1
|
Ferro A, Bottosso M, Dieci MV, Scagliori E, Miglietta F, Aldegheri V, Bonanno L, Caumo F, Guarneri V, Griguolo G, Pasello G. Clinical applications of radiomics and deep learning in breast and lung cancer: A narrative literature review on current evidence and future perspectives. Crit Rev Oncol Hematol 2024; 203:104479. [PMID: 39151838 DOI: 10.1016/j.critrevonc.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024] Open
Abstract
Radiomics, analysing quantitative features from medical imaging, has rapidly become an emerging field in translational oncology. Radiomics has been investigated in several neoplastic malignancies as it might allow for a non-invasive tumour characterization and for the identification of predictive and prognostic biomarkers. Over the last few years, evidence has been accumulating regarding potential clinical applications of machine learning in many crucial moments of cancer patients' history. However, the incorporation of radiomics in clinical decision-making process is still limited by low data reproducibility and study variability. Moreover, the need for prospective validations and standardizations is emerging. In this narrative review, we summarize current evidence regarding radiomic applications in high-incidence cancers (breast and lung) for screening, diagnosis, staging, treatment choice, response, and clinical outcome evaluation. We also discuss pro and cons of the radiomic approach, suggesting possible solutions to critical issues which might invalidate radiomics studies and propose future perspectives.
Collapse
Affiliation(s)
- Alessandra Ferro
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Michele Bottosso
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Maria Vittoria Dieci
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy.
| | - Elena Scagliori
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Federica Miglietta
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Vittoria Aldegheri
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Laura Bonanno
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Francesca Caumo
- Unit of Breast Radiology, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Valentina Guarneri
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Gaia Griguolo
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Giulia Pasello
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| |
Collapse
|
2
|
McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH, Dercle L. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol 2024; 34:5829-5841. [PMID: 38355986 DOI: 10.1007/s00330-024-10637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.
Collapse
Affiliation(s)
- Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Delphine L Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
3
|
Zheng J, Xu S, Wang G, Shi Y. Applications of CT-based radiomics for the prediction of immune checkpoint markers and immunotherapeutic outcomes in non-small cell lung cancer. Front Immunol 2024; 15:1434171. [PMID: 39238640 PMCID: PMC11374640 DOI: 10.3389/fimmu.2024.1434171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, there has been significant research interest in the field of immunotherapy for non-small cell lung cancer (NSCLC) within the academic community. Given the observed variations in individual responses, despite similarities in histopathologic type, immunohistochemical index, TNM stage, or mutation status, the identification of a reliable biomarker for early prediction of therapeutic responses is of utmost importance. Conventional medical imaging techniques primarily focus on macroscopic tumor monitoring, which may no longer adequately fulfill the requirements of clinical diagnosis and treatment. CT (computerized tomography) or PEF/CT-based radiomics has the potential to investigate the molecular-level biological attributes of tumors, such as PD-1/PD-L1 expression and tumor mutation burden, which offers a novel approach to assess the effectiveness of immunotherapy and forecast patient prognosis. The utilization of cutting-edge radiological imaging techniques, including radiomics, PET/CT, machine learning, and artificial intelligence, demonstrates significant potential in predicting diagnosis, treatment response, immunosuppressive characteristics, and immune-related adverse events. The current review highlights that CT scan-based radiomics is a reliable and feasible way to predict the benefits of immunotherapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| | - Shuang Xu
- Department of Radiology, Redcliffe Hospital, The University of Queensland, Redcliffe, QLD, Australia
| | - Guoyu Wang
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| | - Yiming Shi
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Erasmus LT, Strange CD, Ahuja J, Agrawal R, Shroff GS, Marom EM, Truong MT. Imaging of Lung Cancer Staging: TNM 9 Updates. Semin Ultrasound CT MR 2024:S0887-2171(24)00045-3. [PMID: 39069273 DOI: 10.1053/j.sult.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Imaging plays a key role in clinical staging of lung cancer and guiding therapy. A thorough understanding of the staging system including the nomenclature and updates is necessary to tailor treatment plans and optimize patient care. The 9th edition of the Tumor, Node, Metastasis staging system for lung cancer has no changes for T classification and subdivides N2 and M1c categories. In nodal staging, N2 splits into N2a, ipsilateral mediastinal single station involvement and N2b, ipsilateral mediastinal multiple stations involvement. In the staging of multiple extrathoracic metastases, M1c splits into M1c1, multiple extrathoracic metastases in one organ system and M1c2, multiple extrathoracic metastases in multiple organ systems. Awareness of the proposed changes in TNM-9 staging classification is essential to provide methodical and accurate imaging interpretation.
