1
|
Sandgren S, Novakova L, Nordin A, Sabir H, Axelsson M, Malmeström C, Zetterberg H, Lycke J. The effect of alemtuzumab on neurodegeneration in relapsing-remitting multiple sclerosis: A five-year prospective mono-center study. Mult Scler Relat Disord 2024; 91:105894. [PMID: 39293124 DOI: 10.1016/j.msard.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is an inflammatory and neurodegenerative disease. After two or more short courses of alemtuzumab (ALZ), an immune reconstitution is achieved, which long-term results in reduced disease activity. We aimed to investigate the effect of ALZ on measures of neurodegeneration (i.e., brain atrophy, and retinal layer thinning). METHODS We designed an observational prospective mono-center study in RRMS patients initiating ALZ treatment. Patients were assessed at baseline (month 0) and thereafter annually for five years with clinical measures, synthetic magnetic resonance imaging (SyMRI) and optical coherence tomography (OCT), with a re-baseline SyMRI scan and an OCT exam 24 months after initiating ALZ. Persons with neurological symptoms but without evidence of neurological disease served as symptomatic controls (SCs, n = 27). RESULTS Forty-nine RRMS patients were included. Baseline median expanded disability status scale [2.0 (IQR 1.5)] was unchanged during follow-up, 71 % were progression-free, 33 % achieved no evidence of disease activity-3 (NEDA-3). Between baseline and month 60, SyMRI showed a reduction of brain parenchymal fraction (BPF) and grey matter (GM) volume in patients. The BPF reduction was greater in RRMS patients than in SCs (p < 0.05), and more pronounced in patients with high pre-baseline disease activity than in those without (p < 0.01). OCT showed significant thinning of macular ganglion cell and inner plexiform layers (mGCIPL) and in peripapillary retinal nerve fiber layer (pRNFL) in patients. In contrast, absolute values of white matter (WM) volume and myelin content (MyC) quantified by SyMRI, were stable or increased after re-baseline (month 24) and up to month 60, and this increase appeared limited to patients without high pre-baseline disease activity and to patients with NEDA-3 or disability worsening during follow-up. A strong positive correlation between WM volume and GM volume at baseline was lost after ALZ intervention for their delta values, i.e., change from re-baseline (month 24) to month 60. While the positive baseline correlation between WM volume and MyC increased for their delta values, the positive baseline correlation between GM volume and MyC changed to negative for their delta values. CONCLUSION We showed that neurodegeneration continued in RRMS patients under ALZ treatment, but it appeared to be limited to BPF and GM, and more pronounced in patients with disease activity. Our data suggest that patients who respond to ALZ treatment show signs of remyelination. OCT and SyMRI have potential to quantify measures of neurodegeneration that is affected by treatment intervention in RRMS.
Collapse
Affiliation(s)
- Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Hemin Sabir
- Department of Neurology and Ophthalmology outpatient clinics, Hallands Hospital Kungsbacka, SE-434 80 Kungsbacka, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden; Laboratory for Clinical Immunology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden; Department of Neurodegenerative Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom; United Kingdom (UK) Dementia Research Institute at University College London (UCL), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
2
|
Duan H, Shi R, Kang J, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Nathalie Holz N, Fröhner J, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Population clustering of structural brain aging and its association with brain development. eLife 2024; 13:RP94970. [PMID: 39422662 PMCID: PMC11488854 DOI: 10.7554/elife.94970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the 'last in, first out' mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.
Collapse
Affiliation(s)
- Haojing Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Runye Shi
- School of Data Science, Fudan UniversityShanghaiChina
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Arun LW Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | | | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, School of Social Sciences, University of MannheimMannheimGermany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of VermontBurlingtonUnited States
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of NottinghamNottinghamUnited Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and BerlinBerlinGermany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière HospitalParisFrance
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- Psychiatry Department, EPS Barthélémy DurandEtampesFrance
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel UniversityKielGermany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical CentreGöttingenGermany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nathalie Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Juliane Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College DublinDublinIreland
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité UniversitätsmedizinBerlinGermany
| | - Xiaolei Lin
- School of Data Science, Fudan UniversityShanghaiChina
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan UniversityShanghaiChina
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- School of Data Science, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- Zhangjiang Fudan International Innovation CenterShanghaiChina
- Department of Computer Science, University of WarwickWarwickUnited Kingdom
| |
Collapse
|
3
|
Zhou X, Lin WS, Zou FY, Zhong SS, Deng YY, Luo XW, Shen LS, Wang SH, Guo RM. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset. World J Pediatr 2024; 20:1059-1069. [PMID: 38526835 DOI: 10.1007/s12519-024-00800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Preschooling is a critical time for intervention in children with autism spectrum disorder (ASD); thus, we analyzed brain tissue component volumes (BTCVs) and clinical indicators in preschool children with ASD to identify new biomarkers for early screening. METHODS Eighty preschool children (3-6 years) with ASD were retrospectively included. The whole-brain myelin content (MyC), white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and non-WM/GM/MyC/CSF brain component volumes were obtained using synthetic magnetic resonance imaging (SyMRI). Clinical data, such as intelligence scores, autism diagnostic observation schedule-calibrated severity scores, age at first production of single words (AFSW), age at first production of phrases (AFP), and age at walking onset (AWO), were also collected. The correlation between the BTCV and clinical data was evaluated, and the effect of BTCVs on clinical data was assessed by a regression model. RESULTS WM and GM volumes were positively correlated with intelligence scores (both P < 0.001), but WM and GM did not affect intelligence scores (P = 0.116, P = 0.290). AWO was positively correlated with AFSW and AFP (both P < 0.001). The multivariate linear regression analysis revealed that MyC, AFSW, AFP, and AWO were significantly different (P = 0.005, P < 0.001, P < 0.001). CONCLUSIONS This study revealed positive correlations between WM and GM volumes and intelligence scores. Whole-brain MyC affected AFSW, AFP, and AWO in preschool children with ASD. Noninvasive quantification of BTCVs via SyMRI revealed a new visualizable and quantifiable biomarker (abnormal MyC) for early ASD screening in preschool children.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Wu-Sheng Lin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Feng-Yun Zou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Shuang-Shuang Zhong
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Ya-Yin Deng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Xiao-Wen Luo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Li-Shan Shen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Shi-Huan Wang
- Department of Child Development and Behavior Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruo-Mi Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Sogabe K, Hata J, Yoshimaru D, Hagiya K, Okano HJ, Okano H. Structural MRI analysis of age-related changes and sex differences in marmoset brain volume. Neurosci Res 2024; 206:20-29. [PMID: 38636670 DOI: 10.1016/j.neures.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.
Collapse
Affiliation(s)
- Kazumi Sogabe
- The Jikei University School of Medicine, Japan; Teikyo University Faculty of Medical Technology, Japan
| | - Junichi Hata
- The Jikei University School of Medicine, Japan; Tokyo Metropolitan University, Japan
| | - Daisuke Yoshimaru
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka James Okano
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Keio University Regenerative Medicine Research Center 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
6
|
Petracca M, Ruggieri S, Nistri R, Tomasso I, Barbuti E, Pozzilli V, Haggiag S, Tortorella C, Gasperini C, Pozzilli C, Prosperini L. Brain reserve and timing of clinical onset in multiple sclerosis. Mult Scler 2024; 30:1290-1295. [PMID: 39234851 DOI: 10.1177/13524585241272046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND A latent period of variable length elapses between multiple sclerosis (MS) biological onset and the occurrence of the first clinical episode reflecting a central nervous system (CNS) demyelinating event. Factors affecting the duration of such interval are unknown. OBJECTIVE To explore whether brain reserve, which moderates the impact of structural damage along MS course, could also affect the timing of MS clinical onset. METHODS We conducted a time-to-event analysis in 326 relapsing-onset multiple sclerosis patients to ascertain the effect of brain reserve, that is, larger maximal lifetime brain growth (MLBG) estimated as intracranial volume, on the risk of an earlier disease onset. For this purpose, we carried out a Cox proportional hazards regression model stratified by sex and adjusted by site and pre-morbid MS risk factors. All patients reached the event (i.e. the disease onset) with no censored case; the age (years) at disease onset was set as the main time variable. RESULTS We identified a protective effect of brain reserve on the time to disease onset (HR = 0.11, 95% CI = 0.02-0.83, p = 0.032), unchanged when accounting for MS risk factors. CONCLUSION Brain reserve might counteract the pathological mechanisms ongoing after biological initiation, thus delaying the disease overt clinical manifestation.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Riccardo Nistri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Elena Barbuti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; MS Center, Sant'Andrea Hospital, Rome, Italy
| | - Valeria Pozzilli
- Neurology, Neurobiology and Neurophysiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; MS Center, Sant'Andrea Hospital, Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| |
Collapse
|
7
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
8
|
Jan TY, Wong LC, Hsu CJ, Huang CFJ, Peng SSF, Tseng WYI, Lee WT. Developmental change of brain volume in Rett syndrome in Taiwan. J Neurodev Disord 2024; 16:36. [PMID: 38961335 PMCID: PMC11223417 DOI: 10.1186/s11689-024-09549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Rett syndrome (RTT) is characterized by neurological regression. This pioneering study investigated the effect of age on brain volume reduction by analyzing magnetic resonance imaging findings in participants with RTT, ranging from toddlers to adults. METHODS Functional evaluation and neuroimaging were performed. All scans were acquired using a Siemens Tim Trio 3 T scanner with a 32-channel head coil. RESULTS The total intracranial volume and cerebral white matter volume significantly increased with age in the control group compared with that in the RTT group (p < 0.05). Cortical gray matter volume reduction in the RTT group continued to increase in bilateral parietal lobes and left occipital lobes (p < 0.05). The differences in cortical gray matter volume between typically developing brain and RTT-affected brain may tend to continuously increase until adulthood in both temporal lobes although not significant after correction for multiple comparison. CONCLUSIONS A significant reduction in brain volume was observed in the RTT group. Cortical gray matter volume in the RTT group continued to reduce in bilateral parietal lobes and left occipital lobes. These results provide a baseline for future studies on the effect of RTT treatment and related neuroscience research.
