1
|
Lee MK, Kim SW, Kim H, Park MJ, Fava M, Mischoulon D, Jeon HJ. Association between cerebral artery stenosis and depressive symptoms in elderly patients. J Affect Disord 2024; 361:53-58. [PMID: 38844169 DOI: 10.1016/j.jad.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To examine the association between cerebral artery stenosis and depressive symptoms in elderly patients. METHODS The study participants were 365 patients aged ≥65 years who visited the psychiatric outpatient clinic, Samsung Medical Center between January 1, 2000, and December 31, 2019, and were diagnosed with depressive disorder. They had brain imaging tests including magnetic resonance angiography (MRA), psychological evaluations including the 15-item Geriatric Depression Scale (GDS-15), and lab tests. Individuals' cerebral artery stenosis was identified and the association with significant depressive symptoms was examined. RESULTS Of the 365 subjects, 108 had at least one location of cerebral artery stenosis (29.6 %). The mean score of GDS-15 in the stenosis group was 8.1 (SD, 3.8), higher than the mean GDS-15 score of 6.5 (SD, 4.0) for the group without stenosis (p < 0.001). Compared to no middle cerebral artery (MCA) stenosis, having MCA stenosis was associated with significant depressive symptoms (p = 0.005). Compared to no posterior cerebral artery (PCA) stenosis, having left PCA stenosis was associated with significant depressive symptoms (p = 0.022). In the multivariable linear regression analysis, only bilateral MCA stenosis had a positive association with the score of GDS-15 (p = 0.013). CONCLUSION Bilateral MCA stenosis and left PCA stenosis are associated with significant depressive symptoms among elderly patients, with bilateral MCA stenosis positively associated with the severity of depression.
Collapse
Affiliation(s)
- Min Kang Lee
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Woo Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyewon Kim
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Mi Jin Park
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
2
|
Peterson BS, Li J, Trujillo M, Sawardekar S, Balyozian D, Bansal S, Sun BF, Marcelino C, Nanda A, Xu T, Amen D, Bansal R. A multi-site 99mTc-HMPAO SPECT study of cerebral blood flow in a community sample of patients with major depression. Transl Psychiatry 2024; 14:234. [PMID: 38830866 PMCID: PMC11148018 DOI: 10.1038/s41398-024-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Li
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Manuel Trujillo
- Department of Psychiatry at NYU Grossman School of Medicine, New York, NY, USA
- Amen Clinics Inc., Costa Mesa, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David Balyozian
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddharth Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anoop Nanda
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tracy Xu
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Lan H, Suo X, Zuo C, Ni W, Wang S, Kemp GJ, Gong Q. Shared and distinct abnormalities of brain magnetization transfer ratio in schizophrenia and major depressive disorder: a comparative voxel-based meta-analysis. Chin Med J (Engl) 2023; 136:2824-2833. [PMID: 37697951 PMCID: PMC10686600 DOI: 10.1097/cm9.0000000000002538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Patients with schizophrenia (SCZ) and major depressive disorder (MDD) share significant clinical overlap, although it remains unknown to what extent this overlap reflects shared neural profiles. To identify the shared and specific abnormalities in SCZ and MDD, we performed a whole-brain voxel-based meta-analysis using magnetization transfer imaging, a technique that characterizes the macromolecular structural integrity of brain tissue in terms of the magnetization transfer ratio (MTR). METHODS A systematic search based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in PubMed, EMBASE, International Scientific Index (ISI) Web of Science, and MEDLINE for relevant studies up to March 2022. Two researchers independently screened the articles. Rigorous scrutiny and data extraction were performed for the studies that met the inclusion criteria. Voxel-wise meta-analyses were conducted using anisotropic effect size-signed differential mapping with a unified template. Meta-regression was used to explore the potential effects of demographic and clinical characteristics. RESULTS A total of 15 studies with 17 datasets describing 365 SCZ patients, 224 MDD patients, and 550 healthy controls (HCs) were identified. The conjunction analysis showed that both disorders shared higher MTR than HC in the left cerebellum ( P =0.0006) and left fusiform gyrus ( P =0.0004). Additionally, SCZ patients showed disorder-specific lower MTR in the anterior cingulate/paracingulate gyrus, right superior temporal gyrus, and right superior frontal gyrus, and higher MTR in the left thalamus, precuneus/cuneus, posterior cingulate gyrus, and paracentral lobule; and MDD patients showed higher MTR in the left middle occipital region. Meta-regression showed no statistical significance in either group. CONCLUSIONS The results revealed a structural neural basis shared between SCZ and MDD patients, emphasizing the importance of shared neural substrates across psychopathology. Meanwhile, distinct disease-specific characteristics could have implications for future differential diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Huan Lan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| | - Chao Zuo
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Weishi Ni
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L693BX, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
4
|
Boisvert M, Lungu O, Pilon F, Dumais A, Potvin S. Regional cerebral blood flow at rest in schizophrenia and major depressive disorder: A functional neuroimaging meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111720. [PMID: 37804739 DOI: 10.1016/j.pscychresns.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Severe mental disorders (SMDs) such as schizophrenia (SCZ), major depressive disorder (MDD) and bipolar disorder (BD) are associated with altered brain function. Neuroimaging studies have illustrated spontaneous activity alterations across SMDs, but no meta-analysis has directly compared resting-state regional cerebral blood flow (rCBF) with one another. We conducted a meta-analysis of PET, SPECT and ASL neuroimaging studies to identify specific alterations of rCBF at rest in SMDs. Included are 20 studies in MDD, and 18 studies in SCZ. Due to the insufficient number of studies in BD, this disorder was left out of the analyses. Compared to controls, the SCZ group displayed reduced rCBF in the triangular part of the left inferior frontal gyrus and in the medial orbital part of the bilateral superior frontal gyrus. After correction, only a small cluster in the right inferior frontal gyrus exhibited reduced rCBF in MDD, compared to controls. Differences were found in these brain regions between SCZ and MDD. SCZ displayed reduced rCBF at rest in regions associated with default-mode, reward processing and language processing. MDD was associated with reduced rCBF in a cluster involved in response inhibition. Our meta-analysis highlights differences in the resting-state rCBF alterations between SCZ and MDD.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Florence Pilon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada; Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of Arterial Spin Labeling (ASL) Images in Parkinson's Disease (PD): A Systematic Review. Acad Radiol 2023; 30:1695-1708. [PMID: 36435728 DOI: 10.1016/j.acra.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease is a chronic progressive neurodegenerative disorder with standard structural MRIs often showing no gross abnormalities. Quantitative perfusion MRI modality Arterial Spin Labeling (ASL) is helpful in identifying PD specific perfusion patterns. Absolute Cerebral blood flow (CBF) measurement using ASL provides insights into regional perfusion abnormalities. We reviewed the role of ASL to identify specific brain regions responsible for motor, non-motor symptoms and neurovascular changes observed in PD. Challenges in assessing the blood perfusion level are discussed with future development for improving the evaluation of ASL perfusion maps. MATERIALS AND METHODS We included CBF quantification studies using ASL for PD diagnosis. A systematic search was performed in Pubmed, Scopus and Web of Science. The perfusion parameters CBF and arterial arrival time (AAT) measured using ASL were considered for brain region assessment. Clinical aspects of PD have been analyzed using ASL perfusion maps. RESULTS The systematic search identified 153 unique records. Thirty articles were selected after verification of inclusion and exclusion criteria. Voxel and region-based analyses in white and gray matter tissues have been performed to identify PD-specific perfusion patterns by reported articles. Predominant brain regions such as basal ganglia sub-regions, frontoparietal network, precuneus, occipital lobe, sensory motor area regions, visual network, which are associated with motor and non-motor symptoms in PD, were identified with CBF hypoperfusion, indicating neuronal loss and cerebrovascular dysfunction. CONCLUSION CBF and AAT values derived from ASL can potentially be used as biomarkers to discriminate PD from similar brain-related disorders.
Collapse
Affiliation(s)
- Dhanashri Joshi
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru,, KA, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Madhura Ingalhalikar
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India.
| |
Collapse
|
6
|
Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, Zhu J, Qian Y. Cerebral blood flow changes and their genetic mechanisms in major depressive disorder: a combined neuroimaging and transcriptome study. Psychol Med 2023; 53:1-13. [PMID: 36601814 DOI: 10.1017/s0033291722003750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jianhui Zhou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
7
|
Batail JM, Corouge I, Combès B, Conan C, Guillery-Sollier M, Vérin M, Sauleau P, Le Jeune F, Gauvrit JY, Robert G, Barillot C, Ferre JC, Drapier D. Apathy in depression: An arterial spin labeling perfusion MRI study. J Psychiatr Res 2023; 157:7-16. [PMID: 36427413 DOI: 10.1016/j.jpsychires.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/28/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Apathy, as defined as a deficit in goal-directed behaviors, is a critical clinical dimension in depression associated with chronic impairment. Little is known about its cerebral perfusion specificities in depression. To explore neurovascular mechanisms underpinning apathy in depression by pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). METHODS Perfusion imaging analysis was performed on 90 depressed patients included in a prospective study between November 2014 and February 2017. Imaging data included anatomical 3D T1-weighted and perfusion pCASL sequences. A multiple regression analysis relating the quantified cerebral blood flow (CBF) in different regions of interest defined from the FreeSurfer atlas, to the Apathy Evaluation Scale (AES) total score was conducted. RESULTS After confound adjustment (demographics, disease and clinical characteristics) and correction for multiple comparisons, we observed a strong negative relationship between the CBF in the left anterior cingulate cortex (ACC) and the AES score (standardized beta = -0.74, corrected p value = 0.0008). CONCLUSION Our results emphasized the left ACC as a key region involved in apathy severity in a population of depressed participants. Perfusion correlates of apathy in depression evidenced in this study may contribute to characterize different phenotypes of depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France.
| | - I Corouge
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - B Combès
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - C Conan
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France
| | - M Guillery-Sollier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication) - EA 1285, CC5000, Rennes, France
| | - M Vérin
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurology, F-35033, Rennes, France
| | - P Sauleau
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurophysiology, F-35033, Rennes, France
| | - F Le Jeune
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Centre Eugène Marquis, Department of Nuclear Medicine, F-35062, Rennes, France
| | - J Y Gauvrit
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| | - C Barillot
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - J C Ferre
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| |
Collapse
|
8
|
Jiang J, Li L, Lin J, Hu X, Zhao Y, Sweeney JA, Gong Q. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases. Neurosci Biobehav Rev 2023; 144:104991. [PMID: 36476776 DOI: 10.1016/j.neubiorev.2022.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Structural neuroimaging studies have identified brain areas implicated in the pathogenesis of major depressive disorder (MDD). However, findings have been inconsistent, potentially due to variable illness duration and effects of antidepressant treatment. Using a meta-analytic approach, we compared gray matter (GM) volumes in patients grouped by medication status (naïve and treated) and illness duration (early course and long-term ill) to identify potential treatment and illness duration effects on brain structure. A total of 70 studies were included, including 3682 patients and 3469 controls. The pooled analysis found frontal, temporal and limbic regions with decreased GM volume in MDD patients. Additional analyses indicated that larger GM volume in the right striatum and smaller GM volume in the right precuneus are likely to be associated with drug effects, while smaller GM volume in the right temporal gyrus may correlate with longer illness duration. Similar GM decreases in bilateral medial frontal cortex between patient subgroups suggest that this alteration may persist over the course of illness and drug treatment.