Collapse
Affiliation(s)
- Lauren T Erasmus
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX
| | - Chad D Strange
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jitesh Ahuja
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rishi Agrawal
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Girish S Shroff
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Edith M Marom
- Department of Radiology, Chaim Sheba Medical Center, Tel Aviv, Israel
| | - Mylene T Truong
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
5
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Wehlte L, Walter J, Daisenberger L, Kuhnle F, Ingenerf M, Schmid-Tannwald C, Brendel M, Kauffmann-Guerrero D, Heinzerling L, Tufman A, Pfluger T, Völter F. The Association between the Body Mass Index, Chronic Obstructive Pulmonary Disease and SUV of the Non-Tumorous Lung in the Pretreatment [ 18F]FDG-PET/CT of Patients with Lung Cancer. Diagnostics (Basel) 2024; 14:1139. [PMID: 38893665 PMCID: PMC11171792 DOI: 10.3390/diagnostics14111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background: A debate persists on the prognostic value of the pre-therapeutic standardized uptake value (SUV) of non-tumorous lung tissue for the risk assessment of therapy-related pneumonitis, with most studies lacking significant correlation. However, the influence of patient comorbidities on the pre-therapeutic lung SUV has not yet been systematically evaluated. Thus, we aimed to elucidate the association between comorbidities, biological variables and lung SUVs in pre-therapeutic [18F]FDG-PET/CT. Methods: In this retrospective study, the pre-therapeutic SUV in [18F]FDG-PET/CT was measured in non-tumorous areas of both lobes of the lung. SUVMEAN, SUVMAX and SUV95 were compared to a multitude of patient characteristics and comorbidities with Spearman's correlation analysis, followed by a Bonferroni correction and multilinear regression. Results: In total, 240 patients with lung cancer were analyzed. An elevated BMI was significantly associated with increased SUVMAX (β = 0.037, p < 0.001), SUVMEAN (β = 0.017, p < 0.001) and SUV95 (β = 0.028, p < 0.001). Patients with chronic obstructive pulmonary disease (COPD) showed a significantly decreased SUVMAX (β = -0.156, p = 0.001), SUVMEAN (β = -0.107, p < 0.001) and SUV95 (β = -0.134, p < 0.001). Multiple other comorbidities did not show a significant correlation with the SUV of the non-tumorous lung. Conclusions: Failure to consider the influence of BMI and COPD on the pre-therapeutic SUV measurements may lead to an erroneous interpretation of the pre-therapeutic SUV and subsequent treatment decisions in patients with lung cancer.
Collapse
Affiliation(s)
- Lukas Wehlte
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
| | - Julia Walter
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lea Daisenberger
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
| | - Felix Kuhnle
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | | | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
- Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen—European Metropolitan Region Nürnberg, CCC Alliance WERA, 91054 Erlangen, Germany
| | - Amanda Tufman
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| | - Friederike Völter
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| |
Collapse
|
7
|
McGale JP, Howell HJ, Beddok A, Tordjman M, Sun R, Chen D, Wu AM, Assi T, Ammari S, Dercle L. Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy. Pharmaceuticals (Basel) 2024; 17:210. [PMID: 38399425 PMCID: PMC10892847 DOI: 10.3390/ph17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.