Collapse
Affiliation(s)
- Tz-Yun Jan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee-Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chien-Feng Judith Huang
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven Shinn-Forng Peng
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
9
|
Zheng Z, Liu Y, Wang Z, Yin H, Zhang D, Yang J. Evaluating age-and gender-related changes in brain volumes in normal adult using synthetic magnetic resonance imaging. Brain Behav 2024; 14:e3619. [PMID: 38970221 PMCID: PMC11226539 DOI: 10.1002/brb3.3619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE Normal aging is associated with brain volume change, and brain segmentation can be performed within an acceptable scan time using synthetic magnetic resonance imaging (MRI). This study aimed to investigate the brain volume changes in healthy adult according to age and gender, and provide age- and gender-specific reference values using synthetic MRI. METHODS A total of 300 healthy adults (141 males, median age 48; 159 females, median age 50) were underwent synthetic MRI on 3.0 T. Brain parenchymal volume (BPV), gray matter volume (GMV), white matter volume (WMV), myelin volume (MYV), and cerebrospinal fluid volume (CSFV) were calculated using synthetic MRI software. These volumes were normalized by intracranial volume to normalized GMV (nGMV), normalized WMV (nWMV), normalized MYV (nMYV), normalized BPV (nBPV), and normalized CSFV (nCSFV). The normalized brain volumes were plotted against age in both males and females, and a curve fitting model that best explained the age dependence of brain volume was identified. The normalized brain volumes were compared between different age and gender groups. RESULTS The approximate curves of nGMV, nWMV, nCSFV, nBPV, and nMYV were best fitted by quadratic curves. The nBPV decreased monotonously through all ages in both males and females, while the changes of nCSFV showed the opposite trend. The nWMV and nMYV in both males and females increased gradually and then decrease with age. In early adulthood (20s), nWMV and nMYV in males were lower and peaked later than that in females (p < .005). The nGMV in both males and females decreased in the early adulthood until the 30s and then remains stable. A significant decline in nWMV, nBPV, and nMYV was noted in the 60s (Turkey test, p < .05). CONCLUSIONS Our study provides age- and gender-specific reference values of brain volumes using synthetic MRI, which could be objective tools for discriminating brain disorders from healthy brains.
Collapse
Affiliation(s)
- Zuofeng Zheng
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| | - Yawen Liu
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenchang Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongxia Yin
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Dongpo Zhang
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| | - Jiafei Yang
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| |
Collapse
|
10
|
Duan H, Shi R, Kang J, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Holz N, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Population clustering of structural brain aging and its association with brain development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.24301030. [PMID: 38260410 PMCID: PMC10802651 DOI: 10.1101/2024.01.09.24301030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the "last in, first out" mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.
Collapse
Affiliation(s)
- Haojing Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes; France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes; France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
- School of Data Science, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
11
|
Gajawelli N, Paulli A, Deoni S, Paquette N, Darakjian D, Salazar C, Dean D, O'Muircheartaigh J, Nelson MD, Wang Y, Lepore N. Surface-based morphometry of the corpus callosum in young children of ages 1-5. Hum Brain Mapp 2024; 45:e26693. [PMID: 38924235 PMCID: PMC11199824 DOI: 10.1002/hbm.26693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
The corpus callosum (CC) is a large white matter fiber bundle in the brain and is involved in various cognitive, sensory, and motor processes. While implicated in various developmental and psychiatric disorders, much is yet to be uncovered about the normal development of this structure, especially in young children. Additionally, while sexual dimorphism has been reported in prior literature, observations have not necessarily been consistent. In this study, we use morphometric measures including surface tensor-based morphometry (TBM) to investigate local changes in the shape of the CC in children between the ages of 12 and 60 months, in intervals of 12 months. We also analyze sex differences in each of these age groups. We observed larger significant clusters in the earlier ages between 12 v 24 m and between 48 v 60 m and localized differences in the anterior region of the body of the CC. Sex differences were most pronounced in the 12 m group. This study adds to the growing literature of work aiming to understand the developing brain and emphasizes the utility of surface TBM as a useful tool for analyzing regional differences in neuroanatomical morphometry.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Athelia Paulli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Sean Deoni
- Department of PediatricsWarren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Natacha Paquette
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of PsychologyCHU Sainte‐JustineMontrealQuebecCanada
| | - Danielle Darakjian
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- College of MedicineCalifornia Northstate UniversityElk GroveCaliforniaUSA
| | - Carlos Salazar
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Douglas Dean
- Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | | | - Marvin D. Nelson
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Yalin Wang
- Department of Computer ScienceArizona State UniversityTempeArizonaUSA
| | - Natasha Lepore
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Ragguett RM, Eagleson R, de Ribaupierre S. Evaluating normalized registration and preprocessing methodologies for the analysis of brain MRI in pediatric patients with shunt-treated hydrocephalus. Front Neurosci 2024; 18:1405363. [PMID: 38887369 PMCID: PMC11182356 DOI: 10.3389/fnins.2024.1405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Registration to a standardized template (i.e. "normalization") is a critical step when performing neuroimaging studies. We present a comparative study involving the evaluation of general-purpose registration algorithms for pediatric patients with shunt treated hydrocephalus. Our sample dataset presents a number of intersecting challenges for registration, representing the potentially large deformations to both brain structures and overall brain shape, artifacts from shunts, and morphological differences corresponding to age. The current study assesses the normalization accuracy of shunt-treated hydrocephalus patients using freely available neuroimaging registration tools. Methods Anatomical neuroimages from eight pediatric patients with shunt-treated hydrocephalus were normalized. Four non-linear registration algorithms were assessed in addition to the preprocessing steps of skull-stripping and bias-correction. Registration accuracy was assessed using the Dice Coefficient (DC) and Hausdorff Distance (HD) in subcortical and cortical regions. Results A total of 592 registrations were performed. On average, normalizations performed using the brain extracted and bias-corrected images had a higher DC and lower HD compared to full head/ non-biased corrected images. The most accurate registration was achieved using SyN by ANTs with skull-stripped and bias corrected images. Without preprocessing, the DARTEL Toolbox was able to produce normalized images with comparable accuracy. The use of a pediatric template as an intermediate registration did not improve normalization. Discussion Using structural neuroimages from patients with shunt-treated pediatric hydrocephalus, it was demonstrated that there are tools which perform well after specified pre-processing steps were taken. Overall, these results provide insight to the performance of registration programs that can be used for normalization of brains with complex pathologies.
Collapse
Affiliation(s)
| | - Roy Eagleson
- School of Biomedical Engineering, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
- Centre for Brain and Mind, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- School of Biomedical Engineering, Western University, London, ON, Canada
- Centre for Brain and Mind, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, Western University, London, ON, Canada
| |
Collapse
|
13
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
14
|
Kung KTF, Louie K, Spencer D, Hines M. Prenatal androgen exposure and sex-typical play behaviour: A meta-analysis of classic congenital adrenal hyperplasia studies. Neurosci Biobehav Rev 2024; 159:105616. [PMID: 38447820 DOI: 10.1016/j.neubiorev.2024.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Thousands of non-human mammal experiments have demonstrated that early androgen exposure exerts long-lasting effects on neurobehavioural sexual differentiation. In humans, females with classic congenital adrenal hyperplasia (CAH) are exposed to unusually high concentrations of androgens prenatally, whereas prenatal concentrations of androgens in males with CAH are largely normal. The current meta-analysis included 20 independent samples and employed multi-level meta-analytic models. Consistently across all 7 male-typical and female-typical play outcomes, in the expected directions, the present study found significant and large average differences between control males and control females (gs = 0.83-2.78) as well as between females with CAH and control females (gs = 0.95-1.08), but differences between males with CAH and control males were mostly negligible and were non-significant for 6 of the 7 outcomes (gs = 0.04-0.27). These meta-analytic findings suggest that prenatal androgen exposure masculinises and defeminises play behaviour in humans. Broader implications in relation to sex chromosomes, brain development, oestrogens, socio-cognitive influences, other aspects of sex-related behavioural development, and gender nonconformity are discussed.
