1
|
Ishida M, Yamamura A, Fujiwara M, Amano T, Ota M, Hikawa Y, Kondo R, Suzuki Y, Imaizumi Y, Yamamura H. Pimaric acid reduces vasoconstriction via BK Ca channel activation and VDCC inhibition in rat pulmonary arterial smooth muscles. J Pharmacol Sci 2023; 153:84-88. [PMID: 37640473 DOI: 10.1016/j.jphs.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Pulmonary vessels play a pivotal role in oxygen circulation. We previously demonstrated that pimaric acid (PiMA) activated large-conductance Ca2+-activated K+ (BKCa) channels and inhibited voltage-dependent Ca2+ channels (VDCCs). In the present study, PiMA attenuated vasoconstriction induced by high K+ or endothelin-1 in rat pulmonary arterial smooth muscles (PASMs). PiMA also reduced high K+-induced cytosolic [Ca2+] increase in PASM cells. PiMA increased BKCa currents and decreased VDCC currents. BKCa channels and VDCCs were formed by the α/β1 and α1C/α1D/β2/β3 subunits, respectively. These results indicate that PiMA induces vasorelaxation through the dual effects of BKCa channel activation and VDCC inhibition in PASMs.
Collapse
Affiliation(s)
- Masashi Ishida
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Mina Ota
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Yukari Hikawa
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan.
| |
Collapse
|
2
|
Taylor JL, Walsh KR, Mosneag IE, Danby TGE, Luka N, Chanda B, Schiessl I, Dunne RA, Hill-Eubanks D, Hennig GW, Allan SM, Nelson MT, Greenstein AS, Pritchard HAT. Uncoupling of Ca 2+ sparks from BK channels in cerebral arteries underlies hypoperfusion in hypertension-induced vascular dementia. Proc Natl Acad Sci U S A 2023; 120:e2307513120. [PMID: 37549299 PMCID: PMC10433456 DOI: 10.1073/pnas.2307513120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.
Collapse
Affiliation(s)
- Jade L. Taylor
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Katy R. Walsh
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ioana-Emilia Mosneag
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Thea G. E. Danby
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Nadim Luka
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Bishal Chanda
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Ross A. Dunne
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - David Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Grant W. Hennig
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Mark T. Nelson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Adam S. Greenstein
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
- Manchester University Teaching Hospitals National Health Service Foundation Trust, ManchesterM13 9PL, United Kingdom
| | - Harry A. T. Pritchard
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Foundation Trust, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
3
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
4
|
Ferraz AP, Seara FAC, Baptista EF, Barenco TS, Sottani TBB, Souza NSC, Domingos AE, Barbosa RAQ, Takiya CM, Couto MT, Resende GO, Campos de Carvalho AC, Ponte CG, Nascimento JHM. BK Ca Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovasc Drugs Ther 2021; 35:719-732. [PMID: 33245463 DOI: 10.1007/s10557-020-07115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated. METHODS PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and β myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed. RESULTS Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload. CONCLUSION The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.
Collapse
Affiliation(s)
- Ana Paula Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Emanuelle F Baptista
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais S Barenco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais B B Sottani
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S C Souza
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos T Couto
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel O Resende
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cristiano G Ponte
- Campus Rio de Janeiro, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose Hamilton M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Tang Q, Zheng YM, Song T, Reyes-García J, Wang C, Wang YX. Inhibition of big-conductance Ca 2+-activated K + channels in cerebral artery (vascular) smooth muscle cells is a major novel mechanism for tacrolimus-induced hypertension. Pflugers Arch 2020; 473:53-66. [PMID: 33033891 DOI: 10.1007/s00424-020-02470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Tacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca2+-activated K+ (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks. The voltage sensitivity, Ca2+ sensitivity, and open time of single BK channels were all decreased. In support, BK channel β1-, but not α-subunit protein expression was significantly decreased in cerebral arteries. In TAC-treated mice, application of norepinephrine induced stronger vasoconstriction in both cerebral and mesenteric arteries as well as a larger [Ca2+]i in CASMCs. Chronic treatment of TAC, similar to BK channel β1-subunit knockout (KO), resulted in hypertension in mice, but did not cause a further increase in blood pressure in BK channel β1-subunit KO mice. Moreover, BK channel activity in CASMCs was negatively correlated with blood pressure. Our findings provide novel evidence that TAC inhibits BK channels by reducing the channel β1-subunit expression and functions in vascular SMCs, leading to enhanced vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.,Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Chen Wang
- Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Barnes EA, Lee L, Barnes SL, Brenner R, Alvira CM, Cornfield DN. β1-Subunit of the calcium-sensitive potassium channel modulates the pulmonary vascular smooth muscle cell response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2018; 315:L265-L275. [PMID: 29644895 PMCID: PMC6139656 DOI: 10.1152/ajplung.00060.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/22/2022] Open
Abstract
Accessory subunits associated with the calcium-sensitive potassium channel (BKCa), a major determinant of vascular tone, confer functional and anatomical diversity. The β1 subunit increases Ca2+ and voltagesensitivity of the BKCa channel and is expressed exclusively in smooth muscle cells. Evidence supporting the physiological significance of the β1 subunit includes the observations that murine models with deletion of the β1 subunit are hypertensive and that humans with a gain-of-function β1 mutation are at a decreased risk of diastolic hypertension. However, whether the β1 subunit of the BKCa channel contributes to the low tone that characterizes the normal pulmonary circulation or modulates the pulmonary vascular response to hypoxia remains unknown. To determine the role of the BKCa channel β1 subunit in the regulation of pulmonary vascular tone and the response to acute and chronic hypoxia, mice with deletion of the Kcnmb1 gene that encodes for the β1 subunit ( Kcnmb1-/-) were placed in chronic hypoxia (10% O2) for 21-24 days. In normoxia, right ventricular systolic pressure (RVSP) did not differ between Kcnmb1+/+ (controls) and Kcnmb1-/- mice. After exposure to either acute or chronic hypoxia, RVSP was higher in Kcnmb1-/- mice compared with Kcnmb1+/+ mice, without increased vascular remodeling. β1 subunit expression was predominantly confined to pulmonary artery smooth muscle cells (PASMCs) from vessels ≤ 150 µm. Peripheral PASMCs contracted collagen gels irrespective of β1 expression. Focal adhesion expression and Rho kinase activity were greater in Kcnmb1-/- compared with Kcnmb1+/+ PASMCs. Compromised PASMC β1 function may contribute to the heightened microvascular vasoconstriction that characterizes pulmonary hypertension.
Collapse
MESH Headings
- Acute Disease
- Animals
- Chronic Disease
- Focal Adhesions/genetics
- Focal Adhesions/metabolism
- Focal Adhesions/pathology
- Gene Deletion
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Vasoconstriction
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Lori Lee
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Shayna L Barnes
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Sciences Center , San Antonio, Texas
| | - Cristina M Alvira
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - David N Cornfield
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
7
|
Simon JP, Baskaran UL, Shallauddin KB, Ramalingam G, Evan Prince S. Evidence of antidiabetic activity of Spirulina fusiformis against streptozotocin-induced diabetic Wistar albino rats. 3 Biotech 2018; 8:129. [PMID: 29450119 PMCID: PMC5811412 DOI: 10.1007/s13205-018-1156-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023] Open
Abstract
The aim of our study is to investigate the protective effect of Spirulina fusiformis against streptozotocin-induced diabetes in Wistar albino rats. Rats were divided into five groups: group I was normal control, group II was diabetic control (50 mg/kg b.w. of streptozotocin, i.p.), group III was Spirulina fusiformis (400 mg/kg b.w., p.o.) treated diabetic rats; group IV was Glibenclamide (0. 6 mg/kg b.w., p.o.) treated diabetic rats and group V was treated with Spirulina fusiformis (400 mg/kg b.w., p.o.) alone. There was significant elevation in the levels of blood glucose, serum lipid profile and serum renal markers (total protein, urea, creatinine and uric acid) in the diabetic rats. Also, diabetic rats showed significantly (P < 0.05) reduced antioxidant status (reduced levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione; increased levels of TBARS), impaired oral glucose tolerance and elevated HbA1C. Spirulina fusiformis was able to normalize the above mentioned parameters. Significant histopathological changes were found in the pancreas, liver and kidney sections of the diabetic control group while treatment with Spirulina fusiformis was able to minimize the extent of tissue damage. Current study shows that Spirulina fusiformis possesses significant antidiabetic and antihyperlipidemic effects in streptozotocin-induced diabetic rats by effectively reducing the rise in blood glucose levels and lipid profile.