Collapse
Affiliation(s)
- Jeremy P. McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Harrison J. Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
| | - Mickael Tordjman
- Department of Radiology, Hôtel Dieu Hospital, APHP, 75014 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Delphine Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Anna M. Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Tarek Assi
- International Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| |
Collapse
|
8
|
Cellina M, De Padova G, Caldarelli N, Libri D, Cè M, Martinenghi C, Alì M, Papa S, Carrafiello G. Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy. Crit Rev Oncog 2024; 29:1-13. [PMID: 38505877 DOI: 10.1615/critrevoncog.2023050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lung cancer remains a global health challenge, leading to substantial morbidity and mortality. While prevention and early detection strategies have improved, the need for precise diagnosis, prognosis, and treatment remains crucial. In this comprehensive review article, we explore the role of artificial intelligence (AI) in reshaping the management of lung cancer. AI may have different potential applications in lung cancer characterization and outcome prediction. Manual segmentation is a time-consuming task, with high inter-observer variability, that can be replaced by AI-based approaches, including deep learning models such as U-Net, BCDU-Net, and others, to quantify lung nodules and cancers objectively and to extract radiomics features for the characterization of the tissue. AI models have also demonstrated their ability to predict treatment responses, such as immunotherapy and targeted therapy, by integrating radiomic features with clinical data. Additionally, AI-based prognostic models have been developed to identify patients at higher risk and personalize treatment strategies. In conclusion, this review article provides a comprehensive overview of the current state of AI applications in lung cancer management, spanning from segmentation and virtual biopsy to outcome prediction. The evolving role of AI in improving the precision and effectiveness of lung cancer diagnosis and treatment underscores its potential to significantly impact clinical practice and patient outcomes.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Giuseppe De Padova
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Nazarena Caldarelli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Libri
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, Ospedale San Raffaele, Via Olgettina, 60 - 20132 Milan, Italy
| | - Marco Alì
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Sergio Papa
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
9
|
Roisman LC, Kian W, Anoze A, Fuchs V, Spector M, Steiner R, Kassel L, Rechnitzer G, Fried I, Peled N, Bogot NR. Radiological artificial intelligence - predicting personalized immunotherapy outcomes in lung cancer. NPJ Precis Oncol 2023; 7:125. [PMID: 37990050 PMCID: PMC10663598 DOI: 10.1038/s41698-023-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Personalized medicine has revolutionized approaches to treatment in the field of lung cancer by enabling therapies to be specific to each patient. However, physicians encounter an immense number of challenges in providing the optimal treatment regimen for the individual given the sheer complexity of clinical aspects such as tumor molecular profile, tumor microenvironment, expected adverse events, acquired or inherent resistance mechanisms, the development of brain metastases, the limited availability of biomarkers and the choice of combination therapy. The integration of innovative next-generation technologies such as deep learning-a subset of machine learning-and radiomics has the potential to transform the field by supporting clinical decision making in cancer treatment and the delivery of precision therapies while integrating numerous clinical considerations. In this review, we present a brief explanation of the available technologies, the benefits of using these technologies in predicting immunotherapy response in lung cancer, and the expected future challenges in the context of precision medicine.
Collapse
Affiliation(s)
- Laila C Roisman
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel.
- Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Waleed Kian
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
- The Institute of Oncology, Assuta Ashdod, Ashdod, Israel
| | - Alaa Anoze
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Vered Fuchs
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Maria Spector
- The Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Roee Steiner
- The Institute for Nuclear Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Levi Kassel
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Gilad Rechnitzer
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Iris Fried
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Nir Peled
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Naama R Bogot
- The Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Erasmus LT, Strange TA, Agrawal R, Strange CD, Ahuja J, Shroff GS, Truong MT. Lung Cancer Staging: Imaging and Potential Pitfalls. Diagnostics (Basel) 2023; 13:3359. [PMID: 37958255 PMCID: PMC10649001 DOI: 10.3390/diagnostics13213359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths in men and women in the United States. Accurate staging is needed to determine prognosis and devise effective treatment plans. The International Association for the Study of Lung Cancer (IASLC) has made multiple revisions to the tumor, node, metastasis (TNM) staging system used by the Union for International Cancer Control and the American Joint Committee on Cancer to stage lung cancer. The eighth edition of this staging system includes modifications to the T classification with cut points of 1 cm increments in tumor size, grouping of lung cancers associated with partial or complete lung atelectasis or pneumonitis, grouping of tumors with involvement of a main bronchus regardless of distance from the carina, and upstaging of diaphragmatic invasion to T4. The N classification describes the spread to regional lymph nodes and no changes were proposed for TNM-8. In the M classification, metastatic disease is divided into intra- versus extrathoracic metastasis, and single versus multiple metastases. In order to optimize patient outcomes, it is important to understand the nuances of the TNM staging system, the strengths and weaknesses of various imaging modalities used in lung cancer staging, and potential pitfalls in image interpretation.
Collapse
Affiliation(s)
- Lauren T. Erasmus
- Department of Anatomy and Cell Biology, Faculty of Sciences, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Taylor A. Strange
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rishi Agrawal
- Department of Thoracic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.); (C.D.S.); (J.A.)
| | - Chad D. Strange
- Department of Thoracic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.); (C.D.S.); (J.A.)
| | - Jitesh Ahuja
- Department of Thoracic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.); (C.D.S.); (J.A.)
| | - Girish S. Shroff
- Department of Thoracic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.); (C.D.S.); (J.A.)
| | - Mylene T. Truong
- Department of Thoracic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.); (C.D.S.); (J.A.)