Collapse
Affiliation(s)
- Karson T F Kung
- Department of Psychology, Jockey Club Tower, Centennial Campus, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Krisya Louie
- Department of Psychology, Jockey Club Tower, Centennial Campus, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Free School Lane, Cambridge CB2 3RQ, United Kingdom
| | - Melissa Hines
- Department of Psychology, University of Cambridge, Free School Lane, Cambridge CB2 3RQ, United Kingdom
| |
Collapse
|
15
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
16
|
Marzi C, Giannelli M, Barucci A, Tessa C, Mascalchi M, Diciotti S. Efficacy of MRI data harmonization in the age of machine learning: a multicenter study across 36 datasets. Sci Data 2024; 11:115. [PMID: 38263181 PMCID: PMC10805868 DOI: 10.1038/s41597-023-02421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/27/2023] [Indexed: 01/25/2024] Open
Abstract
Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of subjects, increase statistical power, and promote data reuse with machine learning techniques. The harmonization of multicenter data is necessary to reduce the confounding effect associated with non-biological sources of variability in the data. However, when applied to the entire dataset before machine learning, the harmonization leads to data leakage, because information outside the training set may affect model building, and potentially falsely overestimate performance. We propose a 1) measurement of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning pipeline, avoiding data leakage by design. We tested these tools using brain T1-weighted MRI data from 1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, and we showed the data leakage effect in predicting individual age from MRI data, highlighting that introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data leakage by design.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Statistics, Computer Science and Applications "Giuseppe Parenti", University of Florence, 50134, Florence, Italy
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126, Pisa, Italy
| | - Andrea Barucci
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Carlo Tessa
- Radiology Unit Apuane e Lunigiana, Azienda USL Toscana Nord Ovest, 54100, Massa, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Division of Epidemiology and Clinical Governance, Institute for Study, Prevention and netwoRk in Oncology (ISPRO), 50139, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, 47522, Cesena, Italy.
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, 40121, Bologna, Italy.
| |
Collapse
|
17
|
Sun YJ, Sahakian BJ, Langley C, Yang A, Jiang Y, Kang J, Zhao X, Li C, Cheng W, Feng J. Early-initiated childhood reading for pleasure: associations with better cognitive performance, mental well-being and brain structure in young adolescence. Psychol Med 2024; 54:359-373. [PMID: 37376848 DOI: 10.1017/s0033291723001381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.
Collapse
Affiliation(s)
- Yun-Jun Sun
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Christelle Langley
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
18
|
Russo C, Pirozzi MA, Mazio F, Cascone D, Cicala D, De Liso M, Nastro A, Covelli EM, Cinalli G, Quarantelli M. Fully automated measurement of intracranial CSF and brain parenchyma volumes in pediatric hydrocephalus by segmentation of clinical MRI studies. Med Phys 2023; 50:7921-7933. [PMID: 37166045 DOI: 10.1002/mp.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Brain parenchyma (BP) and intracranial cerebrospinal fluid (iCSF) volumes measured by fully automated segmentation of clinical brain MRI studies may be useful for the diagnosis and follow-up of pediatric hydrocephalus. However, previously published segmentation techniques either rely on dedicated sequences, not routinely used in clinical practice, or on spatial normalization, which has limited accuracy when severe brain distortions, such as in hydrocephalic patients, are present. PURPOSE We developed a fully automated method to measure BP and iCSF volumes from clinical brain MRI studies of pediatric hydrocephalus patients, exploiting the complementary information contained in T2- and T1-weighted images commonly used in clinical practice. METHODS The proposed procedure, following skull-stripping of the combined volumes, performed using a multiparametric method to obtain a reliable definition of the inner skull profile, maximizes the CSF-to-parenchyma contrast by dividing the T2w- by the T1w- volume after full-scale dynamic rescaling, thus allowing separation of iCSF and BP through a simple thresholding routine. RESULTS Validation against manual tracing on 23 studies (four controls and 19 hydrocephalic patients) showed excellent concordance (ICC > 0.98) and spatial overlap (Dice coefficients ranging from 77.2% for iCSF to 96.8% for intracranial volume). Accuracy was comparable to the intra-operator reproducibility of manual segmentation, as measured in 14 studies processed twice by the same experienced neuroradiologist. Results of the application of the algorithm to a dataset of 63 controls and 57 hydrocephalic patients (19 with parenchymal damage), measuring volumes' changes with normal development and in hydrocephalic patients, are also reported for demonstration purposes. CONCLUSIONS The proposed approach allows fully automated segmentation of BP and iCSF in clinical studies, also in severely distorted brains, enabling to assess age- and disease-related changes in intracranial tissue volume with an accuracy comparable to expert manual segmentation.
Collapse
Affiliation(s)
- Carmela Russo
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Agnese Pirozzi
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Mazio
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Daniele Cascone
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Domenico Cicala
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria De Liso
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Anna Nastro
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Eugenio Maria Covelli
- Neuroradiology Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
19
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
20
|
Pulli EP, Nolvi S, Eskola E, Nordenswan E, Holmberg E, Copeland A, Kumpulainen V, Silver E, Merisaari H, Saunavaara J, Parkkola R, Lähdesmäki T, Saukko E, Kataja E, Korja R, Karlsson L, Karlsson H, Tuulari JJ. Structural brain correlates of non-verbal cognitive ability in 5-year-old children: Findings from the FinnBrain birth cohort study. Hum Brain Mapp 2023; 44:5582-5601. [PMID: 37606608 PMCID: PMC10619410 DOI: 10.1002/hbm.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Non-verbal cognitive ability predicts multiple important life outcomes, for example, school and job performance. It has been associated with parieto-frontal cortical anatomy in prior studies in adult and adolescent populations, while young children have received relatively little attention. We explored the associations between cortical anatomy and non-verbal cognitive ability in 165 5-year-old participants (mean scan age 5.40 years, SD 0.13; 90 males) from the FinnBrain Birth Cohort study. T1-weighted brain magnetic resonance images were processed using FreeSurfer. Non-verbal cognitive ability was measured using the Performance Intelligence Quotient (PIQ) estimated from the Block Design and Matrix Reasoning subtests from the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). In vertex-wise general linear models, PIQ scores associated positively with volumes in the left caudal middle frontal and right pericalcarine regions, as well as surface area in left the caudal middle frontal, left inferior temporal, and right lingual regions. There were no associations between PIQ and cortical thickness. To the best of our knowledge, this is the first study to examine structural correlates of non-verbal cognitive ability in a large sample of typically developing 5-year-olds. The findings are generally in line with prior findings from older age groups, with the important addition of the positive association between volume / surface area in the right medial occipital region and non-verbal cognitive ability. This finding adds to the literature by discovering a new brain region that should be considered in future studies exploring the role of cortical structure for cognitive development in young children.
Collapse
Affiliation(s)
- Elmo P. Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Turku Institute for Advanced Studies, Department of Psychology and Speech‐Language PathologyUniversity of TurkuTurkuFinland
| | - Eeva Eskola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | - Elisabeth Nordenswan
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Eeva Holmberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of RadiologyUniversity of TurkuTurkuFinland
| | - Jani Saunavaara
- Department of Medical PhysicsTurku University Hospital and University of TurkuTurkuFinland
| | - Riitta Parkkola
- Department of RadiologyUniversity of TurkuTurkuFinland
- Department of RadiologyTurku University HospitalTurkuFinland
| | - Tuire Lähdesmäki
- Pediatric Neurology, Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | | | - Eeva‐Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Turku Collegium for Science, Medicine and TechnologyUniversity of TurkuTurkuFinland
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Pickering HE, Peters JL, Crewther SG. A Role for Visual Memory in Vocabulary Development: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2023; 33:803-833. [PMID: 36136174 PMCID: PMC10770228 DOI: 10.1007/s11065-022-09561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/24/2022] [Indexed: 10/14/2022]
Abstract
Although attention and early associative learning in preverbal children is predominantly driven by rapid eye-movements in response to moving visual stimuli and sounds/words (e.g., associating the word "bottle" with the object), the literature examining the role of visual attention and memory in ongoing vocabulary development across childhood is limited. Thus, this systematic review and meta-analysis examined the association between visual memory and vocabulary development, including moderators such as age and task selection, in neurotypical children aged 2-to-12 years, from the brain-based perspective of cognitive neuroscience. Visual memory tasks were classified according to the visual characteristics of the stimuli and the neural networks known to preferentially process such information, including consideration of the distinction between the ventral visual stream (processing more static visuo-perceptual details, such as form or colour) and the more dynamic dorsal visual stream (processing spatial temporal action-driven information). Final classifications included spatio-temporal span tasks, visuo-perceptual or spatial concurrent array tasks, and executive judgment tasks. Visuo-perceptual concurrent array tasks, reliant on ventral stream processing, were moderately associated with vocabulary, while tasks measuring spatio-temporal spans, associated with dorsal stream processing, and executive judgment tasks (central executive), showed only weak correlations with vocabulary. These findings have important implications for health professionals and researchers interested in language, as they advocate for the development of more targeted language learning interventions that include specific and relevant aspects of visual processing and memory, such as ventral stream visuo-perceptual details (i.e., shape or colour).
Collapse
Affiliation(s)
- Hayley E Pickering
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| | - Jessica L Peters
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
22
|
Yang Y, Sathe A, Schilling K, Shashikumar N, Moore E, Dumitrescu L, Pechman KR, Landman BA, Gifford KA, Hohman TJ, Jefferson AL, Archer DB. A deep neural network estimation of brain age is sensitive to cognitive impairment and decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552494. [PMID: 37645837 PMCID: PMC10461919 DOI: 10.1101/2023.08.10.552494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62×10-32; T1: r=0.61, p=1.45×10-26, FW+T1: r=0.77, p=6.48×10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32×10-7; T1: β=-1.331, p=6.52×10-7; FW+T1: β=-1.476, p=2.53×10-10; executive function, FW: β=-1.276, p=1.46×10-9; T1: β=-1.337, p=2.52×10-7; FW+T1: β=-1.850, p=3.85×10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62×10-11; T1: β=-0.097, p=1.40×10-8; FW+T1: β=-0.101, p=1.35×10-11; executive function, FW: β=-0.125, p=1.20×10-10; T1: β=-0.163, p=4.25×10-12; FW+T1: β=-0.158, p=1.65×10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.
