1
|
Tamayo-Torres E, Garrido A, de Cabo R, Carretero J, Gómez-Cabrera MC. Molecular mechanisms of cancer cachexia. Role of exercise training. Mol Aspects Med 2024; 99:101293. [PMID: 39059039 DOI: 10.1016/j.mam.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Cancer-associated cachexia represents a multifactorial syndrome mainly characterized by muscle mass loss, which causes both a decrease in quality of life and anti-cancer therapy failure, among other consequences. The definition and diagnostic criteria of cachexia have changed and improved over time, including three different stages (pre-cachexia, cachexia, and refractory cachexia) and objective diagnostic markers. This metabolic wasting syndrome is characterized by a negative protein balance, and anti-cancer drugs like chemotherapy or immunotherapy exacerbate it through relatively unknown mechanisms. Due to its complexity, cachexia management involves a multidisciplinary strategy including not only nutritional and pharmacological interventions. Physical exercise has been proposed as a strategy to counteract the effects of cachexia on skeletal muscle, as it influences the mechanisms involved in the disease such as protein turnover, inflammation, oxidative stress, and mitochondrial dysfunction. This review will summarize the experimental and clinical evidence of the impact of physical exercise on cancer-associated cachexia.
Collapse
Affiliation(s)
- Eva Tamayo-Torres
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain; Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Amanda Garrido
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| | - María Carmen Gómez-Cabrera
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
2
|
Nguyen BL, Baumfalk DR, Lapierre-Nguyen SS, Zhong R, Doerr V, Montalvo RN, Wei-LaPierre L, Smuder AJ. Effects of exercise and doxorubicin on acute diaphragm neuromuscular transmission failure. Exp Neurol 2024; 378:114818. [PMID: 38782352 PMCID: PMC11616575 DOI: 10.1016/j.expneurol.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.
Collapse
Affiliation(s)
- Branden L Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America.
| | - Dryden R Baumfalk
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Stephanie S Lapierre-Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Renjia Zhong
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Vivian Doerr
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ryan N Montalvo
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Lan Wei-LaPierre
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ashley J Smuder
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| |
Collapse
|
3
|
Sedrak MS, Sun CL, Bae M, Freedman RA, Magnuson A, O'Connor T, Moy B, Wildes TM, Klepin HD, Chapman AE, Tew WP, Dotan E, Fenton MA, Kim H, Katheria V, Muss HB, Cohen HJ, Gross CP, Ji J. Functional decline in older breast cancer survivors treated with and without chemotherapy and non-cancer controls: results from the Hurria Older PatiEnts (HOPE) prospective study. J Cancer Surviv 2024; 18:1131-1143. [PMID: 38678525 PMCID: PMC11324395 DOI: 10.1007/s11764-024-01594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE This study aimed to assess whether physical functional decline in older women with early-stage breast cancer is driven by cancer, chemotherapy, or a combination of both. METHODS We prospectively sampled three groups of women aged ≥ 65: 444 with early-stage breast cancer receiving chemotherapy (BC Chemo), 98 with early-stage breast cancer not receiving chemotherapy (BC Control), and 100 non-cancer controls (NC Control). Physical function was assessed at two timepoints (T1 [baseline] and T2 [3, 4, or 6 months]) using the Physical Functioning Subscale (PF-10) of the RAND 36-item Short Form. The primary endpoint was the change in PF-10 scores from T1 to T2, analyzed continuously and dichotomously (Yes/No, with "yes" indicating a PF-10 decline > 10 points, i.e., a substantial and clinically meaningful difference). RESULTS Baseline PF-10 scores were similar across all groups. The BC Chemo group experienced a significant decline at T2, with a median change in PF-10 of -5 (interquartile range [IQR], -20, 0), while BC Control and NC Control groups showed a median change of 0 (IQR, -5, 5; p < 0.001). Over 30% of BC Chemo participants had a substantial decline in PF-10 vs. 8% in the BC Control and 5% in the NC Control groups (p < 0.001). CONCLUSION In this cohort of older adults with early-stage breast cancer, the combination of breast cancer and chemotherapy contributes to accelerated functional decline. Our findings reinforce the need to develop interventions aimed at preserving physical function, particularly during and after chemotherapy. IMPLICATIONS FOR CANCER SURVIVORS The high prevalence of accelerated functional decline in older women undergoing breast cancer chemotherapy underscores the urgency to develop interventions aimed at preserving physical function and improving health outcomes. CLINICAL TRIAL NCT01472094, Hurria Older PatiEnts (HOPE) with Breast Cancer Study.
Collapse
Affiliation(s)
- Mina S Sedrak
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
- Cancer & Aging Program, UCLA Health Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
- UCLA David Geffen School of Medicine, 650 Charles Young Drive South, Room A2-125 CHS, Los Angeles, CA, 90095-6900, USA.
| | - Can-Lan Sun
- Department of Supportive Care, City of Hope, Duarte, CA, USA
- Center for Cancer and Aging, City of Hope, Duarte, CA, USA
| | - Marie Bae
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Rachel A Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allison Magnuson
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tracey O'Connor
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Beverly Moy
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tanya M Wildes
- Department of Medicine, Medical Center/Nebraska Medicine, University of Nebraska, Omaha, NE, USA
| | - Heidi D Klepin
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrew E Chapman
- Department of Medical Oncology, Sidney Kimmel Cancer Center/Jefferson Health, Philadelphia, PA, USA
| | - William P Tew
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efrat Dotan
- Department of Hematology-Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Heeyoung Kim
- Department of Supportive Care, City of Hope, Duarte, CA, USA
- Center for Cancer and Aging, City of Hope, Duarte, CA, USA
| | - Vani Katheria
- Department of Supportive Care, City of Hope, Duarte, CA, USA
- Center for Cancer and Aging, City of Hope, Duarte, CA, USA
| | - Hyman B Muss
- Department of Medicine, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Harvey J Cohen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Cary P Gross
- Cancer Outcomes Public Policy and Effectiveness Research (COPPER) Center, Yale School of Medicine, New Haven, CT, USA
| | - Jingran Ji
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Vikmoen O, Strandberg E, Svindland KV, Henriksson A, Mazzoni AS, Johansson B, Jönsson J, Karakatsanis A, Annebäck M, Kudrén D, Lindman H, Wärnberg F, Berntsen S, Demmelmaier I, Nordin K, Raastad T. Effects of heavy-load strength training during (neo-)adjuvant chemotherapy on muscle strength, muscle fiber size, myonuclei, and satellite cells in women with breast cancer. FASEB J 2024; 38:e23784. [PMID: 38953567 DOI: 10.1096/fj.202400634r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.
Collapse
Affiliation(s)
- Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Emelie Strandberg
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Anna Henriksson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anne-Sophie Mazzoni
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Birgitta Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Janniz Jönsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Andreas Karakatsanis
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
- Section for Breast Surgery, Department of Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Matilda Annebäck
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - David Kudrén
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wärnberg
- Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sveinung Berntsen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Ingrid Demmelmaier
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karin Nordin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
5
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
6
|
Gray L, Sindall P, Pearson SJ. Does resistance training ameliorate cancer-related fatigue in cancer survivors? A systematic review with meta-analysis. Disabil Rehabil 2024; 46:2213-2222. [PMID: 37345506 DOI: 10.1080/09638288.2023.2226408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Cancer-related fatigue (CRF) is unrelenting. As neither rest nor sleep ameliorates cognitive, emotional, and physical symptoms, quality of life is diminished. This study examines resistance training (RT) effectiveness on CRF in cancer survivors. The secondary aims were to identify the dose-response relationship of RT frequency, intensity, and volume on CRF in different cancer survivor populations. MATERIALS AND METHODS Systematic searches via numerous databases for RCTs were performed in June 2022. Patient-reported outcome measures (PROM), were analysed, pre-to-post intervention, using a random-effects model. The Physiotherapy Evidence Database (PEDro) scale informed methodological quality assessment. RESULTS Eight studies were included (cancer survivors: breast (BCS) = 5; endometrial (ECS) = 1; prostate (PCS) = 2). Overall, RT interventions ≥ 6 weeks elicited large significant reductions in CRF for FACIT-F (SMD = 0.932, p = <0.001) and moderate significant reductions in CRF for PFS-R (SMD = -0.622, p = 0.004). CONCLUSION Main findings indicate that RT ameliorates CRF, especially in BCS; however, individualised approaches should be advocated. Supervised training elicited the greatest positive outcomes, thus should be a pivotal part of the cancer rehabilitation pathway. Future studies should be adequately powered, undertake discrete analyses of different cancer types, and investigate chronic RT effects.
Collapse
Affiliation(s)
- Luke Gray
- Department of Health and Social Care, University of Salford, Salford, UK
| | - Paul Sindall
- Department of Health and Social Care, University of Salford, Salford, UK
| | - Stephen J Pearson
- Department of Health and Social Care, University of Salford, Salford, UK
| |
Collapse
|
7
|
Alves RR, Marques VA, da Silva WA, Freitas-Junior R, da Cruz AM, Del Vecchio FB, Rosa VDL, Vieira CA. Effects of chemotherapy treatment on muscle strength indicators, functional capacity and biopsychosocial aspects of women with breast cancer. Am J Cancer Res 2024; 14:762-773. [PMID: 38455416 PMCID: PMC10915317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
Evidences on the effects of chemotherapy treatment cycles on measures of muscle, mental state, social and cognitive performance are scarce. The objective of this study was to analyze the effects of chemotherapy cycles on muscle strength and activation, functional capacity, quality of life, fatigue and anxiety of women with breast cancer. Therefore, twenty-two women divided into a treatment group (n = 10; 46.6 ± 9.6 years) and control group (n = 12; 51.6 ± 7.0 years) participated in the study. Analysis of muscle performance, quality of life, fatigue and anxiety after the 2nd and 4th cycle of chemotherapy with anthracyclines were performed in women with breast cancer (TRA) and compared to healthy women (CTR). Two-way ANOVA was used to compare the variance of the means and the significance level was set as P≤0.05. The results showed Differences in the muscular activation of the vastus mediallis between the groups at post time (P = 0.038), as well as in the sit and stand test in the baseline (P<0.001) and post moment (P<0.001). Functional capacity performance was different between baseline (P<0.001) and post-time (P<0.001) groups. Additionally, the TRA group worsened the quality of life in the domains of functional capacity (P<0.001) and limitation of physical aspects (P = 0.002), besides presenting negative changes in fatigue. Thus, anthracycline chemotherapy cycles reduce muscular performance and affect biopsychosocial variables in women with breast cancer.
