSI) was 83.0% (95% confidence interval [CI] = 75.5-89.1). The combination of all MR techniques did not significantly improve the performance of imaging beyond the accuracy of MRSI alone, but a trend toward improved discrimination was noted (86.9%; 95% CI = 77.6-93.4; P = 0.09). CONCLUSION Incorporation of MRSI to T2-weighted and/or diffusion-weighted MRI significantly improves the assessment of patients with suspected recurrence after radiotherapy and a combined approach with all three modalities may have the best diagnostic performance.
Collapse
Affiliation(s)
- Antonio C Westphalen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|