Collapse
Affiliation(s)
- Yisu Yang
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Kurt Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Elizabeth Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Kimberly R. Pechman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Bennett A. Landman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| |
Collapse
|
23
|
Yamada S, Otani T, Ii S, Kawano H, Nozaki K, Wada S, Oshima M, Watanabe Y. Aging-related volume changes in the brain and cerebrospinal fluid using artificial intelligence-automated segmentation. Eur Radiol 2023; 33:7099-7112. [PMID: 37060450 PMCID: PMC10511609 DOI: 10.1007/s00330-023-09632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES To verify the reliability of the volumes automatically segmented using a new artificial intelligence (AI)-based application and evaluate changes in the brain and CSF volume with healthy aging. METHODS The intracranial spaces were automatically segmented in the 21 brain subregions and 5 CSF subregions using the AI-based application on the 3D T1-weighted images in healthy volunteers aged > 20 years. Additionally, the automatically segmented volumes of the total ventricles and subarachnoid spaces were compared with the manually segmented volumes of those extracted from 3D T2-weighted images using the intra-class correlation and Bland-Altman analysis. RESULTS In this study, 133 healthy volunteers aged 21-92 years were included. The mean intra-class correlations between the automatically and manually segmented volumes of the total ventricles and subarachnoid spaces were 0.986 and 0.882, respectively. The increase in the CSF volume was estimated to be approximately 30 mL (2%) per decade from 265 mL (18.7%) in the 20s to 488 mL (33.7%) in ages above 80 years; however, the increase in the volume of total ventricles was approximately 20 mL (< 2%) until the 60s and increased in ages above 60 years. CONCLUSIONS This study confirmed the reliability of the CSF volumes using the AI-based auto-segmentation application. The intracranial CSF volume increased linearly because of the brain volume reduction with aging; however, the ventricular volume did not change until the age of 60 years and above and then gradually increased. This finding could help elucidate the pathogenesis of chronic hydrocephalus in adults. KEY POINTS • The brain and CSF spaces were automatically segmented using an artificial intelligence-based application. • The total subarachnoid spaces increased linearly with aging, whereas the total ventricle volume was around 20 mL (< 2%) until the 60s and increased in ages above 60 years. • The cortical gray matter gradually decreases with aging, whereas the subcortical gray matter maintains its volume, and the cerebral white matter increases slightly until the 40s and begins to decrease from the 50s.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, NagoyaNagoya, Aichi, 467-8601, Japan.
- Interfaculty Initiative in Information Studies / Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Neurosurgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan.
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hiroto Kawano
- Department of Neurosurgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies / Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| |
Collapse
|
24
|
Affatato O, Rukh G, Schiöth HB, Mwinyi J. Volumetric Differences in Cerebellum and Brainstem in Patients with Migraine: A UK Biobank Study. Biomedicines 2023; 11:2528. [PMID: 37760969 PMCID: PMC10526353 DOI: 10.3390/biomedicines11092528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: The cerebellum and the brainstem are two brain structures involved in pain processing and modulation that have also been associated with migraine pathophysiology. The aim of this study was to investigate possible associations between the morphology of the cerebellum and brainstem and migraine, focusing on gray matter differences in these brain areas. Methods: The analyses were based on data from 712 individuals with migraine and 45,681 healthy controls from the UK Biobank study. Generalized linear models were used to estimate the mean gray matter volumetric differences in the brainstem and the cerebellum. The models were adjusted for important biological covariates such as BMI, age, sex, total brain volume, diastolic blood pressure, alcohol intake frequency, current tobacco smoking, assessment center, material deprivation, ethnic background, and a wide variety of health conditions. Secondary analyses investigated volumetric correlation between cerebellar sub-regions. Results: We found larger gray matter volumes in the cerebellar sub-regions V (mean difference: 72 mm3, 95% CI [13, 132]), crus I (mean difference: 259 mm3, 95% CI [9, 510]), VIIIa (mean difference: 120 mm3, 95% CI [0.9, 238]), and X (mean difference: 14 mm3, 95% CI [1, 27]). Conclusions: Individuals with migraine show larger gray matter volumes in several cerebellar sub-regions than controls. These findings support the hypothesis that the cerebellum plays a role in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Oreste Affatato
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Science, Uppsala University, 752 36 Uppsala, Sweden
- Uppsala University’s Centre for Women’s Mental Health during the Reproductive Lifespan—WoMHeR, Uppsala University, 752 36 Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Science, Uppsala University, 752 36 Uppsala, Sweden
| | - Helgi Birgir Schiöth
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Science, Uppsala University, 752 36 Uppsala, Sweden
| | - Jessica Mwinyi
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Science, Uppsala University, 752 36 Uppsala, Sweden
- Uppsala University’s Centre for Women’s Mental Health during the Reproductive Lifespan—WoMHeR, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
25
|
Shiohama T, Maikusa N, Kawaguchi M, Natsume J, Hirano Y, Saito K, Takanashi JI, Levman J, Takahashi E, Matsumoto K, Yokota H, Hattori S, Tsujimura K, Sawada D, Uchida T, Takatani T, Fujii K, Naganawa S, Sato N, Hamada H. A Brain Morphometry Study with Across-Site Harmonization Using a ComBat-Generalized Additive Model in Children and Adolescents. Diagnostics (Basel) 2023; 13:2774. [PMID: 37685313 PMCID: PMC10487204 DOI: 10.3390/diagnostics13172774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Regional anatomical structures of the brain are intimately connected to functions corresponding to specific regions and the temporospatial pattern of genetic expression and their functions from the fetal period to old age. Therefore, quantitative brain morphometry has often been employed in neuroscience investigations, while controlling for the scanner effect of the scanner is a critical issue for ensuring accuracy in brain morphometric studies of rare orphan diseases due to the lack of normal reference values available for multicenter studies. This study aimed to provide across-site normal reference values of global and regional brain volumes for each sex and age group in children and adolescents. We collected magnetic resonance imaging (MRI) examinations of 846 neurotypical participants aged 6.0-17.9 years (339 male and 507 female participants) from 5 institutions comprising healthy volunteers or neurotypical patients without neurological disorders, neuropsychological disorders, or epilepsy. Regional-based analysis using the CIVET 2.1.0. pipeline provided regional brain volumes, and the measurements were across-site combined using ComBat-GAM harmonization. The normal reference values of global and regional brain volumes and lateral indices in our study could be helpful for evaluating the characteristics of the brain morphology of each individual in a clinical setting and investigating the brain morphology of ultra-rare diseases.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan; (M.K.)
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan; (M.K.)
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita 565-0871, Osaka, Japan
| | - Keito Saito
- Department of Pediatrics and Pediatric Neurology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi 276-8524, Chiba, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics and Pediatric Neurology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi 276-8524, Chiba, Japan
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, 5005 Chapel Square, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
- Nova Scotia Health Authority—Research, Innovation and Discovery Center for Clinical Research, 5790 University Avenue, Halifax, NS B3H 1V7, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Shinya Hattori
- Department of Radiology, Chiba University Hospital, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya 466-8550, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 466-8550, Aichi, Japan
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Tomoko Uchida
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- Department of Pediatrics, International University of Welfare and Health School of Medicine, Narita 286-8520, Chiba, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| |
Collapse
|
26
|
Seifert C, Zhao J, Brandi ML, Kampe T, Hermsdörfer J, Wohlschläger A. Investigating the effects of the aging brain on real tool use performance-an fMRI study. Front Aging Neurosci 2023; 15:1238731. [PMID: 37674783 PMCID: PMC10477673 DOI: 10.3389/fnagi.2023.1238731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Healthy aging affects several domains of cognitive and motor performance and is further associated with multiple structural and functional neural reorganization patterns. However, gap of knowledge exists, referring to the impact of these age-related alterations on the neural basis of tool use-an important, complex action involved in everyday life throughout the entire lifespan. The current fMRI study aims to investigate age-related changes of neural correlates involved in planning and executing a complex object manipulation task, further providing a better understanding of impaired tool use performance in apraxia patients. Methods A balanced number of sixteen older and younger healthy adults repeatedly manipulated everyday tools in an event-related Go-No-Go fMRI paradigm. Results Our data indicates that the left-lateralized network, including widely distributed frontal, temporal, parietal and occipital regions, involved in tool use performance is not subjected to age-related functional reorganization processes. However, age-related changes regarding the applied strategical procedure can be detected, indicating stronger investment into the planning, preparatory phase of such an action in older participants.
Collapse
Affiliation(s)
- Clara Seifert
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Jingkang Zhao
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Marie-Luise Brandi
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thabea Kampe
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Afra Wohlschläger
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
27
|
Muller AE, van Vliet P, Koch BCP. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics (Basel) 2023; 12:1291. [PMID: 37627711 PMCID: PMC10451962 DOI: 10.3390/antibiotics12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Drain-associated intracerebral infections are life-threatening emergencies. Their treatment is challenging due to the limited penetration of antibiotics to the site of infection, resulting in potentially inadequate exposure. The emergence of multidrug-resistant pathogens might force the use of off-label intrathecal (IT) doses of antibiotics. We reviewed the literature on general aspects determining intrathecal dosing regimen, using pharmacometric knowledge. We summarised clinical experience with IT doses of antibiotics that are usually not used intrathecally, as well as the outcome of the cases and concentrations reached in the cerebrospinal fluid (CSF). Factors determining the IT regimen are the size of the ventricle system and the CSF drainage volume. With regard to pharmacometrics, pharmacokinetic/pharmacodynamic indices are likely similar to those in non-cerebral infections. The following number (N) of cases were described: benzylpenicillin (>50), ampicillin (1), ceftazidime (2), cephaloridine (56), ceftriaxone (1), cefotiam (1), meropenem (57), linezolid (1), tigecycline (15), rifampicin (3), levofloxacin (2), chloramphenicol (3) and daptomycin (8). Many side effects were reported for benzylpenicillin in the 1940-50s, but for the other antibiotics, when administered correctly, all side effects were minor and reversible. These data might help when choosing an IT dosing regimen in case there is no alternative option due to antimicrobial resistance.