Collapse
Affiliation(s)
- Jing Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China.
| |
Collapse
|
9
|
Dimick MK, Toma S, MacIntosh BJ, Grigorian A, Fiksenbaum L, Youngstrom EA, Robertson AD, Goldstein BI. Cerebral Blood Flow and Core Mood Symptoms in Youth Bipolar Disorder: Evidence for Region-Symptom Specificity. J Am Acad Child Adolesc Psychiatry 2022; 61:1455-1465. [PMID: 35487335 DOI: 10.1016/j.jaac.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Building on prior findings in adults, this study investigated regional cerebral blood flow (CBF) in relation to DSM-5 criterion A symptoms of depression and mania in youth with bipolar disorder (BD). METHOD The study recruited 81 youths with BD and 75 healthy controls 13-20 years old. CBF was ascertained using pseudocontinuous arterial spin labeling magnetic resonance imaging. Region-of-interest analyses examined the amygdala, anterior cingulate cortex (ACC), middle frontal gyrus, and global gray matter CBF. The association of criterion A depression and mania symptoms with CBF was examined dimensionally in youth with BD in regression analyses with continuous symptom severity scores. Age and sex were included as covariates. False discovery rate (FDR) was used to correct for 28 tests (4 regions by 7 symptoms; α < .0017). CBF for BD and healthy control groups was compared to give context for findings. RESULTS In youth with BD, depressed mood inversely correlated with ACC (β = -0.31, puncorrected = .004, pFDR = .056) and global (β = -0.27, puncorrected = .013, pFDR = .09) CBF. The same pattern was observed for anhedonia (ACC CBF: β = -0.33, puncorrected = .004, pFDR = .056; global CBF: β = -0.29, puncorrected = .008, pFDR = .07). There were no significant findings for manic symptoms or in BD vs healthy control contrasts. CONCLUSION The present findings, while not significant after correction for multiple testing, highlight the potential value of focusing on ACC in relation to depressed mood and anhedonia, and demonstrate that CBF is sensitive to depression symptom severity in youth. Lack of findings regarding manic symptoms may relate to the exclusion of fully manic participants in this outpatient sample.
Collapse
Affiliation(s)
- Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada
| | - Simina Toma
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | | | - Eric A Youngstrom
- University of North Carolina at Chapel Hill and Helping Give Away Psychological Science, Inc., Chapel Hill, North Carolina
| | | | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada.
| |
Collapse
|
10
|
Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23:643-652. [PMID: 34985394 DOI: 10.1080/15622975.2021.2020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF). We measured CBF in 21 MDD patients at baseline and 24 h after receiving a single intravenous infusion of subanesthetic ketamine and examined relationships with clinical outcomes. Our findings demonstrate that increase in thalamus perfusion 24 h after ketamine administration is associated with greater improvement of depressive symptoms. Furthermore, lower thalamus perfusion at baseline is associated both with larger increases in perfusion 24 h after ketamine administration and with stronger reduction of depressive symptoms. These findings indicate that ASL is not only a useful tool to broaden our understanding of ketamine's mechanism of action but might also have the potential to inform treatment decisions based on CBF-defined regional disruptions.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mischa de Rover
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Grimm
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Wang YM, Yang ZY. Aberrant pattern of cerebral blood flow in patients with major depressive disorder: A meta-analysis of arterial spin labelling studies. Psychiatry Res Neuroimaging 2022; 321:111458. [PMID: 35152052 DOI: 10.1016/j.pscychresns.2022.111458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating evidence has suggested that patients with major depressive disorder (MDD) could exhibit resting-state cerebral blood flow (CBF) abnormalities. However, findings across studies are controversial. METHODS Our study aimed at identifying replicable CBF changes in MDD by conducting a case-control meta-analysis and meta-regression of arterial spin labelling studies using seed-based d mapping software. Fourteen studies encompassing 505 patients with MDD and 443 healthy controls were included. RESULTS We found increased CBF in the inferior parietal lobule, the striatum, and the bilateral thalamus in all patients with MDD relative to healthy controls. While decreased CBF was observed in the inferior frontal gyrus, the insula, the middle occipital gyrus and the bilateral superior temporal gyrus in patients with MDD. Moreover, increased CBF of the bilateral thalamus was associated with more severe depressive symptoms in patients with MDD. The subgroup meta-analysis showed that patients with acute phase had increased CBF in the bilateral thalamus, and decreased CBF in the left middle occipital gyrus and the left middle frontal gyrus. Chronic patients had decreased CBF in the left insula, the right calcarine sulcus, the right inferior frontal gyrus, and the left parahippocampal gyrus. Patients with medication-free had increased CBF in the right anterior cingulate cortex/medial prefrontal cortex, and decreased CBF in the left middle occipital gyrus, the left inferior frontal gyrus, and the left precentral gyrus. CONCLUSIONS These findings suggest an aberrant cerebral blood flow pattern of MDD involving the cortico-striatal-thalamic circuit, which may facilitate understanding of pathophysiology and suggest potential neural biomarkers for clinical assessment, monitoring and interventions of MDD. One important limitation is that eight recruited studies in our meta-analysis have recruited more males than females, which may have a selection bias of patients.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Zhuo-Ya Yang
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis. J Affect Disord 2022; 299:144-158. [PMID: 34800572 DOI: 10.1016/j.jad.2021.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vascular mechanisms may play a role in depression. The aim of this review is to summarise the evidence on alterations in cerebral haemodynamics in depression. METHODS MEDLINE (1946- present), Embase (1947-present), Web of Science (1970-present), PsycINFO (1984-present), CINAHL (1976-present) and CENTRAL were searched using a predefined search strategy. A meta-analysis was conducted in four groups: 1) global cerebral blood flow (CBF) in ml/min/100 g, 2) CBF velocity (CBFv) in cm/s (maximum flow of left middle cerebral artery, 3) combined CBF and CBFv, 4) Ratio of uptake of Tc 99 m HMPAO (region of interest compared to whole brain). Data are presented as mean difference or standardised mean difference and 95% confidence interval (95% CI). A narrative synthesis of the remaining studies was performed. RESULTS 87 studies were included. CBF was significantly reduced in depressed patients compared to HC [15 studies, 538 patients, 416 HC, MD: -2.24 (95% CI -4.12, -0.36), p = 0.02, I2 = 64%]. There were no statistically significant differences in other parameters. The narrative synthesis revealed variable changes in CBF in depressed patients, particularly affecting the anterior cingulate and prefrontal cortices. LIMITATIONS There were various sources of heterogeneity including the severity of depression, use of antidepressant medication, imaging modality used and reporting of outcomes. All of these factors made direct comparisons between studies difficult. CONCLUSIONS The reduction in CBF in depressed patients compared to HCs may indicate a role for assessment and CBF altering interventions in high-risk groups. However, results were inconsistent across studies, warranting further work to investigate specific subgroups.
Collapse
|
13
|
KILINÇ Ö, HIZAL M, ARISOY Ö, ÖZGEDİK N, KALAYCIOĞLU O. Alteration of cerebral perfusion and cortical thickness in depression episodes: a comparative MRI study. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.993848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Runia N, Yücel DE, Lok A, de Jong K, Denys DAJP, van Wingen GA, Bergfeld IO. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2021; 132:433-448. [PMID: 34890601 DOI: 10.1016/j.neubiorev.2021.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition associated with higher medical costs, increased illness burden, and reduced quality of life compared to non-treatment-resistant major depressive disorder (MDD). The question arises whether TRD can be considered a distinct MDD sub-type based on neurobiological features. To answer this question we conducted a systematic review of neuroimaging studies investigating the neurobiological differences between TRD and non-TRD. Our main findings are that patients with TRD show 1) reduced functional connectivity (FC) within the default mode network (DMN), 2) reduced FC between components of the DMN and other brain areas, and 3) hyperactivity of DMN regions. In addition, aberrant activity and FC in the occipital lobe may play a role in TRD. The main limitations of most studies were related to inherent confounding factors for comparing TRD with non-TRD, such as differences in disease chronicity/severity and medication history. Future studies may use prospective longitudinal neuroimaging designs to delineate which effects are present in treatment-naive patients and which effects are the result of disease progression.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dilan E Yücel
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki de Jong
- University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan A J P Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Isidoor O Bergfeld
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Darling AM, Richey RE, Akins JD, Saunders EFH, Matthew Brothers R, Greaney JL. Cerebrovascular reactivity is blunted in young adults with major depressive disorder: The influence of current depressive symptomology. J Affect Disord 2021; 295:513-521. [PMID: 34509066 PMCID: PMC8667006 DOI: 10.1016/j.jad.2021.08.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND In middle-aged adults with depression, cerebral vasodilatory reactivity is blunted; however, this has not been examined in treatment-naïve young adults with major depressive disorder (MDD). We tested the hypothesis that cerebrovascular reactivity would be blunted in young adults (18-30 yrs) with MDD compared to healthy non-depressed adults (HA) and would be attenuated to a greater extent in adults with symptomatic MDD (sMDD) compared to adults with MDD in remission (euthymic MDD; eMDD). METHODS Sixteen adults with MDD [21±3yrs; n = 8 sMDD (6 women); n = 8 eMDD (5 women)] and 14 HA (22±3yrs; 9 women) participated. End-tidal carbon dioxide concentration (PETCO2; capnograph), beat-to-beat mean arterial pressure (MAP; finger photoplethysmography), middle cerebral artery blood velocity (MCAv; transcranial Doppler ultrasound), and internal carotid artery (ICA) diameter and blood velocity (Doppler ultrasound) were continuously measured during baseline and rebreathing-induced hypercapnia. Cerebrovascular reactivity was calculated as the relative increase in vascular conductance during hypercapnia. RESULTS In adults with MDD, cerebrovascular reactivity in the MCA (∆39±9 HA vs. ∆31±13% MDD, p = 0.04), but not the ICA (∆36±24 HA vs. ∆34±18% MDD, p = 0.84), was blunted compared to HA. In the MCA, cerebrovascular reactivity was reduced in adults with sMDD compared to adults with eMDD (∆36±11 eMDD vs. ∆25±13% sMDD, p = 0.02). LIMITATIONS The cross-sectional nature approach limits conclusions regarding the temporal nature of this link. CONCLUSION These data indicate that MCA cerebrovascular reactivity is blunted in young adults with MDD and further modulated by current depressive symptomology, suggesting that the management of depressive symptomology may secondarily improve cerebrovascular health.
