1
|
Inoue K, Natarajan T, Isoda R, Fukushi M, Sahoo SK. Anthropogenic gadolinium contamination assessment in sewage, river, and tap water samples from the urban Osaka area, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179255. [PMID: 40174254 DOI: 10.1016/j.scitotenv.2025.179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Gadolinium (Gd), a heavy metal and rare earth element (REE), exhibits strong toxicity in its Gd3+ state. To ensure safety from administration to excretion in magnetic resonance imaging (MRI) scans, Gd in chelate form is used as a contrast agent. However, highly stable Gd complexes released from hospital effluents are not effectively removed by wastewater treatment plants (WWTPs), leading to the entry of Gd complexes into river and tap water, and affecting the aquatic environment. Furthermore, Gd complexes in river water are transferred to the sea, potentially impacting marine organisms. In this study, Gd concentrations in sewage, river, and tap water samples collected in Osaka City, Japan, were analyzed. Osaka has the second-largest number of MRI devices in Japan after Tokyo. The analysis results were used to investigate the environmental dynamics of Gd concentrations influenced by human activities and to examine correlations between MRI device numbers, population, and Gd concentrations. The results showed that most water samples had a Gd/Gd* (where Gd* is the background concentration) ratio above 1.4, with a positive correlation between Gd concentrations in treated sewage and the number of MRI devices. High concentrations of anthropogenic Gd (GdAnth) were detected in effluents from WWTPs, indicating that GdAnth in river and tap water was primarily due to GdAnth discharged from WWTPs. Gd concentrations in river water decreased from upstream to downstream sampling locations with an increase in Gd/Gd*. However, all the tap water samples with low Gd concentrations exhibited a Gd/Gd* > 1.4, which suggested that GdAnth affected both river and tap water.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa-ku, 116-8551 Tokyo, Japan.
| | - Thennaarassan Natarajan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa-ku, 116-8551 Tokyo, Japan
| | - Ryo Isoda
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa-ku, 116-8551 Tokyo, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa-ku, 116-8551 Tokyo, Japan
| | - Sarata Kumar Sahoo
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa-ku, 116-8551 Tokyo, Japan
| |
Collapse
|
2
|
Tachatumvitoon K, Preuksarattanawut C, Tippayamontri T, Khomein P. Tc-99m labeled PSMA-617 as a potential SPECT radiotracer for prostate cancer diagnostics: Complexation optimization and its in vitro/vivo evaluation. Bioorg Med Chem 2025; 118:118058. [PMID: 39754852 DOI: 10.1016/j.bmc.2024.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Technetium-99m (Tc-99m) is the most employed radionuclide in nuclear imaging diagnostics worldwide for many diseases. The ideal physiochemical properties of Tc-99m (such as half-life and pure gamma energy) make it favorable for Single Photon Emission Computed Tomography (SPECT). In this study, we aim to expand the utilization of Tc-99m radiopharmaceutical toward prostate cancer diagnostics which is currently no FDA approved products and has been intensively examined for a potential candidate. The new formulation for Tc-99m complexation with PSMA-617, a current ligand for radionuclide therapy of prostate cancer with lutetium-177 (Lu-177), has been investigated. Co-complexation with citrate was utilized to improve the labeling efficiency by over 97 %. The stability of the new radiopharmaceutical was in vitro evaluated confirming that the Tc-99m labeled PSMA-617 remained stable for over a single half-life of Tc-99m in normal saline solution and in human serum. The in vivo study in the LNCaP xenografted mouse model confirmed a high selectivity of the new tracer toward prostate cancer.
Collapse
Affiliation(s)
- Kalapaphuk Tachatumvitoon
- Interdisciplinary Program of Biomedical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Charasphat Preuksarattanawut
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Thititip Tippayamontri
- Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Yu B, Bolik-Coulon N, Rangadurai AK, Kay LE, Iwahara J. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules. J Am Chem Soc 2024; 146:20788-20801. [PMID: 39028837 PMCID: PMC11295196 DOI: 10.1021/jacs.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.
Collapse
Affiliation(s)
- Binhan Yu
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Nicolas Bolik-Coulon
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atul K. Rangadurai
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E. Kay
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Junji Iwahara
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
4
|
Lenkinski RE, Rofsky NM. Contrast Media-driven Anthropogenic Gadolinium: Knowns and Unknowns. Radiology 2024; 311:e240020. [PMID: 38652027 DOI: 10.1148/radiol.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) have augmented the capabilities of MRI, which has led to their widespread and increasing use in radiology practice. GBCAs are introduced into the environment through disposal of unused product and elimination after intravenous injection, both primarily via liquid dispersion into the environment. This human introduction of gadolinium into the environment, referred to as anthropogenic gadolinium, is associated with the detection of gadolinium in water systems, raising concerns for potential adverse impact and prompting certain mitigation actions. This article summarizes the existing knowledge and problem scope, conveys the relevant underlying chemical principles of chelate dissociation, and offers an inferred perspective that the magnitude of the problem is most unlikely to cause human harm. The merits and limitations regarding possible mitigation tactics, such as collecting urine after GBCA administration, use of lower-dose high-relaxivity macrocyclic GBCAs, and the option for virtual contrast-enhanced examinations, will be discussed. Finally, the potential for monitoring gadolinium uptake in bone will be presented, and recommendations for future research will be offered. © RSNA, 2024 See also the article by Ibrahim et al in this issue. See also the article by McKee et al in this issue.
Collapse
Affiliation(s)
- Robert E Lenkinski
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine, Mount Sinai Health Systems, One Gustav L. Levy Place, Box 1234, New York, NY 10029 (N.M.R.)
| | - Neil M Rofsky
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine, Mount Sinai Health Systems, One Gustav L. Levy Place, Box 1234, New York, NY 10029 (N.M.R.)
| |
Collapse
|
5
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Xie M, Gao R, Li K, Kuang S, Wang X, Wen X, Lin X, Wan Y, Han C. O 2-Generating Fluorescent Carbon Dot-Decorated MnO 2 Nanosheets for "Off/On" MR/Fluorescence Imaging and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037417 DOI: 10.1021/acsami.3c12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Imaging-guided photodynamic therapy (PDT) has emerged as a promising protocol for cancer theragnostic. However, facile preparation of such a theranostic system for simultaneously achieving tumor location, real-time monitoring, and high-performance reactive oxygen species generation is highly desirable but remains challenging. Herein, we developed a reasonable tumor-targeting strategy based on carbon dots (CDs)-decorated MnO2 nanosheets (HA-MnO2-CDs) with an active magnetic resonance (MR)/fluorescence imaging and enhanced PDT effect. Under light irradiation, the addition of HA-MnO2-CDs increased the production of 1O2 by 2.5 times compared with CDs, providing favorable conditions for the PDT treatment effect on breast cancer. Moreover, HA-MnO2-CDs exhibited excellent performance in producing O2 in the presence of endogenous H2O2, which alleviated hypoxia in tumors and improved the therapeutic effect of PDT. In the presence of glutathione (GSH), the degraded MnO2 nanosheets released CDs and Mn2+ from HA-MnO2-CDs, restoring their fluorescence imaging function and increasing T1 relaxivity (r1) by 23 times. In vivo fluorescence and MR imaging suggested the excellent tumor-targeting property of HA-MnO2-CDs. By combining the complementary properties of nanoprobes and tumor microenvironments, the in vivo PDT therapeutic effect was significantly improved under the action of HA-MnO2-CDs. Overall, our reasonably designed HA-MnO2-CDs may inspire the future development of the next generation of high-performance tumor-responsive diagnostic and therapeutic agents to further enhance the targeted therapy effect of tumors.