Collapse
Affiliation(s)
- Rafael Ribeiro Alves
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | - Vitor Alves Marques
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | - Weder Alves da Silva
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Mallard J, Hucteau E, Bender L, Moinard‐Butot F, Rochelle E, Boutonnet L, Grandperrin A, Schott R, Pflumio C, Trensz P, Kalish‐Weindling M, Charles A, Gény B, Favret F, Pivot X, Hureau TJ, Pagano AF. A single chemotherapy administration induces muscle atrophy, mitochondrial alterations and apoptosis in breast cancer patients. J Cachexia Sarcopenia Muscle 2024; 15:292-305. [PMID: 38183352 PMCID: PMC10834353 DOI: 10.1002/jcsm.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.
Collapse
Affiliation(s)
- Joris Mallard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Elyse Hucteau
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Laura Bender
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | | | - Emma Rochelle
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Lauréline Boutonnet
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
| | - Antoine Grandperrin
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Carole Pflumio
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Philippe Trensz
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | | | - Anne‐Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of medicineUniversity of StrasbourgStrasbourgFrance
| | - Bernard Gény
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of medicineUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Fabrice Favret
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS)StrasbourgFrance
| | - Thomas J. Hureau
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| | - Allan F. Pagano
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”University of StrasbourgStrasbourgFrance
- Faculty of Sport SciencesUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
9
|
Snoke DB, Bellefleur E, Rehman HT, Carson JA, Poynter ME, Dittus KL, Toth MJ. Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level. J Cachexia Sarcopenia Muscle 2023; 14:2579-2590. [PMID: 37727010 PMCID: PMC10751417 DOI: 10.1002/jcsm.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Cancer and its treatment can adversely affect skeletal muscle, impacting physical function, treatment response and survival. No studies, however, have comprehensively characterized these muscle adaptations longitudinally in human patients at the cellular level. METHODS We examined skeletal muscle size and function from the whole body to the sub-cellular level in 11 patients with non-small cell lung cancer (NSCLC; 6 male/5 female, mean age 58 ± 3 years) studied over a 2-month observation period starting during their first cycle of standard of care cancer treatment and in 11 age- and sex-matched healthy controls (HC) without a current or past history of cancer. Biopsies of the vastus lateralis were performed to assess muscle fibre size, contractility and mitochondrial content, along with assessments of physical function, whole muscle size and function, and circulating cytokines. RESULTS Body weight, composition and thigh muscle area and density were unaltered over time in patients with NSCLC, while muscle density was lower in patients with NSCLC versus HC (P = 0.03). Skeletal muscle fibre size decreased by 18% over time in patients (all P = 0.02) and was lower than HC (P = 0.02). Mitochondrial fractional area and density did not change over time in patients, but fractional area was lower in patients with NSCLC compared with HC (subsarcolemmal, P = 0.04; intermyofibrillar, P = 0.03). Patients with NSCLC had higher plasma concentrations of IL-6 (HC 1.40 ± 0.50; NSCLC 4.71 ± 4.22; P < 0.01), GDF-15 (HC 569 ± 166; NSCLC 2071 ± 1168; P < 0.01) and IL-8/CXCL8 (HC 4.9 ± 1.8; NSCLC 10.1 ± 6.0; P = 0.02) compared with HC, but there were no changes in inflammatory markers in patients with NSCLC over time. No changes were observed in markers of satellite cell activation or DNA damage in patients and no group differences were noted with HC. Whole-muscle strength was preserved over time in patients with NSCLC coincident with improved single fibre contractility. CONCLUSIONS This study is the first to comprehensively examine longitudinal alterations in skeletal muscle fibre size and function in patients with NSCLC and suggests that muscle fibre atrophy occurs during cancer treatment despite weight stability and no changes in conventional clinical measurements of whole body or thigh muscle size over this period.
Collapse
Affiliation(s)
- Deena B. Snoke
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Emma Bellefleur
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Hibba Tul Rehman
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - James A. Carson
- Department of Physical TherapyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Matthew E. Poynter
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Kim L. Dittus
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Michael J. Toth
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
10
|
Isanejad A, Nazari S, Gharib B, Motlagh AG. Comparison of the effects of high-intensity interval and moderate-intensity continuous training on inflammatory markers, cardiorespiratory fitness, and quality of life in breast cancer patients. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:674-689. [PMID: 37423313 PMCID: PMC10658315 DOI: 10.1016/j.jshs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 05/08/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND As the effectiveness of breast cancer treatment has improved, a growing number of long-term breast cancer survivors are seeking help for unique health problems. These patients may be at increased risk of cardiovascular disease due to the side effects of treatment. The positive impact of most types of exercise has been repeatedly reported in people with cancer, but the most effective exercise approaches for maximum beneficial adaptations remain controversial. Thus, this study aimed to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on inflammatory indices, adipokines, metabolic markers, body composition, cardiorespiratory fitness, and quality of life in breast cancer patients during adjuvant endocrine therapy. METHODS Thirty non-metastatic breast cancer patients during adjuvant endocrine therapy who had been treated with chemotherapy and/or radiotherapy were recruited from Iran and randomized to HIIT, MICT, or control groups for a supervised exercise intervention that took place 3 times a week for 12 weeks. The training intensity was determined based on the peak oxygen uptake (VO2peak), and the volume of training was matched in HIIT and MICT based on the VO2peak. Body composition, functional capacity, cardiorespiratory fitness, metabolic indices, sex hormones, adipokines, and inflammatory markers were assessed before and after the intervention. RESULTS The VO2peak increased by 16.8% in the HIIT group in comparison to baseline values (mean difference = 3.61 mL/kg/min). HIIT significantly improved the VO2peak compared to control (mean difference = 3.609 mL/kg/min) and MICT (mean differences = 2.974 mL/kg/min) groups. Both HIIT (mean difference = 9.172 mg/dL) and MICT (mean difference = 7.879 mg/dL) interventions significantly increased high-density lipoprotein cholesterol levels compared to the control group. The analysis of covariance showed that physical well-being significantly improved in MICT compared to control group (mean difference = 3.268). HIIT significantly improved the social well-being compared to the control group (mean difference = 4.412). Emotional well-being subscale was significantly improved in both MICT (mean difference = 4.248) and HIIT (mean difference = 4.412) compared to the control group. Functional well-being scores significantly increased in HIIT group compared with control group (mean difference = 3.35) . Significant increase were also observed in total functional assessment of cancer therapy-General scores in both HIIT (mean difference = 14.204) and MICT groups (mean difference = 10.036) compared with control group. The serum level of suppressor of cytokine signaling 3 increased significantly (mean difference = 0.09 pg/mL) in the HIIT group compared to the baseline. There were no significant differences between groups for body weight, body mass index, fasting blood glucose, insulin resistance, sex hormone binding globulin, total cholesterol, low-density lipoprotein cholesterol, adipokines, interleukin-6, tumor necrosis factor-α, or interleukin-10. CONCLUSION HIIT can be used as a safe, feasible, and time-efficient intervention to improve cardiovascular fitness in breast cancer patients. Both HIIT and MICT modalities enhance quality of life. Further large-scale studies will help determine whether these promising results translate into improved clinical and oncological outcomes.
Collapse
Affiliation(s)
- Amin Isanejad
- Immunoregulation Research Center, Shahed University, Tehran 1417953836, Iran; Department of Exercise Physiology, Sport Sciences Research Institute, Tehran 1587958711, Iran.
| | - Somayeh Nazari
- Department of Physical Education and Sport Sciences, Faculty of Human Sciences, Shahed University, Tehran 1417953836, Iran
| | - Behroz Gharib
- Oncology Department, Naft Hospital, Tehran 1136774114, Iran
| | - Ali Ghanbari Motlagh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| |
Collapse
|
11
|
Soriano-Maldonado A, Díez-Fernández DM, Esteban-Simón A, Rodríguez-Pérez MA, Artés-Rodríguez E, Casimiro-Artés MA, Moreno-Martos H, Toro-de-Federico A, Hachem-Salas N, Bartholdy C, Henriksen M, Casimiro-Andújar AJ. Effects of a 12-week supervised resistance training program, combined with home-based physical activity, on physical fitness and quality of life in female breast cancer survivors: the EFICAN randomized controlled trial. J Cancer Surviv 2023; 17:1371-1385. [PMID: 35314958 PMCID: PMC10442259 DOI: 10.1007/s11764-022-01192-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This study assessed the effects of 12-week supervised resistance training combined with home-based physical activity on physical fitness, cancer-related fatigue, depressive symptoms, health-related quality of life (HRQoL), and life satisfaction in female breast cancer survivors. METHODS A parallel-group, outcome assessor-blinded, randomized controlled trial included 60 female breast cancer survivors who had completed their core treatments within the previous 10 years. Through computer-generated simple randomization, participants were assigned to resistance training (RTG; two sessions/week for 12 weeks plus instructions to undertake ≥ 10,000 steps/d) or control (CG; ≥ 10,000 steps/d only). Outcomes were evaluated at baseline and week 12. Muscular strength was assessed with electromechanical dynamometry. A standardized full-body muscular strength score was the primary outcome. Secondary outcomes included cardiorespiratory fitness, shoulder mobility, cancer-related fatigue, depressive symptoms, HRQoL, and life satisfaction. RESULTS Thirty-two participants were assigned to RTG (29 achieved ≥ 75% attendance) and 28 to CG (all completed the trial). Intention-to-treat analyses revealed that the standardized full-body muscular strength score increased significantly in the RTG compared to the CG (0.718; 95% CI 0.361-1.074, P < 0.001, Cohen's d = 1.04). This increase was consistent for the standardized scores of upper-body (0.727; 95% CI 0.294-1.160, P = 0.001, d = 0.87) and lower-body (0.709; 95% CI 0.324-1.094, P = 0.001, d = 0.96) strength. There was no effect on cardiorespiratory fitness, shoulder flexion, cancer-related fatigue, depressive symptoms, HRQoL, or life satisfaction. The sensitivity analyses confirmed these results. CONCLUSION and implication for cancer survivors. In female breast cancer survivors who had completed their core treatments within the past 10 years, adding two weekly sessions of supervised resistance training to a prescription of home-based physical activity for 12 weeks produced a large increase in upper-, lower-, and full-body muscular strength, while other fitness components and patient-reported outcomes did not improve. TRIAL REGISTRATION NUMBER ISRCTN14601208.