Collapse
Affiliation(s)
- Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, 655W. Mitchell Street, Arlington, TX 76010, United States
| | - Rauchelle E Richey
- Department of Kinesiology, The University of Texas at Arlington, 655W. Mitchell Street, Arlington, TX 76010, United States; Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
| | - John D Akins
- Department of Kinesiology, The University of Texas at Arlington, 655W. Mitchell Street, Arlington, TX 76010, United States
| | - Erika F H Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, 655W. Mitchell Street, Arlington, TX 76010, United States
| | - Jody L Greaney
- Department of Kinesiology, The University of Texas at Arlington, 655W. Mitchell Street, Arlington, TX 76010, United States.
| |
Collapse
|
16
|
Ritter C, Buchmann A, Müller ST, Hersberger M, Haynes M, Ghisleni C, Tuura R, Hasler G. Cerebral perfusion in depression: Relationship to sex, dehydroepiandrosterone sulfate and depression severity. Neuroimage Clin 2021; 32:102840. [PMID: 34628302 PMCID: PMC8515484 DOI: 10.1016/j.nicl.2021.102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disease burden and shows a marked sexual dimorphism. Previous studies reported changes in cerebral perfusion in MDD, an association between perfusion and dehydroepiandrosterone sulfate (DHEAS) levels, and large sex differences in perfusion. This study examines whether perfusion and DHEAS might mediate the link between sex and depressive symptoms in a large, unmedicated community sample. METHODS The sample included 203 healthy volunteers and 79 individuals with past or current MDD. Depression severity was assessed with the Hamilton Depression Scale (HAM-D) and Montgomery-Asberg Depression Rating Scale (MADRS). 3 T MRI perfusion data were collected with a pseudocontinuous arterial spin labelling sequence and DHEAS was measured in serum by LC-MS/MS. RESULTS Large sex differences in perfusion were observed (p < 0.001). Perfusion was negatively correlated with DHEAS (r = -0.23, p < 0.01, n = 250) and with depression severity (HAM-D: r = -0.17, p = 0.01, n = 242; partial Spearman correlation, controlling for age and sex), but not with anxiety. A significant sex*perfusion interaction on depression severity was observed. In women, perfusion showed more pronounced negative correlations with depressive symptoms, with absent or, in the case of the MADRS, opposite effects observed in men. A mediation analysis identified DHEAS and perfusion as mediating variables influencing the link between sex and the HAM-D score. CONCLUSION Perfusion was linked to depression severity, with the strongest effects observed in women. Perfusion and the neurosteroid DHEAS appear to mediate the link between sex and HAM-D scores, suggesting that inter-individual differences in perfusion and DHEAS levels may contribute to the sexual dimorphism in depression.
Collapse
Affiliation(s)
- Christopher Ritter
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland; Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland.
| | - Andreas Buchmann
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland; Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Sabrina Theresia Müller
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Melanie Haynes
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Carmen Ghisleni
- Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Ruth Tuura
- Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| |
Collapse
|
17
|
Hsu LM, Lane TJ, Wu CW, Lin CY, Yeh CB, Kao HW, Lin CP. Spontaneous thought-related network connectivity predicts sertraline effect on major depressive disorder. Brain Imaging Behav 2021; 15:1705-1717. [PMID: 32710339 DOI: 10.1007/s11682-020-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sertraline is one of the most commonly prescribed antidepressants. Major depressive disorder (MDD) is characterized by spontaneous thoughts that are laden with negative affect-a "malignant sadness". Prior neuroimaging studies have identified abnormal resting-state functional connectivity (rsFC) in the spontaneous brain networks of MDD patients. But how antidepressant medication acts to relieve the experience of depression as well as adjust its associated spontaneous networks and mood-regulation circuits remains an open question. In this study, we recruited 22 drug-naïve MDD patients along with 35 normal controls and investigated whether the functional integrity of cortical networks associated with spontaneous thoughts is modulated by sertraline treatment. We attempted to predict post-treatment effects based upon what we observed in the pre-treatment rsFC of drug-naïve MDD patients. In the result, we demonstrated that (1) after the sertraline treatment, the medial temporal lobe of default network (DNMTL) and mood regulation pathway-the fronto-parietal control network (FPCN), the thalamus, and the salience network (SN)-were restored to normal connectivity, relative to the pre-treatment condition; however, the altered connections of FPCN-core DN (DNCORE), FPCN-SN, and intra-FPCN among MDD patients remained impaired; (2) thalamo-prefrontal connectivity provides moderate predictive power (r2 = 0.63) for the effectiveness of sertraline treatment. In summary, our findings contribute to a body of evidence that suggests salubrious effects of sertraline treatment primarily involve the FPCN-thalamus-SN pathway. The pre-treatment rsFC in this pathway could serve as a predictor of sertraline treatment outcome.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Department of Radiology and Brain Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Timothy Joseph Lane
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Institute of European and American Studies, Academia Sinica, Taipei, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | | | - Chi-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hung-Wen Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei City, 114, Taiwan.
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Cerebral perfusion disturbances in chronic mild traumatic brain injury correlate with psychoemotional outcomes. Brain Imaging Behav 2021; 15:1438-1449. [PMID: 32734434 DOI: 10.1007/s11682-020-00343-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The study explored associations between hemodynamic changes and psychoemotional status in 32 patients with chronic mild traumatic brain injury (mTBI) and 31 age-matched healthy volunteers. Cerebral blood flow (CBF) and cerebral blood volume (CBV) values were obtained using Dynamic Susceptibility Contrast Magnetic Resonance Imaging in brain regions suspected to play a role in anxiety and depression. Patients were administered self-report measures of anxiety and depression symptoms and underwent neuropsychological assessment. As a group mTBI patients scored significantly below age- and education-adjusted population norms on multiple cognitive domains and reported high rates of anxiety and depression symptomatology. Significantly reduced CBF values were detected in the mTBI group compared to controls in dorsolateral prefrontal areas, putamen, and hippocampus, bilaterally. Within the mTBI group, depressive symptomatology was significantly associated with lower perfusion in the left anterior cingulate gyrus and higher perfusion in the putamen, bilaterally. The latter association was independent from verbal working memory capacity. Moreover, anxiety symptomatology was associated with lower perfusion in the hippocampus (after controlling for verbal episodic memory difficulties). Associations between regional perfusion and psychoemotional scores were specific to depression or anxiety, respectively, and independent of the presence of visible lesions on conventional MRI. Results are discussed in relation to the role of specific limbic and paralimbic regions in the pathogenesis of symptoms of depression and anxiety.
Collapse
|
19
|
Siragusa MA, Rufin T, Courtois R, Belzung C, Andersson F, Brizard B, Dujardin PA, Cottier JP, Patat F, Réméniéras JP, Gissot V, El-Hage W, Camus V, Desmidt T. Left amygdala volume and brain tissue pulsatility are associated with neuroticism: an MRI and ultrasound study. Brain Imaging Behav 2021; 15:1499-1507. [PMID: 32761564 DOI: 10.1007/s11682-020-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain changes associated with the personality trait of neuroticism have been partly elucidated. While subcortical brain volume changes, especially a larger amygdala, appear consistent in high neuroticism, functional changes, such as cerebral blood flow (CBF) differences, have shown conflicting results, possibly because of the limitations in methods of CBF measurement. In our study, we investigated changes in amygdala volume and CBF-related function associated with neuroticism in healthy and depressed subjects using both conventional magnetic resonance imaging (MRI) measures of brain volume and the innovative technique of ultrasound Tissue Pulsatility Imaging (TPI), which has a high level of detection in measuring brain tissue pulsatility (BTP). Middle-aged females with depression (n = 25) and without depression (n = 25) underwent clinical examination, magnetic resonance imaging (MRI) and ultrasound assessment (TPI). Neuroticism was positively associated with left amygdala volume and mean BTP in individuals without depression, in both simple and multiple regressions that included potential confounding factors such as age and body mass index. No association was found in the depressed group. We confirmed the role of the left amygdala in the brain physiology of neuroticism in nondepressed individuals. Moreover, we identified a novel mechanism associated with high neuroticism, namely BTP, that may reflect greater CBF and account for the increased risk of cerebrovascular disease in individuals with high neuroticism. Because neuroticism is considered a risk factor for depression, our paper provides potential objective biomarkers for the identification of subjects at risk for depression.
Collapse
Affiliation(s)
| | | | - Robert Courtois
- CRIAVS Centre-Val de Loire, CHRU de Tours, Tours, France
- Département de Psychologie, EE 1901 'Qualipsy' (Qualité de vie et Santé psychologique), Université François Rabelais de Tours, Tours, France
| | | | | | - Bruno Brizard
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | | - Jean-Philippe Cottier
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- CHRU de Tours, Tours, France
| | - Frédéric Patat
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- CHRU de Tours, Tours, France
- CIC 1415, CHU de Tours, Inserm, Tours, France
| | | | | | - Wissam El-Hage
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- CHRU de Tours, Tours, France
- CIC 1415, CHU de Tours, Inserm, Tours, France
| | - Vincent Camus
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- CHRU de Tours, Tours, France
| | - Thomas Desmidt
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France.
- CHRU de Tours, Tours, France.
| |
Collapse
|
20
|
Bitar Z, Hallit S, Khansa W, Obeid S. Phubbing and temperaments among young Lebanese adults: the mediating effect of self-esteem and emotional intelligence. BMC Psychol 2021; 9:87. [PMID: 34022960 PMCID: PMC8140490 DOI: 10.1186/s40359-021-00594-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background The rapid increasing rate of mobile and internet users in Lebanon, predisposes us to a high dependency on smartphones, leading to more phubbing. Phubbing has been found associated with many psychological factors. Thus, the main objectives of this study was (1) to evaluate the association between phubbing and temperaments, and (2) assess the mediating effect of self-esteem and emotional intelligence in the association between phubbing and temperaments among a sample of Lebanese adults. Methods A cross-sectional study, carried out between August and September 2020, enrolled 461 participants aged between 18 and 29 years old. Participants were recruited from all districts/governorates of Lebanon (Beirut, Mount Lebanon, North Lebanon, South Lebanon, and Bekaa) using the snowball technique. The Generic Scale of Phubbing, Rosenberg Self‐Esteem Scale, Schutte Self Report Emotional Intelligence Test and TEMPS-M were used to assess phubbing, self-esteem, emotional intelligence and temperaments respectively. Results Our results showed that higher depressive temperament (B = 1.21) was significantly associated with more phubbing, whereas higher self-esteem (B = − 0.32) was significantly associated with less phubbing. Regarding the mediating effect, self-esteem partially mediated the association between depressive temperament and phubbing (21.02%), whereas emotional intelligence had no mediating effect on the association between temperaments and phubbing. Conclusion A strong correlation between phubbing and temperaments has been found in our study with a partial mediating effect of self-esteem in this association. Our findings might be a first step for raising awareness to develop the etiquette of using smartphones by providing media education to families, and good media usage habits.