Collapse
Affiliation(s)
- Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruochen Gao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ke Li
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Siying Kuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuzhi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Wen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuxin Wan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
8
|
Che X, Yang C, Pan L, Gu D, Dai G, Shu J, Yang L. Achieving safe and high-performance gastrointestinal tract spectral CT imaging with small-molecule lanthanide complex. Biomater Res 2023; 27:119. [PMID: 37990349 PMCID: PMC10664581 DOI: 10.1186/s40824-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Non-intrusive imaging of gastrointestinal (GI) tract using computed tomography (CT) contrast agents is of the most significant issues in the diagnosis and treatment of GI diseases. Moreover, spectral CT, which can generate monochromatic images to display the X-ray attenuation characteristics of contrast agents, provides a better imaging sensitivity for diagnose inflammatory bowel disease (IBD) than convention CT imaging. METHODS Herein, a convenient and one-pot synthesis method is provided for the fabrication of small-molecule lanthanide complex Holmium-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (Ho-DOTA) as a biosafe and high-performance spectral CT contrast agent for GI imaging with IBD. In vivo CT imaging was administered with both healthy mice and colitis mice induced by dextran sodium sulfate. RESULTS We found that Ho-DOTA accumulated in inflammation sites of large intestines and produced high CT contrast compared with healthy mice. Both in vitro and in vivo experimental results also showed that Ho-DOTA provided much more diagnostic sensitivity and accuracy due to the excellent X-ray attenuation characteristics of Ho-DOTA compared with clinical iodinate agent. Furthermore, the proposed contrast media could be timely excreted from the body via the urinary and digestive system, keeping away from the potential side effects due to long-term retention in vivo. CONCLUSION Accordingly, Ho-DOTA with excellent biocompatibility can be useful as a potential high-performance spectral CT contrast agent for further clinical imaging of gastrointestinal tract and diagnosis of intestinal system diseases.
Collapse
Affiliation(s)
- Xiaoling Che
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liping Pan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Didi Gu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
9
|
Qiu T, Wu T, Lu M, Xie Y, Zhang M, Luo D, Chen Z, Yin B, Zhou Y, Ling Y. Reticular Chemistry of the Fcu-Type Gd(III)-Doped Metal-Organic Framework for T 1 -Weighted Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303063. [PMID: 37415511 DOI: 10.1002/smll.202303063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale metal-organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T1 -weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r1 value of 4.55 mM-1 ·s-1 at the doping ratio of Gd : Zr = 1 : 1. Then, these isoreticular engineering studies provide feasible ways to facilitate the relaxation transfer in the second- and outer-sphere of the Gd(III)-doped Zr-oxo cluster for the relaxation respectively. Finally, these in vitro and in vivo MRI studies revealed that the Gd(III)-doped Zr-oxo cluster aggregated underlying the fcu-type framework surpasses its discrete molecular cluster for MRI. These results demonstrated that there is plenty of room inside MOFs for T1 -weighted MRI by reticular chemistry.
Collapse
Affiliation(s)
- Tianze Qiu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuxi Xie
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Dan Luo
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
11
|
Azarkh M, Keller K, Qi M, Godt A, Yulikov M. How accurately defined are the overtone coefficients in Gd(III)-Gd(III) RIDME? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107217. [PMID: 35453095 DOI: 10.1016/j.jmr.2022.107217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR technique that is particularly suitable to determine distances between paramagnetic centers with a broad EPR spectrum, e.g. metal-ion-based ones. As far as high-spin systems (S > ½) are concerned, the RIDME experiment provides not only the basic dipolar frequency but also its overtones, which complicates the determination of interspin distances. Here, we present and discuss in a step-by-step fashion an r.m.s.d.-based approach for the calibration of the overtone coefficients for a series of molecular rulers doubly labeled with Gd(III)-PyMTA tags. The constructed 2D total-penalty diagrams help revealing that there is no unique set of overtone coefficients but rather a certain pool, which can be used to extract distance distributions between high-spin paramagnetic centers, as determined from the RIDME experiment. This is of particular importance for comparing RIDME overtone calibration and distance distributions obtained in different labs.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Katharina Keller
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Webster AM, Peacock AFA. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem Commun (Camb) 2021; 57:6851-6862. [DOI: 10.1039/d1cc02013g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design of artificial miniature lanthanide proteins, provide an opportunity to access new functional metalloproteins as well as insight into native lanthanide biochemistry.
Collapse
|
13
|
Zhang S, Cheruku RR, Dukh M, Tabaczynski W, Patel NJ, White WH, Missert JR, Spernyak JA, Pandey RK. The Structures of Gd(III) Chelates Conjugated at the Periphery of 3-(1'-Hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) Have a Significant Impact on the Imaging and Therapy of Cancer. ChemMedChem 2020; 15:2058-2070. [PMID: 32916033 DOI: 10.1002/cmdc.202000449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Indexed: 01/03/2023]
Abstract
3-(1'-Hexyloxyethyl)-3-devinyl-pyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll-a derivative currently undergoing human clinical trials, was conjugated at various peripheral positions (position-17 or 20) of HPPH with either Gd(III)-aminobenzyl-DTPA (Gd(III) DTPA) or Gd(III)-aminoethylamido-DOTA (Gd(III) DOTA). The corresponding conjugates were evaluated for in vitro PDT efficacy, T1 , T2 relaxivities, in vivo fluorescence, and MR imaging under similar treatment parameters. Among these analogs, the water-soluble Gd(III)-aminoethylamido-DOTA linked at position-17 of HPPH, i. e., HPPH-17-Gd(III) DOTA, demonstrated strong potential for tumor imaging by both MR and fluorescence, while maintaining the PDT efficacy in BALB/c mice bearing Colon-26 tumors (7/10 mice were tumor free on day 60). In contrast to Gd(III) DTPA (Magnevist) and Gd(III) DOTA (Dotarem), the HPPH-Gd(III) DOTA retains in the tumor for a long period of time (24 to 48 h) and provides an option of fluorescence-guided cancer therapy. Thus, a single agent can be used for cancer-imaging and therapy. However, further detailed pharmacokinetic, pharmacodynamic, and toxicological studies of the conjugate are required before initiating Phase I human clinical trials.