Collapse
Affiliation(s)
- Alberto Soriano-Maldonado
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - David M. Díez-Fernández
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Alba Esteban-Simón
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Manuel A. Rodríguez-Pérez
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Eva Artés-Rodríguez
- Area of Statistics and Operative Research, Department of Mathematics, Faculty of Sciences, University of Almería, Almería, Spain
| | | | - Herminia Moreno-Martos
- Servicio Andaluz de Salud, Unidad de Gestión Clínica Almería Periferia, Distrito Sanitario, Almería, Spain
| | - Antonio Toro-de-Federico
- Servicio Andaluz de Salud, Unidad de Gestión Clínica Ciudad Jardín, Distrito Sanitario, Almería, Spain
| | - Nur Hachem-Salas
- Servicio Andaluz de Salud, Unidad de Gestión Clínica Mediterráneo-Torrecárdenas, Distrito Sanitario, Almería, Spain
| | - Cecilie Bartholdy
- The Parker Institute, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Denmark
| | - Marius Henriksen
- The Parker Institute, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Denmark
| | - Antonio J. Casimiro-Andújar
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| |
Collapse
|
12
|
Li HX, Zheng H, Tang W, Sun YK, Zhang L, Kong XY, Yan T. Postoperative recurarization after sugammadex administration in two patients who received neoadjuvant chemotherapy: case reports and literature review. Can J Anaesth 2023; 70:1529-1538. [PMID: 37407856 DOI: 10.1007/s12630-023-02527-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Preoperative neoadjuvant chemotherapy plays a critical role in multidisciplinary therapy for a variety of malignant tumours. Although oncologists consider myocardial injury to be the most concerning side effect of chemotherapy, unique chemotherapy-mediated skeletal muscular damage has received attention recently. CLINICAL FEATURES We report two unusual cases of postoperative delayed respiratory failure following administration of the recommended sugammadex dosage for patients undergoing lengthy operations with deep neuromuscular blockade (NMB) after neoadjuvant chemotherapy. Based on clinical outcomes, especially the comparison of muscle imaging results in patients at different treatment time points, we concluded that NMB recurrence had a possible correlation with neoadjuvant chemotherapy-induced muscular damage. CONCLUSION The early identification of neoadjuvant chemotherapeutic side effects on NMB could be instrumental for clinical safety, especially in cases of major surgery requiring deep NMB. Thus, the timing of NMB antagonism and the recommended dosage of sugammadex warrant special consideration in these patients. In addition to neuromuscular monitoring during the operation, a more extended and closer observation period in the postanesthesia care unit is warranted.
Collapse
Affiliation(s)
- Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Xiang-Yi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Belhadjali F, Ghrir S, Ksia F, Limam F, Aouani E, Mokni M. Protective effect of grape seed extract and exercise training on tissues toxicities in doxorubicin-treated healthy rat. Biomarkers 2023; 28:544-554. [PMID: 37555371 DOI: 10.1080/1354750x.2023.2246698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of Grape seed extract (GSE) and exercise training on Doxorubicin (Doxo)-induced cardio, hepato and myo toxicities in healthy rats. METHODS Thirty male Wistar rats were randomly divided into five groups and daily treated by intraperitoneal route during two months either with ethanol 10% (Control); Doxo (1.5 mg/kg); Doxo + exercise (1.5 mg/kg + swimming exercise for 30 min twice a week); Doxo + GSE (1.5 mg/kg + GSE 2.5 g/kg); Doxo + GSE + exercise (1.5 mg/kg + GSE 2.5 g/kg + swimming exercise for 30 min twice a week). At the end of the treatment, tissues were collected and processed for the determination of oxidative stress (OS), intracellular mediators, energy fuelling biomarkers, carbohydrate metabolism parameters and muscle histopathology. RESULTS Doxo provoked OS characterised by an increased lipoperoxidation (LPO) and protein carbonylation and decreased antioxidant enzyme activities. Doxo also affected intracellular mediators, disturbed carbohydrate metabolism and energy fuelling in skeletal muscle as assessed by down-regulated Electron Transport Chain (ETC) complex activities leading in fine to altered skeletal muscle structure and function. CONCLUSION Almost all Doxo-induced disturbances were partially corrected with GSE and exercise on their own and more efficiently with the combined treatment (GSE + exercise).
Collapse
Affiliation(s)
- Feiza Belhadjali
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Sidi Bou Saïd, Carthage, Tunisie
| | - Slim Ghrir
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Féryel Ksia
- Laboratoire Environnement, Inflammation, Signalisation et Pathologies (LR 18ES40), Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisie
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Ezzedine Aouani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Meherzia Mokni
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| |
Collapse
|
14
|
Dong W, Gong F, Zhao Y, Bai H, Yang R. Ferroptosis and mitochondrial dysfunction in acute central nervous system injury. Front Cell Neurosci 2023; 17:1228968. [PMID: 37622048 PMCID: PMC10445767 DOI: 10.3389/fncel.2023.1228968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Acute central nervous system injuries (ACNSI), encompassing traumatic brain injury (TBI), non-traumatic brain injury like stroke and encephalomeningitis, as well as spinal cord injuries, are linked to significant rates of disability and mortality globally. Nevertheless, effective and feasible treatment plans are still to be formulated. There are primary and secondary injuries occurred after ACNSI. Most ACNSIs exhibit comparable secondary injuries, which offer numerous potential therapeutic targets for enhancing clinical outcomes. Ferroptosis, a newly discovered form of cell death, is characterized as a lipid peroxidation process that is dependent on iron and oxidative conditions, which is also indispensable to mitochondria. Ferroptosis play a vital role in many neuropathological pathways, and ACNSIs may induce mitochondrial dysfunction, thereby indicating the essentiality of the mitochondrial connection to ferroptosis in ACNSIs. Nevertheless, there remains a lack of clarity regarding the involvement of mitochondria in the occurrence of ferroptosis as a secondary injuries of ACNSIs. In recent studies, anti-ferroptosis agents such as the ferroptosis inhibitor Ferrostain-1 and iron chelation therapy have shown potential in ameliorating the deleterious effects of ferroptosis in cases of traumatic ACNSI. The importance of this evidence is extremely significant in relation to the research and control of ACNSIs. Therefore, our review aims to provide researchers focusing on enhancing the therapeutic outcomes of ACNSIs with valuable insights by summarizing the physiopathological mechanisms of ACNSIs and exploring the correlation between ferroptosis, mitochondrial dysfunction, and ACNSIs.
Collapse
Affiliation(s)
- Wenxue Dong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Fanghe Gong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yu Zhao
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ruixin Yang
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
15
|
Posa DK, Miller J, Hoetker D, Ramage MI, Gao H, Zhao J, Doelling B, Bhatnagar A, Wigmore SJ, Skipworth RJ, Baba SP. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:1802-1814. [PMID: 37199284 PMCID: PMC10401540 DOI: 10.1002/jcsm.13258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Muscle wasting during cancer cachexia is mediated by protein degradation via autophagy and ubiquitin-linked proteolysis. These processes are sensitive to changes in intracellular pH ([pH]i ) and reactive oxygen species, which in skeletal muscle are partly regulated by histidyl dipeptides, such as carnosine. These dipeptides, synthesized by the enzyme carnosine synthase (CARNS), remove lipid peroxidation-derived aldehydes, and buffer [pH]i . Nevertheless, their role in muscle wasting has not been studied. METHODS Histidyl dipeptides in the rectus abdominis (RA) muscle and red blood cells (RBCs) of male and female controls (n = 37), weight stable (WS: n = 35), and weight losing (WL; n = 30) upper gastrointestinal cancer (UGIC) patients, were profiled by LC-MS/MS. Expression of enzymes and amino acid transporters, involved in carnosine homeostasis, was measured by Western blotting and RT-PCR. Skeletal muscle myotubes were treated with Lewis lung carcinoma conditioned medium (LLC CM), and β-alanine to study the effects of enhancing carnosine production on muscle wasting. RESULTS Carnosine was the predominant dipeptide present in the RA muscle. In controls, carnosine levels were higher in men (7.87 ± 1.98 nmol/mg tissue) compared with women (4.73 ± 1.26 nmol/mg tissue; P = 0.002). In men, carnosine was significantly reduced in both the WS (5.92 ± 2.04 nmol/mg tissue, P = 0.009) and WL (6.15 ± 1.90 nmol/mg tissue; P = 0.030) UGIC patients, compared with controls. In women, carnosine was decreased in the WL UGIC (3.42 ± 1.33 nmol/mg tissue; P = 0.050), compared with WS UGIC patients (4.58 ± 1.57 nmol/mg tissue), and controls (P = 0.025). Carnosine was significantly reduced in the combined WL UGIC patients (5.12 ± 2.15 nmol/mg tissue) compared with controls (6.21 ± 2.24 nmol/mg tissue; P = 0.045). Carnosine was also significantly reduced in the RBCs of WL UGIC patients (0.32 ± 0.24 pmol/mg protein), compared with controls (0.49 ± 0.31 pmol/mg protein, P = 0.037) and WS UGIC patients (0.51 ± 0.40 pmol/mg protein, P = 0.042). Depletion of carnosine diminished the aldehyde-removing ability in the muscle of WL UGIC patients. Carnosine levels were positively associated with decreases in skeletal muscle index in the WL UGIC patients. CARNS expression was decreased in the muscle of WL UGIC patients and myotubes treated with LLC-CM. Treatment with β-alanine, a carnosine precursor, enhanced endogenous carnosine production and decreased ubiquitin-linked protein degradation in LLC-CM treated myotubes. CONCLUSIONS Depletion of carnosine could contribute to muscle wasting in cancer patients by lowering the aldehyde quenching abilities. Synthesis of carnosine by CARNS in myotubes is particularly affected by tumour derived factors and could contribute to carnosine depletion in WL UGIC patients. Increasing carnosine in skeletal muscle may be an effective therapeutic intervention to prevent muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Janice Miller
- Department of Clinical SurgeryUniversity of EdinburghEdinburghUK
| | - David Hoetker
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | - Hong Gao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Jingjing Zhao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Benjamin Doelling
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Aruni Bhatnagar
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | | | - Shahid P. Baba
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| |
Collapse
|
16
|
Koh YC, Ho CT, Pan MH. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6775-6788. [PMID: 37125676 PMCID: PMC10178808 DOI: 10.1021/acs.jafc.2c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Mitochondrial dysfunction may cause cell death, which has recently emerged as a cancer prevention and treatment strategy mediated by chemotherapy drugs or phytochemicals. However, most existing drugs cannot target cancerous cells and may adversely affect normal cells via side effects. Mounting studies have revealed that phytochemicals such as resveratrol could ameliorate various diseases with dysfunctional or damaged mitochondria. For instance, resveratrol can regulate mitophagy, inhibit oxidative stress and preserve membrane potential, induce mitochondrial biogenesis, balance mitochondrial fusion and fission, and enhance the functionality of the electron transport chain. However, there are only a few studies suggesting that phytochemicals could potentially protect against the cytotoxicity of some current cancer drugs, especially those that damage mitochondria. Besides, COVID-19 and long COVID have also been reported to be correlated to mitochondrial dysfunction. Curcumin has been reported bringing a positive impact on COVID-19 and long COVID. Therefore, in this study, the benefits of resveratrol and curcumin to be applied for cancer treatment/prevention and disease amelioration were reviewed. Besides, this review also provides some perspectives on phytochemicals to be considered as a treatment adjuvant for COVID-19 and long COVID by targeting mitochondrial rescue. Hopefully, this review can provide new insight into disease treatment with phytochemicals targeting mitochondria.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
17
|
Mendivil-Alvarado H, Limon-Miro AT, Carvajal-Millan E, Lizardi-Mendoza J, Mercado-Lara A, Coronado-Alvarado CD, Rascón-Durán ML, Anduro-Corona I, Talamás-Lara D, Rascón-Careaga A, Astiazarán-García H. Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076810. [PMID: 37047783 PMCID: PMC10094966 DOI: 10.3390/ijms24076810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (β = 2.1; p = 0.00), Ki67 (β = -1.39; p = 0.007), estrogen positive (β = 1.57; p = 0.01), weight (β = -0.09; p = 0.00), and visceral fat (β = 0.004; p = 0.00). miRNA-30 was associated with LDL (β = -0.012; p = 0.01) and HDL (β = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (β = -0.0007; p = 0.05) and Ki67 (β = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.