Collapse
Affiliation(s)
- Jerine Peter Simon
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014 India
| | | | | | - Giridharan Ramalingam
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014 India
| | - Sabina Evan Prince
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
8
|
He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JXJ. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca 2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C504-C517. [PMID: 29351410 DOI: 10.1152/ajpcell.00272.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balisterieri
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - W Gil Wier
- Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
9
|
Baker D, Pryce G, Visintin C, Sisay S, Bondarenko AI, Vanessa Ho WS, Jackson SJ, Williams TE, Al-Izki S, Sevastou I, Okuyama M, Graier WF, Stevenson LA, Tanner C, Ross R, Pertwee RG, Henstridge CM, Irving AJ, Schulman J, Powell K, Baker MD, Giovannoni G, Selwood DL. Big conductance calcium-activated potassium channel openers control spasticity without sedation. Br J Pharmacol 2017; 174:2662-2681. [PMID: 28677901 PMCID: PMC5522996 DOI: 10.1111/bph.13889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Our initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti‐metabolite approach to identify drugs that target spasticity. Experimental Approach Following the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue‐based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans. Key Results VSN16R had nanomolar activity in tissue‐based, functional assays and dose‐dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000‐fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1/CB2/GPPR55 cannabinoid‐related receptors in receptor‐based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium‐activated potassium (BKCa) channel. Drug‐induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural‐excitability and controlling spasticity. Conclusions and Implications We identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper‐excitability in spasticity.
Collapse
Affiliation(s)
- David Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Gareth Pryce
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Cristina Visintin
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK.,Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sofia Sisay
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alexander I Bondarenko
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - W S Vanessa Ho
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Samuel J Jackson
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas E Williams
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Al-Izki
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Masahiro Okuyama
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lesley A Stevenson
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Carolyn Tanner
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ruth Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Roger G Pertwee
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher M Henstridge
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Irving
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jesse Schulman
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Keith Powell
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Mark D Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - David L Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
10
|
Detweiler ND, Song L, McClenahan SJ, Versluis RJ, Kharade SV, Kurten RC, Rhee SW, Rusch NJ. BK channels in rat and human pulmonary smooth muscle cells are BKα-β 1 functional complexes lacking the oxygen-sensitive stress axis regulated exon insert. Pulm Circ 2017; 6:563-575. [PMID: 28090300 DOI: 10.1086/688838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A loss of K+ efflux in pulmonary arterial smooth muscle cells (PASMCs) contributes to abnormal vasoconstriction and PASMC proliferation during pulmonary hypertension (PH). Activation of high-conductance Ca2+-activated (BK) channels represents a therapeutic strategy to restore K+ efflux to the affected PASMCs. However, the properties of BK channels in PASMCs-including sensitivity to BK channel openers (BKCOs)-are poorly defined. The goal of this study was to compare the properties of BK channels between PASMCs of normoxic (N) and chronic hypoxic (CH) rats and then explore key findings in human PASMCs. Polymerase chain reaction results revealed that 94.3% of transcripts encoding BKα pore proteins in PASMCs from N rats represent splice variants lacking the stress axis regulated exon insert, which confers oxygen sensitivity. Subsequent patch-clamp recordings from inside-out (I-O) patches confirmed a dense population of BK channels insensitive to hypoxia. The BK channels were highly activated by intracellular Ca2+ and the BKCO lithocholate; these responses require BKα-β1 subunit coupling. PASMCs of CH rats with established PH exhibited a profound overabundance of the dominant oxygen-insensitive BKα variant. Importantly, human BK (hBK) channels in PASMCs from human donor lungs also represented the oxygen-insensitive BKα variant activated by BKCOs. The hBK channels showed significantly enhanced Ca2+ sensitivity compared with rat BK channels. We conclude that rat BK and hBK channels in PASMCs are oxygen-insensitive BKα-β1 complexes highly sensitive to Ca2+ and the BKCO lithocholate. BK channels are overexpressed in PASMCs of a rat model of PH and may provide an abundant target for BKCOs designed to restore K+ efflux.