Collapse
Affiliation(s)
- Zeinab Bitar
- Research Department, Psychiatric Hospital of the Cross, P.O. Box 60096, Jall-Eddib, Lebanon
| | - Souheil Hallit
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon. .,INSPECT-LB: National Institute of Public Health, Clinical Epidemiology and Toxicology, Beirut, Lebanon.
| | - Wael Khansa
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | - Sahar Obeid
- Research Department, Psychiatric Hospital of the Cross, P.O. Box 60096, Jall-Eddib, Lebanon. .,INSPECT-LB: National Institute of Public Health, Clinical Epidemiology and Toxicology, Beirut, Lebanon. .,Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon.
| |
Collapse
|
21
|
Translational application of neuroimaging in major depressive disorder: a review of psychoradiological studies. Front Med 2021; 15:528-540. [PMID: 33511554 DOI: 10.1007/s11684-020-0798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/25/2020] [Indexed: 02/05/2023]
Abstract
Major depressive disorder (MDD) causes great decrements in health and quality of life with increments in healthcare costs, but the causes and pathogenesis of depression remain largely unknown, which greatly prevent its early detection and effective treatment. With the advancement of neuroimaging approaches, numerous functional and structural alterations in the brain have been detected in MDD and more recently attempts have been made to apply these findings to clinical practice. In this review, we provide an updated summary of the progress in translational application of psychoradiological findings in MDD with a specified focus on potential clinical usage. The foreseeable clinical applications for different MRI modalities were introduced according to their role in disorder classification, subtyping, and prediction. While evidence of cerebral structural and functional changes associated with MDD classification and subtyping was heterogeneous and/or sparse, the ACC and hippocampus have been consistently suggested to be important biomarkers in predicting treatment selection and treatment response. These findings underlined the potential utility of brain biomarkers for clinical practice.
Collapse
|
22
|
Cheng B, Meng Y, Zuo Y, Guo Y, Wang X, Wang S, Zhang R, Deng W, Guo Y, Ning G. Functional connectivity patterns of the subgenual anterior cingulate cortex in first-episode refractory major depressive disorder. Brain Imaging Behav 2021; 15:2397-2405. [PMID: 33432537 DOI: 10.1007/s11682-020-00436-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 02/05/2023]
Abstract
Although accumulating evidence has been elucidating the neuronal basis of refractory/nonrefractory major depressive disorder (rMDD/nrMDD), the results are inconsistent, and little is known about the distinct neural mechanisms underlying rMDD. Here, we explored the convergent/divergent brain networks between first-episode MDD subtypes using the resting-state functional connectivity (RSFC) approach. In total, 33 healthy controls (HCs), 31 first-episode rMDD patients and 33 first-episode nrMDD patients were enrolled and underwent MRI scanning. The left subgenual anterior cingulate cortex (sgACC) was selected as the seed region, and RSFC was employed to evaluate associations between the seed and other regions in the whole brain. Both MDD subtypes exhibited convergent left sgACC-based neural networks, including increased RSFC with the dorsal prefrontal cortex (DPFC) and decreased RSFC with the bilateral orbitofrontal cortex (OFC) and right parahippocampus. rMDD patients exhibited increased left sgACC-OFC RSFC relative to nrMDD patients, and RSFC with the bilateral OFC in rMDD patients was negatively correlated with HAMD scores. These findings confirmed our speculation that convergent and divergent neural networks exist between rMDD and nrMDD. Cortical-limbic circuits, especially the prefrontal-limbic circuit, may serve as the convergent dysfunctional neural circuitry in MDD subtypes. As an important biomarker, a unique OFC-sgACC circuit abnormality was identified in rMDD patients, which might help elucidate the underlying mechanism regarding treatment responses in rMDD patients.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Zuo
- Maternity clinic, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041
| | - Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Zhang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041.
| |
Collapse
|
23
|
Kihira S, Koo C, Nael K, Belani P. Regional Parieto-occipital Hypoperfusion on Arterial Spin Labeling Associates with Major Depressive Disorder. Open Neuroimag J 2020. [DOI: 10.2174/1874440002013010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Reduced cerebral blood flow in parieto-occipital regions has been reported in neurodegenerative disorders using ASL. We aimed to investigate neuropsychiatric and neurodegenerative comorbidities that may associate with parieto-occipital region hypoperfusion.
Methods:
This was a retrospective single-center study. Between March 2017 to May 2018, adult patients who underwent brain MRI with the inclusion of ASL perfusion and who had bilateral reductions of CBF in the parieto-occipital regions were included. ASL was performed using a pseudo-continuous arterial spin labeling (pCASL) technique on 1.5T MR system. Age and gender-matched patients with no perfusion defect were concurrently collected. Comorbidity data was collected from EMR, including major depressive disorder, Alzheimer’s disease, Parkinson’s disease, Schizophrenia, anxiety disorder, hypertension, diabetes mellitus type II, coronary artery disease, and chronic kidney disease. A Pearson’s Chi-Square test was performed to assess for comorbidities associated with hypoperfusion of the parieto-occipital lobes.
Results:
Our patient cohort consisted of 93 patients with bilateral hypoperfusion in the parieto-occipital lobes and 93 age and gender-matched patients without corresponding perfusion defects based on ASL-CBF. Among the comorbidities assessed, there was a statistically significant association between hypoperfusion of the parieto-occipital lobes and major depressive disorder (p=0.004) and Parkinson’s disease (p=0.044). There was no statistically significant association for Alzheimer’s disease, generalized anxiety disorder, diabetes mellitus type II, hypertension, coronary artery disease, or chronic kidney disease.
Conclusion:
Major depressive disorder may be linked to regional parieto-occipital hypoperfusion on ASL.
Collapse
|
24
|
Millard SJ, Weston-Green K, Newell KA. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109908. [PMID: 32145362 DOI: 10.1016/j.pnpbp.2020.109908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is one of the leading causes of years lived with disability and contributor to the burden of disease worldwide. The incidence of MDD has increased by ~20% in the last decade. Currently antidepressant drugs such as the popular selective serotonin reuptake inhibitors (SSRIs) are the leading form of pharmaceutical intervention for the treatment of MDD. SSRIs however, are inefficient in ameliorating depressive symptoms in ~50% of patients and exhibit a prolonged latency of efficacy. Due to the burden of disease, there is an increasing need to understand the neurobiology underpinning MDD and to discover effective treatment strategies. Endogenous models of MDD, such as the Wistar-Kyoto (WKY) rat provide a valuable tool for investigating the pathophysiology of MDD. The WKY rat displays behavioural and neurobiological phenotypes similar to that observed in clinical cases of MDD, as well as resistance to common antidepressants. Specifically, the WKY strain exhibits increased anxiety- and depressive-like behaviours, as well as alterations in Hypothalamic Pituitary Adrenal (HPA) axis, serotonergic, dopaminergic and neurotrophic systems with emerging studies suggesting an involvement of neuroinflammation. More recent investigations have shown evidence for reduced cortical and hippocampal volumes and altered glutamatergic signalling in the WKY strain. Given the growing interest in therapeutics targeting the glutamatergic system, the WKY strain presents itself as a potentially useful tool for screening novel antidepressant drugs and their efficacy against treatment resistant depression. However, despite the sexual dimorphism present in the pathophysiology and aetiology of MDD, sex differences in the WKY model are rarely investigated, with most studies focusing on males. Accordingly, this review highlights what is known regarding sex differences and where further research is needed. Whilst acknowledging that investigation into a range of depression models is required to fully elucidate the underlying mechanisms of MDD, here we review the WKY strain, and its relevance to the clinic.
Collapse
Affiliation(s)
- Samuel J Millard
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Katrina Weston-Green
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
25
|
Cooper CM, Chin Fatt CR, Liu P, Grannemann BD, Carmody T, Almeida JRC, Deckersbach T, Fava M, Kurian BT, Malchow AL, McGrath PJ, McInnis M, Oquendo MA, Parsey RV, Bartlett E, Weissman M, Phillips ML, Lu H, Trivedi MH. Discovery and replication of cerebral blood flow differences in major depressive disorder. Mol Psychiatry 2020; 25:1500-1510. [PMID: 31388104 DOI: 10.1038/s41380-019-0464-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Major depressive disorder (MDD) is a serious, heterogeneous disorder accompanied by brain-related changes, many of which are still to be discovered or refined. Arterial spin labeling (ASL) is a neuroimaging technique used to measure cerebral blood flow (CBF; perfusion) to understand brain function and detect differences among groups. CBF differences have been detected in MDD, and may reveal biosignatures of disease-state. The current work aimed to discover and replicate differences in CBF between MDD participants and healthy controls (HC) as part of the EMBARC study. Participants underwent neuroimaging at baseline, prior to starting study medication, to investigate biosignatures in MDD. Relative CBF (rCBF) was calculated and compared between 106 MDD and 36 HC EMBARC participants (whole-brain Discovery); and 58 MDD EMBARC participants and 58 HC from the DLBS study (region-of-interest Replication). Both analyses revealed reduced rCBF in the right parahippocampus, thalamus, fusiform and middle temporal gyri, as well as the left and right insula, for those with MDD relative to HC. Both samples also revealed increased rCBF in MDD relative to HC in both the left and right inferior parietal lobule, including the supramarginal and angular gyri. Cingulate and prefrontal regions did not fully replicate. Lastly, significant associations were detected between rCBF in replicated regions and clinical measures of MDD chronicity. These results (1) provide reliable evidence for ASL in detecting differences in perfusion for multiple brain regions thought to be important in MDD, and (2) highlight the potential role of using perfusion as a biosignature of MDD.
Collapse
Affiliation(s)
- Crystal M Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cherise R Chin Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bruce D Grannemann
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Carmody
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jorge R C Almeida
- Department of Psychiatry, Dell Medical School, University of Texas Austin, Austin, TX, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Benji T Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley L Malchow
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patrick J McGrath
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Bartlett
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Myrna Weissman
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hanzhang Lu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Suzuki H, Matsumoto Y, Sugimura K, Takahashi J, Miyata S, Fukumoto Y, Taki Y, Shimokawa H. Impacts of hippocampal blood flow on changes in left ventricular wall thickness in patients with chronic heart failure. Int J Cardiol 2020; 310:103-107. [DOI: 10.1016/j.ijcard.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
|
27
|
Gong L, Xu R, Liu D, Zhang C, Huang Q, Zhang B, Xi C. Abnormal functional connectivity density in patients with major depressive disorder with comorbid insomnia. J Affect Disord 2020; 266:417-423. [PMID: 32056908 DOI: 10.1016/j.jad.2020.01.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Insomnia is a common comorbidity symptom in patients with major depressive disorder (MDD). However, the brain functional alteration in MDD with higher level insomnia (MDD-HI) and lower level insomnia (MDD-LI) remains unclear. Here, we investigated the association of insomnia with global functional connectivity density (gFCD) in patients with MDD. METHODS A total of 148 participants were recruited and underwent resting-state functional magnetic resonance imaging. A voxel-wise analysis of covariance was employed to explore group differences in gFCD among the MDD-HI, MDD-LI and healthy control (HC) groups. RESULTS The gFCD in the bilateral parahippocampal/hippocampal gyri (PHG/HIP) was higher in the two MDD than in the HC group, and it was higher in the MDD-LI than in the MDD-HI group; the gFCD in the left fusiform area was lower in the MDD than in the HC group. The gFCD in the left inferior temporal gyrus (ITG) was higher in the MDD-HI than in the MDD-LI and HC groups. The gFCD in the left ITG and posterior PHG/HIP was associated with insomnia, while the gFCD in the left anterior PHG/HIP was correlated with non-insomnia depressive symptoms in the MDD group. LIMITATIONS The cross-sectional design and the use of brief/subjective insomnia assessments. CONCLUSIONS The present study showed that the abnormal brain features of MDD with different insomnia symptom. Importantly, the posterior and anterior parts of the hippocampus may play different roles in the presence or absence of insomnia in patients with MDD.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China.