Collapse
Affiliation(s)
- Shunqing Zhang
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra R Cheruku
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Walter Tabaczynski
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nayan J Patel
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - William H White
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph R Missert
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph A Spernyak
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Yan Q, Dong X, Xie R, Xu X, Wang X, Zhang K, Xia J, Ling J, Zhou F, Sun J. Preparation of Mn2+@PolyDOPA-b-polysarcosine micelle as MRI contrast agent with high longitudinal relaxivity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1840918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qingda Yan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xue Dong
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongze Xie
- Department of Radiology, Jiulongpo People’s Hospital, Chongqing, China
| | - Xiufang Xu
- Department of Medical Imagine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingya Xia
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Radiology, Jiulongpo People’s Hospital, Chongqing, China
- Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Autio A, Uotila S, Kiugel M, Kytö V, Liljenbäck H, Kudomi N, Oikonen V, Metsälä O, Helin S, Knuuti J, Saraste A, Roivainen A. 68Ga-DOTA chelate, a novel imaging agent for assessment of myocardial perfusion and infarction detection in a rodent model. J Nucl Cardiol 2020; 27:891-898. [PMID: 31144229 PMCID: PMC7326802 DOI: 10.1007/s12350-019-01752-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) with Gadolinium 1,4,7,10-tetraazacyclododecane-N',N″,N''',N″″-tetraacetic acid (Gd-DOTA) enables assessment of myocardial perfusion during first-pass of the contrast agent, while increased retention can signify areas of myocardial infarction (MI). We studied whether Gallium-68-labeled analog, 68Ga-DOTA, can be used to assess myocardial perfusion on positron emission tomography/computed tomography (PET/CT) in rats, comparing it with 11C-acetate. METHODS Rats were studied with 11C-acetate and 68Ga-DOTA at 24 hours after permanent ligation of the left coronary artery or sham operation. One-tissue compartmental models were used to estimate myocardial perfusion in normal and infarcted myocardium. After the PET scan, hearts were sectioned for autoradiographic detection of 68Ga-DOTA distribution. RESULTS 11C-acetate PET showed perfusion defects and histology showed myocardial necrosis in all animals after coronary ligation. Kinetic modeling of 68Ga-DOTA showed significantly higher k1 values in normal myocardium than in infarcted areas. There was a significant correlation (r = 0.82, P = 0.001) between k1 values obtained with 68Ga-DOTA and 11C-acetate. After 10 minutes of tracer distribution, the 68Ga-DOTA concentration was significantly higher in the infarcted than normal myocardium on PET imaging and autoradiography. CONCLUSIONS Our results indicate that acute MI can be detected as reduced perfusion, as well as increased late retention of 68Ga-DOTA.
Collapse
Affiliation(s)
- Anu Autio
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Sauli Uotila
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Max Kiugel
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Ville Kytö
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nobuyuki Kudomi
- Department of Medical Physics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
16
|
Inoue K, Fukushi M, Furukawa A, Sahoo SK, Veerasamy N, Ichimura K, Kasahara S, Ichihara M, Tsukada M, Torii M, Mizoguchi M, Taguchi Y, Nakazawa S. Impact on gadolinium anomaly in river waters in Tokyo related to the increased number of MRI devices in use. MARINE POLLUTION BULLETIN 2020; 154:111148. [PMID: 32319938 DOI: 10.1016/j.marpolbul.2020.111148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The Gd-based contrast agents utilized in magnetic resonance imaging are difficult to remove by usual sewage treatment technology, and they enter rivers in the discharges from waste water treatment plants. Gd anomaly in rivers has been considered depends on used amount of Gd-based contrast agents. In this study, variation of Gd anomaly in rivers of Tokyo was determined by comparisons to previously reported values. The range of anthropogenic Gd was 0.1-138.8 ppt with an average value of 35.5 ppt (n = 40); in particular, the anthropogenic Gd was significantly changed depending on the location of the waste water treatment plants, and the measurement revealed significant increases in the Gd anomaly in the range of 5.0-6.6 times compared to data obtained 22 years ago. This study highlights the necessary of continuous research in setting new public policies for medical practices.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Masahiro Fukushi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Akira Furukawa
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Sarata Kumar Sahoo
- Environmental Radionuclides Research Group, National Institutes for Quantum and Radiological Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nimelan Veerasamy
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Ken Ichimura
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Shogo Kasahara
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Mai Ichihara
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Mizuho Tsukada
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Minori Torii
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Manami Mizoguchi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yoshiaki Taguchi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Shuto Nakazawa
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
17
|
Bunz H, Tschritter O, Haap M, Riessen R, Heyne N, Artunc F. Elimination of Contrast Agent Gadobutrol with Sustained Low Efficiency Daily Dialysis Compared to Intermittent Hemodialysis. Kidney Blood Press Res 2019; 44:1363-1371. [PMID: 31751997 DOI: 10.1159/000502960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In patients with renal failure, gadolinium-based contrast agents (GBCA) can be removed by intermittent hemodialysis (iHD) to prevent possible toxic effects. There is no data on the efficacy of GBCA removal via sustained low efficiency daily dialysis (SLEDD) which is mainly used in intensive care unit (ICU) patients. METHODS We compared the elimination of the GBCA gadobutrol in 6 ICU patients treated with SLEDD (6-12 h, 90 L dialysate) with 7 normal ward inpatients treated with iHD (4 h, dialysate flow 500 mL/min). Both groups received 3 dialysis sessions on 3 consecutive days starting after the application of gadobutrol. Blood samples were drawn before and after each session and total dialysate, as well as urine was collected. Gadolinium (Gd) concentrations were measured using mass spectrometry and eliminated Gd was calculated from dialysate and urine. RESULTS The initial mean plasma Gd concentration was 385 ± 183 µM for the iHD and 270 ± 97 µM for the SLEDD group, respectively (p > 0.05). The Gd-reduction rate after the first dialysis session was 83 ± 9 and 67 ± 9% for the iHD and the SLEDD groups, respectively (p = 0.0083). The Gd-reduction rate after the second and third dialysis was 94-98 and 89-96% for the iHD and the SLEDD groups (p > 0.05). The total eliminated Gd was 89 ± 14 and 91 ± 4% of the dose in the iHD and the SLEDD groups, respectively (p > 0.05). Gd dialyzer clearance was 95 ± 22 mL/min and 79 ± 19 mL/min for iHD and SLEDD, respectively (p > 0.05). CONCLUSIONS Gd-elimination with SLEDD is equally effective as iHD and can be safely used to remove GBCA in ICU patients.