Collapse
Affiliation(s)
- Anouk E. Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
| | - Peter van Vliet
- Department of Intensive Care Medicine, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands;
| | - Birgit C. P. Koch
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
28
|
Affatato O, Dahlén AD, Rukh G, Schiöth HB, Mwinyi J. Assessing volumetric brain differences in migraine and depression patients: a UK Biobank study. BMC Neurol 2023; 23:284. [PMID: 37507671 PMCID: PMC10375767 DOI: 10.1186/s12883-023-03336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Migraine and depression are two of the most common and debilitating conditions. From a clinical perspective, they are mostly prevalent in women and manifest a partial overlapping symptomatology. Despite the high level of comorbidity, previous studies hardly investigated possible common patterns in brain volumetric differences compared to healthy subjects. Therefore, the current study investigates and compares the volumetric difference patterns in sub-cortical regions between participants with migraine or depression in comparison to healthy controls. METHODS The study included data from 43 930 participants of the large UK Biobank cohort. Using official ICD10 diagnosis, we selected 712 participants with migraine, 1 853 with depression and 23 942 healthy controls. We estimated mean volumetric difference between the groups for the different sub-cortical brain regions using generalized linear regression models, conditioning the model within the levels of BMI, age, sex, ethnical background, diastolic blood pressure, current tobacco smoking, alcohol intake frequency, Assessment Centre, Indices of Multiple Deprivation, comorbidities and total brain volume. RESULTS We detected larger overall volume of the caudate (mean difference: 66, 95% CI [-3, 135]) and of the thalamus (mean difference: 103 mm3, 95% CI [-2, 208]) in migraineurs than healthy controls. We also observed that individuals with depression appear to have also larger overall (mean difference: 47 mm3, 95% CI [-7, 100]) and gray matter (mean difference: 49 mm3, 95% CI [2, 95]) putamen volumes than healthy controls, as well as larger amygdala volume (mean difference: 17 mm3, 95% CI [-7, 40]). CONCLUSION Migraineurs manifested larger overall volumes at the level of the nucleus caudate and of the thalamus, which might imply abnormal pain modulation and increased migraine susceptibility. Larger amygdala and putamen volumes in participants with depression than controls might be due to increased neuronal activity in these regions.
Collapse
Affiliation(s)
- Oreste Affatato
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
- Uppsala University's Centre for Women's Mental Health During the Reproductive Lifespan - WoMHeR, University of Uppsala, Uppsala, Sweden.
| | - Amelia D Dahlén
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Science, Group of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Uppsala University's Centre for Women's Mental Health During the Reproductive Lifespan - WoMHeR, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
29
|
Guo B, Wang C, Zhu Y, Liu Z, Long H, Ruan Z, Lin Z, Fan Z, Li Y, Zhao S. Causal associations of brain structure with bone mineral density: a large-scale genetic correlation study. Bone Res 2023; 11:37. [PMID: 37474577 PMCID: PMC10359275 DOI: 10.1038/s41413-023-00270-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we aimed to investigate the causal associations of brain structure with bone mineral density (BMD). Based on the genome-wide association study (GWAS) summary statistics of 1 325 brain imaging-derived phenotypes (BIDPs) of brain structure from the UK Biobank and GWAS summary datasets of 5 BMD locations, including the total body, femoral neck, lumbar spine, forearm, and heel from the GEFOS Consortium, linkage disequilibrium score regression (LDSC) was conducted to determine the genetic correlations, and Mendelian randomization (MR) was then performed to explore the causal relationship between the BIDPs and BMD. Several sensitivity analyses were performed to verify the strength and stability of the present MR outcomes. To increase confidence in our findings, we also performed confirmatory MR between BIDPs and osteoporosis. LDSC revealed that 1.93% of BIDPs, with a false discovery rate (FDR) < 0.01, were genetically correlated with BMD. Additionally, we observed that 1.31% of BIDPs exhibited a significant causal relationship with BMD (FDR < 0.01) through MR. Both the LDSC and MR results demonstrated that the BIDPs "Volume of normalized brain," "Volume of gray matter in Left Inferior Frontal Gyrus, pars opercularis," "Volume of Estimated Total Intra Cranial" and "Volume-ratio of brain segmentation/estimated total intracranial" had strong associations with BMD. Interestingly, our results showed that more left BIDPs were causally associated with BMD, especially within and around the left frontal region. In conclusion, a part of the brain structure causally influences BMD, which may provide important perspectives for the prevention of osteoporosis and offer valuable insights for further research on the brain-bone axis.
Collapse
Affiliation(s)
- Bin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haitao Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangyuan Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shushan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
30
|
Margoni M, Preziosa P, Rocca MA, Filippi M. Depressive symptoms, anxiety and cognitive impairment: emerging evidence in multiple sclerosis. Transl Psychiatry 2023; 13:264. [PMID: 37468462 PMCID: PMC10356956 DOI: 10.1038/s41398-023-02555-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Neuropsychiatric abnormalities may be broadly divided in two categories: disorders of mood, affect, and behavior and abnormalities affecting cognition. Among these conditions, clinical depression, anxiety and neurocognitive disorders are the most common in multiple sclerosis (MS), with a substantial impact on patients' quality of life and adherence to treatments. Such manifestations may occur from the earliest phases of the disease but become more frequent in MS patients with a progressive disease course and more severe clinical disability. Although the pathogenesis of these neuropsychiatric manifestations has not been fully defined yet, brain structural and functional abnormalities, consistently observed with magnetic resonance imaging (MRI), together with genetic and immunologic factors, have been suggested to be key players. Even though the detrimental clinical impact of such manifestations in MS patients is a matter of crucial importance, at present, they are often overlooked in the clinical setting. Moreover, the efficacy of pharmacologic and non-pharmacologic approaches for their amelioration has been poorly investigated, with the majority of studies showing marginal or no beneficial effect of different therapeutic approaches, possibly due to the presence of multiple and heterogeneous underlying pathological mechanisms and intrinsic methodological limitations. A better evaluation of these manifestations in the clinical setting and improvements in the understanding of their pathophysiology may offer the potential to develop tools for differentiating these mechanisms in individual patients and ultimately provide a principled basis for treatment selection. This review provides an updated overview regarding the pathophysiology of the most common neuropsychiatric symptoms in MS, the clinical and MRI characteristics that have been associated with mood disorders (i.e., depression and anxiety) and cognitive impairment, and the treatment approaches currently available or under investigation.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
31
|
Dinçer HA, Ağıldere AM, Gökçay D. T1 relaxation time is prolonged in healthy aging: a whole brain study. Turk J Med Sci 2023; 53:675-684. [PMID: 37476907 PMCID: PMC10387954 DOI: 10.55730/1300-0144.5630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND : Measurement of tissue characteristics such as the longitudinal relaxation time (T1) provides complementary information to the volumetric and surface based structural analyses. We aimed to investigate T1 relaxation time characteristics in healthy aging via an exploratory design in the whole brain. The data processing pipeline was designed to minimize errors related to aging effects such as atrophy. METHODS Sixty healthy participants underwent MRI scanning (28 F, 32 M, age range: 18-78, 30 young and 30 old) in November 2017-March 2018 at the Bilkent University UMRAM Center. Four images with varying flip angles with FLASH (fast low angle shot magnetic resonance imaging) sequence and a high-resolution structural image with MP-RAGE (Magnetization Prepared - RApid Gradient Echo) were acquired. T1 relaxation times of the entire brain were mapped by using the region of interest (ROI) based method on 134 brain areas in young and old populations. RESULTS T1 prolongation was observed in various subcortical (bilateral hippocampus, caudate and thalamus) and cortical brain structures (bilateral precentral gyrus, bilateral middle frontal gyrus, bilateral supplementary motor area (SMA), left middle occipital gyrus, bilateral postcentral gyrus and bilateral Heschl's gyrus) as well as cerebellar regions (GM regions of cerebellum: bilateral cerebellum III, cerebellum IV V, cerebellum X, cerebellar vermis u 4 5, cerebellar vermis u 9 and WM cerebellar regions: left cerebellum IX, bilateral cerebellum X and cerebellar vermis u 4 5). DISCUSSION T1 mapping provides a practical quantitative MRI (qMRI) methodology for studying the tissue characteristics in healthy aging. T1 values are significantly increased in the aging group among half of the studied ROIs (57 ROIs out of 134).