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Duan Liu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Chuantao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Qun Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, Anhui, 230061, China.
| |
Collapse
|
28
|
Han M, Kim LH, Shpanskaya K, Kim C, Iv M, Jeng M, Yeom KW. Altered cerebral perfusion in children with Langerhans cell histiocytosis after chemotherapy. Pediatr Blood Cancer 2020; 67:e28104. [PMID: 31802628 DOI: 10.1002/pbc.28104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Children with Langerhans cell histiocytosis (LCH) may develop a wide array of neurological symptoms, but associated cerebral physiologic changes are poorly understood. We examined cerebral hemodynamic properties of pediatric LCH using arterial spin-labeling (ASL) perfusion magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was performed in 23 children with biopsy-proven LCH. Analysis was performed on routine brain MRI obtained before or after therapy. Region of interest (ROI) methodology was used to determine ASL cerebral blood flow (CBF) (mL/100 g/min) in the following bilateral regions: angular gyrus, anterior prefrontal cortex, orbitofrontal cortex, dorsal anterior cingulate cortex, and hippocampus. Quantile (median) regression was performed for each ROI location. CBF patterns were compared between pre- and posttreatment LCH patients as well as with age-matched healthy controls. RESULTS Significantly reduced CBF was seen in posttreatment children with LCH compared to age-matched controls in angular gyrus (P = .046), anterior prefrontal cortex (P = .039), and dorsal anterior cingulate cortex (P = .023). Further analysis revealed dominant perfusion abnormalities in the right hemisphere. No significant perfusion differences were observed in the hippocampus or orbitofrontal cortex. CONCLUSION Perfusion in specific cerebral regions may be consistently reduced in children with LCH, and may represent effects of underlying disease physiology and/or sequelae of chemotherapy. Studies that combine a formal cognitive assessment and hemodynamic data may further provide insight into perfusion deficits associated with the disease and the potential neurotoxic effects in children treated by chemotherapy.
Collapse
Affiliation(s)
- Michelle Han
- Department of Pediatrics, Pediatric Hematology/Oncology, Stanford University School of Medicine, Stanford, California
| | - Lily H Kim
- Department of Pediatrics, Pediatric Hematology/Oncology, Stanford University School of Medicine, Stanford, California
| | - Katie Shpanskaya
- Department of Pediatrics, Pediatric Hematology/Oncology, Stanford University School of Medicine, Stanford, California
| | - Christine Kim
- Department of Radiology, Stanford University and Stanford University Medical Center, Stanford, California
| | - Michael Iv
- Department of Radiology, Stanford University and Stanford University Medical Center, Stanford, California
| | - Michael Jeng
- Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, School of Medicine, Stanford University, Palo Alto, California
| |
Collapse
|
29
|
Yu Z, Qin J, Xiong X, Xu F, Wang J, Hou F, Yang A. Abnormal topology of brain functional networks in unipolar depression and bipolar disorder using optimal graph thresholding. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109758. [PMID: 31493423 DOI: 10.1016/j.pnpbp.2019.109758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
Two popular debilitating illness, unipolar depression (UD) and bipolar disorder (BD), have the similar symptoms and tight association on the psychopathological level, leading to a clinical challenge to distinguish them. In order to figure out the underlying common and different mechanism of both mood disorders, resting-state functional magnetic resonance imaging (rs-fMRI) data derived from 36 UD patients, 42 BD patients (specially type I, BD-I) and 45 healthy controls (HC) were analyzed retrospectively in this study. Functional brain networks were firstly constructed on both group and individual levels with a density 0.2, which was determined by a network thresholding approach based on modular similarity. Then we investigated the alterations of modular structure and other topological properties of the functional brain network, including global network characteristics and nodal network measures. The results demonstrated that the functional brain networks of UD and BD-I groups preserved the modularity and small-worldness property. However, compared with HC, reduced number of modules was observed in both patients' groups with shared alterations occurring in hippocampus, para hippocampal gyrus, amygdala and superior parietal gyrus and distinct changes of modular composition mainly in the caudate regions of basal ganglia. Additionally, for the network characteristics, compared to HC, significantly decreased global efficiency and small-worldness were observed in BD-I. For the nodal metrics, significant decrease of local efficiency was found in several regions in both UD and BD-I, while a UD-specified increase of participant coefficient was found in the right paracentral lobule and the right thalamus. These findings may contribute to throw light on the neuropathological mechanisms underlying the two disorders and further help to explore objective biomarkers for the correct diagnosis of UD and BD.
Collapse
Affiliation(s)
- Zhinan Yu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaolong Qin
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyuan Xiong
- School of Software Institute, Nanjing University, Nanjing 210093, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control & Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Fengzhen Hou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, China.
| | - Albert Yang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Zhang N, Qin J, Yan J, Zhu Y, Xu Y, Zhu X, Ju S, Li Y. Increased ASL-CBF in the right amygdala predicts the first onset of depression in healthy young first-degree relatives of patients with major depression. J Cereb Blood Flow Metab 2020; 40:54-66. [PMID: 31272311 PMCID: PMC6928554 DOI: 10.1177/0271678x19861909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Healthy first-degree relatives of patients with major depression are at an elevated risk of developing depression, and regional cerebral blood flow (CBF) alterations are observed in patients with depression. Therefore, in a 33-month follow-up study, we used arterial spin labeling-magnetic resonance imaging (ASL-MRI) to investigate quantitative CBF before and after the diagnosis of depression in healthy young adults with and without first-degree relatives with major depression (FH + and FH-, respectively). In cross-sectional and longitudinal CBF comparisons, CBF in the right amygdala was increased or decreased. Additionally, a significant correlation was observed between the altered CBF in the right amygdala and the scores on the 17-item Hamilton Depression Rating Scale (HDRS) in the FH + group. Furthermore, logistic regression and receiver operating characteristic curve analyses showed that increased CBF in the right amygdala at baseline predicted the subsequent onset of depression in the FH + group. Our results suggest that among healthy young adults with a familial risk of depression, those who exhibit increased CBF in the amygdala are susceptible to developing this disease.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiasheng Qin
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuhao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China
| |
Collapse
|
31
|
Papadaki E, Kavroulakis E, Bertsias G, Fanouriakis A, Karageorgou D, Sidiropoulos P, Papastefanakis E, Boumpas DT, Simos P. Regional cerebral perfusion correlates with anxiety in neuropsychiatric SLE: evidence for a mechanism distinct from depression. Lupus 2019; 28:1678-1689. [PMID: 31718491 DOI: 10.1177/0961203319887793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study examined the hypothesis that hypoperfusion in brain areas known to be involved in emotional disturbances in primary psychiatric disorders is also linked to emotional difficulties in systemic lupus erythematosus (SLE) and that these are not secondary to the physical and social burden incurred by the disease. Nineteen SLE patients without overt neuropsychiatric manifestations (non-NPSLE), 31 NPSLE patients, and 23 healthy controls were examined. Dynamic susceptibility contrast MRI was used and cerebral blood flow and cerebral blood volume values were estimated in six manually selected regions of interest of brain regions suspected to play a role in anxiety and depression (dorsolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex, hippocampi, caudate nuclei and putamen). NPSLE patients reported high rates of anxiety and depression symptomatology. Significantly reduced cerebral blood flow and cerebral blood volume values were detected in the NPSLE group compared to healthy controls in the dorsolateral prefrontal cortex and ventromedial prefrontal cortex, bilaterally. Within the NPSLE group, anxiety symptomatology was significantly associated with lower perfusion in frontostriatal regions and in the right anterior cingulate gyrus. Importantly, the latter associations appeared to be specific to anxiety symptoms, as they persisted after controlling for depression symptomatology and independent of the presence of visible lesions on conventional MRI. In conclusion, hypoperfusion in specific limbic and frontostriatal regions is associated with more severe anxiety symptoms in the context of widespread haemodynamic disturbances in NPSLE.
Collapse
Affiliation(s)
- E Papadaki
- Department of Radiology, University Hospital of Heraklion, Crete, Greece.,Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - E Kavroulakis
- Department of Radiology, University Hospital of Heraklion, Crete, Greece
| | - G Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - A Fanouriakis
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Crete, Greece.,4th Department of Internal Medicine, National and Kapodestrian University of Athens, Athens, Greece
| | - D Karageorgou
- Department of Radiology, University Hospital of Heraklion, Crete, Greece
| | - P Sidiropoulos
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Crete, Greece
| | - E Papastefanakis
- Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
| | - D T Boumpas
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Crete, Greece.,4th Department of Internal Medicine, National and Kapodestrian University of Athens, Athens, Greece.,Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece
| | - P Simos
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece.,Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
32
|
Yao Z, Zou Y, Zheng W, Zhang Z, Li Y, Yu Y, Zhang Z, Fu Y, Shi J, Zhang W, Wu X, Hu B. Structural alterations of the brain preceded functional alterations in major depressive disorder patients: Evidence from multimodal connectivity. J Affect Disord 2019; 253:107-117. [PMID: 31035211 DOI: 10.1016/j.jad.2019.04.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies showed that major depressive disorder (MDD) has been involved in abnormal functional and structural connections in specific brain regions. However, comprehensive researches on MDD-related alterations in the topological organization of brain functional and structural networks are still limited. METHODS Functional network (FN) was constructed from resting-state functional MRI temporal series correlations and structural network (SN) was established by Diffusion tensor imaging (DTI) data in 58 MDD patients and 71 healthy controls (HC). The measurements of the network properties were calculated for two networks respectively. Correlations were conducted between altered network parameters and Hamilton depression scale (HAMD) score. Additionally, network resilient analysis were conducted on FN and SN. RESULTS The losses of small-worldness charateristics and the decline of nodal efficiency across FN and SN were found in MDD patients. Based on network-based statistic (NBS) approach, the decreased connections in MDD patients were mainly found in the superior occipital gyrus, superior temporal gyrus for FN and SN, while the increased connections were distributed in putamen, superior frontal gyrus only for SN. Compared with the FN, the SN showed less resilient to targeted or random node failure. Besides, altered edges in NBS and regions with decreased nodal efficiency were negatively associated with HAMD score in MDD patients. LIMITATIONS The samples size is small and most of the MDD patients take different antidepressant medications. CONCLUSIONS Alterations of SN in the brain of MDD patients preceded that of FN to some extent, and reorganization of the brain network was a mechanism which compensated for functional and structural alterations during disease progression.