Collapse
Affiliation(s)
| | - Ana Teresa Limon-Miro
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Elizabeth Carvajal-Millan
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Jaime Lizardi-Mendoza
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Araceli Mercado-Lara
- Undersecretariat of Prevention and Health Promotion, Secretary of Health of the Government of Mexico, Mexico City 11570, Mexico
| | | | - María L Rascón-Durán
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Iván Anduro-Corona
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Daniel Talamás-Lara
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Mexico City 14330, Mexico
| | - Antonio Rascón-Careaga
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Humberto Astiazarán-García
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
18
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023; 20:250-264. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50-80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Hucteau E, Mallard J, Pivot X, Schott R, Pflumio C, Trensz P, Favret F, Pagano AF, Hureau TJ. Exacerbated central fatigue and reduced exercise capacity in early-stage breast cancer patients treated with chemotherapy. Eur J Appl Physiol 2023:10.1007/s00421-023-05177-5. [PMID: 36939876 DOI: 10.1007/s00421-023-05177-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE The present study aimed to characterize the etiology of exercise-induced neuromuscular fatigue and its consequences on the force-duration relationship to provide mechanistic insights into the reduced exercise capacity characterizing early-stage breast cancer patients. METHODS Fifteen early-stage breast cancer patients and fifteen healthy women performed 60 maximal voluntary isometric quadriceps contractions (MVCs, 3 s of contraction, 2 s of relaxation). The critical force was determined as the mean force of the last six contractions, while W' was calculated as the force impulse generated above the critical force. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQTw) evoked by supramaximal electrical stimulation, respectively. RESULTS Early-stage breast cancer patients demonstrated lower MVC than controls preexercise (- 15%, P = 0.022), and this reduction persisted throughout the 60-MVC exercise (- 21%, P = 0.002). The absolute critical force was lower in patients than in controls (144 ± 29N vs. 201 ± 47N, respectively, P < 0.001), while W' was similar (P = 0.546), resulting in lower total work done (- 23%, P = 0.001). This was associated with lower muscle activation in the vastus lateralis (P < 0.001), vastus medialis (P = 0.003) and rectus femoris (P = 0.003) in patients. Immediately following exercise, ΔVA showed a greater reduction in patients compared to controls (- 21.6 ± 13.3% vs. - 12.6 ± 7.7%, P = 0.040), while ΔQTw was similar (- 60.2 ± 13.2% vs. - 52.8 ± 19.4%, P = 0.196). CONCLUSION These findings support central fatigue as a primary cause of the reduction in exercise capacity characterizing early-stage breast cancer patients treated with chemotherapy. CLINICAL TRIALS REGISTRATION No. NCT04639609-November 20, 2020.
Collapse
Affiliation(s)
- Elyse Hucteau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Joris Mallard
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Fabrice Favret
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Allan F Pagano
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Thomas J Hureau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France.
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France.
| |
Collapse
|
20
|
Pedrosa MB, Barbosa S, Vitorino R, Ferreira R, Moreira-Gonçalves D, Santos LL. Chemotherapy-Induced Molecular Changes in Skeletal Muscle. Biomedicines 2023; 11:biomedicines11030905. [PMID: 36979884 PMCID: PMC10045751 DOI: 10.3390/biomedicines11030905] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography. Data from preclinical studies showed that chemotherapy modulates several molecular pathways in skeletal muscle, including the ubiquitin–proteasome pathway, autophagy, IGF-1/PI3K/Akt/mTOR, IL-6/JAK/STAT, and NF-κB pathway; however, the newest chemotherapy agents are underexplored. In conclusion, chemotherapy exacerbates skeletal-muscle wasting in cancer patients; however, the incomplete characterization of the chemotherapy-related molecular effects on skeletal muscle makes the development of new preventive anti-wasting strategies difficult. Therefore, further investigation on molecular mechanisms and clinical studies are necessary.
Collapse
Affiliation(s)
- Mafalda Barbosa Pedrosa
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Correspondence: (M.B.P.); (L.L.S.)
| | - Samuel Barbosa
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Correspondence: (M.B.P.); (L.L.S.)
| |
Collapse
|
21
|
Henriksson A, Strandberg E, Stenling A, Mazzoni AS, Sjövall K, Börjeson S, Raastad T, Demmelmaier I, Berntsen S, Nordin K. Does inflammation markers or treatment type moderate exercise intensity effects on changes in muscle strength in cancer survivors participating in a 6-month combined resistance- and endurance exercise program? Results from the Phys-Can trial. BMC Sports Sci Med Rehabil 2023; 15:8. [PMID: 36658635 PMCID: PMC9854232 DOI: 10.1186/s13102-023-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Resistance exercise has a beneficial impact on physical function for patients receiving oncological treatment. However, there is an inter-individual variation in the response to exercise and the tolerability to high-intensity exercise. Identifying potential moderating factors, such as inflammation and treatment type, for changes in muscle strength is important to improve the effectiveness of exercise programs. Therefore, we aimed to investigate if inflammation and type of oncological treatment moderate the effects of exercise intensity (high vs. low-moderate) on muscular strength changes in patients with breast (BRCA) or prostate cancer (PRCA). METHODS Participants with BRCA (n = 286) and PRCA (n = 65) from the Physical training and Cancer study (Phys-Can) were included in the present study. Participants performed a combined resistance- and endurance exercise program during six months, at either high or low-moderate intensity. Separate regression models were estimated for each cancer type, with and without interaction terms. Moderators included in the models were treatment type (i.e., neo/adjuvant chemotherapy-yes/no for BRCA, adjuvant androgen deprivation therapy (ADT)-yes/no for PRCA)), and inflammation (interleukin 6 (IL6) and tumor necrosis factor-alpha (TNFα)) at follow-up. RESULTS For BRCA, neither IL6 (b = 2.469, 95% CI [- 7.614, 12.552]) nor TNFα (b = 0.036, 95% CI [- 6.345, 6.418]) levels moderated the effect of exercise intensity on muscle strength change. The same was observed for chemotherapy treatment (b = 4.893, 95% CI [- 2.938, 12.724]). Similarly, for PRCA, the effect of exercise intensity on muscle strength change was not moderated by IL6 (b = - 1.423, 95% CI [- 17.894, 15.048]) and TNFα (b = - 1.905, 95% CI [- 8.542, 4.732]) levels, nor by ADT (b = - 0.180, 95% CI [- 11.201, 10.841]). CONCLUSIONS The effect of exercise intensity on muscle strength is not moderated by TNFα, IL6, neo/adjuvant chemotherapy, or ADT, and therefore cannot explain any intra-variation of training response regarding exercise intensity (e.g., strength gain) for BRCA or PRCA in this setting. TRIAL REGISTRATION ClinicalTrials.gov NCT02473003.
Collapse
Affiliation(s)
- Anna Henriksson
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Emelie Strandberg
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Stenling
- grid.23048.3d0000 0004 0417 6230Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway ,grid.12650.300000 0001 1034 3451Department of Psychology, Umeå University, Umeå, Sweden
| | - Anne-Sophie Mazzoni
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Katarina Sjövall
- grid.16982.340000 0001 0697 1236Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Sussanne Börjeson
- grid.5640.70000 0001 2162 9922Department of Oncology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Truls Raastad
- grid.23048.3d0000 0004 0417 6230Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway ,grid.412285.80000 0000 8567 2092Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Ingrid Demmelmaier
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden ,grid.23048.3d0000 0004 0417 6230Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Sveinung Berntsen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden ,grid.23048.3d0000 0004 0417 6230Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karin Nordin
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Mallard J, Hucteau E, Schott R, Trensz P, Pflumio C, Kalish-Weindling M, Favret F, Pivot X, Hureau TJ, Pagano AF. Early skeletal muscle deconditioning and reduced exercise capacity during (neo)adjuvant chemotherapy in patients with breast cancer. Cancer 2023; 129:215-225. [PMID: 36397290 PMCID: PMC10099272 DOI: 10.1002/cncr.34533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fatigue is a hallmark of breast cancer and is associated with skeletal muscle deconditioning. If cancer-related fatigue occurs early during chemotherapy (CT), the development of skeletal muscle deconditioning and its effect on exercise capacity remain unclear. The aim of this study was to investigate the evolution of skeletal muscle deconditioning and exercise capacity in patients with early-stage breast cancer during CT. METHODS Patients with breast cancer had a visit before undergoing CT, at 8 weeks, and at the end of chemotherapy (post-CT). Body composition was determined through bioelectrical impedance analysis. Knee extensor, handgrip muscle force and fatigue was quantified by performing maximal voluntary isometric contractions and exercise capacity using the 6-min walking test. Questionnaires were also administered to evaluate quality of life, cancer-related fatigue, and physical activity level. RESULTS Among the 100 patients, reductions were found in muscle mass (-2.3%, p = .002), exercise capacity (-6.7%, p < .001), and knee extensor force (-4.9%, p < .001) post-CT, which occurred within the first 8 weeks of treatment with no further decrease thereafter. If muscle fatigue did not change, handgrip muscle force decreased post-CT only (-2.5%, p = .001), and exercise capacity continued to decrease between 8 weeks and post-CT (-4.6%, p < .001). Quality of life and cancer-related fatigue were impaired after 8 weeks (p < .001) and remained stable thereafter, whereas the physical activity level remained stable during chemotherapy. CONCLUSIONS Similar to cancer-related fatigue, skeletal muscle deconditioning and reduced exercise capacity occurred early during breast cancer CT. Thus, it appears essential to prevent these alterations through exercise training implemented during CT.