| |
Collapse
|
11
|
Evangelista L, Fiz F, Laudicella R, Bianconi F, Castello A, Guglielmo P, Liberini V, Manco L, Frantellizzi V, Giordano A, Urso L, Panareo S, Palumbo B, Filippi L. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3258. [PMID: 37370869 PMCID: PMC10296704 DOI: 10.3390/cancers15123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the existing literature concerning the applications of positron emission tomography (PET) radiomics in lung cancer patient candidates or those undergoing immunotherapy. MATERIALS AND METHODS A systematic review was conducted on databases and web sources. English-language original articles were considered. The title and abstract were independently reviewed to evaluate study inclusion. Duplicate, out-of-topic, and review papers, or editorials, articles, and letters to editors were excluded. For each study, the radiomics analysis was assessed based on the radiomics quality score (RQS 2.0). The review was registered on the PROSPERO database with the number CRD42023402302. RESULTS Fifteen papers were included, thirteen were qualified as using conventional radiomics approaches, and two used deep learning radiomics. The content of each study was different; indeed, seven papers investigated the potential ability of radiomics to predict PD-L1 expression and tumor microenvironment before starting immunotherapy. Moreover, two evaluated the prediction of response, and four investigated the utility of radiomics to predict the response to immunotherapy. Finally, two papers investigated the prediction of adverse events due to immunotherapy. CONCLUSIONS Radiomics is promising for the evaluation of TME and for the prediction of response to immunotherapy, but some limitations should be overcome.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Fiz
- Nuclear Medicine Department, E.O. “Ospedali Galliera”, 16128 Genoa, Italy;
- Nuclear Medicine Department and Clinical Molecular Imaging, University Hospital, 72076 Tübingen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90100 Palermo, Italy;
| | - Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 06125 Perugia, Italy;
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy;
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy;
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Alessia Giordano
- Nuclear Medicine Unit, IRCCS CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi di Perugia, 06125 Perugia, Italy;
| | - Luca Filippi
- Nuclear Medicine Section, Santa Maria Goretti Hospital, 04100 Latina, Italy;
| |
Collapse
|
12
|
Schroeder KE, Acharya L, Mani H, Furqan M, Sieren JC. Radiomic biomarkers from chest computed tomography are assistive in immunotherapy response prediction for non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:1023-1033. [PMID: 37323179 PMCID: PMC10261870 DOI: 10.21037/tlcr-22-763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Background Immunotherapies, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) antibodies have been shown to improve overall and progression-free survival (PFS) in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). However, not all patients derive a meaningful clinical benefit. Additionally, patients receiving anti-PD-1/PD-L1 therapy can experience immune-related adverse events (irAEs). Clinically significant irAEs may require temporary pause or discontinuation of treatment. Having a tool to identify patients who may not benefit and/or are at risk for developing severe irAEs from immunotherapy will aid in an informed decision-making process for the patients and their physicians. Methods Computed tomography (CT) scans and clinical data were retrospectively collected for this study to develop three prediction models using (I) radiomic features, (II) clinical features, and (III) radiomic and clinical features combined. Each subject had 6 clinical features and 849 radiomic features extracted. Selected features were run through an artificial neural network (NN) trained on 70% of the cohort, maintaining the case and control ratio. The NN was assessed by calculating the area-under-the-receiver-operating-characteristic curve (AUC-ROC), area-under-the-precision-recall curve (AUC-PR), sensitivity, and specificity. Results A cohort of 132 subjects, of which 43 (33%) had a PFS ≤90 days and 89 (67%) of which had a PFS >90 days was used to develop the prediction models. The radiomic model was able to predict progression-free survival with a training AUC-ROC of 87% and testing AUC-ROC, sensitivity, and specificity of 83%, 75%, and 81%, respectively. In this cohort, the clinical and radiomic combined features did add a slight increase in the specificity (85%) but with a decrease in sensitivity (75%) and AUC-ROC (81%). Conclusions Whole lung segmentation and feature extraction can identify those that would see a benefit from anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
| | - Luna Acharya
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Hariharasudan Mani
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Muhammad Furqan
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
14
|