Collapse
Affiliation(s)
- Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Ying Zou
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Weihao Zheng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Zhe Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Yuan Li
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong Province, 250358, P.R. China
| | - Yue Yu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Zicheng Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Yu Fu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Jie Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu Province, 730000, P.R. China
| | - Xia Wu
- College of Information Science and Technology, Beijing Normal University, Beijing, 100000, P.R. China.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, 730000, P.R. China.
| |
Collapse
|
33
|
Cooper CM, Chin Fatt CR, Jha M, Fonzo GA, Grannemann BD, Carmody T, Ali A, Aslan S, Almeida JR, Deckersbach T, Fava M, Kurian BT, McGrath PJ, McInnis M, Parsey RV, Weissman M, Phillips ML, Lu H, Etkin A, Trivedi MH. Cerebral Blood Perfusion Predicts Response to Sertraline versus Placebo for Major Depressive Disorder in the EMBARC Trial. EClinicalMedicine 2019; 10:32-41. [PMID: 31193824 PMCID: PMC6543260 DOI: 10.1016/j.eclinm.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) has been associated with brain-related changes. However, biomarkers have yet to be defined that could "accurately" identify antidepressant-responsive patterns and reduce the trial-and-error process in treatment selection. Cerebral blood perfusion, as measured by Arterial Spin Labelling (ASL), has been used to understand resting-state brain function, detect abnormalities in MDD, and could serve as a marker for treatment selection. As part of a larger trial to identify predictors of treatment outcome, the current investigation aimed to identify perfusion predictors of treatment response in MDD. METHODS For this secondary analysis, participants include 231 individuals with MDD from the EMBARC study, a randomised, placebo-controlled trial investigating clinical, behavioural, and biological predictors of antidepressant response. Participants received sertraline (n = 114) or placebo (n = 117) and response was monitored for 8 weeks. Pre-treatment neuroimaging was completed, including ASL. A whole-brain, voxel-wise linear mixed-effects model was conducted to identify brain regions in which perfusion levels differentially predict (moderate) treatment response. Clinical effectiveness of perfusion moderators was investigated by composite moderator analysis and remission rates. Composite moderator analysis combined the effect of individual perfusion moderators and identified which contribute to sertraline or placebo as the "preferred" treatment. Remission rates were calculated for participants "accurately" treated based on the composite moderator (lucky) versus "inaccurately" treated (unlucky). FINDINGS Perfusion levels in multiple brain regions differentially predicted improvement with sertraline over placebo. Of these regions, perfusion in the putamen and anterior insula, inferior temporal gyrus, fusiform, parahippocampus, inferior parietal lobule, and orbital frontal gyrus contributed to sertraline response. Remission rates increased from 37% for all those who received sertraline to 53% for those who were lucky to have received it and sertraline was their perfusion-preferred treatment. INTERPRETATION This large study showed that perfusion patterns in brain regions involved with reward, salience, affective, and default mode processing moderate treatment response favouring sertraline over placebo. Accurately matching patients with defined perfusion patterns could significantly increase remission rates. FUNDING National Institute of Mental Health, the Hersh Foundation, and the Center for Depression Research and Clinical Care, Peter O'Donnell Brain Institute at UT Southwestern Medical Center.Trial Registration.Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMARC) Registration Number: NCT01407094 (https://clinicaltrials.gov/ct2/show/NCT01407094).
Collapse
Affiliation(s)
- Crystal M. Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Cherise R. Chin Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Manish Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Gregory A. Fonzo
- Department of Psychiatry and behavioural Sciences, Stanford University School of Medicine, United States of America
- Stanford Neurosciences Institute, Stanford University, United States of America
- Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, United States of America
| | - Bruce D. Grannemann
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Thomas Carmody
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Aasia Ali
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Sina Aslan
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
- Advance MRI, LLC, United States of America
| | - Jorge R.C. Almeida
- Department of Psychiatry, University of Texas Austin, United States of America
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, United States of America
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, United States of America
| | - Benji T. Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| | - Patrick J. McGrath
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, United States of America
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan School of Medicine, United States of America
| | - Ramin V. Parsey
- Departments of Psychiatry, Stony Brook University, United States of America
| | - Myrna Weissman
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, United States of America
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States of America
| | - Hanzhang Lu
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
- Department of Radiology, Johns Hopkins University, United States of America
| | - Amit Etkin
- Department of Psychiatry and behavioural Sciences, Stanford University School of Medicine, United States of America
- Stanford Neurosciences Institute, Stanford University, United States of America
- Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, United States of America
| | - Madhukar H. Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, United States of America
| |
Collapse
|
34
|
He Z, Sheng W, Lu F, Long Z, Han S, Pang Y, Chen Y, Luo W, Yu Y, Nan X, Cui Q, Chen H. Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:177-185. [PMID: 30500413 DOI: 10.1016/j.pnpbp.2018.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/26/2018] [Accepted: 11/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Clinically distinguishing bipolar disorder (BD) from major depressive disorder (MDD) during depressive states is difficult. Neuroimaging findings suggested that patients with BD and those with MDD differed with respect to the gray matter volumes of their subcortical structures, especially in their striatum. However, whether these disorders have different effects on functionally striatal neuronal activity and connectivity is unclear. METHODS Arterial spin labeling and resting-state functional MRI was performed on 25 currently depressive patients with BD, 25 depressive patients with MDD, and 34 healthy controls (HCs). The functional properties of striatal neuronal activity (cerebral blood flow, CBF) and its functional connectivity (FC) were analyzed, and the results from the three groups were compared. The result of the multiple comparisons was corrected on the basis of the Gaussian Random Field theory. RESULTS The patients with BD and those with MDD both had higher CBF values than the HCs in the right caudate and right putamen. The hyper-metabolism of right striatum in BD patients was associated with increased average duration per depressive episode. The two disorders showed commonly increased FC between the striatum and dorsolateral prefrontal cortex, whereas the altered FC of the striatum with precuneus/cuneus was observed only in patients with BD. CONCLUSIONS Patients with BD and those with MDD had a common deficit in their prefrontal-limbic-striatal circuits. The altered striato-precuneus FC can be considered as a marker for the differentiation of patients with BD from those with MDD.
Collapse
Affiliation(s)
- Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Sheng
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiliang Long
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaoqiang Han
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yajing Pang
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuyan Chen
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Nan
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Cui
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
35
|
Wang X, Qin J, Zhu J, Bi K, Zhang S, Yan R, Zhao P, Yao Z, Lu Q. Rehabilitative compensatory mechanism of hierarchical subnetworks in major depressive disorder: A longitudinal study across multi-sites. Eur Psychiatry 2019; 58:54-62. [PMID: 30822739 DOI: 10.1016/j.eurpsy.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Brain structural connectome comprise of a minority of efficiently interconnected rich club nodes that are regarded as 'high-order regions'. The remission of major depressive disorder (MDD) in response to selective serotonin reuptake inhibitor (SSRI) treatment could be investigated by the hierarchical structural connectomes' alterations of subnetworks. METHODS Fifty-five MDD patients who achieved remission underwent diffusion tensors imaging (DTI) scanning from 3 cohorts before and after 8-weeks antidepressant treatment. Five hierarchical subnetworks namely, rich, local, feeder, rich-feeder and feeder-local, were constructed according to the different combinations of connections and nodes as defined by rich club architecture. The critical treatment-related subnetwork pattern was explored by multivariate pattern analysis with support vector machine to differ the pre-/post-treatment patients. Then, relationships between graph metrics of discriminative subnetworks/ nodes and clinical variables were further explored. RESULTS The feeder-local subnetwork presented the most discriminative power in differing pre-/post- treatment patients, while the rich-feeder subnetwork had the highest discriminative power when comparing pre-treatment patients and controls. Furthermore, based on the feeder connection, which indicates the information transmission between the core and non-core architectures of brain networks, its topological measures were found to be significantly correlated with the reduction rate of 17-item Hamilton Rating Scale for Depression. CONCLUSION Although pathological lesion on MDD relied on abnormal core organization, disease remission was association with the compensation from non-core organization. These results suggested that the dysfunctions arising from hierarchical subnetworks are compensated by increased information interactions between core brain regions and functionally diverse regions.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Jiaolong Qin
- The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinlong Zhu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Kun Bi
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Zhao
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
36
|
Luo MY, Guo ZN, Qu Y, Zhang P, Wang Z, Jin H, Ma HY, Lv S, Sun X, Yang Y. Compromised Dynamic Cerebral Autoregulation in Patients With Depression. Front Psychiatry 2019; 10:373. [PMID: 31258489 PMCID: PMC6587060 DOI: 10.3389/fpsyt.2019.00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Patients with depression tend to have various comorbid neurological symptoms, but the mechanisms remain unclear. The purpose of this study was to analyze the characteristics of dynamic cerebral autoregulation in depressed patients. Methods: Patients (aged ≥ 18 years) who were diagnosed with depression [17-item Hamilton Depression Rating Scale (HAMD) > 17] or suspected of depression (HAMD > 7) were enrolled in this study. Medically healthy volunteers were recruited as controls. The subjects also received the 7-item HAMD. We simultaneously recorded noninvasive continuous arterial blood pressure and bilateral middle cerebral artery blood flow velocity from each subject. Cerebral autoregulation was assessed by analyzing the phase difference using transfer function analysis. Results: This study enrolled 54 patients with suspected depression, 45 patients with depression, and 48 healthy volunteers. The mean phase difference values were significantly lower in the patients with depression (F = 9.071, P < 0.001). In the multiple regression analysis, depression was negatively correlated with the phase difference values. Conclusions: Dynamic cerebral autoregulation was compromised in patients with depression and negatively correlated with the depression score. Improving dynamic cerebral autoregulation may be a potential therapeutic method for treating the neurological symptoms of depression.
Collapse
Affiliation(s)
- Ming-Ya Luo
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Peng Zhang
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Zan Wang
- Clinical Trial and Research Center for Stroke, Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Hang Jin
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Hong-Yin Ma
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Shan Lv
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Xin Sun
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
37
|
Park YK, Kim JH, Choi SJ, Kim ST, Joo EY. Altered Regional Cerebral Blood Flow Associated with Mood and Sleep in Shift Workers: Cerebral Perfusion Magnetic Resonance Imaging Study. J Clin Neurol 2019; 15:438-447. [PMID: 31591830 PMCID: PMC6785470 DOI: 10.3988/jcn.2019.15.4.438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Shift work disrupts the body's circadian rhythms and increases the risk of health problems. Despite evidence of neuropsychological disturbances in shift workers (SW), the brain functional status as measured by brain perfusion in chronic shift work has not been evaluated previously. We investigated the regional cerebral blood flow (rCBF) in SW using perfusion MRI (pMRI) and evaluated the relationships between altered rCBF and sleep, mood, psychometric measures, and quality of life. METHODS Fifteen rotational SW and 15 day workers (DW) were enrolled. The participants were all female nurses working at a university-affiliated hospital. During 2 weeks of actigraphy they underwent pMRI scanning and psychometric testing on the last day immediately after working. Demographic characteristics, insomnia, daytime sleepiness, and mood were compared between the groups. RESULTS The participants were aged 35.3±2.9 years (mean±SD) and had been performing their current work for more than 2 years. The demographic characteristics did not differ between SW and DW, but the levels of insomnia, anxiety, depression, and hyperactivity-restlessness in psychometric measures were higher in SW than in DW. Cerebral perfusion in SW was significantly decreased in the cuneus, fusiform/parahippocampal gyri, and cerebellum of the right hemisphere, while it was increased in the inferior occipital gyrus of the left hemisphere. Perfusion changes in SW were significantly correlated with depression and insomnia severity. The onset and duration irregularity of sleep among SW were related to insomnia, mood, hyperactivity/ restlessness, and quality of life. CONCLUSIONS SW experience considerably more insomnia and mood disturbances than do DW, and this is significantly related to perfusion changes in multiple brain areas.