Collapse
Affiliation(s)
- Joris Mallard
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, oxidative stress, and muscular protection laboratory (UR 3072), Strasbourg, France.,Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, Strasbourg, France.,Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Elyse Hucteau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, oxidative stress, and muscular protection laboratory (UR 3072), Strasbourg, France.,Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, Strasbourg, France.,Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | | | - Fabrice Favret
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, oxidative stress, and muscular protection laboratory (UR 3072), Strasbourg, France.,Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Thomas J Hureau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, oxidative stress, and muscular protection laboratory (UR 3072), Strasbourg, France.,Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, oxidative stress, and muscular protection laboratory (UR 3072), Strasbourg, France.,Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Hain BA, Waning DL. Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy. Curr Osteoporos Rep 2022; 20:433-441. [PMID: 36087213 DOI: 10.1007/s11914-022-00749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
24
|
Campos e Silva AC, Bergmann A, Araujo CM, Montenegro AKS, Tenório ADS, Dantas D. Association of Handgrip Strength with Quality of Life in Breast Cancer Survivors: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2022; 23:3237-3245. [PMID: 36308344 PMCID: PMC9924335 DOI: 10.31557/apjcp.2022.23.10.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Handgrip strength (HGS) is an indicator of general muscular strength and in cancer patients acts as a relevant marker associated with mortality and health. This study aimed to evaluate the association between peripheral muscle function and health-related quality of life (HRQoL) in breast cancer (BC) survivors. METHODS Systematic review registered on PROSPERO under number: CRD 42021225206. The searches were carried out on MEDLINE via Pubmed, PEDro, Cochrane Library, Embase, CINAHL via EBSCO and Science Direct databases. Observational studies evaluating the association between handgrip strength (HGS) and HRQoL in adult female BC survivors were included. No linguistic or time restrictions were applied. Two reviewers reviewed full texts for inclusion and performed data extraction and risk of bias using the Newcastle and Ottawa scale (NOS). RESULTS Five articles were included and involved 587 patients, mean age of 47 to 59 years. The percentage of decreased HGS ranged from 38.3% to 60.3%. HGS was associated with different quality of life measures. From meta-analysis including 220 patients, the correlation coefficient between HGS and HRQoL was 0.26 (95% CI: 0.07-0.35). CONCLUSIONS Breast cancer survivors face decline of HGS. In this population HGS was correlated with HRQoL. However, more evidence are necessary.
Collapse
Affiliation(s)
| | - Anke Bergmann
- Clinical Epidemiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | | | | | | | - Diego Dantas
- Federal University of Pernambuco. Graduate program of Physical Therapy. Recife-PE, Brazil. ,For Correspondence:
| |
Collapse
|
25
|
Toth MJ, Savage PD, Voigt TB, Anair BM, Bunn JY, Smith IB, Tourville TW, Blankstein M, Stevens-Lapsley J, Nelms NJ. Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels. J Appl Physiol (1985) 2022; 133:647-660. [PMID: 35900327 PMCID: PMC9467475 DOI: 10.1152/japplphysiol.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Total knee arthroplasty (TKA) is an important treatment option for knee osteoarthritis (OA) that improves self-reported pain and physical function, but objectively measured physical function typically remains reduced for years after surgery due, in part, to precipitous reductions in lower extremity neuromuscular function early after surgery. The present study examined intrinsic skeletal muscle adaptations during the first 5 weeks post-TKA to identify skeletal muscle attributes that may contribute to functional disability. Patients with advanced stage knee OA were evaluated prior to TKA and 5 weeks after surgery. Biopsies of the vastus lateralis were performed to assess muscle fiber size, contractility, and mitochondrial content, along with assessments of whole muscle size and function. TKA was accompanied by marked reductions in whole muscle size and strength. At the fiber (i.e., cellular) level, TKA caused profound muscle atrophy that was approximately twofold higher than that observed at the whole muscle level. TKA markedly reduced muscle fiber force production, contractile velocity, and power production, with force deficits persisting in myosin heavy chain (MHC) II fibers after expression relative to fiber size. Molecular level assessments suggest reduced strongly bound myosin-actin cross bridges and myofilament lattice stiffness as a mechanism underlying reduced force per unit fiber size. Finally, marked reductions in mitochondrial content were apparent and more prominent in the subsarcolemmal compartment. Our study represents the most comprehensive evaluation of skeletal muscle cellular adaptations to TKA and uncovers novel effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.NEW & NOTEWORTHY We report the first evaluation of the effects of total knee arthroplasty (TKA) on skeletal muscle at the cellular and subcellular levels. We found marked effects of TKA to cause skeletal muscle fiber atrophy and contractile dysfunction in older adults, as well as molecular mechanisms underlying impaired contractility. Our results reveal profound effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Anair
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Janice Y Bunn
- Department of Medical Biostatistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
- Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| | - Isaac B Smith
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Michael Blankstein
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer Stevens-Lapsley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, Colorado
| | - Nathaniel J Nelms
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
26
|
Beynnon BD, Pius AK, Tourville TW, Endres NK, Failla MJ, Choquette RH, DeSarno M, Toth MJ. The Duration of Thigh Tourniquet Use Associated With Anterior Cruciate Ligament Reconstruction Does Not Produce Cellular-Level Contractile Dysfunction of the Quadriceps Muscle at 3 Weeks After Surgery. Am J Sports Med 2022; 50:2925-2934. [PMID: 35980007 DOI: 10.1177/03635465221115823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) trauma and ACL reconstruction (ACLR) are associated with the loss of strength and function of the muscles that span the knee joint. The underlying mechanism associated with this is not completely understood. PURPOSE To determine whether the duration of tourniquet use during ACLR has an effect on knee extensor muscle contractile function and size at the cellular (ie, fiber) level 3 weeks after surgery and at the whole-muscle level at 6 months after surgery. STUDY DESIGN Descriptive laboratory study and case series; Level of evidence, 4. METHODS Study participants sustained an acute, first-time ACL injury. All participants underwent ACLR with the use of a tourniquet placed in a standardized location on the thigh; the tourniquet was inflated (pressure range, 250-275 mm Hg), and the time of tourniquet use during surgery was documented. Participants were evaluated 1 week before surgery (to measure patient function, strength, and subjective outcome with the Knee injury and Osteoarthritis Outcome Score [KOOS] and International Knee Documentation Committee [IKDC] score), at 3 weeks after ACLR surgery (to obtain muscle biopsy specimens of the vastus lateralis and assess muscle fiber cross-sectional area, contractile function, and mitochondrial content and morphometry), and at 6 months after ACLR (to evaluate patient function, strength, and subjective outcomes via KOOS and IKDC scores). Data were acquired on both the injured/surgical limb and the contralateral, normal side to facilitate the use of a within-subjects study design. Results are based on additional analysis of data acquired from previous research that had common entry criteria, treatments, and follow-up protocols. RESULTS At 3 weeks after ACLR, the duration of tourniquet use at the time of surgery did not explain the variation in single-muscle fiber contractile function or cross-sectional area (myosin heavy chain [MHC] I and II fibers) or subsarcolemmal and intermyofibrillar mitochondrial content or morphometry. At 6 months after ACLR, the duration of tourniquet use was not associated with the peak isometric and isokinetic torque measurements, patient function, or patient-reported outcomes. CONCLUSION The duration of tourniquet use at the time of ACLR surgery did not explain variation in muscle fiber size, contractile function, or mitochondrial content at 3 weeks after surgery or strength of the quadriceps musculature or patient-reported function or quality of life at 6-month follow-up.
Collapse
Affiliation(s)
- Bruce D Beynnon
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, USA
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont, USA
| | - Alexa K Pius
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Timothy W Tourville
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Nathan K Endres
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mathew J Failla
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Rebecca H Choquette
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mike DeSarno
- Department of Medical Biostatistics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Michael J Toth
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
27
|
CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488905. [PMID: 35815279 PMCID: PMC9262520 DOI: 10.1155/2022/1488905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of sarcopenia and can increase morbidity and mortality in specific patient populations. The aim of this study was to identify novel prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods. The samples were first divided into different age groups and different muscle type groups, respectively, and each of these samples was analyzed for differences to obtain two groups of differentially expressed genes (DEGs). The two groups of DEGs were intersected using Venn diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO) functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Subsequently, WGCNA (weighted gene coexpression network analysis) was used to find gene modules associated with both the age and muscle type to obtain the lightgreen module. The genes in the key modules were analyzed using PPI, and the top five genes were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In conclusion, we identified that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.