Collapse
Affiliation(s)
- Hayriye Aktaş Dinçer
- Department of Biomedical Engineering, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Didem Gökçay
- Department of Medical Informatics, Informatics Institute, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
32
|
Huffman N, Shih CH, Cotton AS, Lewis TJ, Grider S, Wall JT, Wang X, Xie H. Association of age of adverse childhood experiences with thalamic volumes and post-traumatic stress disorder in adulthood. Front Behav Neurosci 2023; 17:1147686. [PMID: 37283956 PMCID: PMC10239841 DOI: 10.3389/fnbeh.2023.1147686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Background Adverse childhood experiences (ACEs) have been linked to brain development and mental disorders, however, the impact of the age of occurrence of ACEs on thalamic volume and post-traumatic stress disorder (PTSD) after adult trauma remains unclear. This study assessed associations between ACEs at different ages to thalamic volumes and PTSD development following acute adult trauma. Methods Seventy-nine adult trauma survivors were recruited immediately after trauma. Within 2 weeks of the traumatic event, participants completed the PTSD Checklist (PCL) to assess PTSD symptoms, the Childhood Trauma Questionnaire (CTQ) and Childhood Age Range Stress Scale (CARSS) to evaluate ACEs and perceived stress level at preschool (<6 years old) and school (6-13 years old) ages, and structural magnetic resonance imaging (sMRI) to measure thalamic volumes. Participants were divided into three groups: those who experienced no childhood trauma or stress (non-ACEs), those who experienced childhood trauma and stress onset at preschool ages (Presch-ACEs), and those who experienced childhood trauma and stress onset at school ages (Sch-ACEs). At 3 months, participants underwent PTSD symptom evaluation using the Clinician Administered PTSD Scale (CAPS). Results Adult trauma survivors in the Presch-ACEs group had higher CTQ and CAPS scores. In addition, survivors in the Presch-ACEs group had smaller thalamic volume compared to survivors in the non-ACEs and Sch-ACEs groups. Furthermore, smaller thalamic volume moderated a positive association between post-trauma 2-week PCL and subsequent 3-month CAPS scores. Discussion Earlier occurrence of ACEs was associated with smaller thalamic volume, which appears to moderate a positive association between early posttraumatic stress symptom severity and PTSD development after adult trauma. This raises the possibility that early occurrence of ACEs may impact thalamic structure, specifically a reduction in thalamic volume, and that smaller thalamic volume may contribute to susceptibility to PTSD development after adult trauma.
Collapse
Affiliation(s)
- Nickelas Huffman
- Department of Emergency Medicine, University of Toledo, Toledo, OH, United States
| | - Chia-Hao Shih
- Department of Emergency Medicine, University of Toledo, Toledo, OH, United States
| | - Andrew S. Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, United States
| | - Terrence J. Lewis
- Department of Radiology, University of Toledo, Toledo, OH, United States
| | - Stephen Grider
- Department of Emergency Medicine, University of Toledo, Toledo, OH, United States
| | - John T. Wall
- Department of Neurosciences, University of Toledo, Toledo, OH, United States
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, United States
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
33
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
34
|
Kalantar-Hormozi H, Patel R, Dai A, Ziolkowski J, Dong HM, Holmes A, Raznahan A, Devenyi GA, Chakravarty MM. A cross-sectional and longitudinal study of human brain development: The integration of cortical thickness, surface area, gyrification index, and cortical curvature into a unified analytical framework. Neuroimage 2023; 268:119885. [PMID: 36657692 DOI: 10.1016/j.neuroimage.2023.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Brain maturation studies typically examine relationships linking a single morphometric feature with cognition, behavior, age, or other demographic characteristics. However, the coordinated spatiotemporal arrangement of morphological features across development and their associations with behavior are unclear. Here, we examine covariation across multiple cortical features (cortical thickness [CT], surface area [SA], local gyrification index [GI], and mean curvature [MC]) using magnetic resonance images from the NIMH developmental cohort (ages 5-25). Neuroanatomical covariance was examined using non-negative matrix factorization (NMF), which decomposes covariance resulting in a parts-based representation. Cross-sectionally, we identified six components of covariation which demonstrate differential contributions of CT, GI, and SA in hetero- vs. unimodal areas. Using this technique to examine covariance in rates of change to identify longitudinal sources of covariance highlighted preserved SA in unimodal areas and changes in CT and GI in heteromodal areas. Using behavioral partial least squares (PLS), we identified a single latent variable (LV) that recapitulated patterns of reduced CT, GI, and SA related to older age, with limited contributions of IQ and SES. Longitudinally, PLS revealed three LVs that demonstrated a nuanced developmental pattern that highlighted a higher rate of maturational change in SA and CT in higher IQ and SES females. Finally, we situated the components in the changing architecture of cortical gradients. This novel characterization of brain maturation provides an important understanding of the interdependencies between morphological measures, their coordinated development, and their relationship to biological sex, cognitive ability, and the resources of the local environment.
Collapse
Affiliation(s)
- Hadis Kalantar-Hormozi
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada.
| | - Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Alyssa Dai
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada
| | - Justine Ziolkowski
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Department of Psychology, Yale University, New Haven, USA
| | - Avram Holmes
- Department of Psychology, Yale University, New Haven, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Li H, Zheng S, Lin Y, Yu T, Xie Y, Jiang C, Liu X, Qian X, Yin Z. Safety, Pharmacokinetic and Clinical Activity of Intrathecal Chemotherapy With Pemetrexed via the Ommaya Reservoir for Leptomeningeal Metastases From Lung Adenocarcinoma: A Prospective Phase I Study. Clin Lung Cancer 2023; 24:e94-e104. [PMID: 36588048 DOI: 10.1016/j.cllc.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Leptomeningeal metastasis (LM) is a highly fatal and debilitating complication of lung adenocarcinoma (LUAD) with limited therapeutic options. This study aimed to evaluate the efficacy and toxicities of intrathecal chemotherapy (IC) with pemetrexed via Ommaya reservoir in LUAD with refractory LM. METHODS In this prospective, single-arm, phase I trial (ChiCTR2000028936), LUAD-LM patients who had progressed after at least two prior treatments were recruited. Pemetrexed from 30 mg to 50 mg was administered on Days 1 and 8 every 3 weeks via Ommaya reservoir. Serial samples of cerebrospinal fluid (CSF) and plasma were obtained for pharmacokinetic studies. The primary endpoint was progression-free survival (PFS), and the secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and therapeutic toxicities. RESULTS Twenty-three patients were enrolled and analyzed, revealing an ORR of 43.5% (95% CI, 23.2%-63.8%) and DCR of 82.6% (95% CI, 61.2%-95.0%). The median PFS and OS were 6.3 and 9.5 months, respectively. Dose-limiting toxicity was only observed in 2 patients (2/23, 8.7%), and 30 mg pemetrexed was considered as the recommended dose for IC. Pharmacokinetic analysis showed that using Ommaya reservoirs, higher pemetrexed concentrations and prolonged half-lives were achieved in the CSF compared with lumbar puncture (LP). CONCLUSIONS Intrathecal pemetrexed at a dose of 30 mg via Ommaya reservoirs on Days 1 and 8 every 21 days achieved promising disease control and satisfactory survival with moderate toxicities in resistant LUAD-LM, providing a feasible and effective option, especially for the patients who cannot tolerate LP.
Collapse
Affiliation(s)
- Huiying Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengnan Zheng
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yongjuan Lin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Tingting Yu
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yu Xie
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Cheng Jiang
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiangyu Liu
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhenyu Yin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Approximating subject-specific brain injury models via scaling based on head-brain morphological relationships. Biomech Model Mechanobiol 2023; 22:159-175. [PMID: 36201071 DOI: 10.1007/s10237-022-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations.
Collapse
|
37
|
Sungura R, Shirima G, Spitsbergen J, Mpolya E, Vianney JM. A case-control study on the driving factors of childhood brain volume loss: What pediatricians must explore. PLoS One 2022; 17:e0276433. [PMID: 36584214 PMCID: PMC9803277 DOI: 10.1371/journal.pone.0276433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The brain volume loss also known as brain atrophy is increasingly observed among children in the course of performing neuroimaging using CT scan and MRI brains. While severe forms of brain volume loss are frequently associated with neurocognitive changes due to effects on thought processing speed, reasoning and memory of children that eventually alter their general personality, most clinicians embark themselves in managing the neurological manifestations of brain atrophy in childhood and less is known regarding the offending factors responsible for developing pre-senile brain atrophy. It was therefore the goal of this study to explore the factors that drive the occurrence of childhood brain volume under the guidance of brain CT scan quantitative evaluation. METHODS This study was a case-control study involving 168 subjects with brain atrophy who were compared with 168 age and gender matched control subjects with normal brains on CT scan under the age of 18 years. All the children with brain CT scan were subjected to an intense review of their birth and medical history including laboratory investigation reports. RESULTS Results showed significant and influential risk factors for brain atrophy in varying trends among children including age between 14-17(OR = 1.1), male gender (OR = 1.9), birth outside facility (OR = 0.99), immaturity (OR = 1.04), malnutrition (OR = 0.97), head trauma (OR = 1.02), maternal alcoholism (OR = 1.0), antiepileptic drugs & convulsive disorders (OR = 1.0), radiation injury (OR = 1.06), space occupying lesions and ICP (OR = 1.01) and birth injury/asphyxia (OR = 1.02). CONCLUSIONS Pathological reduction of brain volume in childhood exhibits a steady trend with the increase in pediatric age, with space occupying lesions & intracranial pressure being the most profound causes of brain atrophy.