Collapse
Affiliation(s)
- Yun Kyung Park
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Jae Hun Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jung Choi
- Department of Nursing, Samsung Medical Center, Department of Clinical Nursing Science, Graduate School of Clinical Nursing Science, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Tae Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
38
|
Suo X, Lei D, Cheng L, Li N, Zuo P, Wang DJJ, Huang X, Lui S, Kemp GJ, Peng R, Gong Q. Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease. Hum Brain Mapp 2018; 40:1317-1327. [PMID: 30548099 DOI: 10.1002/hbm.24451] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Mild cognitive impairment (MCI), a well-defined nonmotor manifestation of Parkinson's disease (PD), greatly impairs functioning and quality of life. However, the contribution of cerebral perfusion, quantified by arterial spin labeling (ASL), to MCI in PD remains poorly understood. The selection of an optimal delay time is difficult for single-delay ASL, a problem which is avoided by multidelay ASL. This study uses a multidelay multiparametric ASL to investigate cerebral perfusion including cerebral blood flow (CBF) and arterial transit time (ATT) in early stage PD patients exhibiting MCI using a voxel-based brain analysis. Magnetic resonance imaging data were acquired on a 3.0 T system at rest in 39 early stage PD patients either with MCI (PD-MCI, N = 22) or with normal cognition (PD-N, N = 17), and 36 age- and gender-matched healthy controls (HCs). CBF and ATT were compared among the three groups with SPM using analysis of variance followed by post hoc analyses to define regional differences and examine their relationship to clinical data. PD-MCI showed prolonged ATT in right thalamus compared to both PD-N and HC, and in right supramarginal gyrus compared to HC. PD-N showed shorter ATT in left superior frontal cortex compared to HC. Prolonged ATT in right thalamus was negatively correlated with the category fluency test (p = .027, r = -0.495) in the PD-MCI group. This study shows that ATT may be a more sensitive marker than CBF for the MCI, and highlights the potential role of thalamus and inferior parietal region for MCI in early stage PD.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lan Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Panli Zuo
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Hoffmann A, Montoro CI, Reyes del Paso GA, Duschek S. Cerebral blood flow modulations during proactive control in major depressive disorder. Int J Psychophysiol 2018; 133:175-181. [DOI: 10.1016/j.ijpsycho.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
40
|
Allen P, Azis M, Modinos G, Bossong MG, Bonoldi I, Samson C, Quinn B, Kempton MJ, Howes OD, Stone JM, Calem M, Perez J, Bhattacharayya S, Broome MR, Grace AA, Zelaya F, McGuire P. Increased Resting Hippocampal and Basal Ganglia Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort. Schizophr Bull 2018; 44:1323-1331. [PMID: 29294102 PMCID: PMC6192497 DOI: 10.1093/schbul/sbx169] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently reported that resting hippocampal, basal ganglia and midbrain perfusion is elevated in people at ultra high risk (UHR) for psychosis. The present study sought to replicate our previous finding in an independent UHR cohort, and examined the relationship between resting perfusion in these regions, psychosis and depression symptoms, and traumatic experiences in childhood. Pseudo-Continuous Arterial Spin Labelling (p-CASL) imaging was used to measure resting cerebral blood flow (rCBF) in 77 UHR for psychosis individuals and 25 healthy volunteers in a case-control design. UHR participants were recruited from clinical early detection services at 3 sites in the South of England. Symptoms levels were assessed using the Comprehensive Assessment of At Risk Mental States (CAARMS), the Hamilton Depression Scale (HAM-D), and childhood trauma was assessed retrospectively using the Childhood Trauma Questionnaire (CTQ). Right hippocampal and basal ganglia rCBF were significantly increased in UHR subjects compared to controls, partially replicating our previous finding in an independent cohort. In UHR participants, positive symptoms were positively correlated with rCBF in the right pallidum. CTQ scores were positively correlated with rCBF values in the bilateral hippocampus and negatively associated with rCBF in the left prefrontal cortex. Elevated resting hippocampal and basal ganglia activity appears to be a consistent finding in individuals at high risk for psychosis, consistent with data from preclinical models of the disorder. The association with childhood trauma suggests that its influence on the risk of psychosis may be mediated through an effect on hippocampal function.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- To whom correspondence should be addressed; Department of Psychology, University of Roehampton, Whitelands College, Hollybourne Ave, London SW15 4JD, UK; tel: 0044 (0)2083925147; e-mail:
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carly Samson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Beverly Quinn
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Maria Calem
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Matthew R Broome
- Department of Psychiatry, University of Oxford, Oxford, UK
- Faculty of Philosophy, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
41
|
Rouine J, Callaghan CK, O'Mara SM. Opioid modulation of depression: A focus on imaging studies. PROGRESS IN BRAIN RESEARCH 2018; 239:229-252. [PMID: 30314568 DOI: 10.1016/bs.pbr.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depression is the leading cause of disability worldwide, with over 300 million people affected. Almost all currently available antidepressant treatments target monoamine neurotransmitter systems and have a delayed onset of action up to several weeks that can be associated with low rates of treatment response. The endogenous opioid system has been identified as a potential target for the development of novel antidepressants due to its high opioid receptor concentrations in central limbic areas that are also implicated in physiological processes including regulation of mood and emotion. Genetic depletion, pharmacological manipulation, and preclinical models have been widely used to characterize the role of opioid transmission in depressive states. Neuroimaging studies have been carried out in clinical populations to investigate opioid transmission in mood and emotion in an attempt to identify those regional anatomical and functional brain changes that are associated with depression. Great insight has been provided into the cerebral structural and functional changes associated with depression but there remains a need to tie the functional theories of depression to anatomical localization and further neuroimaging studies are best placed to do this.
Collapse
Affiliation(s)
- Jennifer Rouine
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | - Charlotte K Callaghan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
42
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
43
|
Fu C, Zhang H, Xuan A, Gao Y, Xu J, Shi D. A combined study of 18F-FDG PET-CT and fMRI for assessing resting cerebral function in patients with major depressive disorder. Exp Ther Med 2018; 16:1873-1881. [PMID: 30186413 PMCID: PMC6122423 DOI: 10.3892/etm.2018.6434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
The present study investigated changes in the regional cerebral metabolic rates of glucose uptake (rCMRglc) using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and regional homogeneity (ReHo), together with resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), in patients with major depressive disorder (MDD). In total, 18 patients with untreated MDD and 17 healthy control subjects underwent 18F-FDG PET and BOLD-fMRI scanning. The MDD patients' cerebral changes, measured as rCMRglc and ReHo values, were mapped and statistically analyzed. Compared with the control group, the patients with MDD had a decreased rCMRglc in the bilateral superior, middle and inferior frontal gyrus, in the bilateral superior and middle temporal gyrus, in the bilateral anterior cingulate cortex, in the bilateral putamen and caudate, and in the left pallidum, but an increased rCMRglc in the bilateral hippocampus and left thalamus. The ReHo values in the patient group were decreased in the bilateral superior and middle frontal gyrus, left pallidum, bilateral putamen and left anterior cingulate cortex, but increased in the right hippocampus and thalamus. No statistically significant differences were identified between decreased metabolism and ReHo brain regions of MDD patients (χ2=9.16; P=0.90) and between increased metabolism and ReHo brain regions (χ2=3.96; P=0.27), when comparing activated brain regions of PET and MRI. The standardized uptake values (SUV) of the bilateral superior, middle and inferior frontal gyrus, bilateral superior and middle temporal gyrus, bilateral putamen, the left caudate and pallidum, the left anterior cingulate cortex, and the bilateral hippocampus and thalamus were correlated with the ReHo (r=0.51–0.83; P<0.05). However, no correlation was detected between the SUV and ReHo in the right caudate and anterior cingulate cortex (r=0.41 and 0.37, respectively; P>0.05). Taken together, these results demonstrated that patients with MDD displayed characteristic patterns regarding changes of brain glucose uptake and ReHo in the resting state. Furthermore, 18F-FDG PET may be a more sensitive technique compared with BOLD-fMRI for the identification of brain lesions in patients with MDD.
Collapse
Affiliation(s)
- Chang Fu
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Hongju Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Ang Xuan
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yongju Gao
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Junling Xu
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Dapeng Shi
- Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
44
|
Daou MAZ, Boyd BD, Donahue MJ, Albert K, Taylor WD. Anterior-posterior gradient differences in lobar and cingulate cortex cerebral blood flow in late-life depression. J Psychiatr Res 2018; 97:1-7. [PMID: 29156413 PMCID: PMC5742550 DOI: 10.1016/j.jpsychires.2017.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
Vascular pathology is common in late-life depression, contributing to changes in cerebral function. We examined whether late-life depression was associated with differences in cerebral blood flow (CBF) and whether such differences were related to vascular risk and cerebrovascular pathology, specifically white matter hyperintensity (WMH) volumes. Twenty-three depressed elders and 20 age- and sex-matched elders with no psychiatric history completed cranial 3T MRI. MRI procedures included a pseudo-continuous Arterial Spin Labeling (pcASL) acquisition obtained while on room air and during a hypercapnia challenge allowing for calculation of cerebrovascular reactivity (CVR). Brain segmentation identified frontal, temporal, parietal and cingulate sub-regions in which CBF and CVR were calculated. The depressed group exhibited an anterior-posterior gradient in CBF, with lower CBF throughout the frontal lobe but higher CBF in the parietal lobe, temporal lobe, thalamus and hippocampus. A similar anterior to posterior gradient was observed in the cingulate cortex, with anterior regions exhibiting lower CBF and posterior regions exhibiting higher CBF. We did not observe any group differences in CVR measures. We did not observe significant relationships between CBF and CVR with vascular risk or WMH volumes, aside from an isolated finding associating higher WMH volumes with lower CBF in the rostral anterior cingulate cortex. Decreased anterior CBF in depressed elders might reflect decreased metabolic activity in these regions, while increased posterior CBF may represent either compensatory processes or different activity of posterior intrinsic functional networks. Future work should examine how these findings are related to compensatory changes with aging.