Collapse
Affiliation(s)
- Hanno Bunz
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany, .,Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University of Tübingen, Tübingen, Germany, .,German Center for Diabetes Research (DZD), University of Tübingen, Tübingen, Germany,
| | - Otto Tschritter
- Department of Emergency Medicine, St. Mary´s Hospital, Stuttgart, Germany
| | - Michael Haap
- Department of Internal Medicine, Internal Intensive Care Unit, Tübingen, Germany
| | - Reimer Riessen
- Department of Internal Medicine, Internal Intensive Care Unit, Tübingen, Germany
| | - Nils Heyne
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Zhang Q, Xu D, Guo Q, Shan W, Yang J, Lin T, Ye S, Zhou X, Ge Y, Bi S, Ren L. Theranostic Quercetin Nanoparticle for Treatment of Hepatic Fibrosis. Bioconjug Chem 2019; 30:2939-2946. [PMID: 31644261 DOI: 10.1021/acs.bioconjchem.9b00631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The progression of hepatic fibrosis can lead to cirrhosis and hepatic failure, but the development of antifibrotic drugs have faced the challenges of poor effectiveness and targeted specificity. Herein, a theranostic strategy was carried to encapsulate a natural medicine (Quercetin, QR) into hepatitis B core (HBc) protein nanocages (NCs) for imaging and targeted treatment of hepatic fibrosis. It was noted that nanoparticles (RGD-HBc/QR) with surface-displayed RGD targeting ligand exhibit a rather high selectivity toward activated HSCs via the binding affinity with integrin αvβ3, and an efficient inhibition of proliferation and activation of hepatic stellate cells (HSCs) in vitro and in vivo. Once encapsulated in quercetin-gadolinium complex and/or labeled with the NIR fluorescent probes (Cy5.5), the resulting nanoparticles (RGD-HBc/QGd) show great potential as NIR fluorescent and magnetic resonance imaging contrast agents for hepatic fibrosis in vivo. Therefore, the multifunctional integrin-targeted nanoparticles could selectively deliver QR to the activated HSCs, and may provide an effective antifibrotic theranostic strategy.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Dan Xu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Qiuyan Guo
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy , Army Medical University (Third Military Medical University) , Chongqing 400038 , P. R. China
| | - Jun Yang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine , Xiamen University , Xiamen 361005 , P. R. China
| | - Tongtong Lin
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Shefang Ye
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Xi Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China
| | - Yunlong Ge
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine , Xiamen University , Xiamen 361005 , P. R. China
| | - Shengli Bi
- National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention , Beijing 102206 , P. R. China
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials , Xiamen University , Xiamen 361005 , P. R. China.,State Key Lab of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , P. R. China
| |
Collapse
|
19
|
Synthesis and Evaluation of Diindole-Based MRI Contrast Agent for In Vivo Visualization of Necrosis. Mol Imaging Biol 2019; 22:593-601. [PMID: 31332630 DOI: 10.1007/s11307-019-01399-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Noninvasive imaging of cell necrosis can provide an early evaluation of tumor response to treatments. Here, we aimed to design and synthesize a novel diindole-based magnetic resonance imaging (MRI) contrast agent (Gd-bis-DOTA-diindolylmethane, Gd-DIM) for assessment of tumor response to therapy at an early stage. PROCEDURES The oil-water partition coefficient (Log P) and relaxivity of Gd-DIM were determined in vitro. Then, its necrosis avidity was examined in necrotic cells in vitro and in rat models with microwave ablation-induced muscle necrosis (MAMN) and ischemia reperfusion-induced liver necrosis (IRLN) by MRI. Visualization of tumor necrosis induced by combretastatin A-4 disodium phosphate (CA4P) was evaluated in rats bearing W256 orthotopic liver tumor by MRI. Finally, DNA binding assay was performed to explore the possible necrosis-avidity mechanism of Gd-DIM. RESULTS The Log P value and T1 relaxivity of Gd-DIM is - 2.15 ± 0.01 and 6.61 mM-1 s-1, respectively. Gd-DIM showed predominant necrosis avidity in vitro and in vivo. Clear visualization of the tumor necrosis induced by CA4P was achieved at 60 min after administration of Gd-DIM. DNA binding study indicated that the necrosis-avidity mechanism of Gd-DIM may be due to its binding to exposed DNA in necrotic cells. CONCLUSION Gd-DIM may serve as a promising necrosis-avid MRI contrast agent for early assessment of tumor response to therapy.
Collapse
|
20
|
Arda K, Akay S, Erisken C. Effect of gadolinium concentration on temperature change under magnetic field. PLoS One 2019; 14:e0214910. [PMID: 30947239 PMCID: PMC6449068 DOI: 10.1371/journal.pone.0214910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Gadolinium based contrast agents (GBCAs) were found to play a role in nephrogenic systemic fibrosis in patients with and without renal impairment. Therefore, preserving the structural stability of GBCAs to reduce their propensity to liberate Gd3+ is of utmost importance. This study evaluates the effect of gadolinium concentration of GBCAs on solution temperature under magnetic fields. It is hypothesized that presence of gadolinium will lead to temperature changes of its solutions under magnetic field, and this change will depend on concentration. In this study, GBCAs were diluted to concentrations of 0.6, 1.2, 1.8, 2.4 mMol/L. A 10mL preparation in pure water, simulated body fluid (SBF), and plasma was scanned at 3T following a soft tissue neck protocol, and their temperatures were measured. Findings revealed that concentration of GBCA had significant effect on temperature change in all dilution media. Type of commercially available GBCA had an effect only in SFB and plasma. Evaluation of correlation between conditional stability constant (Kcond) and temperature difference (ΔT) revealed that in water and SBF there exists a positive correlation between Kcond and temperature variation. Collectively, GBCAs can cause local temperature variations when administered into patients, and can affect dissociation of gadolinium from its chelates, which should be investigated in a further study.
Collapse
Affiliation(s)
- Kemal Arda
- Health Sciences University, Gulhane Medicine Faculty, Research and Education Hospital, Department of Radiology, Ankara, Turkey
| | - Sinan Akay
- Health Sciences University, Gulhane Medicine Faculty, Research and Education Hospital, Department of Radiology, Ankara, Turkey
| | - Cevat Erisken
- Nazarbayev University, Chemical and Materials Engineering, Astana, Kazakhstan
- * E-mail:
| |
Collapse
|
21
|
Azarkh M, Bieber A, Qi M, Fischer JW, Yulikov M, Godt A, Drescher M. Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J Phys Chem Lett 2019; 10:1477-1481. [PMID: 30864799 PMCID: PMC6625747 DOI: 10.1021/acs.jpclett.9b00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 05/26/2023]
Abstract
In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anna Bieber
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jörg W.
A. Fischer
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Maxim Yulikov
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
22
|
Chehabeddine L, Al Saleh T, Baalbaki M, Saleh E, Khoury SJ, Hannoun S. Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Crit Rev Toxicol 2019; 49:262-279. [DOI: 10.1080/10408444.2019.1592109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lara Chehabeddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tala Al Saleh
- Department of Physics, American University of Beirut, Beirut, Lebanon
| | - Marwa Baalbaki
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Eman Saleh
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Lerat-Hardy A, Coynel A, Dutruch L, Pereto C, Bossy C, Gil-Diaz T, Capdeville MJ, Blanc G, Schäfer J. Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): Hospital effluents as a source of increasing gadolinium anomalies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:409-420. [PMID: 30513431 DOI: 10.1016/j.scitotenv.2018.11.343] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 05/18/2023]
Abstract
New and rapidly developing technologies imply the emission of emerging potentially toxic contaminants such as Rare Earth Elements (REEs). Yet, the lithology-derived quantities and anthropogenic contributions, especially from urban areas, to annual REE fluxes into fluvial-estuarine systems remain widely unknown. The Garonne River drains water from ~20% of the French land surface hosting about 5,200,000 inhabitants and two large cities. Based on long-term monitoring (2003-2017) of water discharges and dissolved REEs concentrations at the outlet of the Garonne Watershed upstream from Bordeaux, this study aims at assessing REE anomalies and evaluating temporal evolution of annual dissolved REE fluxes into the Gironde Estuary. Additionally, potential urban sources (e.g. domestic, medical) in the urban area of Bordeaux (1,190,000 inhab.) were analyzed to evaluate respective signatures and contributions. Gadolinium (Gd) showed clear anomalies in all samples, with annual average anthropogenic concentrations ranging from 1.8 to 7.2 ng·L-1 (0.011 to 0.046 nmol·L-1) in the Garonne River. If variations in annual Gd fluxes depend on hydrology, anthropogenic Gd fluxes have shown an overall increasing trend from 32 kg·year-1 (204 mol·year-1) in 2003 to 75 kg·year-1 (475 mol·year-1) in 2017. Sewer waters from the third largest hospital complex of France, the hospital group Pellegrin, contributed 25% to the incoming daily Gd flux into Bordeaux major Waste Water Treatment Plant (WWTP), owed to Gd use as contrast agent for Magnetic Resonance Imaging (MRI). Due to weak removal efficiency in the WWTP, the Bordeaux Metropole significantly contributes (>27 kg·year-1; 172 mol·year-1) to Gd fluxes in the Gironde Estuary. The temporal evolution of anthropogenic Gd fluxes in the Garonne River may be related with the growing regional population and the increasing number of MRI instruments, highlighting the importance of new high-tech applications in urban areas on contaminant fluxes and their potential harmful effects in fluvial-estuarine systems in the future.