Collapse
Affiliation(s)
- Richard Sungura
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
- * E-mail:
| | - Gabriel Shirima
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| | - John Spitsbergen
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, United States of America
| | - Emmanuel Mpolya
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| | - John-Mary Vianney
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
38
|
Deery HA, Di Paolo R, Moran C, Egan GF, Jamadar SD. Lower brain glucose metabolism in normal ageing is predominantly frontal and temporal: A systematic review and pooled effect size and activation likelihood estimates meta-analyses. Hum Brain Mapp 2022; 44:1251-1277. [PMID: 36269148 PMCID: PMC9875940 DOI: 10.1002/hbm.26119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023] Open
Abstract
This review provides a qualitative and quantitative analysis of cerebral glucose metabolism in ageing. We undertook a systematic literature review followed by pooled effect size and activation likelihood estimates (ALE) meta-analyses. Studies were retrieved from PubMed following the PRISMA guidelines. After reviewing 635 records, 21 studies with 22 independent samples (n = 911 participants) were included in the pooled effect size analyses. Eight studies with eleven separate samples (n = 713 participants) were included in the ALE analyses. Pooled effect sizes showed significantly lower cerebral metabolic rates of glucose for older versus younger adults for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes. Among the sub-cortical structures, the caudate showed a lower metabolic rate among older adults. In sub-group analyses controlling for changes in brain volume or partial volume effects, the lower glucose metabolism among older adults in the frontal lobe remained significant, whereas confidence intervals crossed zero for the other lobes and structures. The ALE identified nine clusters of lower glucose metabolism among older adults, ranging from 200 to 2640 mm3 . The two largest clusters were in the left and right inferior frontal and superior temporal gyri and the insula. Clusters were also found in the inferior temporal junction, the anterior cingulate and caudate. Taken together, the results are consistent with research showing less efficient glucose metabolism in the ageing brain. The findings are discussed in the context of theories of cognitive ageing and are compared to those found in neurodegenerative disease.
Collapse
Affiliation(s)
- Hamish A. Deery
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Robert Di Paolo
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical SchoolMonash UniversityFrankstonVictoriaAustralia,Department of Geriatric MedicinePeninsula HealthFrankstonVictoriaAustralia
| | - Gary F. Egan
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia,Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneAustralia
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia,Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneAustralia
| |
Collapse
|
39
|
Marzi C, d'Ambrosio A, Diciotti S, Bisecco A, Altieri M, Filippi M, Rocca MA, Storelli L, Pantano P, Tommasin S, Cortese R, De Stefano N, Tedeschi G, Gallo A. Prediction of the information processing speed performance in multiple sclerosis using a machine learning approach in a large multicenter magnetic resonance imaging data set. Hum Brain Mapp 2022; 44:186-202. [PMID: 36255155 PMCID: PMC9783441 DOI: 10.1002/hbm.26106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/02/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS.
Collapse
Affiliation(s)
- Chiara Marzi
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly,Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEIAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Alessandro d'Ambrosio
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEIAlma Mater Studiorum – University of BolognaBolognaItaly,Alma Mater Research Institute for Human‐Centered Artificial IntelligenceUniversity of BolognaBolognaItaly
| | - Alvino Bisecco
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Manuela Altieri
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly,Department of PsychologyUniversity of Campania “Luigi Vanvitelli”NapoliItaly
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly,Neurology and Neurophysiology UnitVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly,Neurology and Neurophysiology UnitVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Patrizia Pantano
- Department of Human NeurosciencesSapienza University of RomeRomeItaly,IRCCS NeuromedPozzilliItaly
| | - Silvia Tommasin
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Rosa Cortese
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Nicola De Stefano
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Gioacchino Tedeschi
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Antonio Gallo
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | | |
Collapse
|
40
|
Wu Y, Ridwan AR, Niaz MR, Qi X, Zhang S, Alzheimer's Disease Neuroimaging Initiative, Bennett DA, Arfanakis K. Development of high quality T 1-weighted and diffusion tensor templates of the older adult brain in a common space. Neuroimage 2022; 260:119417. [PMID: 35793748 PMCID: PMC9437946 DOI: 10.1016/j.neuroimage.2022.119417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 01/23/2023] Open
Abstract
High-quality T1-weighted (T1w) and diffusion tensor imaging (DTI) brain templates that are representative of the individuals under study enhance the accuracy of template-based neuroimaging investigations, and when they are also located in a common space they facilitate optimal integration of information on brain morphometry and diffusion characteristics. However, such multimodal templates have not been constructed for the brain of older adults. The purpose of this work was threefold: (A) to introduce an iterative method for construction of multimodal T1w and DTI templates that aims at maximizing the quality of each template separately as well as the spatial matching between templates, (B) to use this method to develop T1w and DTI templates of the older adult brain in a common space, and (C) to evaluate the performance of the method across iterations and compare it to the performance of state-of-the-art approaches based on multichannel registration. It was demonstrated that more iterations of the proposed method enhanced the characteristics and spatial matching of the resulting T1w and DTI templates. The templates of the older adult brain generated by the final iteration of the proposed method provided better delineation of brain structures, higher discriminability between tissues, and higher image sharpness near the cortex compared to templates generated with approaches employing multichannel registration. In addition, the spatial matching between the T1w and DTI templates constructed by the proposed method approximated the template alignment achieved with methods employing multichannel registration. Finally, when using the templates generated by the proposed method as references for spatial normalization of older adult T1w and DTI data, both the intra-modality inter-subject normalization precision and the inter-modality spatial matching were higher in most metrics than those achieved with templates constructed with other methods. Overall, the present work brought new insights into multimodal template construction, generated much-needed high quality T1w and DTI templates of the older adult brain in a common space, and conducted a thorough, quantitative evaluation of available multimodal template construction methods.
Collapse
Affiliation(s)
- Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Xiaoxiao Qi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Shengwei Zhang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois USA
| | - Alzheimer's Disease Neuroimaging Initiative
- A portion of the data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois USA.
| |
Collapse
|
41
|
Fischer C, Schaub S, Büttner K, Hartmann K, Schmidt MJ. Dilated perivascular spaces can present incidental CSF-isointense foci within the ventral forebrain of dogs and cats in transverse MR images. Front Vet Sci 2022; 9:1002836. [PMID: 36299637 PMCID: PMC9590410 DOI: 10.3389/fvets.2022.1002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Virchow-Robin-Spaces (VRS) are cerebrospinal fluid (CSF)-containing perivascular spaces encompassing brain vessels while coursing through the parenchyma. VRS can enlarge and become visible in magnetic resonance imaging (MRI). While dilatated VRS are mostly incidental findings, they were associated with degenerative brain disease in humans. This study aimed to evaluate their occurrence and MRI morphology within the ventral forebrain of structurally normal canine and feline brains and physiological cerebrospinal fluid analysis. Sample Retro- and prospective, observational study reviewing medical records of client-owned dogs and cats which underwent MRI brain scans for unrelated reasons between 2011 and 2021. We comprised studies with various magnetic field strengths (1 Tesla/3 Tesla). Out of 2500 brain scans, three hundred thirty-five patients (293 dogs, 42 cats) presented with absent intracranial pathology and physiological CSF analysis and were included. Procedure The ventral forebrain of the included animals was assessed for bi- or unilateral CSF-isointense foci in the transverse plane. Statistical correlations were evaluated between dilated VRS presence, field strength, age, gender, weight, and cranium conformation. Additionally, a post-mortem histopathologic analysis of one dog and one cat showing dilated VRS on MRI was performed to confirm perforating arteries in the gray matter of the ventral forebrain. Results 57% of patients presented dilated VRS (N = 191: 170 dogs, 21 cats). 43% did not display dilated VRS (control group; N = 144: 123 dogs, 21 cats). A significant relation between increased magnetic field strength and detection of dilated VRS was observed in dogs; there was a 2.4 increase (p = 0.0001) in detection using 3 Tesla vs. 1 Tesla. There was a 2.4-fold increase in dilated VRS occurrence in male dogs compared to female dogs. Detection also increased with the rise of body weight. We detected no statistically significant difference between dilated VRS and the control group in age, species or cranium conformation. Conclusion and Clinical Relevance Dilated VRS can be seen within the ventral forebrain at the level of the rostral commissure on transverse MR images as symmetrical or unilateral, dot-like, CSF-isointense areas. Understanding their signal intensity features and localization prevents misinterpretation and helps differentiate them from various pathological conditions.
Collapse
Affiliation(s)
- Carolin Fischer
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sebastian Schaub
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Büttner
- Department for Biomathematics and Data Processing, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Martin Jürgen Schmidt
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
42
|
Wu G, Li Z, Li J, Li X, Wang M, Zhang J, Liu G, Zhang P. A neglected neurodegenerative disease: Adult-onset globoid cell leukodystrophy. Front Neurosci 2022; 16:998275. [PMID: 36161165 PMCID: PMC9490374 DOI: 10.3389/fnins.2022.998275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease (KD) is a rare neurodegenerative disease, and adult-onset GLD is more even neglected by clinicians. This review provides detailed discussions of the serum enzymes, genes, clinical manifestations, neuroimaging features, and therapies of GLD, with particular emphasis on the characteristics of adult-onset GLD, in an attempt to provide clinicians with in-depth insights into this disease.