Collapse
Affiliation(s)
- Margarita Abi Zeid Daou
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Brian D. Boyd
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Manus J. Donahue
- The Department of Radiology and Radiological Science, Vanderbilt
University Medical Center, Nashville, TN, 37212, USA
| | - Kimberly Albert
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Warren D. Taylor
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA,Geriatric Research, Education and Clinical Center, Department of
Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN,
37212, USA
| |
Collapse
|
45
|
Effects of a brief cognitive behavioural therapy group intervention on baseline brain perfusion in adolescents with major depressive disorder. Neuroreport 2018; 28:348-353. [PMID: 28328739 DOI: 10.1097/wnr.0000000000000770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of neuroimaging studies have identified altered regional cerebral blood flow (rCBF) related to major depressive disorder (MDD) in adult samples, particularly in the lateral prefrontal, cingular and temporal regions. In contrast, neuroimaging investigations in adolescents with MDD are rare, although investigating young patients during a significant period of brain maturation might offer valuable insights into the neural mechanisms of MDD. We acquired perfusion images obtained with continuous arterial spin labelling in 21 medication-naive adolescents with MDD before and after a five-session cognitive behavioural group therapy (group CBT). A control group included medication-naive patients under treatment as usual while waiting for the psychotherapy. We found relatively increased rCBF in the right dorsolateral prefrontal cortex (DLPFC; BA 46), the right caudate nucleus and the left inferior parietal lobe (BA 40) after CBT compared with before CBT. Relatively increased rCBF in the right DLPFC postgroup CBT was confirmed by time (post vs. pre)×group (intervention/waiting list) interaction analyses. In the waiting group, relatively increased rCBF was found in the thalamus and the anterior cingulate cortex (BA 24). The relatively small number of patients included in this pilot study has to be considered. Our findings indicate that noninvasive resting perfusion scanning is suitable to identify CBT-related changes in adolescents with MDD. rCBF increase in the DLPFC following a significant reduction in MDD symptoms in adolescents might represent the core neural correlate of changes in 'top-down' cognitive processing, a possible correlate of improved self-regulation and cognitive control.
Collapse
|
46
|
Zhao B, Liu H, Li H, Shang X. Abnormal functional connectivity of the amygdala is associated with depressive symptoms in patients with multiple system atrophy. Neuropsychiatr Dis Treat 2018; 14:3133-3142. [PMID: 30532544 PMCID: PMC6247974 DOI: 10.2147/ndt.s178657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Depressive symptoms are frequent nonmotor symptoms that occur in multiple system atrophy (MSA) patients. However, possible changes that can present in the amygdala (AMY) functional connectivity (FC) of the brain in MSA patients with depressive symptoms (DMSA patients) remain largely unknown. MATERIALS AND METHODS Resting-state functional magnetic resonance imaging scans were obtained from 29 DMSA patients, 28 MSA patients without depression symptoms (NDMSA patients), and 34 healthy controls (HCs). FC was analyzed by defining the bilateral AMY as the seed region. Correlation analysis was performed between the FC and clinical scores. RESULTS When compared with NDMSA patients, DMSA patients showed increased bilateral AMY FC in the left middle frontal gyrus (MFG) and decreased right AMY FC in the left middle occipital gyrus. Moreover, the AMY FC values in the left middle frontal cortex were positively correlated with the Hamilton Depression Rating Scale-17 item scores. Furthermore, relative to the HCs, DMSA patients presented decreased bilateral AMY FC values in the visuospatial cortex, sensorimotor networks, and limbic areas. CONCLUSION Depressive symptoms are associated with AMY-MFG FC anomalies in MSA patients. We propose that the middle frontal cortex may play an important role in the neuropathophysiology of depression in MSA patients.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China, .,Department of Neurology, Shenyang Fifth People Hospital, Shenyang 110023, China
| | - Hu Liu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Huanhuan Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
47
|
Bosch OG, Esposito F, Havranek MM, Dornbierer D, von Rotz R, Staempfli P, Quednow BB, Seifritz E. Gamma-Hydroxybutyrate Increases Resting-State Limbic Perfusion and Body and Emotion Awareness in Humans. Neuropsychopharmacology 2017; 42:2141-2151. [PMID: 28561068 PMCID: PMC5603804 DOI: 10.1038/npp.2017.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
Gamma-hydroxybutyrate (GHB) is a GHB-/GABA-B receptor agonist inducing a broad spectrum of subjective effects including euphoria, disinhibition, and enhanced vitality. It is used as treatment for neuropsychiatric disorders including narcolepsy and alcohol withdrawal, but is also a drug of abuse. Non-medical users report enhancement of body and emotion awareness during intoxication. However, the neuronal underpinnings of such awareness alterations under GHB are unknown so far. The assessment of regional cerebral blood flow (rCBF) by pharmacological magnetic resonance imaging (phMRI) enables the elucidation of drug-induced functional brain alterations. Thus, we assessed the effects of GHB (35 mg/kg p.o.) in 17 healthy males on rCBF and subjective drug effects, using a placebo-controlled, double-blind, randomized, cross-over design employing arterial spin labeling phMRI. Compared to placebo, GHB increased subjective ratings for body and emotion awareness, and for dizziness (p<0.01-0.001, Bonferroni-corrected). A whole-brain analysis showed increased rCBF in the bilateral anterior cingulate cortex (ACC) and the right anterior insula under GHB (p<0.05, cluster-corrected). ACC and insula rCBF are correlated with relaxation, and body and emotion awareness (p<0.05-0.001, uncorrected). Interaction analyses revealed that GHB-induced increase of body awareness was accompanied by increased rCBF in ACC, whereas relaxation under GHB was accompanied by elevated rCBF in right anterior insula (p<0.05, uncorrected). In conclusion, enhancement of emotion and body awareness, and increased perfusion of insula and ACC bears implications both for the properties of GHB as a drug of abuse as well as for its putative personalized potential for specific therapeutic indications in affective disorders.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich CH-8032, Switzerland, Tel: +41 44 384 2357, Fax: +41 44 383 4456, E-mail:
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, Italy
| | - Michael M Havranek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Robin von Rotz
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, Research Group Disorders of the Nervous System, University and ETH Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, Research Group Disorders of the Nervous System, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Liao W, Wang Z, Zhang X, Shu H, Wang Z, Liu D, Zhang Z. Cerebral blood flow changes in remitted early- and late-onset depression patients. Oncotarget 2017; 8:76214-76222. [PMID: 29100305 PMCID: PMC5652699 DOI: 10.18632/oncotarget.19185] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/17/2017] [Indexed: 01/08/2023] Open
Abstract
Abnormal cerebral blood flow (CBF) is reportedly associated with major depressive disorder (MDD). We have investigated CBF changes in early-onset depression (EOD) and late-onset depression (LOD), and their impact on cognitive function. Thirty-two remitted EOD patients, 32 remitted LOD patients, and 43 age-matched healthy controls were recruited, and the pulsed arterial spin labeling data were scanned under 3.0T MRI and processed through voxel-by-voxel statistical analysis. Compared to healthy controls, LOD patients had decreased normalized CBF in the bilateral precuneus, cuneus, right fronto-cingulate-striatal areas, and right temporal, occipital and parietal lobes, but increased normalized CBF in the left frontal and temporal cortices and the cingulate gyrus. EOD patients had decreased normalized CBF in the left cerebellum and right calcarine/lingual/fusiform gyrus, and increased normalized CBF in right angular gyrus. LOD patients displayed hemispheric asymmetry in CBF, and had more regions with abnormal CBF than EOD patients. A significant correlation between abnormal CBF and impaired cognitive function was detected in LOD patients, but not EOD patients. These results demonstrate greater CBF abnormalities in LOD patients than EOD patients, and suggest these CBF changes may be associated with progressive degradation of cognitive function in LOD patients.
Collapse
Affiliation(s)
- Wenxiang Liao
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiangrong Zhang
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China.,Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Shu
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Zan Wang
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Duan Liu
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Neurologic Department of Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
49
|
Fu C, Shi D, Gao Y, Xu J. Functional assessment of prefrontal lobes in patients with major depression disorder using a dual-mode technique of 3D-arterial spin labeling and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Exp Ther Med 2017; 14:1058-1064. [PMID: 28810558 PMCID: PMC5526038 DOI: 10.3892/etm.2017.4594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to explore the functions of cerebral blood perfusion and glucose metabolism in the prefrontal lobe of patients with major depression disorder (MDD), and to analyze the correlations between these functional changes and depressive symptoms. 3D-arterial spin labeling (ASL) and 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were successfully performed in 17 patients with MDD and 16 healthy controls in a resting state. The depressive symptoms of the patients were classified into seven factors and scored with the Hamilton Depression Rating Scale. Regional cerebral blood flow (CBF) values and standardized uptake values (SUV) of 18F-FDG in the whole brain were respectively compared between the patients and healthy controls using a two-sample t-test, and the correlations between the CBF and SUV in the prefrontal cerebral regions with the patients' Hamilton scores were evaluated using Pearson correlation analysis. Decreased regional CBF was indicated in the bilateral middle and the right superior frontal gyri, and decreased regional SUV was indicated in the bilateral superior, middle and inferior frontal gyri in the MDD patients compared with the controls. Positive correlations were observed between CBF values and aggregate Hamilton scores in the left middle and right middle frontal gyri of the patients. Positive correlations were also observed between SUVs and aggregate Hamilton scores in the left middle and right middle frontal gyri. 18F-FDG PET/CT was indicated to be more sensitive than 3D-ASL in identifying the functional abnormalities in the prefrontal lobe. Decreased CBF and SUV in the prefrontal lobe were closely correlated with Hamilton score. The left middle frontal gyrus may be a key functional region in MDD.
Collapse
Affiliation(s)
- Chang Fu
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Dapeng Shi
- Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yongju Gao
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Junling Xu
- Department of Nuclear Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
50
|
Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 2017; 281:337-356. [PMID: 27755938 DOI: 10.1148/radiol.2016150789] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Sven Haller
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| | - Greg Zaharchuk
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| | - David L Thomas
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| | - Karl-Olof Lovblad
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| | - Frederik Barkhof
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| | - Xavier Golay
- From Affidea Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland (S.H.); Dept of Surgical Sciences, Div of Radiology, Uppsala Univ, Sweden (S.H.); Dept of Neuroradiology, Univ Hosp Freiburg, Germany (S.H.); Faculty of Medicine Univ of Geneva, Switzerland (S.H.); Dept of Radiology, Stanford Univ, Stanford, Calif (G.Z.); Univ College London, Inst of Neurology, London, England (D.L.T., X.G.); Dept of Diagnostic and Interventional Neuroradiology, Geneva Univ Hosps,Switzerland (K.O.L.); Dept of Radiology & Nuclear Medicine and PET Research, VU Univ Medical Ctr, Amsterdam, the Netherlands (F.B.); and Insts of Neurology and Healthcare Engineering, Univ College London, England (F.B.)
| |
Collapse
|