Collapse
Affiliation(s)
- Antoine Lerat-Hardy
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Alexandra Coynel
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Lionel Dutruch
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Clément Pereto
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Cécile Bossy
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Teba Gil-Diaz
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Marion-Justine Capdeville
- SUEZ - Le LyRE, Domaine du Haut-Carré, Bâtiment C4, 43 rue Pierre Noailles, 33405 Talence Cedex, France.
| | - Gérard Blanc
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Jörg Schäfer
- Université de Bordeaux - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| |
Collapse
|
24
|
Janicki R, Mondry A. Structural and thermodynamic aspects of hydration of Gd(iii) systems. Dalton Trans 2019; 48:3380-3391. [DOI: 10.1039/c8dt04869j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A first systematic experimental study on the thermodynamic description of the hydration equilibrium of Gd(iii) compounds is presented.
Collapse
Affiliation(s)
- Rafał Janicki
- University of Wrocław
- Faculty of Chemistry
- 50-383 Wrocław
- Poland
| | - Anna Mondry
- University of Wrocław
- Faculty of Chemistry
- 50-383 Wrocław
- Poland
| |
Collapse
|
25
|
Zhang J, Mu YL, Ma ZY, Han K, Han HY. Tumor-triggered transformation of chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise photodynamic therapy. Biomaterials 2018; 182:269-278. [DOI: 10.1016/j.biomaterials.2018.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
|
26
|
Influence of Gadolinium-Based Contrast Agents on Tissue Sodium Quantification in Sodium Magnetic Resonance Imaging. Invest Radiol 2018; 53:555-562. [DOI: 10.1097/rli.0000000000000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Yang Y, Wang P, Lu L, Fan Y, Sun C, Fan L, Xu C, El-Toni AM, Alhoshan M, Zhang F. Small-Molecule Lanthanide Complexes Probe for Second Near-Infrared Window Bioimaging. Anal Chem 2018; 90:7946-7952. [PMID: 29865784 DOI: 10.1021/acs.analchem.8b00603] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past few years, significant efforts have been made to create new fluorescent probes operating at longer wavelengths, particularly in the second near-infrared (NIR-II) window from 1000 to 1700 nm, offering enhanced tissue penetration compared to light in the visible and first near-infrared window (700-900 nm). However, most of the reported NIR-II fluorophores meet such dilemmas; they are excreted slowly and largely retained within the reticuloendothelial system. Here, we report a rapidly excreted NIR-II lanthanide complex Nd-DOTA (over 50% excreted through the kidneys within 3 h postinjection) with a molecular mass only 0.54 kDa. The NIR-II imaging quality of Nd-DOTA was far superior to that of clinically approved ICG with good photostability and deep tissue penetration (7 mm). Superior tumor-to-normal tissue ratio was successfully achieved to facilitate the abdominal ovarian metastases surgical delineation. Metastases with ≤1 mm can be completely excised under NIR-II bioimaging guidance. Significantly, since the Nd-DOTA structure is same to the clinically approved magnetic resonance imaging (MRI) contrast Gd-DOTA, it will speed up the clinical translation for this novel kind of NIR-II probes in the future.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Peiyuan Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Lingfei Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Caixia Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Lingling Fan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , P. R. China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , P. R. China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology , King Saud University , Riyadh 11451 , Saudi Arabia.,Central Metallurgical Research and Development Institute, CMRDI , Helwan 11421 , Cairo , Egypt
| | - Mansour Alhoshan
- Department of Chemical Engineering , King Saud University , Riyadh 11421 , Saudi Arabia
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
28
|
Yao H, Wen JB, Xiong Y, Lu Y, Huttula M. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance. Front Chem 2018; 6:71. [PMID: 29616216 PMCID: PMC5869918 DOI: 10.3389/fchem.2018.00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/30/2022] Open
Abstract
Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.
Collapse
Affiliation(s)
- Huai Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan, China.,Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang Henan, China
| | - Jiu-Ba Wen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan, China.,Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang Henan, China
| | - Yi Xiong
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan, China.,Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang Henan, China
| | - Yan Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan, China.,Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang Henan, China
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Zhang M, Liu X, Huang J, Wang L, Shen H, Luo Y, Li Z, Zhang H, Deng Z, Zhang Z. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2475-2483. [PMID: 28552648 DOI: 10.1016/j.nano.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Herein, we report on development of a two-dimensional nanomaterial graphene oxide (GO)-based T1 magnetic resonance imaging (MRI) contrast agent (CA) for in vitro and in vivo labeling of human mesenchymal stem cells (hMSCs). The CA was synthesized by PEGylation of ultrasmall GO, followed by conjugation with a chelating agent DOTA and then gadolinium(III) to form GO-DOTA-Gd complexes. Thus-prepared GO-DOTA-Gd complexes exhibited significantly improved T1 relaxivity, and the r1 value was 14.2 mM-1s-1 at 11.7 T, approximately three times higher than Magnevist, a commercially available CA. hMSCs can be effectively labeled by GO-DOTA-Gd, leading to remarkably enhanced cellular MRI effect without obvious adverse effects on proliferation and differentiation of hMSCs. More importantly, in vivo experiment revealed that intracranial detection of 5×105 hMSCs labeled with GO-DOTA-Gd is achieved. The current work demonstrates the feasibility of the GO-based T1 MRI CA for stem cell labeling, which may find potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Mengxin Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lina Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - He Shen
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhenjun Li
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hailu Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zongwu Deng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
30
|
Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017; 5:5714-5725. [DOI: 10.1039/c7tb01241a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contrast agents for Cardiovascular Magnetic Resonance (CMR) play a major role in research and clinical cardiology.
Collapse
Affiliation(s)
- Marco M. Meloni
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- School of Pharmacy and Chemistry
| | - Stephen Barton
- School of Pharmacy and Chemistry
- Kingston University
- London
- UK
| | - Lei Xu
- Department of Radiology
- Beijing Anzhen Hospital
- Beijing
- China
| | - Juan C. Kaski
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
| | - Wenhui Song
- UCL Centre for Biomaterials
- Division of surgery & Interventional Science
- University College of London
- London
- UK
| | - Taigang He
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- Royal Brompton Hospital
| |
Collapse
|
31
|
Ekanger LA, Basal LA, Allen MJ. The Role of Coordination Environment and pH in Tuning the Oxidation Rate of Europium(II). Chemistry 2016; 23:1145-1150. [PMID: 27897355 DOI: 10.1002/chem.201604842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 01/14/2023]
Abstract
The EuII/III redox couple offers metal-based oxidation-sensing with magnetic resonance imaging making the study of EuII oxidation chemistry important in the design of new probes. Accordingly, we explored oxidation reactions with a set of EuII -containing complexes. Superoxide formation from the reaction between EuII and dioxygen was observed using electron paramagnetic resonance spectroscopy. Additionally, oxidation kinetics of three EuII -containing complexes with bromate and glutathione disulfide at pH values, including 5 and 7, is reported. In the reaction with bromate, the oxidation rate of two of the complexes increased by 7.3 and 6.7 times upon decreasing pH from 7 to 5, but the rate increased by 17 times for a complex containing amide functional groups over the same pH range. The oxidation rate of a fluorobenzo-functionalized cryptate was relatively slow, indicating that the ligand used to impart thermodynamic oxidative stability might also be useful for controlling oxidation kinetics.