Berz AM, Boughdad S, Vietti-Violi N, Digklia A, Dromain C, Dunet V, Duran R. Imaging assessment of toxicity related to immune checkpoint inhibitors. Front Immunol 2023; 14:1133207. [PMID: 36911692 PMCID: PMC9995973 DOI: 10.3389/fimmu.2023.1133207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, a wide range of cancer immunotherapies have been developed and have become increasingly important in cancer treatment across multiple oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer promising options to improve patient outcomes. However, a major limitation of these treatments consists in the development of immune-related adverse events (irAEs) occurring in potentially any organ system and affecting up to 76% of the patients. The most frequent toxicities involve the skin, gastrointestinal tract, and endocrine system. Although mostly manageable, potentially life-threatening events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up to 30% and 55% of the patients treated with ICI-monotherapy or -combination therapy, respectively. Imaging, in particular computed tomography (CT), magnetic resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT), plays an important role in the detection and characterization of these irAEs. In some patients, irAEs can even be detected on imaging before the onset of clinical symptoms. In this context, it is particularly important to distinguish irAEs from true disease progression and specific immunotherapy related response patterns, such as pseudoprogression. In addition, there are irAEs which might be easily confused with other pathologies such as infection or metastasis. However, many imaging findings, such as in immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be delayed underling the importance for adequate imaging features characterization in the appropriate clinical setting in order to provide timely and efficient patient management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably detect these toxicities and potentially have predictive value for identifying patients at risk of developing irAEs. The purpose of this article is to provide a review of the main immunotherapy-related toxicities and discuss their characteristics on imaging.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
16
|
Milara E, Gómez-Grande A, Tomás-Soler S, Seiffert AP, Alonso R, Gómez EJ, Martínez-López J, Sánchez-González P. Bone marrow segmentation and radiomics analysis of [ 18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107083. [PMID: 36044803 DOI: 10.1016/j.cmpb.2022.107083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The last few years have been crucial in defining the most appropriate way to quantitatively assess [18F]FDG PET images in Multiple Myeloma (MM) patients to detect persistent tumor burden. The visual evaluation of images complements the assessment of Measurable Residual Disease (MRD) in bone marrow samples by multiparameter flow cytometry (MFC) or next-generation sequencing (NGS). The aim of this study was to quantify MRD by analyzing quantitative and texture [18F]FDG PET features. METHODS Whole body [18F]FDG PET of 39 patients with newly diagnosed MM were included in the database, and visually evaluated by experts in nuclear medicine. A segmentation methodology of the skeleton from CT images and an additional manual segmentation tool were proposed, implemented in a software solution including a graphical user interface. Both the compact bone and the spinal canal were removed from the segmentation to obtain only the bone marrow mask. SUV metrics, GLCM, GLRLM, and NGTDM parameters were extracted from the PET images and evaluated by Mann-Whitney U-tests and Spearman ρ rank correlation as valuable features differentiating PET+/PET- and MFC+/MFC- groups. Seven machine learning algorithms were applied for evaluating the classification performance of the extracted features. RESULTS Quantitative analysis for PET+/PET- differentiating demonstrated to be significant for most of the variables assessed with Mann-Whitney U-test such as Variance, Energy, and Entropy (p-value = 0.001). Moreover, the quantitative analysis with a balanced database evaluated by Mann-Whitney U-test revealed in even better results with 19 features with p-values < 0.001. On the other hand, radiomics analysis for MFC+/MFC- differentiating demonstrated the necessity of combining MFC evaluation with [18F]FDG PET assessment in the MRD diagnosis. Machine learning algorithms using the image features for the PET+/PET- classification demonstrated high performance metrics but decreasing for the MFC+/MFC- classification. CONCLUSIONS A proof-of-concept for the extraction and evaluation of bone marrow radiomics features of [18F]FDG PET images was proposed and implemented. The validation showed the possible use of these features for the image-based assessment of MRD.
Collapse
Affiliation(s)
- Eva Milara
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain.
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Sebastián Tomás-Soler
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain
| | - Alexander P Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain
| | - Rafael Alonso
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Department of Hematology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain; Clinical Research Hematology Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Enrique J Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Joaquín Martínez-López
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Department of Hematology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain; Clinical Research Hematology Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
17
|