Collapse
|
28
|
Vikmoen O, Wiestad TH, Thormodsen I, Nordin K, Berntsen S, Demmelmaier I, Strandberg E, Raastad T. Effects of high and low-to-moderate intensity exercise during (neo-)adjuvant chemotherapy on muscle cells, cardiorespiratory fitness and muscle function in women with breast cancer: Protocol for a randomized controlled trial (Preprint). JMIR Res Protoc 2022; 11:e40811. [DOI: 10.2196/40811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
|
29
|
Liu J, Chen ZZ, Patel J, Asnani A. Understanding Myocardial Metabolism in the Context of Cardio-Oncology. Heart Fail Clin 2022; 18:415-424. [PMID: 35718416 DOI: 10.1016/j.hfc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiovascular events, ranging from arrhythmias to decompensated heart failure, are common during and after cancer therapy. Cardiovascular complications can be life-threatening, and from the oncologist's perspective, could limit the use of first-line cancer therapeutics. Moreover, an aging population increases the risk for comorbidities and medical complexity among patients who undergo cancer therapy. Many have established cardiovascular diagnoses or risk factors before starting these therapies. Therefore, it is essential to understand the molecular mechanisms that drive cardiovascular events in patients with cancer and to identify new therapeutic targets that may prevent and treat these 2 diseases. This review will discuss the metabolic interaction between cancer and the heart and will highlight current strategies of targeting metabolic pathways for cancer treatment. Finally, this review highlights opportunities and challenges in advancing our understanding of myocardial metabolism in the context of cancer and cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jagvi Patel
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Telles GD, Conceição MS, Vechin FC, Libardi CA, Mori MADS, Derchain S, Ugrinowitsch C. Exercise-Induced Circulating microRNAs: Potential Key Factors in the Control of Breast Cancer. Front Physiol 2022; 13:800094. [PMID: 35784874 PMCID: PMC9244175 DOI: 10.3389/fphys.2022.800094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Losses in skeletal muscle mass, strength, and metabolic function are harmful in the pathophysiology of serious diseases, including breast cancer. Physical exercise training is an effective non-pharmacological strategy to improve health and quality of life in patients with breast cancer, mainly through positive effects on skeletal muscle mass, strength, and metabolic function. Emerging evidence has also highlighted the potential of exercise-induced crosstalk between skeletal muscle and cancer cells as one of the mechanisms controlling breast cancer progression. This intercellular communication seems to be mediated by a group of skeletal muscle molecules released in the bloodstream known as myokines. Among the myokines, exercise-induced circulating microRNAs (c-miRNAs) are deemed to mediate the antitumoral effects produced by exercise training through the control of key cellular processes, such as proliferation, metabolism, and signal transduction. However, there are still many open questions regarding the molecular basis of the exercise-induced effects on c-miRNA on human breast cancer cells. Here, we present evidence regarding the effect of exercise training on c-miRNA expression in breast cancer, along with the current gaps in the literature and future perspectives.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Miguel Soares Conceição
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
- *Correspondence: Carlos Ugrinowitsch,
| |
Collapse
|
31
|
Mallard J, Hucteau E, Charles AL, Bender L, Baeza C, Pélissie M, Trensz P, Pflumio C, Kalish-Weindling M, Gény B, Schott R, Favret F, Pivot X, Hureau TJ, Pagano AF. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J Cachexia Sarcopenia Muscle 2022; 13:1896-1907. [PMID: 35373507 PMCID: PMC9178151 DOI: 10.1002/jcsm.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics. METHODS Women undergoing (neo)adjuvant anthracycline-cyclophosphamide and taxane-based chemotherapy participated in this study (56 ± 12 years). Two muscle biopsies were collected from the vastus lateralis muscle before the first and after the last chemotherapy administration. Mitochondrial respiratory capacity, reactive oxygen species production, and western blotting analyses were performed. RESULTS Among the 11 patients, we found a decrease in key markers of mitochondrial quantity, reaching -52.0% for citrate synthase protein levels (P = 0.02) and -38.2% for VDAC protein levels (P = 0.04). This mitochondrial content loss is likely explained by reduced mitochondrial biogenesis, as evidenced by a decrease in PGC-1α1 protein levels (-29.5%; P = 0.04). Mitochondrial dynamics were altered, as documented by a decrease in MFN2 protein expression (-33.4%; P = 0.01), a key marker of mitochondrial outer membrane fusion. Mitochondrial fission is a prerequisite for mitophagy activation, and no variation was found in either key markers of mitochondrial fission (Fis1 and DRP1) or mitophagy (Parkin, PINK1, and Mul1). Two contradictory hypotheses arise from these results: defective mitophagy, which probably increases the number of damaged and fragmented mitochondria, or a relative increase in mitophagy through elevated mitophagic potential (Parkin/VDAC ratio; +176.4%; P < 0.02). Despite no change in mitochondrial respiratory capacity and COX IV protein levels, we found an elevation in H2 O2 production (P < 0.05 for all substrate additions) without change in antioxidant enzymes. We investigated the apoptosis pathway and found an increase in the protein expression of the apoptosis initiation marker Bax (+72.0%; P = 0.04), without variation in the anti-apoptotic protein Bcl-2. CONCLUSIONS This study demonstrated major mitochondrial alterations subsequent to chemotherapy in early breast cancer patients: (i) a striking reduction in mitochondrial biogenesis, (ii) altered mitochondrial dynamics and potential mitophagy defects, (iii) exacerbated H2 O2 production, and (iv) increased initiation of apoptosis. All of these alterations likely explain, at least in part, the high prevalence of skeletal muscle and cardiorespiratory deconditioning classically observed in breast cancer patients.
Collapse
Affiliation(s)
- Joris Mallard
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France.,Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Elyse Hucteau
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France.,Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Anne-Laure Charles
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France
| | - Laura Bender
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Claire Baeza
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Mathilde Pélissie
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Philippe Trensz
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Carole Pflumio
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | - Bernard Gény
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Fabrice Favret
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thomas J Hureau
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
32
|
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood) 2022; 247:713-733. [PMID: 35521962 DOI: 10.1177/15353702221087962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven by multiple factors such as anorexia, excessive catabolism, elevated energy expenditure by growing tumor mass, and inflammatory mediators released by cancer cells and surrounding tissues. In addition, endocrine system, systemic metabolism, and central nervous system (CNS) perturbations in combination with cachexia mediators elicit exponential elevation in catabolism and reduced anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular level, mechanisms of CC include inflammation, reduced protein synthesis, and lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and complications of chemotherapy. Furthermore, CC is remarkably associated with intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with no established standard therapy. In this context, we discuss the spatio-temporal changes occurring in the various stages of CC and highlight the imbalance of host metabolism. We provide how multiple factors such as proteasomal pathways, inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth mechanisms of interplay between inflammatory molecules and CNS can trigger and amplify the cachectic processes. Finally, we highlight current diagnostic approaches and promising therapeutic interventions for CC.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
33
|
Sleight AG, Crowder SL, Skarbinski J, Coen P, Parker NH, Hoogland AI, Gonzalez BD, Playdon MC, Cole S, Ose J, Murayama Y, Siegel EM, Figueiredo JC, Jim HSL. A New Approach to Understanding Cancer-Related Fatigue: Leveraging the 3P Model to Facilitate Risk Prediction and Clinical Care. Cancers (Basel) 2022; 14:cancers14081982. [PMID: 35454890 PMCID: PMC9027717 DOI: 10.3390/cancers14081982] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary For the growing number of cancer survivors worldwide, fatigue presents a major hurdle to function and quality of life. Treatment options for cancer-related fatigue are still emerging, and our current understanding of its etiology is limited. In this paper, we describe a new application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. We propose that the 3P model may be leveraged—particularly using metabolomics, the microbiome, and inflammation in conjunction with behavioral science—to better understand the pathophysiology of cancer-related fatigue. Abstract A major gap impeding development of new treatments for cancer-related fatigue is an inadequate understanding of the complex biological, clinical, demographic, and lifestyle mechanisms underlying fatigue. In this paper, we describe a new application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. This model framework outlined herein, which incorporates the emerging field of metabolomics, may help to frame a more in-depth analysis of the etiology of cancer-related fatigue as well as a broader and more personalized set of approaches to the clinical treatment of fatigue in oncology care. Included within this review paper is an in-depth description of the proposed biological mechanisms of cancer-related fatigue, as well as a presentation of the 3P model’s application to this phenomenon. We conclude that a clinical focus on organization risk stratification and treatment around the 3P model may be warranted, and future research may benefit from expanding the 3P model to understand fatigue not only in oncology, but also across a variety of chronic conditions.
Collapse
Affiliation(s)
- Alix G. Sleight
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sylvia L. Crowder
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Jacek Skarbinski
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94501, USA;
- Department of Infectious Diseases, Oakland Medical Center, Kaiser Permanente Northern California, Oakland, CA 94501, USA
- Physician Researcher Program, Kaiser Permanente Northern California, Oakland, CA 94501, USA
- The Permanente Medical Group, Kaiser Permanente Northern California, Oakland, CA 94501, USA
| | - Paul Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, FL 32804, USA;
| | - Nathan H. Parker
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Aasha I. Hoogland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Brian D. Gonzalez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
| | - Mary C. Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84044, USA;
- Department of Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84044, USA
| | - Steven Cole
- Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, CA 90001, USA;
| | - Jennifer Ose
- Department of Population Sciences, University of Utah, Salt Lake City, UT 84044, USA;
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84044, USA
| | - Yuichi Murayama
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.M.); (J.C.F.)
| | - Erin M. Siegel
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33601, USA;
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.M.); (J.C.F.)
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33601, USA; (S.L.C.); (N.H.P.); (A.I.H.); (B.D.G.)