Collapse
Affiliation(s)
- Neil D Detweiler
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Song
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rachel J Versluis
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sujay V Kharade
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard C Kurten
- Department of Physiology and Biophysics and Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
11
|
Kuntamallappanavar G, Bisen S, Bukiya AN, Dopico AM. Differential distribution and functional impact of BK channel beta1 subunits across mesenteric, coronary, and different cerebral arteries of the rat. Pflugers Arch 2016; 469:263-277. [PMID: 28012000 DOI: 10.1007/s00424-016-1929-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Large conductance, Ca2+i- and voltage-gated K+ (BK) channels regulate myogenic tone and, thus, arterial diameter. In smooth muscle (SM), BK channels include channel-forming α and auxiliary β1 subunits. BK β1 increases the channel's Ca2+ sensitivity, allowing BK channels to negatively feedback on depolarization-induced Ca2+ entry, oppose SM contraction and favor vasodilation. Thus, endothelial-independent vasodilation can be evoked though targeting of SM BK β1 by endogenous ligands, including lithocholate (LCA). Here, we investigated the expression of BK β1 across arteries of the cerebral and peripheral circulations, and the contribution of such expression to channel function and BK β1-mediated vasodilation. Data demonstrate that endothelium-independent, BK β1-mediated vasodilation by LCA is larger in coronary (CA) and basilar (BA) arteries than in anterior cerebral (ACA), middle cerebral (MCA), posterior cerebral (PCA), and mesenteric (MA) arteries, all arterial segments having a similar diameter. Thus, differential dilation occurs in extracranial arteries which are subjected to similar vascular pressure (CA vs. MA) and in arteries that irrigate different brain regions (BA vs. ACA, MCA, and PCA). SM BK channels from BA and CA displayed increased basal activity and LCA responses, indicating increased BK β1 functional presence. Indeed, in the absence of detectable changes in BK α, BA and CA myocytes showed an increased location of BK β1 in the plasmalemma/subplasmalemma. Moreover, these myocytes distinctly showed increased BK β1 messenger RNA (mRNA) levels. Supporting a major role of enhanced BK β1 transcripts in artery dilation, LCA-induced dilation of MCA transfected with BK β1 complementary DNA (cDNA) was as high as LCA-induced dilation of untransfected BA or CA.
Collapse
Affiliation(s)
- Guruprasad Kuntamallappanavar
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St, Memphis, TN, 38103, USA
| | - Shivantika Bisen
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St, Memphis, TN, 38103, USA
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St, Memphis, TN, 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St, Memphis, TN, 38103, USA.
| |
Collapse
|
12
|
Gao Y, Liu C, Wan G, Wang X, Cheng X, Ou Y. Phycocyanin prevents methylglyoxal-induced mitochondrial-dependent apoptosis in INS-1 cells by Nrf2. Food Funct 2016; 7:1129-1137. [DOI: 10.1039/c5fo01548k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Phycocyanin prevents mitochondrial-dependent apoptosis in methylgiyoxal-induced INS-1 cells by activating Nrf2.
Collapse
Affiliation(s)
- Yingnv Gao
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Chen Liu
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Guoqing Wan
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xinshuo Wang
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center
- Houston
| | - Yu Ou
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
13
|
Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH. Peptide toxins and small-molecule blockers of BK channels. Acta Pharmacol Sin 2016; 37:56-66. [PMID: 26725735 DOI: 10.1038/aps.2015.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022] Open
Abstract
Large conductance, Ca(2+)-activated potassium (BK) channels play important roles in the regulation of neuronal excitability and the control of smooth muscle contractions. BK channels can be activated by changes in both the membrane potential and intracellular Ca(2+) concentrations. Here, we provide an overview of the structural and pharmacological properties of BK channel blockers. First, the properties of different venom peptide toxins from scorpions and snakes are described, with a focus on their characteristic structural motifs, including their disulfide bond formation pattern, the binding interface between the toxin and BK channel, and the functional consequence of the blockage of BK channels by these toxins. Then, some representative non-peptide blockers of BK channels are also described, including their molecular formula and pharmacological effects on BK channels. The detailed categorization and descriptions of these BK channel blockers will provide mechanistic insights into the blockade of BK channels. The structures of peptide toxins and non-peptide compounds could provide templates for the design of new channel blockers, and facilitate the optimization of lead compounds for further therapeutic applications in neurological disorders or cardiovascular diseases.
Collapse
|
14
|
Chen Q, Tao J, Hei H, Li F, Wang Y, Peng W, Zhang X. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels. PLoS One 2015; 10:e0144800. [PMID: 26672753 PMCID: PMC4682634 DOI: 10.1371/journal.pone.0144800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.