Ter Maat LS, van Duin IAJ, Elias SG, van Diest PJ, Pluim JPW, Verhoeff JJC, de Jong PA, Leiner T, Veta M, Suijkerbuijk KPM. Imaging to predict checkpoint inhibitor outcomes in cancer. A systematic review. Eur J Cancer 2022; 175:60-76. [PMID: 36096039 DOI: 10.1016/j.ejca.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types. METHODS PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted. RESULTS In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist. CONCLUSIONS There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
Collapse
Affiliation(s)
- Laurens S Ter Maat
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Josien P W Pluim
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Utrecht University, Utrecht, the Netherlands; Department of Radiology, Mayo Clinical, Rochester, MN, USA
| | - Mitko Veta
- Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Zhu K, Su D, Wang J, Cheng Z, Chin Y, Chen L, Chan C, Zhang R, Gao T, Ben X, Jing C. Predictive value of baseline metabolic tumor volume for non-small-cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Front Oncol 2022; 12:951557. [PMID: 36147904 PMCID: PMC9487526 DOI: 10.3389/fonc.2022.951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have emerged as a promising treatment option for advanced non-small-cell lung cancer (NSCLC) patients, highlighting the need for biomarkers to identify responders and predict the outcome of ICIs. The purpose of this study was to evaluate the predictive value of baseline standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) derived from 18F-FDG-PET/CT in advanced NSCLC patients receiving ICIs. Methods PubMed and Web of Science databases were searched from January 1st, 2011 to July 18th, 2022, utilizing the search terms “non-small-cell lung cancer”, “PET/CT”, “standardized uptake value”, “metabolic tumor volume”, “ total lesion glycolysis”, and “immune checkpoint inhibitors”. Studies that analyzed the association between PET/CT parameters and objective response, immune-related adverse events (irAEs) and prognosis of NSCLC patients treated with ICIs were included. We extracted the hazard ratio (HR) with a 95% confidence interval (CI) for progression-free survival (PFS) and overall survival (OS). We performed a meta-analysis of HR using Review Manager v.5.4.1. Results Sixteen studies were included for review and thirteen for meta-analysis covering 770 patients. As for objective response and irAEs after ICIs, more studies with consistent assessment methods are needed to determine their relationship with MTV. In the meta-analysis, low SUVmax corresponded to poor PFS with a pooled HR of 0.74 (95% CI, 0.57-0.96, P=0.02). And a high level of baseline MTV level was related to shorter PFS (HR=1.45, 95% CI, 1.11-1.89, P<0.01) and OS (HR, 2.72; 95% CI, 1.97-3.73, P<0.01) especially when the cut-off value was set between 50-100 cm3. SUVmean and TLG were not associated with the prognosis of NSCLC patients receiving ICIs. Conclusions High level of baseline MTV corresponded to shorter PFS and OS, especially when the cut-off value was set between 50-100 cm3. MTV is a potential predictive value for the outcome of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Danqian Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Jianing Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Zhouen Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Yiqiao Chin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Luyin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Chingtin Chan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Rongcai Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Tianyu Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| |
Collapse
|
19
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Tan P, Huang W, Wang L, Deng G, Yuan Y, Qiu S, Ni D, Du S, Cheng J. Deep learning predicts immune checkpoint inhibitor-related pneumonitis from pretreatment computed tomography images. Front Physiol 2022; 13:978222. [PMID: 35957985 PMCID: PMC9358138 DOI: 10.3389/fphys.2022.978222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of lung cancer, including both non-small cell lung cancer and small cell lung cancer. Despite the promising results of immunotherapies, ICI-related pneumonitis (ICIP) is a potentially fatal adverse event. Therefore, early detection of patients at risk for developing ICIP before the initiation of immunotherapy is critical for alleviating future complications with early interventions and improving treatment outcomes. In this study, we present the first reported work that explores the potential of deep learning to predict patients who are at risk for developing ICIP. To this end, we collected the pretreatment baseline CT images and clinical information of 24 patients who developed ICIP after immunotherapy and 24 control patients who did not. A multimodal deep learning model was constructed based on 3D CT images and clinical data. To enhance performance, we employed two-stage transfer learning by pre-training the model sequentially on a large natural image dataset and a large CT image dataset, as well as transfer learning. Extensive experiments were conducted to verify the effectiveness of the key components used in our method. Using five-fold cross-validation, our method accurately distinguished ICIP patients from non-ICIP patients, with area under the receiver operating characteristic curve of 0.918 and accuracy of 0.920. This study demonstrates the promising potential of deep learning to identify patients at risk for developing ICIP. The proposed deep learning model enables efficient risk stratification, close monitoring, and prompt management of ICIP, ultimately leading to better treatment outcomes.