- Correspondence:
| |
Collapse
|
34
|
Pin F, Huot JR, Bonetto A. The Mitochondria-Targeting Agent MitoQ Improves Muscle Atrophy, Weakness and Oxidative Metabolism in C26 Tumor-Bearing Mice. Front Cell Dev Biol 2022; 10:861622. [PMID: 35392166 PMCID: PMC8980422 DOI: 10.3389/fcell.2022.861622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a debilitating syndrome characterized by skeletal muscle wasting, weakness and fatigue. Several pathogenetic mechanisms can contribute to these muscle derangements. Mitochondrial alterations, altered metabolism and increased oxidative stress are known to promote muscle weakness and muscle catabolism. To the extent of improving cachexia, several drugs have been tested to stimulate mitochondrial function and normalize the redox balance. The aim of this study was to test the potential beneficial anti-cachectic effects of Mitoquinone Q (MitoQ), one of the most widely-used mitochondria-targeting antioxidant. Here we show that MitoQ administration (25 mg/kg in drinking water, daily) in vivo was able to improve body weight loss in Colon-26 (C26) bearers, without affecting tumor size. Consistently, the C26 hosts displayed ameliorated skeletal muscle and strength upon treatment with MitoQ. In line with improved skeletal muscle mass, the treatment with MitoQ was able to partially correct the expression of the E3 ubiquitin ligases Atrogin-1 and Murf1. Contrarily, the anabolic signaling was not improved by the treatment, as showed by unchanged AKT, mTOR and 4EBP1 phosphorylation. Assessment of gene expression showed altered levels of markers of mitochondrial biogenesis and homeostasis in the tumor hosts, although only Mitofusin-2 levels were significantly affected by the treatment. Interestingly, the levels of Pdk4 and CytB, genes involved in the regulation of mitochondrial function and metabolism, were also partially increased by MitoQ, in line with the modulation of hexokinase (HK), pyruvate dehydrogenase (PDH) and succinate dehydrogenase (SDH) enzymatic activities. The improvement of the oxidative metabolism was associated with reduced myosteatosis (i.e., intramuscular fat infiltration) in the C26 bearers receiving MitoQ, despite unchanged muscle LDL receptor expression, therefore suggesting that MitoQ could boost β-oxidation in the muscle tissue and promote a glycolytic-to-oxidative shift in muscle metabolism and fiber composition. Overall, our data identify MitoQ as an effective treatment to improve skeletal muscle mass and function in tumor hosts and further support studies aimed at testing the anti-cachectic properties of mitochondria-targeting antioxidants also in combination with routinely administered chemotherapy agents.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Andrea Bonetto,
| |
Collapse
|
35
|
Tourville TW, Voigt TB, Choquette RH, Failla MJ, Endres NK, Slauterbeck JR, Beynnon BD, Toth MJ. Skeletal muscle cellular contractile dysfunction after anterior cruciate ligament reconstruction contributes to quadriceps weakness at 6-month follow-up. J Orthop Res 2022; 40:727-737. [PMID: 33969521 PMCID: PMC8578585 DOI: 10.1002/jor.25065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Muscle dysfunction following anterior cruciate ligament reconstruction (ACLR) may evolve from alterations in muscle contractility at the myofilament protein level. Using a prospective, within-subject case-control design, we evaluated cellular-level contractility, cross-sectional area (CSA), and myosin heavy chain (MHC) isoform expression on single muscle fibers 3 weeks post ACLR, and evaluated their relationship to whole muscle strength and patient-oriented outcomes 6 months post operation. Biopsies of the vastus lateralis were performed 3 weeks post ACLR in 11 subjects (5 females, mean age ± SD = 24.7 ± 6.5 years, height = 172.7 ± 8.2 cm, mass = 75.7 ± 12.5 kg) following first-time ACL rupture and whole muscle strength and self-reported pain, function, and quality of life assessed 6 months post ACLR. At 3 weeks post ACLR, force production was reduced (p < 0.01) in MHC I (-36%) and IIA (-48%) fibers compared with the non-injured leg. When force production was expressed relative to CSA to account for fiber atrophy, reductions remained in MHC IIA fibers (-40%; p < 0.001), but MHC I fibers showed only a trend toward being lower (-13%; p = 0.09). Finally, skeletal muscle fiber functional deficits at 3 weeks post ACLR were associated with whole muscle weakness and less favorable patient-reported outcomes at 6-month follow-up. Thus, ACLR promotes early cellular contractile dysfunction that may contribute to decreased whole muscle strength and patient function, and increased patient-reported symptoms, at 6-month follow-up.
Collapse
Affiliation(s)
- Timothy W. Tourville
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA.,Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Thomas B. Voigt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Rebecca H. Choquette
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Mathew J. Failla
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA
| | - Nathan K. Endres
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - James R. Slauterbeck
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Bruce D. Beynnon
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Michael J. Toth
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA,Department of Medicine, University of Vermont, Burlington, VT, USA,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
36
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
37
|
Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022; 132:388-401. [PMID: 34941442 PMCID: PMC8791841 DOI: 10.1152/japplphysiol.00746.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.
Collapse
Affiliation(s)
- Hawley E. Kunz
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Port
- 2Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Kenton R. Kaufman
- 3Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aminah Jatoi
- 4Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Corey R. Hart
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J. Gries
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R. Lanza
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- 5Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota,6Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Chi MY, Zhang H, Wang YX, Sun XP, Yang QJ, Guo C. Silibinin Alleviates Muscle Atrophy Caused by Oxidative Stress Induced by Cisplatin through ERK/FoxO and JNK/FoxO Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5694223. [PMID: 35096269 PMCID: PMC8794676 DOI: 10.1155/2022/5694223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin (DDP), a widely used chemotherapeutic drug in cancer treatment, causes oxidative stress, resulting in cancer cachexia and skeletal muscle atrophy. This study investigated the effects and activity of silibinin (SLI) in reducing DDP-induced oxidative stress and skeletal muscle atrophy in vivo and in vitro. SLI alleviated weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reduction induced by DDP and improved the reduction of grip force caused by DDP. SLI can attenuated the increase in reactive oxygen species (ROS) levels, the decrease in Nrf2 expression, the decrease in the fiber cross-sectional area, and changes in fiber type induced by DDP. SLI regulated the ERK/FoxO and JNK/FoxO pathways by downregulating the abnormal increase in ROS and Nrf2 expression in DDP-treated skeletal muscle and C2C12 myotube cells. Further, SLI inhibited the upregulation of MAFbx and Mstn, the downregulation of MyHC and MyoG, the increase in protein degradation, and the decrease of protein synthesis. The protective effects of SLI were reversed by cotreatment with JNK agonists and ERK inhibitors. These results suggest that SLI can reduce DDP-induced skeletal muscle atrophy by reducing oxidative stress and regulating ERK/FoxO and JNK/FoxO pathways.
Collapse
Affiliation(s)
- Meng-yi Chi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Hong Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-xian Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Xi-peng Sun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Quan-jun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Cheng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Milliron BJ, Packel L, Dychtwald D, Klobodu C, Pontiggia L, Ogbogu O, Barksdale B, Deutsch J. When Eating Becomes Torturous: Understanding Nutrition-Related Cancer Treatment Side Effects among Individuals with Cancer and Their Caregivers. Nutrients 2022; 14:nu14020356. [PMID: 35057538 PMCID: PMC8781744 DOI: 10.3390/nu14020356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Individuals living with cancer often experience multiple nutrition-related side effects from cancer treatment, including changes in taste and smell, nausea, diarrhea, loss of appetite, and pain during eating. These side effects can profoundly impact nutritional status and quality of life. The purpose of this study was to explore experiences with nutrition-related cancer treatment side effects among cancer patients and their family caregivers, the way they manage such side effects, and the resulting changes in food preferences and behaviors. Structured surveys and in-depth interviews were conducted. Interviews focused on the presence and management of treatment side effects, how those changes influenced food preferences, and the extent to which they interfered with quality of life. Most patients (72%) reported treatment side effects; 61% reported that these side effects impacted their eating and drinking. Common side effects included fatigue (58%), dry mouth (30%), nausea (24%), constipation (20%) and diarrhea (20%). Six overarching qualitative themes were identified: Spiral of side effects; Pain of eating; Burden of eating; Loss of taste/change in taste; Symptom management; and Solutions. The authors conclude with implications for food and nutrition practice—moving beyond traditional recommendations of what to eat or avoid—to consider the overall patient and caregiver experience.
Collapse
Affiliation(s)
- Brandy-Joe Milliron
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
- Department of Food and Hospitality Management, College of Nursing and Health Professions, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA;
- Correspondence:
| | - Lora Packel
- Department of Physical Therapy, University of the Sciences, 600 S. 43rd Street, Philadelphia, PA 19104, USA;
| | - Dan Dychtwald
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
| | - Cynthia Klobodu
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
| | - Laura Pontiggia
- Institute of Emerging Health Professions, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA 19107, USA;
| | - Ochi Ogbogu
- AstraZeneca Hope Lodge of the American Cancer Society, 110 W Laurel Ave., Cheltenham, PA 19012, USA; (O.O.); (B.B.)
| | - Byron Barksdale
- AstraZeneca Hope Lodge of the American Cancer Society, 110 W Laurel Ave., Cheltenham, PA 19012, USA; (O.O.); (B.B.)
| | - Jonathan Deutsch
- Department of Food and Hospitality Management, College of Nursing and Health Professions, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA;
| |
Collapse
|
40
|
Skeletal muscle wasting during neoadjuvant therapy as a prognosticator in patients with esophageal and esophagogastric junction cancer: A systematic review and meta-analysis. Int J Surg 2022; 97:106206. [PMID: 34990833 DOI: 10.1016/j.ijsu.2021.106206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Considerable controversies exist regarding the severity of skeletal muscle wasting (SMW) during neoadjuvant therapy (NAT) and its impact on therapeutic outcomes in patients with esophageal or esophagogastric junction cancer (EC/EGJC). This systematic review and meta-analysis aimed to resolve these issues. Particularly, the prognostic value of SMW during NAT was compared to pre-NAT and pre-surgery sarcopenia status. METHODS We searched PubMed, Embase, and Cochrane Library databases through October 13th, 2021 to identify cohort studies focusing on SMW during NAT and therapeutic outcomes in EC/EGJC patients. Both neoadjuvant chemotherapy and neoadjuvant chemoradiotherapy were studied. A meta-analysis was conducted to quantify SMW and increased sarcopenia during NAT. Therapeutic outcomes include perioperative morbidities and survival profiles. A separate meta-analysis investigating the impacts of pre-NAT/pre-surgery sarcopenia on therapeutic outcomes was synchronously performed. RESULTS Twenty-five studies with 2706 participants were included in this review. The pooled SMW during NAT were -2.47 cm2/m2 in skeletal muscle index and -0.23 cm2/m2 in psoas muscle index, with wasting proportion reaching 4.44%. The pooled prevalence rate of sarcopenia increased from 53.1% before NAT to 65.8% before surgery. Neoadjuvant chemoradiotherapy, advanced age, and being male were identified as risk factors for severe SMW during NAT. Notably, severe SMW during NAT showed a greater hazard ratio (HR) than pre-NAT and pre-surgery sarcopenia in predicting overall survival (HR 1.92, P < 0.001; HR 1.17, P = 0.036; and HR 1.28, P = 0.011, respectively) and recurrence-free survival (HR 1.51, P = 0.002; HR 1.27, P = 0.008; and HR 1.38, P = 0.006, respectively). However, severe SMW during NAT was not significantly associated with perioperative morbidities. CONCLUSIONS SMW during NAT is a novel prognosticator that is different from sarcopenia for poor survival in EC/EGJC patients. Interventions aiming at maintaining skeletal muscle during NAT are anticipated to promote therapeutic outcomes.