Collapse
Affiliation(s)
- Qijing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Jie Tao
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine,164 Lanxi road, Shanghai, 200062, China
| | - Hongya Hei
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Fangping Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine,164 Lanxi road, Shanghai, 200062, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine,164 Lanxi road, Shanghai, 200062, China
- * E-mail: (XZ); (WP)
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- * E-mail: (XZ); (WP)
| |
Collapse
|
15
|
Dai ZK, Liu YW, Hsu JH, Yeh JL, Chen IJ, Wu JR, Wu BN. The Xanthine Derivative KMUP-1 Attenuates Serotonin-Induced Vasoconstriction and K⁺-Channel Inhibitory Activity via the PKC Pathway in Pulmonary Arteries. Int J Biol Sci 2015; 11:633-42. [PMID: 25999786 PMCID: PMC4440253 DOI: 10.7150/ijbs.11127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/23/2015] [Indexed: 01/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.
Collapse
Affiliation(s)
- Zen-Kong Dai
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Liu
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Bhattarai Y, Fernandes R, Kadrofske MM, Lockwood LR, Galligan JJ, Xu H. Western blot analysis of BK channel β1-subunit expression should be interpreted cautiously when using commercially available antibodies. Physiol Rep 2014; 2:2/10/e12189. [PMID: 25355855 PMCID: PMC4254108 DOI: 10.14814/phy2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Large conductance Ca2+‐activated K+ (BK) channels consist of pore‐forming α‐ and accessory β‐subunits. There are four β‐subunit subtypes (β1–β4), BK β1‐subunit is specific for smooth muscle cells (SMC). Reduced BK β1‐subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1‐subunit reduces channel activity and increases SMC contractility. Several anti‐BK β1‐subunit antibodies are commercially available; however, the specificity of most antibodies has not been tested or confirmed in the tissues from BK β1‐subunit knockout (KO) mice. In this study, we tested the specificity and sensitivity of six commercially available antibodies from five manufacturers. We performed western blot analysis on BK β1‐subunit enriched tissues (mesenteric arteries and colons) and non‐SM tissue (cortex of kidney) from wild‐type (WT) and BK β1‐KO mice. We found that antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice, suggesting that these antibodies may lack specificity for the BK β1‐subunit. The absence of BK β1‐subunit mRNA expression in arteries, colons, and kidneys from BK β1‐KO mice was confirmed by RT‐PCR analysis. We conclude that these commercially available antibodies might not be reliable tools for studying BK β1‐subunit expression in murine tissues under the denaturing conditions that we have used. Data obtained using commercially available antibodies should be interpreted cautiously. Our studies underscore the importance of proper negative controls in western blot analyses. Commercially available anti‐BK β1‐subunit antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice. These commercially available antibodies are not reliable tools for studying BK β1‐subunit expression in murine tissues. Data obtained using these antibodies should be interpreted cautiously.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mark M Kadrofske
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - Lizbeth R Lockwood
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- Neuroscience Program, Michigan State University, East Lansing, Michigan Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hui Xu
- Neuroscience Program, Michigan State University, East Lansing, Michigan Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Scornik FS, Bucciero RS, Wu Y, Selga E, Bosch Calero C, Brugada R, Pérez GJ. DiBAC₄(3) hits a "sweet spot" for the activation of arterial large-conductance Ca²⁺-activated potassium channels independently of the β₁-subunit. Am J Physiol Heart Circ Physiol 2013; 304:H1471-82. [PMID: 23542916 DOI: 10.1152/ajpheart.00939.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC₄(3)] has been reported as a novel large-conductance Ca²⁺-activated K⁺ (BK) channel activator with selectivity for its β₁- or β₄-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β₁-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β₁-subunit, we explored the effects of DiBAC₄(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC₄(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β₁-knockout mice in excised patches. BK channels from brain arteries, with or without the β₁-subunit, were similarly activated by DiBAC₄(3). In addition, we found that saturating concentrations of DiBAC₄(3) (~30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as -300 mV. This "sweet spot" for persistent activation is independent of Ca²⁺ and/or the β₁₋₄-subunits and is fully achieved when DiBAC₄(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC₄(3) varies across species and/or vascular beds. DiBAC₄(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators.
Collapse
Affiliation(s)
- Fabiana S Scornik
- Cardiovascular Genetics Center, Institut de Investigació Biomèdica de Girona, and Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | | | | | | | | | | | | |
Collapse
|