Collapse
Affiliation(s)
- Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Huang
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingling Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Guanhua Deng
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ye Yuan
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Shili Qiu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Shasha Du, ; Jun Cheng,
| | - Jun Cheng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Shasha Du, ; Jun Cheng,
| |
Collapse
|
21
|
Kothari G. Role of radiomics in predicting immunotherapy response. J Med Imaging Radiat Oncol 2022; 66:575-591. [PMID: 35581928 PMCID: PMC9323544 DOI: 10.1111/1754-9485.13426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Immunotherapies have revolutionised cancer management. Despite their success, durable responses are limited to a subset of patients. Prediction of immunotherapy response in patients has proven to be difficult due to a lack of robust biomarkers. Routinely collected imaging may offer an additional information source to personalise patient treatment, with advantages over tissue-based biomarkers. Quantitative image analysis or radiomics, which involves the high-throughput extraction of imaging features, has the potential to non-invasively predict cancer histology, outcomes and prognosis. This review evaluates the value of radiomics in patients undergoing immunotherapy, with a summary provided of the performance of radiomics models in predicting immunotherapy response and toxicity, as well as immune correlates. Much of the literature focussed on clinical endpoints and correlates to tissue biomarkers, particularly in lung cancer, while few studies investigated association with immune-related adverse events. Strengths of the studies included more frequent use of clinical trial datasets, homogenous patient cohorts and high-quality diagnostic scans. Limitations of the studies include heterogeneity in study methodology, lack of well-defined homogenous imaging datasets, limited open publishing of imaging datasets, coding and parameters used for radiomics signature development and limited use of external validation datasets. Future research should address the above limitations, as well as further explore the relationship between radiomics and immune-related adverse effects and less well-studied biological correlates such tumour mutational burden, and incorporate known clinical prognostic scores into radiomics models.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbournePeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
22
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
23
|
Gong J, Bao X, Wang T, Liu J, Peng W, Shi J, Wu F, Gu Y. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Oncoimmunology 2022; 11:2028962. [PMID: 35096486 PMCID: PMC8794258 DOI: 10.1080/2162402x.2022.2028962] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To develop a short-term follow-up CT-based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer (NSCLC) and investigate the prognostic value of radiomics features in predicting progression-free survival (PFS) and overall survival (OS). We first retrospectively collected 224 advanced NSCLC patients from two centers, and divided them into a primary cohort and two validation cohorts respectively. Then, we processed CT scans with a series of image preprocessing techniques namely, tumor segmentation, image resampling, feature extraction and normalization. To select the optimal features, we applied the feature ranking with recursive feature elimination method. After resampling the training dataset with a synthetic minority oversampling technique, we applied the support vector machine classifier to build a machine-learning-based classification model to predict response to immunotherapy. Finally, we used Kaplan-Meier (KM) survival analysis method to evaluate prognostic value of rad-score generated by CT-radiomics model. In two validation cohorts, the delta-radiomics model significantly improved the area under receiver operating characteristic curve from 0.64 and 0.52 to 0.82 and 0.87, respectively (P < .05). In sub-group analysis, pre- and delta-radiomics model yielded higher performance for adenocarcinoma (ADC) patients than squamous cell carcinoma (SCC) patients. Through the KM survival analysis, the rad-score of delta-radiomics model had a significant prognostic for PFS and OS in validation cohorts (P < .05). Our results demonstrated that (1) delta-radiomics model could improve the prediction performance, (2) radiomics model performed better on ADC patients than SCC patients, (3) delta-radiomics model had prognostic values in predicting PFS and OS of NSCLC patients.
Collapse
Affiliation(s)
- Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Bao
- Department of Radiology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Ting Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyu Liu
- Department of Radiology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyun Shi
- Department of Radiology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Kameyama K, Imai K, Ishiyama K, Takashima S, Kuriyama S, Atari M, Ishii Y, Kobayashi A, Takahashi S, Kobayashi M, Harata Y, Sato Y, Motoyama S, Hashimoto M, Nomura K, Minamiya Y. New PET/CT criterion for predicting lymph node metastasis in resectable advanced (stage IB-III) lung cancer: The standard uptake values ratio of ipsilateral/contralateral hilar nodes. Thorac Cancer 2022; 13:708-715. [PMID: 35048499 PMCID: PMC8888156 DOI: 10.1111/1759-7714.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background The aim of the present study was to use surgical and histological results to develop a simple noninvasive technique to improve nodal staging using preoperative PET/CT in patients with resectable lung cancer. Methods Preoperative PET/CT findings (pStage IB–III 182 patients) and pathological diagnoses after surgical resection were evaluated. Using PET/CT images to determine the standardized uptake value (SUV) ratio, the SUVmax of a contralateral hilar lymph node (on the side of the chest opposite to the primary tumor) was measured simultaneously. The I/C‐SUV ratio was calculated as ipsilateral hilar node SUV/contralateral hilar node SUV. Receiver operating characteristic (ROC) curves were then used to analyze those data. Results Based on ROC analyses, the cutoff I/C‐SUV ratio for diagnosis of lymph node metastasis was 1.34. With a tumor ipsilateral lymph node SUVmax ≥2.5, an IC‐SUV ratio ≥1.34 had the highest accuracy for predicting N1/N2 metastasis; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of nodal staging were 60.66, 85.11, 84.09, 62.5 and 71.29%, respectively. Conclusions When diagnosing nodal stage, a lymph node I/C‐SUV ratio ≥1.34 can be an effective criterion for determining surgical indications in advanced lung cancer.