Collapse
Affiliation(s)
- Levi A Ekanger
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Lina A Basal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
32
|
Abstract
Recently, there have been numerous major peer-reviewed publications reporting deposition of gadolinium in the dentate nucleus and globus pallidus in subjects with normal renal function. This review takes a retrospective look back through the development of gadolinium-based contrast agents to describe the historical evidence of gadolinium deposition in vivo and shows that deposition in the basal ganglia should come as no surprise. Evidence for gadolinium deposition in both animal models and human patients is described. Stability differences among gadolinium contrast agents have long been recognized in vitro, and deposition of gadolinium in tissues has been described in animal models since at least 1984. The first major study that showed deposition in humans appeared in 1998 regarding patients with renal failure and in 2004 in patients with normal renal function. The historical literature indicates that gadolinium retention in healthy patients is occurring, although the clinical consequences of deposition remain unknown.
Collapse
|
33
|
Kim H, Lee SJ, Kim JS, Davies-Venn C, Cho HJ, Won SJ, Dejene E, Yao Z, Kim I, Paik CH, Bluemke DA. Pharmacokinetics and microbiodistribution of 64Cu-labeled collagen-binding peptides in chronic myocardial infarction. Nucl Med Commun 2016; 37:1306-1317. [PMID: 27623511 PMCID: PMC5077647 DOI: 10.1097/mnm.0000000000000590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of the study is to evaluate the pharmacokinetics and microbiodistribution of Cu-labeled collagen-binding peptides. METHODS The affinity constant (KD), association (ka), and dissociation rate constant (kd) for the peptide collagelin or its analog (named CRPA) binding to collagen were measured by biolayer interferometric analysis. Rats (n=4-5) with myocardial infarction or normal were injected intravenously with the Cu-labeled peptides or Cu-DOTA as a control. Dynamic PET imaging was performed for 60 min at 7-8 weeks after infarct. Fluorine-18 fluorodeoxyglucose PET imaging was performed to identify the viable myocardium. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and histology. RESULT The peptides bound to collagen with a KD of ∼0.9 µmol/l. The Cu-peptides and Cu-DOTA accumulated in the infarct area (confirmed by autoradiography and histology images) within 1 min of injection and were excreted rapidly through the renal system. The blood clearance curves were biphasic with elimination half-lives of 21.9±2.4, 26.2±4.6, and 21.2±2.1 min for Cu-CRPA, Cu-collagelin, and the control Cu-DOTA, respectively. The clearance half-lives from the focal fibrotic tissue (24.1±1.5, 25.6±8.0, and 21.4±1.3 min, respectively) and remote myocardium (20.8±0.7, 21.0±5.5, and 19.1±2.4 min, respectively) were not significantly different. The uptake ratios of infarct-to-remote myocardium (1.93±0.18, 2.15±0.38, and 1.88±0.08, respectively) for Cu-CRPA, Cu-collagelin, and Cu-DOTA remained stable for the time period between 10 and 60 min. CONCLUSION The distribution of the Cu-collagelin probes corresponds to the heterogeneous distribution of expanded extracellular space in the setting of myocardial infarction. The overall washout rate from the fibrous tissue was determined by the slow washout rate (t1/2≥20 min) of the peptides from the extracellular space to the vasculature, not by the dissociation rate (t1/2<2 min) of the Cu-peptides from collagen.
Collapse
Affiliation(s)
- Heejung Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Sung-Jin Lee
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Jin Su Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Cynthia Davies-Venn
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Hong-Jun Cho
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Samuel Jaeyoon Won
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Eden Dejene
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Zhengsheng Yao
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Insook Kim
- Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Chang H. Paik
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - David A. Bluemke
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Abstract
A double-blind, randomized parallel phase III study in MR imaging of the central nervous system was conducted to compare the safety and diagnostic utility of gadodiamide injection and gadopentetate dimeglumine at a dose of 0.1 mmol/kg b.w. in 60 adult patients. Seven patients in the gadodiamide injection group experienced 10 adverse events, 5 of the events possibly related to the contrast agent. In the gadopentetate dimeglumine group 5 patients reported 3 contrast agent-related adverse events out of 8 events. All events were transient and required no treatment. Seven incidents of patient discomfort, and some minor changes in vital signs and laboratory parameters were of no clinical concern. Contrast enhancement was observed in 60% and 44% of the patients with structural abnormalities in the gadodiamide injection group and gadopentetate dimeglumine group, respectively. No difference in overall efficacy was observed. Gadodiamide injection was found to be a safe and effective contrast agent.
Collapse
|
35
|
Higginson CJ, Eno MR, Khan S, Cameron MD, Finn M. Albumin-Oxanorbornadiene Conjugates Formed ex Vivo for the Extended Circulation of Hydrophilic Cargo. ACS Chem Biol 2016; 11:2320-7. [PMID: 27348438 DOI: 10.1021/acschembio.6b00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxanorbornadiene dicarboxylate (OND) reagents were explored for the purpose of binding and releasing chemical cargos from endogenous circulating serum albumins. ONDs bearing gadolinium chelates as model cargos exhibited variable conjugation efficiencies with albumin in rat subjects that are consistent with the observed reactivity of each linker and their observed stability toward serum hydrolases in vitro. The terminal elimination rate from circulation was dependent on the identity of the OND used, and increased circulation time of gadolinium cargo was achieved for linkers bearing electrophilic fragments designed to react with cysteine-34 of circulating serum albumin. This binding of and release from endogenous albumin highlights the potential of OND linkers in the context of optimizing the pharmacokinetic parameters of drugs or diagnostic agents.
Collapse
Affiliation(s)
- Cody J. Higginson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Marsha R. Eno
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Susan Khan
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - M.G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Abstract
Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.
Collapse
|
37
|
Wu H, Wang H, Liao H, Lv Y, Song X, Ma X, Tan M. Multifunctional Nanostructures for Tumor-Targeted Molecular Imaging and Photodynamic Therapy. Adv Healthc Mater 2016; 5:311-8. [PMID: 26626703 DOI: 10.1002/adhm.201500668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/04/2015] [Indexed: 01/26/2023]
Abstract
A multifunctional ICG-FA-PPD nanostructure is constructed by a facile self-assembly method through the negatively charged indocyanine green (ICG)- and positively charged folic acid-modified PEI-PEG-gadoteric acid (FA-PPD). The resulting ICG-FA-PPD is not only able to be used for targeting tumors, magnetic resonance imaging (MRI), and near-infrared imaging, but, more importantly, it enables photodynamic therapy for tumor.