Collapse
Affiliation(s)
- Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenhua Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Manxia Wang,
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
43
|
Yokota S, Takeuchi H, Asano K, Asano M, Sassa Y, Taki Y, Kawashima R. Sex interaction of white matter microstructure and verbal IQ in corpus callosum in typically developing children and adolescents. Brain Dev 2022; 44:531-539. [PMID: 35489976 DOI: 10.1016/j.braindev.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Childhood is an extremely important time for neural development that has a critical role in human intelligence. Efficient information processing is crucial for higher intelligence, so the intra- or inter-hemispheric interaction is vital. However, the relationship between neuroanatomical connections and intelligence in typically developing children, as well as sex differences in this relationship, remains unknown. METHODS Participants were 253 typically developing children (121 boys and 132 girls) aged 5-18. We acquired diffusion tensor imaging data and intelligence using an age-appropriate version of the IQ test; Wechsler Intelligence Scale for Children (WISC) or Wechsler Adult Intelligence Scale (WAIS). We conducted whole-brain multiple regression analysis to investigate the association between fractional anisotropy (FA), which reflects white matter microstructural properties, and each composite score of IQ test (full-scale IQ, performance IQ, and verbal IQ). RESULTS FA was positively correlated with full-scale IQ in bilateral inferior occipitofrontal fasciculus, genu, and splenium of corpus callosum (CC). FA in the right superior longitudinal fasciculus, bilateral inferior longitudinal fasciculus, and splenium of CC were also positively correlated with performance IQ. Furthermore, we found significant sex interaction between FA in the CC and verbal IQ. FA was positively correlated in boys, and negatively correlated in girls. CONCLUSION Results suggest that efficient anatomical connectivity between parietal and frontal regions is crucial for children's intelligence. Moreover, inter-hemispheric connections play a critical role in verbal abilities in boys.
Collapse
Affiliation(s)
- Susumu Yokota
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Michiko Asano
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Smart Ageing International Research Centre, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
44
|
Sagberg LM, Fyllingen EH, Hansen TI, Strand PS, Håvik AL, Sundstrøm T, Corell A, Jakola AS, Salvesen Ø, Solheim O. Is intracranial volume a risk factor for IDH-mutant low-grade glioma? A case-control study. J Neurooncol 2022; 160:101-106. [PMID: 36029398 PMCID: PMC9622551 DOI: 10.1007/s11060-022-04120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose Risk of cancer has been associated with body or organ size in several studies. We sought to investigate the relationship between intracranial volume (ICV) (as a proxy for lifetime maximum brain size) and risk of IDH-mutant low-grade glioma. Methods In a multicenter case–control study based on population-based data, we included 154 patients with IDH-mutant WHO grade 2 glioma and 995 healthy controls. ICV in both groups was calculated from 3D MRI brain scans using an automated reverse brain mask method, and then compared using a binomial logistic regression model. Results We found a non-linear association between ICV and risk of glioma with increasing risk above and below a threshold of 1394 ml (p < 0.001). After adjusting for ICV, sex was not a risk factor for glioma. Conclusion Intracranial volume may be a risk factor for IDH-mutant low-grade glioma, but the relationship seems to be non-linear with increased risk both above and below a threshold in intracranial volume.
Collapse
Affiliation(s)
- Lisa Millgård Sagberg
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. .,Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Even Hovig Fyllingen
- Department of Radiology and Nuclear Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ivar Hansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Per Sveino Strand
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aril Løge Håvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Molde Hospital, Molde, Norway
| | - Terje Sundstrøm
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Alba Corell
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
45
|
Kheirkhah K, Moradi V, Kavianpour I, Farahani S. Comparison of Maturity in Auditory-Visual Multisensory Processes With Sound-Induced Flash Illusion Test in Children and Adults. Cureus 2022; 14:e27631. [PMID: 36072200 PMCID: PMC9437373 DOI: 10.7759/cureus.27631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
|
46
|
Ota Y, Shah G. Imaging of Normal Brain Aging. Neuroimaging Clin N Am 2022; 32:683-698. [PMID: 35843669 DOI: 10.1016/j.nic.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding normal brain aging physiology is essential to improving healthy human longevity, differentiation, and early detection of diseases, such as neurodegenerative diseases, which are an enormous social and economic burden. Functional decline, such as reduced physical activity and cognitive abilities, is typically associated with brain aging. The authors summarize the aging brain mechanism and effects of aging on the brain observed by brain structural MR imaging and advanced neuroimaging techniques, such as diffusion tensor imaging and functional MR imaging.
Collapse
Affiliation(s)
- Yoshiaki Ota
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2, Ann Arbor, MI 48109, USA
| | - Gaurang Shah
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Djukic M, Lange P, Erbguth F, Nau R. Spatial and temporal variation of routine parameters: pitfalls in the cerebrospinal fluid analysis in central nervous system infections. J Neuroinflammation 2022; 19:174. [PMID: 35794632 PMCID: PMC9258096 DOI: 10.1186/s12974-022-02538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The cerebrospinal fluid (CSF) space is convoluted. CSF flow oscillates with a net flow from the ventricles towards the cerebral and spinal subarachnoid space. This flow is influenced by heartbeats, breath, head or body movements as well as the activity of the ciliated epithelium of the plexus and ventricular ependyma. The shape of the CSF space and the CSF flow preclude rapid equilibration of cells, proteins and smaller compounds between the different parts of the compartment. In this review including reinterpretation of previously published data we illustrate, how anatomical and (patho)physiological conditions can influence routine CSF analysis. Equilibration of the components of the CSF depends on the size of the molecule or particle, e.g., lactate is distributed in the CSF more homogeneously than proteins or cells. The concentrations of blood-derived compounds usually increase from the ventricles to the lumbar CSF space, whereas the concentrations of brain-derived compounds usually decrease. Under special conditions, in particular when distribution is impaired, the rostro-caudal gradient of blood-derived compounds can be reversed. In the last century, several researchers attempted to define typical CSF findings for the diagnosis of several inflammatory diseases based on routine parameters. Because of the high spatial and temporal variations, findings considered typical of certain CNS diseases often are absent in parts of or even in the entire CSF compartment. In CNS infections, identification of the pathogen by culture, antigen detection or molecular methods is essential for diagnosis.
Collapse
|
48
|
Effects of aging on functional connectivity in a neurodegenerative risk cohort: resting state versus task measurement using near-infrared spectroscopy. Sci Rep 2022; 12:11262. [PMID: 35788629 PMCID: PMC9253312 DOI: 10.1038/s41598-022-13326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Changes in functional brain organization are considered to be particularly sensitive to age-related effects and may precede structural cognitive decline. Recent research focuses on aging processes determined by resting state (RS) functional connectivity (FC), but little is known about differences in FC during RS and cognitive task conditions in elderly participants. The purpose of this study is to compare FC within and between the cognitive control (CCN) and dorsal attention network (DAN) at RS and during a cognitive task using functional near-infrared spectroscopy (fNIRS). In a matched, neurodegenerative high-risk cohort comprising early (n = 98; 50–65 y) and late (n = 98; 65–85 y) elder subjects, FC was measured at RS and during performance of the Trail Making Test (TMT) via fNIRS. Both, under RS and task conditions our results revealed a main effect for age, characterized by reduced FC for late elder subjects within the left inferior frontal gyrus. During performance of the TMT, negative correlations of age and FC were confirmed in various regions of the CCN and DAN. For the whole sample, FC of within-region connections was elevated, while FC between regions was decreased at RS. The results confirm a reorganization of functional brain connectivity with increasing age and cognitive demands.
Collapse
|
49
|
Chi CH, Yang FC, Chang YL. Age-related volumetric alterations in hippocampal subiculum region are associated with reduced retention of the “when” memory component. Brain Cogn 2022; 160:105877. [DOI: 10.1016/j.bandc.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
50
|
Ni Y, Loftus CT, Szpiro AA, Young MT, Hazlehurst MF, Murphy LE, Tylavsky FA, Mason WA, LeWinn KZ, Sathyanarayana S, Barrett ES, Bush NR, Karr CJ. Associations of Pre- and Postnatal Air Pollution Exposures with Child Behavioral Problems and Cognitive Performance: A U.S. Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67008. [PMID: 35737514 PMCID: PMC9222764 DOI: 10.1289/ehp10248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Population studies support the adverse associations of air pollution exposures with child behavioral functioning and cognitive performance, but few studies have used spatiotemporally resolved pollutant assessments. OBJECTIVES We investigated these associations using more refined exposure assessments in 1,967 mother-child dyads from three U.S. pregnancy cohorts in six cities in the ECHO-PATHWAYS Consortium. METHODS Pre- and postnatal nitrogen dioxide (NO2) and particulate matter (PM) ≤2.5μm in aerodynamic diameter (PM2.5) exposures were derived from an advanced spatiotemporal model. Child behavior was reported as Total Problems raw score using the Child Behavior Checklist at age 4-6 y. Child cognition was assessed using cohort-specific cognitive performance scales and quantified as the Full-Scale Intelligence Quotient (IQ). We fitted multivariate linear regression models that were adjusted for sociodemographic, behavioral, and psychological factors to estimate associations per 2-unit increase in pollutant in each exposure window and examined modification by child sex. Identified critical windows were further verified by distributed lag models (DLMs). RESULTS Mean NO2 and PM2.5 ranged from 8.4 to 9.0 ppb and 8.4 to 9.1 μg/m3, respectively, across pre- and postnatal windows. Average child Total Problems score and IQ were 22.7 [standard deviation (SD): 18.5] and 102.6 (SD: 15.3), respectively. Children with higher prenatal NO2 exposures were likely to have more behavioral problems [β: 1.24; 95% confidence interval (CI): 0.39, 2.08; per 2 ppb NO2], particularly NO2 in the first and second trimester. Each 2-μg/m3 increase in PM2.5 at age 2-4 y was associated with a 3.59 unit (95% CI: 0.35, 6.84) higher Total Problems score and a 2.63 point (95% CI: -5.08, -0.17) lower IQ. The associations between PM2.5 and Total Problems score were generally stronger in girls. Most predefined windows identified were not confirmed by DLMs. DISCUSSION Our study extends earlier findings that have raised concerns about impaired behavioral functioning and cognitive performance in children exposed to NO2 and PM2.5 in utero and in early life. https://doi.org/10.1289/EHP10248.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Michael T. Young
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - W. Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|