Collapse
Affiliation(s)
- Komei Kameyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichi Ishiyama
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shinogu Takashima
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Shoji Kuriyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Maiko Atari
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshiaki Ishii
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Akihito Kobayashi
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Shugo Takahashi
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Mirai Kobayashi
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuzu Harata
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Manabu Hashimoto
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kyoko Nomura
- Department of Health Environmental Science and Public Health, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
25
|
Kang CY, Duarte SE, Kim HS, Kim E, Park J, Lee AD, Kim Y, Kim L, Cho S, Oh Y, Gim G, Park I, Lee D, Abazeed M, Velichko YS, Chae YK. OUP accepted manuscript. Oncologist 2022; 27:e471-e483. [PMID: 35348765 PMCID: PMC9177100 DOI: 10.1093/oncolo/oyac036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immunotherapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that use radiomics to predict immunotherapy response and toxicity.
Collapse
Affiliation(s)
| | | | - Hye Sung Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugene Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Alice Daeun Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yoojin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gahyun Gim
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Inae Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongyup Lee
- Department of Physical Medicine and Rehabilitation, Geisinger Health System, Danville, PA, USA
| | - Mohamed Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yury S Velichko
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Young Kwang Chae
- Corresponding author: Young Kwang Chae, Department of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med 2022; 36:1-14. [PMID: 34727331 DOI: 10.1007/s12149-021-01683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
With a 5-year overall survival of approximately 20%, lung cancer has always been the number one cancer-specific killer all over the world. As a fusion of positron emission computed tomography (PET) and computed tomography (CT), PET/CT has revolutionized cancer imaging over the past 20 years. In this review, we focused on the optimization of the function of 18F-flurodeoxyglucose (FDG)-PET/CT in diagnosis, prognostic prediction and therapy management of lung cancers by computer programs. FDG-PET/CT has demonstrated a surprising role in development of therapeutic biomarkers, prediction of therapeutic responses and long-term survival, which could be conducive to solving existing dilemmas. Meanwhile, novel tracers and optimized procedures are also developed to control the quality and improve the effect of PET/CT. With the continuous development of some new imaging agents and their clinical applications, application value of PET/CT has broad prospects in this area.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
27
|
Mu W, Katsoulakis E, Whelan CJ, Gage KL, Schabath MB, Gillies RJ. Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors. Br J Cancer 2021; 125:229-239. [PMID: 33828255 PMCID: PMC8292339 DOI: 10.1038/s41416-021-01375-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Approximately 50% of cancer patients eventually develop a syndrome of prolonged weight loss (cachexia), which may contribute to primary resistance to immune checkpoint inhibitors (ICI). This study utilised radiomics analysis of 18F-FDG-PET/CT images to predict risk of cachexia that can be subsequently associated with clinical outcomes among advanced non-small cell lung cancer (NSCLC) patients treated with ICI. METHODS Baseline (pre-therapy) PET/CT images and clinical data were retrospectively curated from 210 ICI-treated NSCLC patients from two institutions. A radiomics signature was developed to predict the cachexia with PET/CT images, which was further used to predict durable clinical benefit (DCB), progression-free survival (PFS) and overall survival (OS) following ICI. RESULTS The radiomics signature predicted risk of cachexia with areas under receiver operating characteristics curves (AUCs) ≥ 0.74 in the training, test, and external test cohorts. Further, the radiomics signature could identify patients with DCB from ICI with AUCs≥0.66 in these three cohorts. PFS and OS were significantly shorter among patients with higher radiomics-based cachexia probability in all three cohorts, especially among those potentially immunotherapy sensitive patients with PD-L1-positive status (p < 0.05). CONCLUSIONS PET/CT radiomics analysis has the potential to predict the probability of developing cachexia before the start of ICI, triggering aggressive monitoring to improve potential to achieve more clinical benefit.
Collapse
Affiliation(s)
- Wei Mu
- grid.468198.a0000 0000 9891 5233Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | | | - Christopher J. Whelan
- grid.468198.a0000 0000 9891 5233Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Kenneth L. Gage
- grid.468198.a0000 0000 9891 5233Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Matthew B. Schabath
- grid.468198.a0000 0000 9891 5233Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA ,grid.468198.a0000 0000 9891 5233Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Robert J. Gillies
- grid.468198.a0000 0000 9891 5233Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
28
|
Yousefi B, Katz SI, Roshkovan L. Radiomics: A Path Forward to Predict Immunotherapy Response in Non-Small Cell Lung Cancer. Radiol Artif Intell 2020; 2:e200075. [PMID: 33939781 PMCID: PMC8082324 DOI: 10.1148/ryai.2020200075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Bardia Yousefi
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 606E Goddard Bldg, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Sharyn I. Katz
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 606E Goddard Bldg, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Leonid Roshkovan
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 606E Goddard Bldg, 3700 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|