Collapse
Affiliation(s)
- Hao Wu
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Huihui Wang
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Han Liao
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Yan Lv
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaojie Song
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaojun Ma
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Mingqian Tan
- Division of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- National Engineering Research Center of Seafood; Liaoning Province Key Laboratory of Seafood Science and Technology; School of Food Science and Technology; Dalian Polytechnic University; Dalian 116034 China
| |
Collapse
|
38
|
Robert P, Violas X, Grand S, Lehericy S, Idée JM, Ballet S, Corot C. Linear Gadolinium-Based Contrast Agents Are Associated With Brain Gadolinium Retention in Healthy Rats. Invest Radiol 2016; 51:73-82. [PMID: 26606549 PMCID: PMC4747982 DOI: 10.1097/rli.0000000000000241] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate Gd retention in the deep cerebellar nuclei (DCN) of linear gadolinium-based contrast agents (GBCAs) compared with a macrocyclic contrast agent. MATERIALS AND METHODS The brain tissue retention of Gd of 3 linear GBCAs (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) and a macrocyclic GBCA (gadoterate meglumine) was compared in healthy rats (n = 8 per group) that received 20 intravenous injections of 0.6 mmol Gd/kg (4 injections per week for 5 weeks). An additional control group with saline was included. T1-weighted magnetic resonance imaging was performed before injection and once a week during the 5 weeks of injections and for another 4 additional weeks after contrast period. Total gadolinium concentration was measured with inductively coupled plasma mass spectrometry. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. RESULTS At completion of the injection period, all the linear contrast agents (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) induced a significant increase in signal intensity in DCN, unlike the macrocyclic GBCA (gadoterate meglumine) or saline. The T1 hypersignal enhancement kinetic was fast for gadodiamide. Total Gd concentrations for the 3 linear GBCAs groups at week 10 were significantly higher in the cerebellum (1.21 ± 0.48, 1.67 ± 0.17, and 3.75 ± 0.18 nmol/g for gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide, respectively) than with the gadoterate meglumine (0.27 ± 0.16 nmol/g, P < 0.05) and saline (0.09 ± 0.12 nmol/g, P < 0.05). No significant difference was observed between the macrocyclic agent and saline. CONCLUSIONS Repeated administrations of the linear GBCAs gadodiamide, gadobenate dimeglumine, and gadopentetate dimeglumine to healthy rats were associated with progressive and significant T1 signal hyperintensity in the DCN, along with Gd deposition in the cerebellum. This is in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.
Collapse
Affiliation(s)
- Philippe Robert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Xavier Violas
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Sylvie Grand
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehericy
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Marc Idée
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Sébastien Ballet
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Claire Corot
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †INSERM, U836; ‡Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble; §Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche; ∥Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, INSERM UMR-S1127, CNRS 7225; and ¶Service de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Kim H, Lee SJ, Davies-Venn C, Kim JS, Yang BY, Yao Z, Kim I, Paik CH, Bluemke DA. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI. Nucl Med Commun 2016; 37:188-96. [PMID: 26488428 PMCID: PMC4689643 DOI: 10.1097/mnm.0000000000000417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the pharmacokinetics of (64)Cu-DOTA (1,4,7,10-azacyclododecane-N,N',N'',N'''-tetraacetic acid), a positron surrogate analog of the late gadolinium (Gd)-enhancement cardiac magnetic resonance agent, Gd-DOTA, in a rat model of chronic myocardial infarction (MI) and its microdistribution in the cardiac fibrosis by autoradiography. METHODS DOTA was labeled with (64)Cu-acetate. CD rats (n=5) with MI by left anterior descending coronary artery ligation and normal rats (n=6) were injected intravenously with (64)Cu-DOTA (18.5 MBq, 0.02 mmol DOTA/kg). Dynamic PET imaging was performed for 60 min after injection. (18)F-Fluorodeoxyglucose ([(18)F]-FDG) PET imaging was performed to identify the viable myocardium. For the region of interest analysis, the (64)Cu-DOTA PET image was coregistered to the [(18)F]-FDG PET image. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and by histological staining with Masson's trichrome. RESULTS (64)Cu-DOTA was rapidly taken up in the infarct area. The time-activity curves demonstrated that (64)Cu-DOTA concentrations in the blood, fibrotic tissue, and perfusion-rich organs peaked within a minute post injection; thereafter, it was rapidly washed out in parallel with blood clearance and excreted through the renal system. The blood clearance curve was biphasic, with a distribution half-life of less than 3 min and an elimination half-life of ∼21.8 min. The elimination half-life of (64)Cu-DOTA from the focal fibrotic tissue (∼22.4 min) and the remote myocardium (∼20.1 min) was similar to the blood elimination half-life. Consequently, the uptake ratios of focal fibrosis-to-blood and remote myocardium-to-blood remained stable for the time period between 10 and 60 min. The corresponding ratios obtained from images acquired from 30 to 60 min were 1.09 and 0.59, respectively, indicating that the concentration of (64)Cu-DOTA in the focal fibrosis was 1.85 (1.09/0.59) times greater than that in the remote myocardium. Thus, this finding indicates that the extracellular volume fraction was 1.85 times greater in the focal fibrosis than in the remote myocardium. The accumulation of (64)Cu-DOTA in fibrotic tissue was further supported by autoradiography and histology images. The autoradiography images of (64)Cu-DOTA in the fibrotic tissues were qualitatively superimposed over the histology images of the fibrotic tissues. The histology images of the infarct areas were characterized by a heterogeneous distribution of thin bands of fibrotic collagen, myocytes, and expanded extracellular space. CONCLUSION (64)Cu-DOTA is a useful surrogate positron analog of Gd-DOTA, enabling quantitative measurement of the uptake values in fibrotic tissues by dynamic PET imaging and calculation of the extracellular volume fractions of the fibrotic tissues. At a microscopic level, the distribution of (64)Cu-DOTA is nonuniform, corresponding to the heterogeneous distribution of expanded extracellular space in the setting of MI.
Collapse
Affiliation(s)
- Heejung Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Sung-Jin Lee
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Cynthia Davies-Venn
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Jin Su Kim
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Bo Yeun Yang
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Zhengsheng Yao
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Insook Kim
- Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
| | - Chang H. Paik
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - David A. Bluemke
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
40
|
Gao S, George SJ, Zhou ZH. Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Dalton Trans 2016; 45:5388-94. [DOI: 10.1039/c5dt04172d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A commercially used gadolinium based contrast agent Gd-DTPA was substituted by phosphate and phosphite to form K6[Gd2(DTPA)2(HPO4)]·10H2O and K6[Gd2(DTPA)2(HPO3)]·7H2O respectively. Their analogous lanthanum complies are compared. These results are related to NSF formation.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical engineering
- Xiamen University
- Xiamen
- China
| | | | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
41
|
Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 2016. [DOI: 10.1039/c6ra07782j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarized the recent progress on Gd(iii)-based nanoparticles asT1-weighted MRI contrast agents and multimodal contrast agents.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | | | - Balázs Z. Gulyás
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| |
Collapse
|
42
|
Wáng YXJ, Schroeder J, Siegmund H, Idée JM, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK. Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 2015; 5:534-45. [PMID: 26435917 DOI: 10.3978/j.issn.2223-4292.2015.05.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To assess the retention of gadolinium (Gd) in skin, liver, and bone following gadodiamide or gadoteric acid administration. METHODS Gd was measured in skin, liver and femur bone in female rats 10 weeks after administration of 17.5 mmol Gd/kg over 5 days of Gd agents. Rat skin microscopy, energy filtering transmission electron microscopy and elemental analysis were performed, and repeated after receiving the same dosage of gadodiamide in rats with osteoporosis induced with bilateral ovariectomy (OVX). The OVX was performed 60 days after the last injection of gadodiamide and animals sacrificed 3 weeks later. RESULTS Gd concentration was 180-fold higher in the skin, 25-fold higher in the femur, and 30-fold higher in the liver in rats received gadodiamide than rats received gadoteric acid. The retention of Gd in the skin with gadodiamide was associated with an increase in dermal cellularity, and Gd encrustation of collagen fibers and deposition inside the fibroblasts and other cells. No differences in Gd concentration in liver, skin, and femur were observed between rats receiving gadodiamide with or without OVX. CONCLUSIONS Gd tissue retention with gadodiamide was higher than gadoteric acid. Tissues Gd deposition did not alter following gadodiamide administration to ovariectomized rats.