Collapse
|
41
|
SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants (Basel) 2021; 11:antiox11010066. [PMID: 35052570 PMCID: PMC8772917 DOI: 10.3390/antiox11010066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/23/2022] Open
Abstract
Denervated muscle atrophy is a common clinical disease that has no effective treatments. Our previous studies have found that oxidative stress and inflammation play an important role in the process of denervated muscle atrophy. Extracellular vesicles derived from skin precursor-derived Schwann cells (SKP-SC-EVs) contain a large amount of antioxidants and anti-inflammatory factors. This study explored whether SKP-SC-EVs alleviate denervated muscle atrophy by inhibiting oxidative stress and inflammation. In vitro studies have found that SKP-SC-EVs can be internalized and caught by myoblasts to promote the proliferation and differentiation of myoblasts. Nutrient deprivation can cause myotube atrophy, accompanied by oxidative stress and inflammation. However, SKP-SC-EVs can inhibit oxidative stress and inflammation caused by nutritional deprivation and subsequently relieve myotube atrophy. Moreover, there is a remarkable dose-effect relationship. In vivo studies have found that SKP-SC-EVs can significantly inhibit a denervation-induced decrease in the wet weight ratio and myofiber cross-sectional area of target muscles. Furthermore, SKP-SC-EVs can dramatically inhibit highly expressed Muscle RING Finger 1 and Muscle Atrophy F-box in target muscles under denervation and reduce the degradation of the myotube heavy chain. SKP-SC-EVs may reduce mitochondrial vacuolar degeneration and autophagy in denervated muscles by inhibiting autophagy-related proteins (i.e., PINK1, BNIP3, LC3B, and ATG7). Moreover, SKP-SC-EVs may improve microvessels and blood perfusion in denervated skeletal muscles by enhancing the proliferation of vascular endothelial cells. SKP-SC-EVs can also significantly inhibit the production of reactive oxygen species (ROS) in target muscles after denervation, which indicates that SKP-SC-EVs elicit their role by upregulating Nrf2 and downregulating ROS production-related factors (Nox2 and Nox4). In addition, SKP-SC-EVs can significantly reduce the levels of interleukin 1β, interleukin-6, and tumor necrosis factor α in target muscles. To conclude, SKP-SC-EVs may alleviate the decrease of target muscle blood perfusion and passivate the activities of ubiquitin-proteasome and autophagy-lysosome systems by inhibiting oxidative stress and inflammatory response, then reduce skeletal muscle atrophy caused by denervation. This study not only enriches the molecular regulation mechanism of denervated muscle atrophy, but also provides a scientific basis for SKP-SC-EVs as a protective drug to prevent and treat muscle atrophy.
Collapse
|
42
|
Ou HC, Chu PM, Huang YT, Cheng HC, Chou WC, Yang HL, Chen HI, Tsai KL. Low-level laser prevents doxorubicin-induced skeletal muscle atrophy by modulating AMPK/SIRT1/PCG-1α-mediated mitochondrial function, apoptosis and up-regulation of pro-inflammatory responses. Cell Biosci 2021; 11:200. [PMID: 34876217 PMCID: PMC8650328 DOI: 10.1186/s13578-021-00719-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (Dox) is a widely used anthracycline drug to treat cancer, yet numerous adverse effects influencing different organs may offset the treatment outcome, which in turn affects the patient’s quality of life. Low-level lasers (LLLs) have resulted in several novel indications in addition to traditional orthopedic conditions, such as increased fatigue resistance and muscle strength. However, the mechanisms by which LLL irradiation exerts beneficial effects on muscle atrophy are still largely unknown. Results The present study aimed to test our hypothesis that LLL irradiation protects skeletal muscles against Dox-induced muscle wasting by using both animal and C2C12 myoblast cell models. We established SD rats treated with 4 consecutive Dox injections (12 mg/kg cumulative dose) and C2C12 myoblast cells incubated with 2 μM Dox to explore the protective effects of LLL irradiation. We found that LLL irradiation markedly alleviated Dox-induced muscle wasting in rats. Additionally, LLL irradiation inhibited Dox-induced mitochondrial dysfunction, apoptosis, and oxidative stress via the activation of AMPK and upregulation of SIRT1 with its downstream signaling PGC-1α. These aforementioned beneficial effects of LLL irradiation were reversed by knockdown AMPK, SIRT1, and PGC-1α in C2C12 cells transfected with siRNA and were negated by cotreatment with mitochondrial antioxidant and P38MAPK inhibitor. Therefore, AMPK/SIRT1/PGC-1α pathway activation may represent a new mechanism by which LLL irradiation exerts protection against Dox myotoxicity through preservation of mitochondrial homeostasis and alleviation of oxidative stress and apoptosis. Conclusion Our findings may provide a novel adjuvant intervention that can potentially benefit cancer patients from Dox-induced muscle wasting. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00719-w.
Collapse
Affiliation(s)
- Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Ting Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hui-Ching Cheng
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsin-Lun Yang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiu-I Chen
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC.,Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC. .,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
43
|
Mancuso S, Scaturro D, Santoro M, Di Gaetano G, Vitagliani F, Falco V, Siragusa S, Gonnelli S, Mauro GL. Bone damage after chemotherapy for lymphoma: a real-world experience. BMC Musculoskelet Disord 2021; 22:1024. [PMID: 34876084 PMCID: PMC8653589 DOI: 10.1186/s12891-021-04904-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite recent improvements in survival due to advances in treatment, the quality of life of patients with lymphoma may be compromised by the long-term complications of chemotherapy and steroid therapy. Among these, a potentially relevant problem is bone loss and the development of fragility fractures. AIM To provide further evidence of clinical or subclinical skeletal complications in correlation with biological variables and markers of bone disease in patients with complete response to therapy. METHOD A cross-sectional observational study was conducted on subjects diagnosed with lymphoma with subsequent antineoplastic treatment, disease status after therapy defined as complete response disease for at least a year now. We performed: blood chemistry tests, imaging techniques and screening tools for the assessment of functional status and quality of life (SARC-F and mini-Osteoporosis Quality of Life). RESULTS Approximately 50% of patients had osteoporosis, with a prevalence of vertebral fractures of 65.5%. In most patients, we found hypovitaminosis D and high levels of parathyroid hormone (PTH). Furthermore, a statistically significant association was observed between high PTH levels and previous lymphoma treatment. Finally, the Mini-Osteoporosis Quality of life (mini-OQLQ) questionnaire demonstrated a loss of quality of life as a consequence of the change in bone status. CONCLUSIONS Patient treatment design for personalized chemotherapy would be desirable to reduce late effects on bone. Also, early prevention programs need to be applied before starting treatment. The most benefited subpopulations could be not only elderly but also young patients.
Collapse
Affiliation(s)
- S Mancuso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Hematology Unit, University of Palermo, Palermo, Italy
| | - Dalila Scaturro
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Via del vespro 129, 90127, Palermo, Italy.
| | - M Santoro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Hematology Unit, University of Palermo, Palermo, Italy
| | | | | | - V Falco
- Department of Economics Business and Statistic, University of Palermo, Palermo, Italy
| | - S Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Hematology Unit, University of Palermo, Palermo, Italy
| | - S Gonnelli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Diseases and Lung Transplantation, Siena University Hospital, Siena, Italy
| | - G Letizia Mauro
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Via del vespro 129, 90127, Palermo, Italy
| |
Collapse
|
44
|
Guo B, Bennet D, Belcher DJ, Kim HG, Nader GA. Chemotherapy agents reduce protein synthesis and ribosomal capacity in myotubes independent of oxidative stress. Am J Physiol Cell Physiol 2021; 321:C1000-C1009. [PMID: 34705587 DOI: 10.1152/ajpcell.00116.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotherapeutic agents (CAs) are first-line antineoplastic treatments against a wide variety of cancers. Despite their effectiveness in halting tumor progression, side effects associated with CAs promote muscle loss by incompletely understood mechanisms. To address this problem, we first identified how oxidative stress impairs protein synthesis in C2C12 myotubes. Transient elevations in reactive oxygen species (ROS) resulted in protein synthesis deficits and reduced ribosomal (r)RNA levels. Oxidative stress did not reduce rRNA gene (rDNA) transcription, but it caused an increase in rRNA and protein oxidation. To determine whether CAs affect protein synthesis independent of oxidative stress, we exposed myotubes to Paclitaxel (PTX), Doxorubicin (DXR), or Marizomib (Mzb) at doses that did result in elevated ROS levels (sub-ROS). Exposure to CAs reduced protein synthesis and rRNA levels, but unlike oxidative stress, sub-ROS exposures impaired rDNA transcription. These results indicate that although oxidative stress disrupts protein synthesis by compromising ribosomal quantity and quality, CAs at sub-ROS doses compromise protein synthesis and ribosomal capacity, at least in part, by reducing rDNA transcription. Therefore, CAs negatively impact protein synthesis by causing oxidative stress in addition to directly reducing the ribosomal capacity of myotubes in a ROS-independent manner.
Collapse
Affiliation(s)
- Bin Guo
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Devasier Bennet
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Daniel J Belcher
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Hyo-Gun Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gustavo A Nader
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania.,Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
45
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
46
|
Mesenchymal Stem Cell-Derived Exosomes Protect Muscle Loss by miR-145-5p Activity Targeting Activin A Receptors. Cells 2021; 10:cells10082169. [PMID: 34440938 PMCID: PMC8394132 DOI: 10.3390/cells10082169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.
Collapse
|
47
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
48
|
Kucuksayan E, Bozkurt F, Yilmaz MT, Sircan-Kucuksayan A, Hanikoglu A, Ozben T. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Sci Rep 2021; 11:13027. [PMID: 34158544 PMCID: PMC8219778 DOI: 10.1038/s41598-021-92447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Faculty of Medicine, Department of Medical Biochemistry, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey.,Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Fatih Bozkurt
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering and Architecture, Department of Food Engineering, Mus Alparslan University, Mus, Turkey
| | - Mustafa Tahsin Yilmaz
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aslinur Sircan-Kucuksayan
- Faculty of Medicine, Department of Biophysics, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey
| | - Aysegul Hanikoglu
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tomris Ozben
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
49
|
Understanding the biology of volumetric muscle loss for an individualized exercise rehabilitation approach in breast cancer patients. Curr Opin Pharmacol 2021; 58:27-34. [PMID: 33848933 DOI: 10.1016/j.coph.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Muscle maintenance relies on a multidimensional biologic balance that is extremely delicate in breast cancer patients, particularly those with advanced-stage disease. The biology that underpins breast cancer tumorigenesis, tumor progression and response to pharmacotherapies can modify muscle homeostasis, resulting in volumetric muscle loss. This condition dramatically increases the overall patients' frailty, leading to reduced survival and impaired quality of life. Physical activity may potentially improve muscle health in these patients, providing that an optimal patients selection is performed. The understanding of volumetric muscle loss biology in breast cancer survivors, coupled with focused clinical studies, would allow for the implementation of individualized rehabilitation protocols.
Collapse
|
50
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|