Collapse
Affiliation(s)
- Yì-Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Joseph Schroeder
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Heiko Siegmund
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Jean-Marc Idée
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Nathalie Fretellier
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Gaëlle Jestin-Mayer
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Cecile Factor
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Wei Kang
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Sameh K Morcos
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Miura Y, Tsuji AB, Sugyo A, Sudo H, Aoki I, Inubushi M, Yashiro M, Hirakawa K, Cabral H, Nishiyama N, Saga T, Kataoka K. Polymeric Micelle Platform for Multimodal Tomographic Imaging to Detect Scirrhous Gastric Cancer. ACS Biomater Sci Eng 2015; 1:1067-1076. [PMID: 33429548 DOI: 10.1021/acsbiomaterials.5b00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scirrhous gastric cancer (SGC) is a recalcitrant tumor, which is among the most lethal cancers. A critical issue for the improvement of SGC prognosis is the lack of an effective imaging method for accurate detection and diagnosis. Because combined nuclear medicine imaging with magnetic resonance imaging (MRI) has the ability to detect cancer with high sensitivity, and quantitation and spatial resolution, it has potential to overcome the issues with SGC detection. Herein, we designed and synthesized a new block copolymer poly(ethylene glycol)-b-poly(γ-benzyl l-glutamate) linked with a chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-PEG-b-PBLG) to provide a platform for multimodal tomographic imaging. We then successfully prepared DOTA-functionalized polymeric micelles (DOTA/m) measuring 30 nm in diameter, which is an appropriate size to penetrate deeply into tumors with thick fibrosis, including SGC. 111In-labeled DOTA/m highly accumulated in Colon-26 tumors (mouse colon cancer with hyperpermeability), but also in OCUM-2 M LN tumors (SGC with hypopermeability), clearly depicting both tumors by single photon emission computed tomography (SPECT). Gd-labeled DOTA/m clearly visualized OCUM-2 M LN tumors by MRI with high spatial resolution. Moreover, 111In/Gd-labeled micelles, as well as the mixture of 111In- and Gd-labeled DOTA/m demonstrated the capability of this system for selective multimodal SPECT/MR imaging of SCG. Our findings support 111In/Gd-DOTA-labeled micelles as a clinical translationable modality for multimodal tomographic imaging capable of detecting SGC.
Collapse
Affiliation(s)
- Yutaka Miura
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ichio Aoki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Inubushi
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934-74. [PMID: 25865818 DOI: 10.1021/cr500171e] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - M R A Pillai
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - F F Russ Knapp
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| |
Collapse
|
45
|
Chandrasekharan P, Yang CT, Nasrallah FA, Tay HC, Chuang KH, Robins EG. Pharmacokinetics of Gd(DO3A-Lys) and MR imaging studies in an orthotopic U87MG glioma tumor model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:237-44. [DOI: 10.1002/cmmi.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Prashant Chandrasekharan
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Chang-Tong Yang
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- The Lee Kong Chian School of Medicine; Nanyang Technological University; 50 Nanyang Drive Singapore 637553
| | - Fatima Ali Nasrallah
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Hui Chien Tay
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
| | - Kai-Hsiang Chuang
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive #B1-01 Singapore 117599
| | - Edward G. Robins
- Laboratory of Molecular Imaging; Singapore Bioimaging Consortium; Agency for Science, Technology and Research (A*STAR); 11 Biopolis Way, #02-02 Helios Singapore 138667
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive #B1-01 Singapore 117599
| |
Collapse
|
46
|
Qi M, Groß A, Jeschke G, Godt A, Drescher M. Gd(III)-PyMTA Label Is Suitable for In-Cell EPR. J Am Chem Soc 2014; 136:15366-78. [DOI: 10.1021/ja508274d] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Groß
- Department
of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical
Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical
Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
47
|
Kagimura FY, da Cunha MAA, Barbosa AM, Dekker RFH, Malfatti CRM. Biological activities of derivatized D-glucans: a review. Int J Biol Macromol 2014; 72:588-98. [PMID: 25239192 DOI: 10.1016/j.ijbiomac.2014.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/23/2014] [Accepted: 09/07/2014] [Indexed: 12/01/2022]
Abstract
D-Glucans have triggered increasing interest in commercial applications in the chemical and pharmaceutical sectors because of their technological properties and biological activities. The glucans are foremost among the polysaccharide groups produced by microorganisms with demonstrated activity in stimulating the immune system, and have potential in treating human disease conditions. Chemical alterations in the structure of D-glucans through derivatization (sulfonylation, carboxymethylation, phosphorylation, acetylation) contributes to their increased solubility that, in turn, can alter their biological activities such as antioxidation and anticoagulation. This review surveys and cites the latest advances on the biological and technological potential of D-glucans following chemical modifications through sulfonylation, carboxymethylation, phosphorylation or acetylation, and discusses the findings of their activities. Several studies suggest that chemically modified d-glucans have potentiated biological activity as anticoagulants, antitumors, antioxidants, and antivirals. This review shows that in-depth future studies on chemically modified glucans with amplified biological effects will be relevant in the biotechnological field because of their potential to prevent and treat numerous human disease conditions and their clinical complications.
Collapse
Affiliation(s)
- Francini Yumi Kagimura
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, km 01, Bairro Fraron, CEP: 85503-390 Pato Branco, PR, Brazil
| | - Mário Antônio A da Cunha
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, km 01, Bairro Fraron, CEP: 85503-390 Pato Branco, PR, Brazil.
| | - Aneli M Barbosa
- Departamento de Química - CCE, Universidade Estadual de Londrina, CEP: 86051-990 Londrina, PR, Brazil
| | - Robert F H Dekker
- Biorefining and Biotechnology Consultancy, Rua João Huss 200, Gleba Palanho, CEP: 86050-490 Londrina, PR, Brazil
| | - Carlos Ricardo Maneck Malfatti
- Universidade Estadual do Centro-Oeste (Programa de Pós-Graduação em Ciências Farmacêuticas), Campus CEDETEG, CEP: 85040-080 Guarapuava, PR, Brazil
| |
Collapse
|
48
|
Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG. Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:113-23. [PMID: 24394190 PMCID: PMC3951579 DOI: 10.1016/j.jmr.2013.11.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 05/06/2023]
Abstract
The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for (1)H; (2) the rotating frame relaxation time constant T1ρ for (1)H and (13)C and (3) T2 of (13)C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.
Collapse
Affiliation(s)
- Björn Corzilius
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Loren B Andreas
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Albert A Smith
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qing Zhe Ni
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Huang CH, Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Curr Top Med Chem 2014; 13:411-21. [PMID: 23432004 DOI: 10.2174/1568026611313040002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/22/2022]
Abstract
As we move towards an era of personalized medicine, molecular imaging contrast agents are likely to see an increasing presence in routine clinical practice. Magnetic resonance (MR) imaging has garnered particular interest as a platform for molecular imaging applications due its ability to monitor anatomical changes concomitant with physiologic and molecular changes. One promising new direction in the development of MR contrast agents involves the labeling and/or loading of nanoparticles with gadolinium (Gd). These nanoplatforms are capable of carrying large payloads of Gd, thus providing the requisite sensitivity to detect molecular signatures within disease pathologies. In this review, we discuss some of the progress that has recently been made in the development of Gd-based macromolecules and nanoparticles and outline some of the physical and chemical properties that will be important to incorporate into the next generation of contrast agents, including high Gd chelate stability, high "relaxivity per particle" and "relaxivity density", and biodegradability.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
50
|
Fang J, Chandrasekharan P, Liu XL, Yang Y, Lv YB, Yang CT, Ding J. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 2014; 35:1636-42. [DOI: 10.1016/j.biomaterials.2013.11.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/11/2013] [Indexed: 01/01/2023]
|